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Abstract

We develop two kernel smoothing based tests of a parametric mean-regression

model against a nonparametric alternative when the response variable is right-

censored. The new test statistics are inspired by the synthetic data and the weighted

least squares approaches for estimating the parameters of a (non)linear regression

model under censoring. The asymptotic critical values of our tests are given by the

quantiles of the standard normal law. The tests are consistent against fixed alter-

natives, local Pitman alternatives and uniformly over alternatives in Hölder classes

of functions of known regularity.

Key words: Hypothesis testing, censored data, Kaplan-Meier integral, local

alternative

MSC 2000: 62G10, 62G08, 62N01

Résumé

Nous développons deux procédures de test d’un modèle de régression paramé-

trique contre une alternative non paramétrique, dans le cas où la variable expliquée

est censurée aléatoirement à droite. Ces deux procédures sont basées sur un lissage

par noyau. Ces nouvelles statistiques de test sont inspirées des approches ”synthetic

data” et moindres carrés pondérés utilisées pour l’estimation dans des modèles de

régression en présence de censure. Les valeurs critiques asymptotiques de nos tests

sont données par les quantiles d’une loi normale centrée réduite. Les tests sont

consistants contre des alternatives fixes, des alternatives locales de type Pitman, et

uniformément sur des alternatives appartenant à des classes de Hölder de régularité

connue.

Mots clés : Test d’hypothèses, données censurées, intégrale Kaplan-Meier,

alternative locale



1 Introduction

Parametric mean-regression models, in particular the linear model, are valuable tools for

exploring the relationship between a response and a set of explanatory variables (covari-

ates). However, in survival analysis such models are overshadowed by the fashionable

proportional hazard models and the accelerated failure time models where one imposes

a form for the conditional law of the response given the covariates. Even though mean-

regression models involve weaker assumptions on the conditional law of the responses, the

popularity of the parametric mean-regressions with censored data greatly suffers from the

difficulty to perform statistical inference when not all responses are available.

The existing methods for the estimation of the parameters of the mean-regression in

the presence of right censoring can be split into two main categories: i) weighted least

squares (WLS) based on the uncensored observations but suitably weighted to account

for censorship (see Zhou 1992a, Stute 1999); and ii) synthetic data (SD) estimators ob-

tained by ordinary least squares with transformed responses, using a transformation that

preserves the conditional expectation and that can be estimated from data (e.g., Buckley

and James 1979, Koul et al. 1981, Leurgans 1987).

This paper’s main purpose focuses on a further step in the statistical inference for

parametric mean-regression models under right censoring, that is nonparametric lack-of-

fit testing. Checking the adequacy of a parametric regression function against a purely

nonparametric alternative has received a large amount of attention in the non-censored

case and several approaches have been proposed. See, amongst many others, Härdle

and Mammen (1993), Zheng (1996), Stute (1997), Dette (1999), Horowitz and Spokoiny

(2001), Fan and Huang (2001), Guerre and Lavergne (2005), and the references therein.

But for right-censored data, these approaches are not directly applicable. To our knowl-

edge, very few solutions for nonparametric regression checks with right-censored responses

have been proposed. Following the approach of Stute (1997), Stute et al. (2000) intro-

duced two tests based on an empirical process marked by weighted residuals, the role of

the weights being to account for censoring. The limit of their marked empirical process is

a rather complicated centered Gaussian process and therefore the implementation of the

test requires numerical calculations. Sánchez-Sellero et al. (2005) reconsidered this type
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of test and provided a complete proof of its asymptotic level. However, for technical rea-

sons, Sánchez-Sellero et al. (2005) drop some observations in the right tail of the response

variable and therefore the resulting tests are no longer omnibus. Moreover, neither Stute

et al. (2000) nor Sánchez-Sellero et al. (2005) studied the consistency of the tests against

a sequence of alternatives approaching the null hypothesis. Pardo-Fernandez et al. (2005)

proposed another test for parametric models in censored regression that is based on the

comparison of two estimators, parametric and nonparametric, of the distribution of the

errors. As the latter estimator is based on a nonparametric location-scale model, the test

of Pardo-Fernandez et al. (2005) is not consistent against any alternative.

In this paper we consider two versions adapted for right-censored responses of the

kernel-based test statistic studied by Zheng (1996). See also Härdle and Mammen (1993),

Horowitz and Spokoiny (2001), Guerre and Lavergne (2005) for closely related test sta-

tistics. In the non-censored case, the kernel-based test statistic we consider is a suitably

normalized U−statistic built from the estimated residuals of the parametric model. Un-

der suitable conditions, the test statistic converges in law to a standard normal when the

model is correct. The problem in presence of censoring is that estimated residuals can be

computed only for uncensored observations. The two solutions we propose are inspired

by the WLS and SD estimation approaches mentioned above. On one hand, we build

a weighted U−statistic using estimated residuals with the weights estimated from data.

Once again, the weights account for censoring. On the other hand, we build a U−statistic

using estimated synthetic residuals where the synthetic residuals are the difference between

the synthetic responses and the predictions given by the model. Two smoothing-based

test statistics are obtained after suitably normalizing each of these U−statistics.

The paper is organized as follows. In section 2 we recall the weighted least squares

and synthetic data approaches for (non)linear regression models when the response is

right-censored. Section 3 shows how to build two kernel based test statistics adapted for

censored responses. Section 4 deals with the asymptotic behavior of the two omnibus tests

that we derive. The main results in this paper show that the asymptotic study of our

tests boils down to the asymptotic study of kernel-based tests without censoring but with

suitably transformed observations. As a consequence, the asymptotic critical values of the

2



new tests are given by the quantiles of the standard normal law. Moreover, the asymptotic

consistency of our tests is obtained by arguments similar to those used for kernel based

tests in the non-censored case. In particular, we study the consistency of the new tests

against fixed alternatives, local Pitman type alternatives and the consistency uniformly

over Hölder classes of alternatives of known regularity. It is worthwhile to notice that the

results of asymptotic equivalence between our two test statistics and two kernel-based test

statistics built with transformed (non-censored) observations are obtained uniformly in

the bandwidth. This motivates us to propose the construction of a data-driven procedure

inspired by the maximum test approach of Horowitz and Spokoiny (2001). However,

to keep this paper at reasonable length, the detailed investigation of this data-driven

procedure is left for future work. Finally, in section 5 we illustrate the performance of the

new tests using a small simulation experiment.

2 Preliminaries

Consider the model Y = m (X) + ε, where Y ∈ R, X ∈ Rp, E (ε | X) = 0 almost surely

(a.s.), and m (·) is an unknown function. In presence of random right censoring, the

response Y is not always available. Instead of (Y,X), one observes a random sample from

(T, δ,X) with

T = Y ∧ C, δ = 1{Y≤C},

where C is the “censoring” random variable, and 1A denotes the indicator function of the

set A. In our setting, the variable X is not subject to censoring and is fully observed. We

want to check whether the regression function m (·) belongs to a parametric family

M =
{
f (θ, ·) : θ ∈ Θ ⊂ Rd

}

where f is a known function. Our null hypothesis then writes

H0 : for some θ0, E (Y |X) = f(θ0, X) a.s., (2.1)

while the alternative is P [E (Y |X) = f(θ, X)] ≤ c for every θ ∈ Θ and some c < 1. For

testing H0, first we need to estimate θ0.
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2.1 Estimating (non)linear regressions with censored data

Since the observed variable T does not have the same conditional expectation as Y ,

classical techniques for estimating parametric (non)linear regression models like M must

be adapted to account for censorship. Several adapted procedures have been proposed,

that we classify in two groups: synthetic data (SD) procedures and weighted least squares

(WLS). In the SD approach one replaces the variable T with some transformation of

the data Y ∗, a transformation which preserves the conditional expectation of Y . Several

transformations have been proposed, see for instance Buckley and James (1979), Leurgans

(1987), Zheng (1987). In the following, we will restrain ourselves to the transformation

first proposed by Koul et al. (1981), that is

Y ∗ =
δT

1−G (T−)
, (2.2)

where G (t) = P (C ≤ t). The following assumptions will be used throughout this paper

to ensure that E (Y ∗ | X) = E (Y | X) for Y ∗ defined in (2.2).

Assumption 1 Y and C are independent.

Assumption 2 P (Y ≤ C | X,Y ) = P (Y ≤ C | Y ) .

These assumptions are quite common in the survival analysis literature when covariates

are present. Assumption 1 is an usual identification condition when working with the

Kaplan-Meier estimator. Stute (1993), pages 462-3, provides a detailed discussion on

Assumption 2. These assumptions may be inappropriate for some data sets. However,

they are often satisfied in randomized clinical trials when the failure time Y of each

subject is either observed or administratively censored at the end of the follow-up period.

Notice that Assumption 2 is flexible enough to allow for a dependence between X and C.

Moreover, Assumptions 1 and 2 imply the following general property: for any integrable

φ(T,X),

E
[

δ

1−G(T−)
φ(T,X) | X

]
= E [φ(Y,X) | X] . (2.3)

Unfortunately, one cannot compute the transformation (2.2) when the function G is

unknown. Therefore, given the i.i.d. observations (T1, δ1, X1) , ..., (Tn, δn, Xn) , Koul et al.
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(1981) proposed to replace G with its Kaplan-Meier estimate

Ĝ (t) = 1−
∏

{j:Tj≤t}

(
1− 1

Rn (Tj)

)1−δj

, with Rn (t) =
n∑

k=1

1{t≤Tk},

and to compute

Ŷ ∗
i =

δiTi

1− Ĝ (Ti−)
, i = 1, ..., n. (2.4)

Next, Koul et al. (1981) proposed to estimate θ0 by θ̂SD that minimizes

MSD
n (θ) =

1

n

n∑
i=1

[
Ŷ ∗

i − f (θ, Xi)
]2

over Θ. They obtained the consistency of θ̂SD and the asymptotic normality of
√

n(θ̂SD−
θ0) in the particular case of a linear regression model. Delecroix et al. (2006) generalized

these results to more general functions f (θ, x).

The WLS approach consists in applying weighted least squares techniques directly to

variables Ti, that is computing θ̂WLS which minimizes

MWLS
n (θ) =

n∑
i=1

Win [Ti − f (θ,Xi)]
2 ,

with a specific choice of Win that compensates for the fact that Y is censored. More

precisely, the weights Win are defined by

Win =
δi

n
[
1− Ĝ (Ti−)

] . (2.5)

Zhou (1992a) studied an estimator like θ̂WLS in the case of linear regression. Under As-

sumptions 1 and 2, Stute (1999) generalized this approach to nonlinear regressions. Using

the Kaplan-Meier estimator F̂(X,Y ) (x, y) of F(X,Y ) (x, y) = P (X ≤ x, Y ≤ y) introduced

by Stute (1993), Stute (1999) interpreted θ̂WLS as the minimizer of

∫
[y − f (θ, x)]2 dF̂(X,Y ) (x, y) (2.6)

with respect to θ. Indeed, on one hand, by definition, at observation i the jump of F̂(X,Y )

is equal to the jump of the Kaplan-Meier estimate of F (t) = P (Y ≤ t). On the other

hand, it can be easily shown that the jump of F̂ (t) at observation i is equal to the

weight Win defined in (2.5). Using the properties of Kaplan-Meier integrals, one can
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deduce consistency and root-n-asymptotic normality for θ̂WLS. See Stute (1999, 1993) or

Delecroix et al. (2006) for more details. It is worthwhile to notice that a choice of Win as

in (2.5) connects MWLS
n (θ) to MSD

n (θ) since, in this case, Ŷ ∗
i = nWinTi. In the following

section, we will see how to extend the purpose of the two methodologies (SD and WLS)

from estimation to testing.

3 Nonparametric test procedures under censoring

To better explain the new approach, first the case where Y is not censored is reconsidered.

Then, testing the adequacy of model M is equivalent to testing

for some θ0, Q (θ0) = 0 where Q (θ) = E [U (θ)E [U (θ) | X] g (X)] ,

U (θ) = Y − f (θ, X) and g denotes the density of X that is assumed to exist. The choice

of g avoids handling denominators close to zero. When the responses are not censored,

one may estimate Q (θ0) by the kernel-based estimator

Qn(θ̂) =
1

n (n− 1) hp

∑

i6=j

Ui(θ̂)Uj(θ̂)Kh (Xi −Xj) (3.7)

where θ̂ is an estimator of θ0 such that θ̂ − θ0 = OP (n−1/2), Ui (θ) = Yi − f (θ, Xi) ,

K is some p−dimensional kernel function, h denotes the bandwidth and for x ∈ Rp,

Kh (x) = K(x/h). See Zheng (1996). See also Horowitz and Spokoiny (2001) or Guerre

and Lavergne (2005). For the purpose of adapting this smoothing approach to the case

where the responses are right-censored, it is worthwhile to notice that Qn(θ̂) is equal to

n

(n− 1) hp

∫ ∫ [
y1 − f

(
θ̂, x1

)] [
y2 − f(θ̂, x2)

]
Kh (x1 − x2) (3.8)

×1{(x1,y1)6=(x2,y2)}dF̂emp (x1, y1) dF̂emp (x2, y2) ,

where F̂emp is the empirical distribution function of the sample of X and Y .

Using a consistent estimate V̂ 2
n of the asymptotic variance of nhp/2Qn(θ̂), the smooth-

ing based test statistic with non-censored responses is

TNC
n = nhp/2Qn(θ̂)

V̂n

. (3.9)
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Under the null hypothesis the statistic behaves asymptotically as a standard normal and

therefore the nonparametric test is defined as “Reject H0 when TNC
n ≥ z1−α”, where z1−α

is the (1− α)th quantile of the standard normal law. As an estimate V̂ 2
n , one could use

either

V̂ 2
n =

2

n(n− 1)hp

∑

i 6=j

U2
i (θ̂)U2

j (θ̂)K2
h (Xi −Xj)

or

V̂ 2
n =

2

n(n− 1)hp

∑

i6=j

σ̂2 (Xi) σ̂2 (Xj) K2
h (Xi −Xj) , (3.10)

with σ̂2 (x) a nonparametric estimator of σ2 (x) = V ar(ε | X = x). The former choice for

V̂ 2
n is simpler but is likely to decrease the power of the test because the squares of the

estimated residuals of the parametric model produce an upward biased estimate of σ2 (x)

under the alternative hypothesis.

In the presence of censored responses, the test statistic (3.9) cannot be computed since

F̂emp is unavailable. However, it is possible to find the analogue of Qn(θ̂) using the two

approaches of section 2.

3.1 Two test statistics with right-censored responses

In the following, the observations are (T1, δ1, X1) , ..., (Tn, δn, Xn), a random sample from

(T, δ,X) . In the spirit of the SD approach, consider the estimated synthetic responses

Ŷ ∗
1 , ..., Ŷ ∗

n obtained from formula (2.4) and the empirical distribution function

F̂ ∗ (x, y) =
1

n

n∑
i=1

1{Xi≤x, Ŷ ∗i ≤y}.

Now, the analogue of Qn(θ̂) is

QSD
n (θ̂) =

n

(n− 1) hp

∫ ∫ [
y∗1 − f(θ̂, x1)

] [
y∗2 − f(θ̂, x2)

]
(3.11)

×Kh(x1−x2)1{(x1,y∗1)6=(x2,y∗2)}dF̂ ∗(x1, y
∗
1) dF̂ ∗(x2, y

∗
2)

=
1

n(n− 1)hp

∑

i 6=j

ÛSD
i (θ̂)ÛSD

j (θ̂)Kh(Xi −Xj),

where θ̂ = θ̂SD and

ÛSD
i (θ) =

δi

1− Ĝ (Ti−)
Ti − f (θ,Xi) = nWinTi − f (θ, Xi) (3.12)
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are the estimated synthetic residuals. The statistic QSD
n (θ) estimates

QSD(θ) = E
[
USD (θ)E

[
USD (θ) | X]

g (X)
]

with USD (θ) = δT [1−G (T−)]−1− f (θ, X) . By (2.3), if Assumptions 1 and 2 hold then

the null hypothesis is equivalent to QSD (θ0) = 0. Therefore QSD
n (θ̂) can serve to build

our first test statistic.

On the other hand, following the WLS approach we can replace F̂emp (x, y) in (3.8)

with the Kaplan-Meier estimator

F̂(X,Y ) (x, y) =
n∑

i=1

Win1{Xi≤x, Ti≤y}

to obtain a second U−statistic

QWLS
n (θ̂) =

n

(n− 1) hp

∫∫ [
y1−f(θ̂, x1)

][
y2−f(θ̂, x2)

]
Kh(x1−x2) (3.13)

×1{(x1,y1)6=(x2,y2)}dF̂(X,Y )(x1, y1)dF̂(X,Y )(x2, y2)

=
1

n(n− 1)hp

∑

i 6=j

ÛWLS
i (θ̂)ÛWLS

j (θ̂)Kh (Xi −Xj) ,

with θ̂ = θ̂WLS and

ÛWLS
i (θ) =

δi

1− Ĝ (Ti−)
[Ti − f (θ,Xi)] = nWin [Ti − f (θ, Xi)] . (3.14)

The statistic QWLS
n (θ) estimates

QWLS(θ) = E
[
UWLS (θ)E

[
UWLS (θ) | X]

g (X)
]

with UWLS(θ) = δ [1−G (T−)]−1 [T − f (θ,X)] . By (2.3), the null hypothesis is equiv-

alent to QWLS (θ0) = 0 and therefore QWLS
n (θ̂) can be used to build our second test

statistic, provided that Assumptions 1 and 2 hold true.

Now, given consistent estimates
[
V̂ SD

n

]2

and
[
V̂ WLS

n

]2

of the asymptotic variance of

nhp/2QSD
n (θ̂) and nhp/2QWLS

n (θ̂), respectively, we propose the following test statistics:

T SD
n = T SD

n (θ̂) = nhp/2QSD
n (θ̂)

V̂ SD
n

, TWLS
n = TWLS

n (θ̂) = nhp/2QWLS
n (θ̂)

V̂ WLS
n

.

The corresponding omnibus tests are

“Reject H0 when T SD
n ≥ z1−α (resp. TWLS

n ≥ z1−α) ”. (3.15)
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To estimate the variance of nhp/2QSD
n (θ̂) we consider

[
V̂ SD

n

]2

=
2

n(n− 1)hp

∑

i6=j

[
ÛSD

i (θ̂)
]2 [

ÛSD
j (θ̂)

]2

K2
h (Xi −Xj) . (3.16)

The variance of nhp/2QWLS
n (θ̂) is estimated similarly with ÛSD

i (θ̂) replaced by ÛWLS
i (θ̂).

Alternative variance estimates are discussed in section 4.

Checking the validity of a parametric conditional model has attracted much attention

in survival analysis. Hjort (1990) and Lin and Spiekerman (1996) considered goodness-

of-fit statistics based on martingale residuals, while Gray and Pierce (1985) showed how

Neyman’s smooth tests may be adapted to censored data. See chapter 10 of Lawless

(2003) for a review of the methods for testing the lack-of-fit. All these techniques can

be used to check whether some parametric form of the conditional law of the response

variable given the explanatory variables is consistent with observed data. Therefore, these

techniques are only of limited use in our framework where we aim to check the adequacy

of some parametric form of the conditional expectation of the response variable given the

covariates. The standard normal limit of the test statistics T SD
n and TWLS

n under the null

hypothesis, a property that will be proved in the following, yields the simple one-sided

tests (3.15) for checking mean-regressions. By contrast, the only alternative test statistics

available in the literature (see Stute et al. 2000) have a complicated limit and there is no

simple way to construct the critical values of the associated tests.

4 Asymptotic analysis

The most difficult part of the study of our tests is the investigation of the properties of

QSD
n (θ) and QWLS

n (θ). These quadratic forms are difficult to analyze even when H0 holds

true and θ is equal to θ0, since they do not rely on i.i.d. quantities Ui, as the quadratic

form (3.7) does. In fact, due to the presence of Ĝ in (3.12) and (3.14), each ÛSD
i (θ0) and

ÛWLS
i (θ0) depend on the whole sample. Then, a key point is to show that under H0, in

some sense, QSD
n (θ̂) and QWLS

n (θ̂) are asymptotically equivalent to the “ideal”quadratic

forms

Q̃SD
n (θ0) =

1

n(n− 1)hp

∑

i6=j

USD
i (θ0) USD

j (θ0) Kh (Xi −Xj) (4.17)
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and

Q̃WLS
n (θ0) =

1

n(n− 1)hp

∑

i6=j

UWLS
i (θ0) UWLS

j (θ0) Kh (Xi −Xj) , (4.18)

respectively, where

USD
i (θ) =

δi

1−G (Ti−)
Ti − f (θ,Xi) = γ(Ti)Ti − f (θ, Xi) ,

UWLS
i (θ) =

δi

1−G (Ti−)
[Ti − f (θ, Xi)] = γ(Ti) [Ti − f (θ,Xi)] .

The asymptotic study of Q̃SD
n (θ0) and Q̃WLS

n (θ0) can be done like in the non-censored

case. Therefore, the asymptotic level of our tests will be obtained as a consequence of

the equivalence result and using techniques for kernel-based tests in the i.i.d. case. See,

for instance, Zheng (1996), Horowitz and Spokoiny (2001), Guerre and Lavergne (2005).

A similar equivalence result deduced under fixed or moving alternatives will serve for

studying the asymptotic consistency of our tests.

4.1 Assumptions

In addition to Assumptions 1 and 2 in section 2, we will use the following assumptions.

Assumption 3 (i) F and G are continuous.

(ii)−∞<τF ≤ τG ≤ ∞, where τL = inf {t | L (t)=1} for any distribution function L.

Assumption 3 (i) is introduced for convenience purposes. Considered together with

Assumptions 1, it implies P (Y = C) = 0 and this latter condition simplifies the results on

Kaplan-Meier integrals (see Stute 1995, Sánchez et al. 2005) and justifies the definition

of the Kaplan-Meier estimate Ĝ. When τF > τG, there is no way to access information

about the law of Y beyond τG, so that, in general, there is no way to consistently estimate

θ0. Assumption 3 (ii) allows one to avoid this case.

Assumption 4 (Data): (i) Let (ε1, C1, X1), ..., (εn, Cn, Xn) be an independent sample of

(ε, C, X) where ε, C ∈ R and X ∈ Rp, and suppose E(ε | X) = 0 a.s.

(ii) X is a random vector with bounded support X and bounded density g.

(iii) There exist some constants cinf , csup such that for each x ∈ X

0 < cinf ≤ E
[
ε2 | X = x

] ≤ E [{
1 + ε2

} {1−G(Y )}−1 | X = x
] ≤ csup < ∞.
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(iv) E [{1 + ε4} δ{1−G(Y )}−4] = E [{1 + ε4} γ(T )4] < ∞.

Assumptions 4 (iii)-(iv) are counterparts of assumptions on the conditional variance

and the fourth moment of the residuals that are usually imposed in the non-censored

case. See, e.g., Guerre and Lavergne (2005). Now, define ∇θf(θ, x) = ∂f(θ, x)/∂θ,

∇2
θf(θ, x) = ∂2f(θ, x)/∂θ∂θ′, whenever these derivatives exist. For any matrix A let ‖A‖2

denote its 2-norm, that is ‖A‖2 = supv 6=0 ‖Wv‖/‖v‖, where ‖v‖ is the Euclidean norm of

the vector v.

Assumption 5 (Parametric model): The parameter set Θ is a compact subset of Rd,

d ≥ 1, and θ0 in an interior point of Θ. The parametric regression model M={f (θ, ·) :

θ ∈ Θ} satisfies:

(i) Differentiability in θ: for each x ∈ X , f (θ, x) is twice differentiable with respect

to θ. There exists a finite constant c1 such that for each θ ∈ Θ and x ∈ X , |f(θ, x)| +
‖∇θf(θ, x)‖ + ‖∇2

θf(θ, x)‖2 ≤ c1. Moreover, there exist finite constants a, c2 > 0 such

that for each θ and x, |∇2
θf(θ, x)jk−∇2

θf(θ0, x)jk| ≤ c2‖θ− θ0‖a, where ∇2
θf(θ, x)jk is the

element jk of the matrix ∇2
θf(θ, x).

(ii) Identifiability: there exists a nonnegative bounded function Φ with E [Φ(X)] > 0

such that for each θ ∈ Θ and x ∈ X , |f(θ, x)− f(θ0, x)| ≥ Φ(x)‖θ − θ0‖.

Assumption 6 (Kernel smoother): (i) If x = (x1, ..., xp), let K (x) = K̃ (x1) ...K̃ (xp)

where K̃ is a symmetric continuous density of bounded variation on R. The Fourier

Transform ˆ̃K of K̃ is positive, integrable and non-increasing on [0,∞).

(ii) The bandwidth h belongs to an interval Hn = [hmin, hmax], n ≥ 1, such that

hmax → 0 and nh3p
min →∞.

Condition (i) of Assumption 6 holds, for instance, for normal, Laplace or Cauchy

densities. The condition non-increasing Fourier Transform for ˆ̃K is a convenient assump-

tion that will serve only for deriving our asymptotic equivalence results uniformly in the

bandwidth. Concerning the range for the bandwidth, in view of equation (A.9) in the Ap-

pendix, it is clear that hmin may be taken of smaller rate if Assumption 4-(iv) above and

Assumption 7 below are made more restrictive. The following assumption is connected to
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the asymptotic theory of Kaplan-Meier integrals, see condition (1.6) of Stute (1995) and

Stute (1996). It will serve us to control the jumps of the Kaplan-Meier estimator. Below,

a ∨ b denotes the maximum of a and b.

Assumption 7 Let H(t) = P(T ≤ t), t ∈ R, and

qρ(x) = E
[{|Y |+ 1}C(Y )1/2+ρ | X = x

]
,

where

C(y) =

∫ y

−∞

dG(t)

[1−H(t)][1−G(t)]
∨ 1.

There exists some 0 < ρ < 1/2 such that E[q2
ρ(X)] < ∞.

The function C(·) in Assumption 7 appears also in Bose and Sen (2002) who derive an

i.i.d. representation for Kaplan-Meier U−statistics. Their general result would have been

useful for studying our test statistics. Unfortunately, they impose ρ = 1/2 for deriving

their representation, see Bose and Sen’s Theorem 1 and Remark 1. This condition is

unrealistic in our framework.

4.2 Behavior of the tests under the null hypothesis

The following theorem gives an asymptotic representation of the test statistics T SD
n and

TWLS
n under H0 stated in (2.1). To simplify notation, in the following we replace the

superscripts SD and WLS with 0 and 1, respectively. For instance we write T 0
n and Q0

n

(resp. T 1
n and Q1

n) instead of T SD
n and QSD

n (resp. TWLS
n and QWLS

n ). As before, θ̂ stands

for θ̂SD or θ̂WLS, depending on the approach considered.

Theorem 4.1 Let Assumptions 1 to 7 hold. Under H0, for β = 0 or 1

sup
h∈Hn

{∣∣∣nhp/2Qβ
n(θ̂)− nhp/2Q̃β

n(θ0)
∣∣∣ +

∣∣∣∣∣
Ṽ β

n (θ0)

V̂ β
n

− 1

∣∣∣∣∣

}
→ 0,

in probability, where
[
Ṽ β

n (θ0)
]2

=
2

n(n− 1)hp

∑

i6=j

[
Uβ

i (θ0)
]2 [

Uβ
j (θ0)

]2

K2
h (Xi −Xj) .

Moreover, under H0 and for β = 0 or 1

sup
h∈Hn

∣∣∣∣∣T
β
n (θ̂)− nhp/2Q̃β

n(θ0)

Ṽ β
n (θ0)

∣∣∣∣∣ = oP (1).

12



Corollary 4.2 Under Assumptions 1 to 7 the two tests defined in equation (3.15) have

asymptotic level α.

Proof of Theorem 4.1. We give here the main steps of the proof. Technical arguments

are postponed to the Appendix.

Step 1. First, notice that the assumptions ensure θ̂ − θ0 = OP (n−1/2) (see, e.g.,

Delecroix et al. 2006 or Lemma A.12 in the Appendix). Next, by Lemma A.6

sup
h∈Hn

hp/2
∣∣∣Qβ

n(θ̂)−Qβ
n(θ0)

∣∣∣ = oP (n−1),

and thus we reduce the problem to the study of Qβ
n(θ0).

Step 2. Let us simplify notation: for β = 0 or 1 and i = 1, ..., n, write Uβ
i (resp. Ûβ

i )

instead of Uβ
i (θ0) (resp. Ûβ

i (θ0)). Now decompose

Qβ
n (θ0) =

1

n(n− 1)hp

∑

i6=j

Uβ
i Uβ

j Kh (Xi −Xj)

+
2

n(n− 1)hp

∑

i 6=j

[
Ûβ

i − Uβ
i

]
Uβ

j Kh (Xi −Xj)

+
1

n(n− 1)hp

∑

i 6=j

[
Ûβ

i − Uβ
i

] [
Ûβ

j − Uβ
j

]
Kh (Xi −Xj)

= Q̃β
n (θ0) + 2Qβ

n1 + Qβ
n2. (4.19)

Fix τ < τH = inf{t : H(t) = 1} arbitrarily. To show that Qβ
n1 is negligible, first we study

a truncated version of this quantity, that is

Qβ
n1(τ) =

1

n(n− 1)hp

∑

i 6=j

[
Ûβ

i − Uβ
i

]
1{Ti≤τ}U

β
j Kh (Xi −Xj) . (4.20)

Since Ûβ
i − Uβ

i can be decomposed into two parts

Ûβ
i − Uβ

i =
Ĝ (Ti−)−G (Ti)

[1−G (Ti)]
2 δi [Ti − βf(θ0, Xi)]

+

[
Ĝ (Ti−)−G (Ti)

]2

[1−G (Ti)]
2
[
1− Ĝ (Ti−)

] δi [Ti − βf(θ0, Xi)] ,

we can separate Qβ
n1(τ) into two sums Qβ

n11(τ) and Qβ
n12(τ), respectively. For Qβ

n12(τ),

take absolute values and recall that supt≤τ

∣∣∣Ĝ (t)−G (t)
∣∣∣ = OP (n−1/2), provided that

13



G (τ) < 1 (cf. Gill, 1983). This allows us to take [Ĝ (Ti−) − G (Ti)]
2 outside the sum

of absolute values and thus to bound |Qβ
n12(τ)| by a factor OP (n−1) times a U−process

indexed by h ∈ Hn. By the rate of uniform convergence of U−processes indexed by

Euclidean families of functions for a square integrable envelope (see Sherman, 1994) and

the condition nh2p
min → ∞, we conclude that suph∈Hn

|Qβ
n12(τ)| = OP (n−1). For Qβ

n11(τ),

we use the an i.i.d. representation of Ĝ (t−) − G (t) with a remainder of order OP (n−1)

uniformly in t where t ≤ τ. See Theorem 1.1 of Stute (1995) and Theorem 1 of Sánchez-

Sellero et al. (2005). Replacing Ĝ (Ti−)−G (Ti) with the sum in the i.i.d. representation

plus a remainder, the rate of Qβ
n11(τ) will be given by the rate of uniform convergence

of two U−processes indexed by h ∈ Hn. Using Corollary 4 of Sherman (1994) and the

condition nh2p
min →∞, we deduce that for any ζ > 0, suph∈Hn

|hζQβ
n11(τ)| = oP (n−1). As

a consequence

sup
h∈Hn

∣∣∣hp/2Qβ
n1(τ)

∣∣∣ = oP (n−1). (4.21)

See Lemma A.7 in the Appendix for the details. To derive the rate of Qβ
n2, take absolute

values and use Lemma A.1 in the Appendix to bound |Ûβ
i − Uβ

i | by OP (n−1/2) times a

function of Ti and δi which is not square integrable. Consequently, |Qβ
n2| can be bounded

by OP (n−1) times a second order U−statistic indexed by h. Here, we can no longer apply

Sherman (1994)’s results on the rates of uniform convergence for handling this U−statistic

because the square integrable envelope condition fails. However, the expectation of this

U−statistic remains bounded when h → 0. This implies Qβ
n2 = OP (n−1) when considering

a sequence h → 0. To obtain this rate uniformly in h ∈ Hn, that is

sup
h∈Hn

∣∣∣Qβ
n2

∣∣∣ = OP (n−1), (4.22)

we use the monotonicity property of the Fourier Transform of the kernel K and the

condition nh2p
min →∞. See Lemma A.8 in the Appendix for the details.

Step 3. Since by definition Qβ
n1(τH) = Qβ

n1, it remains to make τ ↑ τH . By Lemma A.9

in the Appendix

sup
h∈Hn

hp/2
∣∣∣Qβ

n1 (τ)−Qβ
n1

∣∣∣ = Cτ ×OP (n−1),

14



with the OP (n−1) factor independent of τ and Cτ tending to zero when τ ↑ τH . Use (4.21)

and the Cramér-Slutsky argument from Theorem 1.1 of Stute (1995) to deduce that

sup
h∈Hn

∣∣∣nhp/2Qβ
n1

∣∣∣ = oP (1).

From this and (4.22) we obtain

sup
h∈Hn

∣∣∣nhp/2Qβ
n(θ0)− nhp/2Q̃β

n(θ0)
∣∣∣ = oP (1).

Step 4. The result for V̂ β
n is contained in Lemma A.10 in the Appendix. The second

part of the theorem follows if we recall that Ṽ β
n (θ0) converges in probability to a strictly

positive limit and nhp/2Q̃β
n(θ0) is bounded in probability.

Remark 1. To estimate the variance nhp/2Q0
n(θ̂) we considered (3.16). Alternatively,

extending the idea behind the equation (3.10) to the right-censoring framework, one may

replace in (3.16) the estimated squared residual Û0
i (θ̂)2 with a nonparametric estimate of

σ∗ 2 (x) = V ar(Y ∗ | X = x), the conditional variance of the synthetic responses. It is easy

to check that V ar(Y ∗ | X) = E
[
U0 (θ0)

2 | X]
under H0 and, in general, V ar(Y ∗ | X) <

E
[
U0 (θ0)

2 | X]
if the regression model is not correct. To estimate σ∗ 2 (·) , one can use

σ̂∗ 2
n (x) =

∑n
i=1 Ŷ ∗ 2

i L((Xi − x)/bn)∑n
i=1 L((Xi − x)/bn)

−
(∑n

i=1 Ŷ ∗
i L((Xi − x)/bn)∑n

i=1 L((Xi − x)/bn)

)2

, (4.23)

x ∈ X , with L a multivariate kernel and bn a bandwidth parameter chosen independently

of Hn. If

sup
x∈X

∣∣σ̂∗ 2
n (x)− σ∗ 2(x)

∣∣ → 0 (4.24)

in probability, we can redefine

[
V̂ 0

n

]2

=
2

n(n− 1)hp

∑

i6=j

σ̂∗ 2
n (Xi)σ̂

∗ 2
n (Xj)K

2
h (Xi −Xj) (4.25)

and the test statistic T 0
n(θ̂) accordingly. Since (4.24) and our assumptions imply V̂ 0

n −Ṽ 0
n =

oP (1) uniformly in h ∈ Hn, where here

[
Ṽ 0

n

]2

=
2

n(n− 1)hp

∑

i6=j

σ∗ 2(Xi)σ
∗ 2(Xj)K

2
h (Xi −Xj) , (4.26)
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the new test statistic T 0
n(θ̂) has the same standard normal asymptotic law under H0 and

potentially leads to a more powerful test. In Lemma A.11 in the Appendix we provide

a set of sufficient conditions for obtaining supx∈X |σ̂∗ 2
n (x)− σ∗ 2

n (x)| → 0, in probability,

regardless of whether H0 is true, where σ∗ 2
n (·) is defined like σ̂∗ 2

n (·) but with estimated

synthetic observations Ŷ ∗
i replaced with the true (unknown) ones Y ∗

i . To obtain (4.24),

our result can be completed by the arguments for i.i.d. data like in Horowitz and Spokoiny

(2001) or Guerre and Lavergne (2005) allowing to deduce supx∈X |σ∗ 2
n (x)− σ∗ 2(x)| → 0

in probability. In the WLS approach, the question of how to build an estimate of the

variance of nhp/2Q1
n(θ̂) that (theoretically) performs better than V̂ 1

n when H0 is not true

seems harder and therefore is left open.

Remark 2. The tests we propose depend on the choice of the smoothing parameter h ∈
Hn. Following a well-known data-driven method for choosing the smoothing parameter,

in the synthetic data approach we can define

T opt
n = max

h∈H1n

T 0
n(θ̂) (4.27)

where the maximum is taken over a finite subset H1n ⊂ Hn. Typically, H1n is a geometric

grid in Hn and the number of elements in H1n increases as n → ∞. See Horowitz and

Spokoiny (2001). The resulting test is

“Reject H0 when T opt
n ≥ topt

α ”,

where topt
α is the α−level critical value for T opt

n . Like in the non-censored case, this critical

value cannot be evaluated in applications because θ0 and the law of the errors εi are

unknown. Horowitz and Spokoiny (2001) proposed a simulation procedure for approxi-

mating the critical value topt
α . Their procedure can be adapted to our synthetic data based

test. To build the test statistic T 0
n(θ̂) to be compared to the approximate critical value,

we propose the use of the standard deviation estimate V̂ 0
n based on the nonparametric

estimate σ̂∗ 2
n (Xi) introduced in equation (4.25).

1. (Create synthetic observations) For each i = 1, ..., n, generate Y ∗,b
i = f(θ̂, Xi) + ωb

i ,

where ωb
i is sampled randomly from the normal distribution N [0, σ̂∗ 2

n (Xi)] and σ̂∗ 2
n (·) is

defined in (4.23).
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2. (Build the test statistic with synthetic data) Use the data
{

Y ∗,b
i , Xi : i = 1, ..., n

}

to estimate θ by ordinary least squares, that is minimizing
∑n

i=1

[
Y ∗,b

i − f (θ,Xi)
]2

with

respect to θ, and to estimate σ∗ 2 (·) nonparametrically by replacing Ŷ ∗
i with Y ∗,b

i in

(4.23). Denote the resulting estimates by θ̂b and (σ∗,bn )2(·), respectively. For each h ∈ H1n,

compute the statistic T̃ 0
n(θ̂) = nhp/2Q̃0

n(θ̂)/V̂ 0
n that is obtained by replacing Y ∗

i and θ̂ with

Y ∗,b
i and θ̂b in the definition of Q̃0

n(θ̂), and σ̂∗ 2
n (Xi) with (σ∗,bn )2(Xi) on the right-side hand

of (4.25). Take the maximum of T̃ 0
n(θ̂) over h ∈ H1n to compute a value of T opt, b

n .

3. Estimate topt
α by the (1− α)th quantile of the empirical distribution of T opt, b

n that

is obtained by repeating steps 1 and 2 many times.

It is worthwhile to notice that no Kaplan-Meier estimate is involved in this simulation

procedure. The uniformity with respect to h of the convergence stated in Theorem 4.1

guarantees the asymptotic validity of this simulation procedure for approximating topt
α as

soon as this procedure is asymptotically correct with synthetic (non-censored) responses.

See Horowitz and Spokoiny (2001) for a set of technical conditions ensuring the asymptotic

validity of the simulation procedure with non-censored responses in a related test.

4.3 Behavior of the tests under the alternatives

Consider a sequence of measurable functions λn(x), n ≥ 1, and the sequence of alternatives

H1n : Yin = f (θ0, Xi) + λn(Xi) + εi, 1 ≤ i ≤ n. (4.28)

For simplicity, assume that there exists some constant Mλ such that for all n ≥ 1, 0 ≤
|λn(·)| ≤ Mλ < ∞.

Assumption 8 (i) The censoring times C1, ..., Cn represent an independent sample from

the continuous distribution function G (the same for each n) and are independent of the

variables Y1n, ..., Ynn with continuous distribution function F (n).

(ii) For each n, P(Y1n ≤ C1 | X1, Y1n) = P(Y1n ≤ C1 | Y1n).

Notice that the second part of this assumption is always true if C is independent of

ε and X. Now, for each n define Tin = Yin ∧ Ci and δin = 1{Yi≤Ci}, i = 1, ..., n, and let

H(n) denote the distribution function of T1n, ..., Tnn, that is H(n)(y) = P (T1n ≤ y). Let us
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point out that the two test statistics we propose rely on the Kaplan-Meier estimator that

is computed from the observations (Tin, δin) , i = 1, ..., n. If λn (·) changes with n, the law

of the observations is different for each n. Therefore, in order to control the jumps of the

Kaplan-Meier estimator and the conditional variance of the residuals Uβ
i (θ) we need the

following assumption.

Assumption 9 (i) There exist some constants cinf , csup such that for each x ∈ X

0 < cinf ≤ E
[
ε2 | X = x

] ≤ E [{
1 + ε2

} {1−G(Y1n)}−1 | X = x
] ≤ csup < ∞.

(ii) There exists some constant M such that for all n ≥ 1, E [{1 + ε4} γ(Y1n)4] ≤ M <

∞ where γ(Y1n) = δ1n{1−G(Y1n)}−1.

(iii) Let F
(n)
Y |X=x(y) = P (Y1n ≤ y | X1 = x) and

q(n)
ρ (x) =

∫
{|y|+ 1}C(n)(y)1/2+ρdF

(n)
Y |X=x(y)

where

C(n)(y) =

∫ y

−∞

dG(t)

[1−H(n)(t)][1−G(t)]
∨ 1.

There exist 0 < ρ < 1/2 and a function qρ(x) with E[q2
ρ(X)] < ∞ such that for all n,

0 ≤ q
(n)
ρ ≤ qρ.

Let V̂ β
n (θ)2 be the estimator obtained after replacing θ̂ with θ on the right-hand side

of (3.16). Once again, our purpose is to transfer the problem of consistency against the

alternatives H1n in classical i.i.d. framework. The first step in this transfer is realized

in a general setup in the following lemma proved in the Appendix. Next, we will be

more specific on the type of alternatives considered in order to derive the asymptotic

consistency.

Lemma 4.3 Let Assumptions 4-(i) and (ii), 5, 6, 8 and 9-(ii) and (iii) hold true. Then,

under the alternatives H1n, for β = 0 or 1

∣∣∣Qβ
n(θ)− Q̃β

n(θ)
∣∣∣ ≤

[
Q̃β

n(θ) + Rn1

]1/2

R
1/2
n2 −Rn3 + Rn2 −Rn4

with supθ∈Θ, h∈Hn

{
hp |Rn1|+ |Rn2|+ hp/2 |Rn3|+ |Rn4|

}
= OP (n−1).
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4.3.1 Consistency against a fixed alternative

We now investigate the consistency of our tests against a fixed alternative

H1 : Y = m(X) + ε,

where E (ε | X) = 0 a.s. and, for simplicity, we assume 0 ≤ |m(·)| ≤ Mλ < ∞ for some

constant Mλ. The following assumption identifies the limit of θ̂ the SD or WLS estimator

and states that the regression model is wrong.

Assumption 10 There exists θ̄ an interior point of Θ such that

for any θ ∈ Θ \ {θ̄}, 0<E
[{

m(X)− f
(
θ̄, X

)}2
]
<E

[{m(X)− f (θ,X)}2] .

Theorem 4.4 Let Assumption 10, Assumption 9-(i) and the assumptions of Lemma 4.3

hold true. Under H1, for β = 0 or 1

sup
h∈Hn

∣∣∣Qβ
n(θ̂)− E

[{
m(X)− f

(
θ̄, X

)}2
g(X)

]∣∣∣ = oP (1) and sup
h∈Hn

|V̂ β
n − c| = oP (1),

where c > 0 is some positive constant. Consequently, the tests in (3.15) are consistent.

See the Appendix for the proof. It is worthwhile to notice that the limit of Qβ
n(θ̂)

under the alternative H1 does not depend on the censoring and is the same for β = 0 or

β = 1. However, the limits of the standard deviations V̂ β
n depend on β and the degree of

censoring in the data (see the Appendix for the expressions of these limits). In general

our tests lose power if the degree of censoring increases. Looking at the limits of V̂ β
n , one

concludes that none of the two tests we propose is more powerful than the other, that is

depending on the laws of Y and C, either the SD or the WLS test will have better finite

sample properties.

4.3.2 Consistency against Pitman local alternatives

Let λ(·) be a bounded measurable function of X and consider the Pitman alternatives

H1n : Yin = f (θ0, Xi) + rnλ(Xi) + εi, 1 ≤ i ≤ n,

with rn → 0 when n →∞. For simplicity, we will assume that λ(·) is a bounded function

and E [λ(X)∇θf (θ0, X)] = 0. The later condition will make the estimator θ̂ to converge
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to θ0 at the rate OP (n−1/2). See Lemma A.12 in the Appendix. The following result (see

the Appendix for the proof) implies that our tests are consistent against the Pitman local

alternatives H1n, provided that rn decreases to zero slower than n−1/2h−p/4.

Theorem 4.5 Let Assumption 9-(i) and the assumptions of Lemma 4.3 hold. Suppose

that λ(·) is bounded and E [λ(X)∇θf (θ0, X)] = 0. Under H1n, for β = 0 or 1 the test

statistics T β
n (θ̂) converge in law to a normal distribution N(µ, 1), with µ > 0, provided

that rn = n−1/2h−p/4.

4.3.3 Consistency against a sequence of smooth alternatives

In this section we provide conditions under which our tests are consistent against alter-

natives H1n like in (4.28) defined by functions λn(·) in a Hölder smoothness class that

vanish as n → ∞. The regularity s of the Hölder class is supposed known and the rate

to which the functions λn(·) approach zero can be made arbitrarily close to the optimal

rate of testing n−2s/(4s+p), provided that s > 5p/4. Note that we have to impose this more

restrictive condition on the regularity s (the usual condition is s ≥ p/4, see, for instance,

Horowitz and Spokoiny 2001) because of our conditions on the left endpoint of the band-

width range Hn. See Assumption 6-(ii) and the subsequent comments. For s and L > 0,

define the Hölder class C(L, s) as

C(L, s) = {f(·) : |f(x1)− f(x2)| ≤ L|x1 − x2|s, ∀x1, x2 ∈ X} , for s ∈ (0, 1],

while for s > 1, C(L, s) is the class of functions having the [s]-th partial derivatives in

C(L, s − [s]), where [s] denotes the integer part of s. As a corollary of the following

theorem one may deduce that the optimal rate of testing parametric mean-regressions

when s is known is not altered by the censorship, provided that s > 5p/4. The proof of

the theorem is postponed to the Appendix.

Theorem 4.6 Let Assumption 9-(i) and the assumptions of Lemma 4.3 hold. Moreover,

the density g(·) is bounded from below by a positive constant. Let κn, n ≥ 1 be a sequence

of positive real numbers. Consider a sequence of functions λn(·) such that for all n ≥ 1,

λn(·) ∈ C(L, s) for some known s > 5p/4 and some L > 0. Moreover, E [λ2
n (X)] → 0 as
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n →∞ and for each n ≥ 1, E[λn (X)∇θf (θ0, X)] = 0 and

‖λn‖n :=

[
n−1

n∑
i=1

λ2
n(Xi)

]1/2

≥ κnn−
2s

4s+p . (4.29)

If h is of order n− 2/(4s+p), the tests defined in (3.15) are consistent against the alternatives

H1n defined by the functions λn(·) whenever κn diverges.

Remark 2 (continued). In Theorem 4.6 we supposed that the regularity s is known and

thus the rate of the bandwidth that allows to detect departures from the null hypothesis

like in (4.29) is known. More generally, it would be useful to propose a data-driven selection

procedure for h that adapts to the unknown smoothness of the functions λn(·) and that

allows these functions to converge to zero at a rate which is arbitrarily close to the fastest

possible rate. In the case of non-censored, if s is unknown but s ≥ p/4, the optimal rate

of testing is (n−1
√

log log n)2s/(4s+p), see for instance Horowitz and Spokoiny (2001). The

maximum test procedure (4.27) represent a potential solution in the synthetic data testing

approach. Consider the test statistic built with the true synthetic observations and the

true value of the parameter θ0, T̃ 0
n(θ0) = nhp/2Q̃0

n(θ0)/Ṽ
0
n with Ṽ 0

n defined like in (4.26).

Suppose that under the alternatives H1n defined by functions λn(·) like in Theorem 4.6

with some κn ↑ ∞,

lim
n→∞

P
(

max
h∈H1n

T̃ 0
n(θ0) ≥ topt

α

)
= 1. (4.30)

By Lemma 4.3 and the arguments used in the proof of Theorem 4.6 to replace θ̂ by θ0,

lim
n→∞

P
(

max
h∈H1n

T 0
n(θ̂) ≥ topt

α

)
= 1,

provided that λn(·) also satisfy condition (4.29) when κn is replaced by c κn with c some

constant greater but arbitrarily close to 1. In view of the proof of our Theorem 4.6, it

is expected that any sequence κn such that κn [log log n]−s/(4s+p) → ∞ should suffices to

obtain (4.29) provided that H1n is a geometric grid like in Horowitz and Spokoiny (2001).

However, the deeper investigation of the conditions allowing to obtain (4.30) is left for

future work.
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5 Simulation study

The purpose of the small simulation study presented below was to compare in finite

samples the new tests with the tests of Stute et al. (2000) based on their statistics Dn

and W 2
n . The regression model considered was Y = θ01 + θ02X + ε with X uniformly

distributed on the interval [−√3,
√

3] and ε a standard normal residual term. A linear

regression function appears, for instance, in the so-called accelerated failure time (AFT)

model that has found considerable interest in the survival data literature. Here, we

took the parameters (θ01, θ02) = (1, 3) and considered a censoring variable C with an

exponential distribution of mean µ. The parameter µ served to control the proportion of

censored observations that was fixed to 30%, 40% or 50%.
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Figure 1: Rejection probabilities for the test based on TSD
n , TWLS

n , Dn (Stute 1) and W 2
n (Stute 2)

test statistics.

The linear regression model was tested against alternatives with the form

H1 : Yi = θ01 + θ02X + d cos(2π(Xi/
√

3)) + εi, 1 ≤ i ≤ n

with d ∈ {0.5, 1, ..., 2.5, 3}. The way the alternatives were defined rendered the amount of
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censoring practically stable on the null and under the alternatives. The levels considered

were α = 0.05 and α = 0.1, the sample sizes were taken n = 100 and n = 200 and for

each sample size we generated 5000 samples. We used the bandwidth h = 0.1 for the

kernel-based tests. The test statistic T SD
n (resp. TWLS

n ) was built using the estimator

θ̂SD (resp. θ̂WLS). The critical values for our tests were those given by the standard

normal law while for the test proposed by Stute et al. (2000) we followed their bootstrap

procedure (with 5000 bootstrap samples) to compute the critical values. The asymptotic

distribution of test statistics Dn and W 2
n used by Stute et al. (2000) depend on the

asymptotic distribution of the estimator of θ0. To focus the attention on the performances

of the testing approaches, we computed the values of Dn and W 2
n using the true values

of the parameters θ01, θ02. This resulted in improved rejection probabilities under the

null and under the alternatives for the corresponding tests. The results of the simulations

are presented in Figure 1. To save space, only the case α = 0.05 is reported, the results

obtained with α = 0.1 being very similar.

This preliminary empirical investigation shows that in the setup considered, the test

based on TWLS
n outperforms the test built with T SD

n and the tests obtained with the

weighted marked empirical process approach of Stute et al. (2000). The level of the

WLS kernel-based test is satisfactory close to the nominal level for all probabilities of

censoring considered. On contrary, the level of the SD-based test drastically deteriorates

when the probability of censoring increases. With a few minor exceptions, the rejection

probabilities under the alternatives are higher for the kernel-based tests (even much higher

for the WLS test) than for the tests based on the marked empirical process approach.

Appendix

First, we prove some technical lemmas that will be used in the proofs of our main results.

In the following, H (t) = P (T ≤ t) and τH = inf {t : H(t) = 1} . Moreover, we refer to

Nolan and Pollard (1987) and Sherman (1994) for the definition of Euclidean classes of

functions. Finally, M , c, c1, ... are constants that may be different from line to line.
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A.1 Technical lemmas

The point (ii) of the following lemma is a key ingredient. It provides a bound for the

difference between the weights Win built with Ĝ and the ideal weights one would obtain if

G were known. In the following result, for each sample size n, the lifetimes Y are supposed

independent with a same law which may depend on n. This generality is needed under a

sequence of alternatives approaching the null hypothesis.

Lemma A.1 Let Y1n, ..., Ynn be an independent sample from a continuous distribution

function F (n), n ≥ 1. Independent of these, let C1, ..., Cn be an independent sample from

a continuous distribution function G (the same for each n). Let Tin = Yin ∧ Ci and

δin = 1{Yin≤Ci}, i = 1, ..., n, and for each n, let H(n) denote the distribution function of

T1n, ..., Tnn. Denote γ (Tin) = δin [1−G (Tin)]−1 and let T(n)n = max1≤i≤n Tin. Then,

i)

sup
1≤i≤n

1− Ĝ(Tin−)

1−G(Tin)
= OP (1) and sup

1≤i≤n

1−G(Tin)

1− Ĝ(Tin−)
= OP (1) ; (A.1)

ii) for all 0 ≤ α ≤ 1/2 and η > 0,

|nWin − γ (Tin)| ≤ δin

1−G (Tin)
{C(n) (Tin)}α+η ×OP

(
n−α

)
,

where the OP (n−α) factor does not depend on i.

Proof. Since we only consider the distribution functions Ĝ and G at the sample points,

we can transform data and suppose without loss of generality for this proof that the

variables Y1n, ..., Ynn and C1, ..., Cn are nonnegative.

i) Since by assumption P (Yin = Ci) = 0, we can redefine 1− δin = 1{Ci≤Yin} and study

Ĝ as the Kaplan-Meier estimator of the lifetimes Ci in presence of the censoring times

Yin. The first part of (A.1) follows from Theorem 3.2.4 in Fleming and Harrington (1991)

(or Lemma 2.6 of Gill, 1983). The fact the distribution of the i.i.d. variables Y1n, ..., Ynn

depends on n is of no consequence for the continuous time martingale arguments applied

for each n in the proof of the Theorem 3.2.4 in Fleming and Harrington (1991). The

second part of can be obtained for instance as a consequence of Theorem 2.2 in Zhou

(1991). Once again, a careful inspection of Zhou’s proofs shows that his arguments apply

for each n and therefore his Theorem 2.2 apply to our case.
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ii) Fix η > 0 arbitrarily. First, we need to prove that

sup
y≤T(n)n

[
C(n) (y)

]−1/2−η ∣∣Z(n)(y)
∣∣ = OP (1), (A.2)

where for each n ≥ 1

Z(n)(y) =
√

n
Ĝ(y)−G(y)

1−G(y)

is the Kaplan-Meier process and

C(n) (y) =

∫ y

0

dG(t)

[1−H(n)(t)] [1−G(t)]
∨ 1.

Notice that for any η > 0,
[
C(n) (·)]−1/2−η

is a continuous, nonnegative, non-increasing

and nonrandom function. For each n ≥ 1, by Lemma 2.9 of Gill (1983),

sup
y≤T(n)n

[
C(n) (y)

]−1/2−η ∣∣Z(n)(y)
∣∣ ≤ 2 sup

y≤T(n)n

∣∣∣∣
∫ y

0

[
C(n) (t)

]−1/2−η
dZ(n)(t)

∣∣∣∣ . (A.3)

Now, for each n ≥ 1, proceed as in the proof of Theorem 2.1 of Gill (1983). That is, for

each τ ′ such that H(n) (τ ′−) < 1, we have for any υ > 0 by the inequality of Lenglart

(see, e.g., Theorem 3.4.1 in Fleming and Harrington, 1991)

P

[
sup

y≤τ ′∧T(n)n

∣∣∣∣
∫ y

0

[
C(n) (t)

]−1/2−η
dZ(n)(t)

∣∣∣∣ > ε

]

≤ υ

ε2
+ P




∣∣∣∣∣∣∣

∫ τ ′∧T(n)n

0

[
C(n) (t)

]−1−2η

[
1− Ĝ(t−)

]2

[1−G(t)]2
n

Rn(t)

dG(t)

1−G(t)

∣∣∣∣∣∣∣
> υ




where Rn(t) =
∑n

i=1 1{Tin≥t}. Next, use Theorem 3.2.4 in Fleming and Harrington (1991)

and Lemma 2.7 of Gill (1983) to obtain

P

[
sup

y≤τ ′∧T(n)n

∣∣∣∣
∫ y

0

[
C(n) (t)

]−1/2−η
dZ(n)(t)

∣∣∣∣ > ε

]
≤ υ

ε2
+ ξ + (1/ξ) exp(1− 1/ξ)

+P

[∣∣∣∣∣
∫ τ ′

0

ξ−3
[
C(n) (t)

]−1−2η

1−H(n)(t)

dG(t)

1−G(t)

∣∣∣∣∣ > υ

]

for any ξ ∈ (0, 1). The fact H(n), the distribution of the observations, depends on n is of

no consequence for the continuous time martingale arguments applied for each n in the

proof of Lemma 2.7 of Gill (1983). Letting τ ′ ↑ τH(n) = inf{t : H(n)(t) = 1} and choosing

a finite constant υ independent of n such that

υ ≥ ξ−3

∫ τ
H(n)

0

[
C(n) (t)

]−1−2η
dC(n) (t)
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(such a υ exists because C(n) (·) ≥ 1 and C(n) (τH(n)) = ∞) we obtain

sup
y≤τ ′∧T(n)n

∣∣∣∣
∫ y

0

[
C(n) (t)

]−1/2−η
dZ(n)(t)

∣∣∣∣ = OP (1).

Finally, use (A.3) to derive (A.2). Now, by definition, (A.2) and (A.1)

nWin − γ (Tin) =
δin

1−G (Tin)

Ĝ (Tin−)−G (Tin)

1−G (Tin)

1−G (Tin)

1− Ĝ (Tin−)

=
δinn

−α

1−G (Tin)
{C(n) (Tin)}α+η

×
∣∣{C(n) (Tin)}−1/2−η/2α Z(n)(Tin−)

∣∣2α

×
[

Ĝ (Tin−)−G (Tin)

1−G (Tin)

]1−2α
1−G (Tin)

1− Ĝ (Tin−)

=
δin

1−G (Tin)
{C(n) (Tin)}α+η ×OP

(
n−α

)
,

with the OP (n−α) factor independent of i.

The following lemma will help to state our equivalence results uniformly with respect

to h in an interval.

Lemma A.2 Let v1, ..., vn be a sequence of real numbers and 0 < hm ≤ hM < ∞. Suppose

that Assumption 6-(i) holds true. If

U(h) =
1

n2hp

∑

1≤i 6=j≤n

vivjKh(Xi −Xj) and D(h) =
K(0)

n2hp

n∑
i=1

v2
i ,

then for any h ∈ [hm, hM ]

U(hM) + D(hM)−D(hm) ≤ U(h) ≤ U(hm) + D(hm)−D(hM).

Proof. First, consider p = 1. Using the Inverse Fourier Transform,

U(h) =

∫
K̂(hu)

∣∣∣∣∣
1

n

n∑
i=1

vi exp(2iπu′Xi)

∣∣∣∣∣

2

du−D(h) = Ũ(h)−D(h).

Now, by the properties of K, K̂(hMu) ≤ K̂(hu) ≤ K̂(hmu) and thus

U(h) = Ũ(h)−D(h) ≤ Ũ(hm)−D(hM) = U(hm) + D(hm)−D(hM).

The other inequality follows similarly. For p ≥ 1, K is a product of univariate kernels

and the argument with one regressor applies componentwise.
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Let Ah be the n× n symmetric matrix with generic element

aij(h) = [hpn(n− 1)]−1 Kh(Xi −Xj)1{i6=j}. (A.4)

Lemma A.3 Let v1, ..., vn and w1, ..., wn be sequences of real numbers. Suppose that

Assumptions 4 (i)-(ii) and 6 (ii) hold true. If

U(h) =
1

n2hp

∑

1≤i6=j≤n

viwjKh(Xi −Xj),

then

sup
h∈Hn

|U(h)| ≤ OP (1)

[
1

n

n∑
i=1

v2
i

]1/2 [
1

n

n∑
i=1

w2
i

]1/2

Proof. Since for any n−dimensional vectors z1, z2, |z′1Ahz2| ≤ ‖Ah‖2‖z1‖‖z2‖, it suffices

to suitably bound ‖Ah‖2 uniformly in h. By simple algebra,

for any z ∈ Rn, ‖Ahz‖2 ≤
[

max
1≤i≤n

(
n∑

j=1,j 6=i

aij(h)

)]2

‖z‖2 .

Hence

‖Ah‖2 ≤ ∆nh
−p

n− 1
+

1

(n− 1)
sup

h>0, x∈Rp

E
[
h−pKh (x−X)

]
+

K(0)h−p

n (n− 1)

where

∆n = sup
h>0, x∈Rp

∣∣∣∣∣
1

n

n∑
j=1

{Kh (x−Xj)− E [Kh(x−Xj)]}
∣∣∣∣∣ .

By a change of variables and the boundedness of the density g

E
[
h−pKh (x−X)

]
=

∫

Rp

K (x′) g (x− hx′) dx′ ≤ c (A.5)

for some constant c > 0. Hence, for any h ∈ Hn

‖Ah‖2 ≤ c

n

{
1 +

∆n

hp

}
≤ c

n

{
1 +

∆n

hp
min

}

for some c > 0 independent of h. By Lemma 22(ii) of Nolan and Pollard (1987) and the

rate of an empirical process indexed by an Euclidean family for a constant envelope (e.g.,

Pakes and Pollard 1989, van der Vaart and Wellner 1996), ∆n = OP (n−1/2). The result

follows as nh2p
min →∞.
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Lemma A.4 Suppose that Assumptions 4-(ii), 6 and 7 hold true. Then:

sup
h∈Hn

E
[
qρ(X1)qρ(X2)h

−pKh (X1 −X2)
] ≤ M

where M is some finite constant and

sup
h∈Hn

E
[
qρ,τ (X1)qρ,τ (X2)h

−pKh (X1 −X2)
] → 0 as τ ↑ τH ,

where qρ,τ (x) = E
[{|Y |+ 1}1{Y >τ}C(Y )1/2+ρ | X = x

]
, x ∈ X .

Proof. Apply the Inverse Fourier Transform and use the fact that K̂ is nonnegative and

bounded to write

∣∣E [
qρ,τ (X1)qρ,τ (X2)h

−pKh (X1 −X2)
]∣∣ =

∫
|q̂ρ,τg(u)|2 K̂(hu)du

≤
∫
|q̂ρ,τg(u)|2 du = E[q2

ρ,τ (X)g(X)],

where for the last equality use Parseval’s identity with the function qρ,τ (·)g(·) ∈ L1(Rp)∩
L2(Rp) (see Rudin 1987). Now, for each x ∈ X , qρ,τ (x) ↓ 0 as τ ↑ τH . Assumption 7 and

Lebesgue’s Dominated Convergence Theorem yield the second statement. For the first

quantity in the statement we can write

∣∣E [
qρ(X1)qρ(X2)h

−pKh (X1 −X2)
]∣∣ =

∫
|q̂ρg(u)|2 du

+

∫
|q̂ρg(u)|2

[
1− K̂(hu)

]
du.

Since for each u, 0 ≤ 1−K̂(hu) ≤ 1−K̂(hminu) ↓ 0, by Parseval’s identity and dominated

convergence deduce that the expectation in the last display converges to E[q2
ρ(X)g(X)] <

∞ uniformly in h ∈ Hn. This implies the first part of the statement.

Lemma A.5 Let X1, X2, ... be a sample as in Assumption 4-(i) and (ii) and let Assump-

tion 6 hold true. For each n ≥ 1, let u1n, ..., unn be a sequence of random variables that

are independent given X1, ..., Xn. For each n and i, the law of uin given X1, ..., Xn depends

only on Xi. Assume E (uin | Xi) = 0 and E (u2
in | Xi) = σ2

n (Xi) and suppose that for each

x and n we have 0 ≤ σ2
n (x) ≤ σ2

n < ∞. Then

1

n (n− 1)

∑

1≤i 6=j≤n

uinujn
1

hp
Kh (Xi −Xj) = σ2

nOP

(
n−1h−p/2

)
. (A.6)
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Let λn (·) , n ≥ 1 be a sequence of measurable functions and let

Un =
1

n (n− 1)

∑

1≤i 6=j≤n

λn (Xi) ujn
1

hp
Kh (Xi −Xj) .

If Ah is the matrix defined in (A.4) and ‖λn‖2
n denotes n−1

∑n
i=1 λ2

n(Xi), then

E [|Un| | X1, ..., Xn] ≤ c σnn1/2 ‖Ah‖2 ‖λn‖n (A.7)

for some finite constant c independent of n and of the sequence λn (·) , n ≥ 1.

Proof. By elementary calculus, the variance of the degenerate U−statistic in (A.6) is

of order OP (n−2h−p) and thus we obtain stated rate from Chebyshev’s inequality. Next,

following the lines of Guerre and Lavergne (2005), let

λn (Xi) =
1

n (n− 1)

n∑

j=1,i6=j

λn (Xj)
1

hp
Kh(Xi −Xj)

and use Marcinkiewicz-Zygmund inequality (e.g., Chow and Teicher, 1997, page 386),

Jensen’s inequality and the properties of the ‖·‖2 to write

E

[∣∣∣∣∣
n∑

i=1

uinλn (Xi)

∣∣∣∣∣ | X1, ..., Xn

]
≤ cE




(
n∑

i=1

u2
inλ

2

n (Xi)

)1/2

| X1, ..., Xn




≤ c

[
n∑

i=1

E
(
u2

in | Xi

)
λ

2

n (Xi)

]1/2

≤ c σn

[
n∑

i=1

λ
2

n (Xi)

]1/2

≤ c σnn
1/2 ‖Ah‖2 ‖λn‖n,

where c is a constant independent of n and of the sequence λn (·) , n ≥ 1.

A.2 Proofs

Lemma A.6 Let the assumptions of Theorem 4.1 hold and fix ζ ∈ (0, 1/2) arbitrarily.

Under H0, for β = 0 or 1

sup
h∈Hn

hζ
∣∣∣Qβ

n(θ̂)−Qβ
n (θ0)

∣∣∣ = OP (n−1).

Proof. By definition

Ûβ
i (θ̂)− Ûβ

i (θ0) = (nWin)β
[
f(θ̂, Xi)− f(θ0, Xi)

]
,
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where by convention (nWin)β = 1 for β = 0 and (nWin)β = nWin for β = 1. A similar

convention applies for γβ (Ti) . Let aij(h) = [hpn(n− 1)]−1Kh (Xi −Xj) and write

Qβ
n(θ̂) = Qβ

n (θ0)

+2
∑

i6=j

Ûβ
i (θ0) (nWjn)β [f(θ̂, Xj)− f(θ0, Xj)]aij(h)

+
∑

i 6=j

(
n2WinWjn

)β
[f(θ̂, Xi)− f(θ0, Xi)][f(θ̂, Xj)− f(θ0, Xj)]aij(h)

= Qβ
n (θ0) + 2Qβ

n1(θ̂, θ0) + Qβ
n2(θ̂, θ0).

By Assumption 5, there exists some constant c independent of h such that

∣∣∣Qβ
n2(θ̂, θ0)

∣∣∣ ≤ c‖θ̂ − θ0‖2 ×
∑

i6=j

(nWin)β (nWjn)β aij(h).

Using the first part of equation (A.1) we obtain

∣∣∣Qβ
n2(θ̂, θ0)

∣∣∣ ≤ OP (1) ‖θ̂ − θ0‖2
∑

i6=j

γβ (Ti) γβ (Tj) aij(h).

As E [γ2 (T )] is finite (see Assumption 4-(iv)) and θ̂ − θ0 = OP (n−1/2) apply Lemma A.3

to deduce that

sup
h∈Hn

∣∣∣Qβ
n2

(
θ̂, θ0

)∣∣∣ = OP

(
n−1

)
.

To investigate Qβ
n1, let

Q̃β
n1(θ̂, θ0) =

∑

i6=j

Uβ
i (θ0)γ

β (Tj) [f(θ̂, Xj)− f(θ0, Xj)]aij(h).

By Taylor expansion in θ, Assumption 5-(i), Lemma A.3 and the condition E[Uβ
i (θ0)

2 +

γβ (T )2] < ∞,

Q̃β
n1

(
θ̂, θ0

)
=

(θ̂ − θ0)
′

n(n− 1)hp

∑

i 6=j

{
Uβ

i (θ0)γ
β (Tj)

×∇θf(θ0, Xj)Kh(Xi −Xj)}+ ‖θ̂ − θ0‖2OP (1)

= h−p(θ̂ − θ0)
′S̃β

n1(h) + ‖θ̂ − θ0‖2OP (1),

with the OP (1) factor independent of h. For the zero mean U−process S̃β
n1(h) apply the

Hoeffding decomposition and write it as a sum of degenerate U−processes of order 2 and
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1, say S̃β
n11(h) and S̃β

n12(h), indexed by families defined by h that are Euclidean for square

integrable envelopes (this property is ensured by the bounded variation of the kernel K̃,

Lemma 22-(ii) of Nolan and Pollard 1987, and Lemma 5 of Sherman 1994). By Corollary

4 of Sherman (1994), the rate of the uniform convergence of S̃β
n11(h) is OP (n−1). Deduce

sup
h∈Hn

h−p
∣∣∣S̃β

n11(h)
∣∣∣ = OP (n−1/2).

On the other hand, h−pS̃β
n12(h) writes like n−1

∑n
i=1 Uβ

i (θ0)φi with

φi = E[γβ (Tj)∇θf(θ0, Xj)h
−pKh(Xi −Xj) | Xi].

Notice that |φi| ≤ M , for some constant M . Let hL ≤ hmin ≤ hL−1 < ... < h1 < h0 = hmax

a geometric grid of bandwidths such that hl = hl−1h
c
max, l = 1, ..., L with c > 0 to be

chosen below. By definitionHn ⊂
⋃L

l=1 Hl, where Hl = [hl, hl−1]. Fix arbitrarily α ∈ (0, 1)

such that 1− ζ/p < α. For each l = 1, ..., L, by the definition of Hl and Sherman’s (1994)

Main Corollary

E
[
sup
h∈Hl

|n1/2hζ−pS̃β
n12(h)|

]
≤ hζ−p

l E
[
sup
h∈Hl

|n1/2S̃β
n12(h)|

]

≤ Λ1h
ζ−p
l

[
E sup

h∈Hl

{h2p 1

2n

2n∑
i=1

Uβ
i (θ0)

2φ2
i }α

]1/2

≤ Λ2h
ζ−(1−α)p
l

(
hl−1

hl

)αp
[

1

2n

2n∑
i=1

Uβ
i (θ0)

2

]α/2

= hal
max OP (1),

where Λ1, Λ2 are constants that depend on α and τ (and p) but not on n and l and

al = 1+{l [ζ − (1− α) p]− pα} c. The Euclidean property for a square integrable envelope

required in Sherman’s Main Corollary is ensured by the bounded variation of the kernel

K̃, Lemma 22-(ii) of Nolan and Pollard (1987) and Lemma 5 of Sherman (1994). Take c

such that 1+(ζ − p) c > 0. Looking at the sum of the geometric series with common ratio

h
[ζ−(1−α)p]c
max and starting term h

1+(ζ−p)c
max , deduce that E

[
suph∈Hn

|n1/2hζ−pS̃β
n12(h)|

]
→ 0.

This, combined with Chebyshev’s inequality, provide the order of hζ−pS̃β
n12(h) uniformly

in h ∈ Hn. Collecting results and using ‖θ̂ − θ0‖h−p
min → 0, in probability deduce

sup
h∈Hn

hζ
∣∣∣Q̃β

n1

(
θ̂, θ0

)∣∣∣ = OP (n−1).
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Next, rewrite

Qβ
n1(θ̂, θ0) = Q̃β

n1

(
θ̂, θ0

)

+
∑

i6=j

[Ûβ
i (θ0)− Uβ

i (θ0)]γ
β (Tj) [f(θ̂, Xj)− f(θ0, Xj)]aij(h)

+
∑

i6=j

Uβ
i (θ0)

[
(nWjn)β−γβ (Tj)

]
[f(θ̂, Xj)−f(θ0, Xj)]aij(h)

+
∑

i6=j

[Ûβ
i (θ0)−Uβ

i (θ0)]
[
(nWjn)β−γβ (Tj)

]
[f(θ̂, Xj)−f(θ0, Xj)]aij(h)

= Q̃β
n1

(
θ̂, θ0

)
+ Q̃β

n11 + Q̃β
n12 + Q̃β

n13.

To show the negligibility of Q̃β
n11 to Q̃β

n13 we can no longer use the quick argument of

Lemma A.3 because the random variables we have to manipulate are no longer square

integrable. Indeed, by definition

Ûβ
i (θ0)− Uβ

i (θ0) = [nWin − γ (Ti)] [Ti − βf(θ0, Xi)]

and the problem comes from the bound of |nWin − γ (Ti)| given by Lemma A.1 which

contains C(Ti)
α+η (with η > 0), a quantity that is not square integrable if we need to take

α = 1/2. To show the negligibility of Q̃β
n11 to Q̃β

n13, apply Lemma A.1 with α = 1/2 and η

equal to ρ from Assumption 7, and use Taylor expansion to bound |f(θ̂, Xj)− f(θ0, Xj)|
by a constant times ‖θ̂ − θ0‖. Hence, Q̃β

n11 to Q̃β
n13 are bounded by

OP (n−1)×
∑

i6=j

γ (Ti) |Ti − βf (θ0, Xi)|
[C (Ti)]

−(1/2+ρ)
γβ (Tj) aij(h) = OP (n−1)×Bn1,

OP (n−1)×
∑

i 6=j

γ (Ti)

[C (Ti)]
−(1/2+ρ)

γβ (Tj) aij(h) = OP (n−1)×Bn2,

and

OP (n−1)×
∑

i6=j

γ(Ti)aij(h)

[C(Ti)]−(1/2+ρ)

(
Ĝ (Tj−)−G (Tj)

1−G (Tj)
γ (Tj)

)β

= OP (n−1)×Bn3,

respectively. To uniformly bound Bn1, by the boundedness of the regression

0 ≤ Bn1 ≤ Ch−p {∆1n + ∆2n}
n∑

i=1

[C(Ti)]
1/2+ργ (Ti) {|Ti|+ 1}

where C is some constant and

∆1n = sup
h∈Hn, x

∣∣∣∣∣
1

n

n∑
j=1

{
Kh (x−X) γβ (T )− E [

Kh (x−X) γβ (T )
]}

∣∣∣∣∣
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and ∆2n = E
[
Kh (x−X) γβ (T )

]
= E [Kh (x−X)] . Like in (A.5), |h−p∆2n| ≤ C2 for

some C2 independent of h. By the rate of uniform convergence of an empirical process

indexed by an Euclidean family for a square integrable envelope and using hp
√

n → ∞,

deduce that |h−p∆1n| ≤ C1 with C1 independent of h ∈ Hn. Finally,

E
[
γ(T ){|T |+ 1}C(T )1/2+ρ

]
= E

[{|Y |+ 1}C(Y )1/2+ρ
]

= E [qρ(X)] < ∞.

Deduce that suph∈Hn
Bn1 = OP (1). Similar arguments apply for Bn2. For Bn3, the only

case that remains to study is β = 1. Use the first part of equation (A.1) to bring this

case to that of Bn1. Collecting results, suph∈Hn
hγ|Qβ

n1(θ̂, θ0)| = OP (n−1).

Lemma A.7 Let the assumptions of Theorem 4.1 hold true. If τ < τH and

Qβ
n1 (τ) =

1

n(n− 1)hp

∑

i 6=j

[
Ûβ

i − Uβ
i

]
1{Ti≤τ}U

β
j Kh (Xi −Xj) , β = 0, 1,

then for any ζ ∈ (0, 1/2), suph∈Hn
hζ

∣∣∣Qβ
n1 (τ)

∣∣∣ = OP (n−1).

Proof. If wβ
i = δi [Ti − βf(θ0, Xi)] [1−G (Ti)]

−2 we can write Qβ
n1 (τ) = Qβ

n11 (τ) +

Qβ
n12 (τ) with

Qβ
n11 (τ) =

1

n(n− 1)hp

∑

i6=j

[
Ĝ (Ti−)−G (Ti)

]
1{Ti≤τ}w

β
i Uβ

j Kh (Xi −Xj)

and

Qβ
n12 (τ) =

1

n(n− 1)hp

∑

i6=j

[
Ĝ (Ti−)−G (Ti)

]2

1− Ĝ (Ti−)
1{Ti≤τ}w

β
i Uβ

j Kh (Xi −Xj) .

By Theorem 2.1 of Gill (1983), sup1≤i≤n

[
Ĝ (Ti−)−G (Ti)

]2

1{Ti≤τ} = OP (n−1). (The fact

that the left endpoint of the support of the variables Ti may be −∞ is of no consequence

since we only consider Ĝ and G at the sample points.) Meanwhile, sup1≤i≤n G (Ti) ≤
G (τ) < 1. These facts, Lemma A.3 and Assumption 4-(iv) imply

sup
h∈Hn

∣∣∣Qβ
n12 (τ)

∣∣∣ ≤ OP (n−1)

(
1

n

n∑
i=1

[
wβ

i

]2
)1/2 (

1

n

n∑
i=1

[
Uβ

i

]2
)1/2

= OP (n−1).
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To handle Qβ
n11 (τ) , we use the i.i.d. representation

Ĝ (t−)−G (t) =
1

n

n∑

k=1

ψ (Tk, t) + Rn(t)

with supt≤τ |Rn(t)| = OP (n−1) and for each t ≤ τ,

E [ψ (Tk, t)] = 0 (A.8)

and |ψ (Tk, t)| ≤ M1 for some constant M1 independent of t (but depending on τ). See

Stute (1995) or Sánchez-Sellero et al. (2005) for the definition of the function ψ (·, ·) .

The representation (A.8) can be derived along the lines of the proof Theorem 1.1 of Stute

(1995) in the case where his condition (2.3) holds. This representation is also a consequence

of Theorem 1 of Sánchez-Sellero et al. (2005) applied for the class of indicator functions

of the intervals (−∞, t) with t ≤ τ. Now, we can write

Qβ
n11 (τ) =

1

n2(n− 1)hp

∑

i6=j 6=k

ψ (Tk, Ti)1{Ti≤τ}w
β
i Uβ

j Kh (Xi −Xj)

+
1

n

1

n(n− 1)hp

∑

i6=j

ψ (Ti, Ti)1{Ti≤τ}w
β
i Uβ

j Kh (Xi −Xj)

+
1

n

1

n(n− 1)hp

∑

i6=j

1{Ti≤τ}w
β
i ψ (Tj, Tj) Uβ

j Kh (Xi −Xj) + remainder

= (n− 2) n−1Qβ
n111 (τ) + n−1Qβ

n112 (τ) + n−1Qβ
n113 (τ) + OP (n−1).

By Lemma A.3, the fact that ψ (·, ·) is bounded and wβ
i , Uβ

j are square integrable

sup
h∈Hn

{∣∣∣Qβ
n112 (τ)

∣∣∣ +
∣∣∣Qβ

n113 (τ)
∣∣∣
}

= OP (1).

For the remaining term Qβ
n111 (τ) which is a U−process of order 3, apply the Hoeffding

decomposition and write it as the sum of two degenerate U−processes

Qβ
n1111 (τ) = Qβ

n111 (τ)−Qβ
n1112 (τ)

and Qβ
n1112 (τ) = n−1(n− 1)−1

∑
j 6=k φjkU

β
j , where

φjk = E
[
ψ (Tk, Ti)1{Ti≤τ}w

β
i h−pKh (Xi −Xj) | Xj, Tk

]
.

Notice that |φjk| ≤ M2 for some constant M2. The fact that E
[
Uβ

j | Xj

]
= 0 a.s. and the

property (A.8) make that the other terms in the Hoeffding decomposition of Qβ
n111 (τ) are
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null. Corollary 4 of Sherman (1994) implies suph∈Hn
hp

∣∣∣Qβ
n1111 (τ)

∣∣∣ = OP (n−3/2). Thus

sup
h∈Hn

∣∣∣Qβ
n1111 (τ)

∣∣∣ = oP (n−1).

Next, fix ζ ∈ (0, 1/2) and α ∈ (0, 1) such that 1− ζ/p < α, and consider the intervals Hl

like in the proof of our Lemma A.6. For each Hl, by Sherman’s (1994) Main Corollary

E
[
sup
h∈Hl

|nhζQβ
n1112 (τ) |

]
≤ hζ−p

l E
[
sup
h∈Hl

|nhpQβ
n1112 (τ) |

]

≤ Λ1h
ζ−p
l

[
E sup

h∈Hl

{
h2p

4n2

∑

1≤j,k≤2n

φ2
jk

[
Uβ

j

]2
}α]1/2

≤ Λ2h
ζ−(1−α)p
l

(
hl−1

hl

)αp
[

1

2n

2n∑
j=1

[
Uβ

j

]2
]α/2

= hal
max OP (1),

where Λ1, Λ2 are constants and al is like in the proof of Lemma A.6. Sum over all l to

obtain that nhζQβ
n1112 (τ) = oP (1) uniformly in h ∈ Hn. This ends the proof.

Lemma A.8 Let the assumptions of Theorem 4.1 hold true and let

Qβ
n2 =

1

n(n− 1)hp

∑

i 6=j

[
Ûβ

i − Uβ
i

] [
Ûβ

j − Uβ
j

]
Kh (Xi −Xj) , β = 0, 1.

Then suph∈Hn

∣∣∣Qβ
n2

∣∣∣ = OP (n−1).

Proof. We apply Lemma A.1 with α = 1/2 to bound |Ûβ
i − Uβ

i | and we obtain

∣∣∣Qβ
n2

∣∣∣ ≤ OP (n−1)

n(n− 1)

∑

i6=j

{|Ti|+1}γ(Ti)

[C(Ti)]−(1/2+ρ)
h−pKh(Xi−Xj)

{|Tj|+1}γ(Tj)

[C(Tj)]−(1/2+ρ)
.

By (2.3) and taking conditional expectations, the expectation of the term in the sum is

E
[ {|Y1|+ 1}
[C(Y1)]−(1/2+ρ)

h−pKh (X1 −X2)
{|Y2|+ 1}

[C(Y2)]−(1/2+ρ)

]

= E
[
qρ(X1)qρ(X2)h

−pKh (X1 −X2)
]

and thus it is bounded by Lemma A.4. Deduce that Qβ
n2 = OP (n−1). To derive this rate

uniformly in h ∈ Hn, we can use Lemma A.2. To apply Lemma A.2 it remains to prove

that deduce
K (0)

n(n− 1)hp

n∑
j=1

[
Ûβ

j − Uβ
j

]2

= OP (n−1)

35



for h = hmin and h = hmax. For this purpose apply Lemma A.1 with α = 1/4 to bound

|Ûβ
j − Uβ

j | and recall that
√

nhp
min →∞ and E[C(Y )1/2+ρ] < ∞.

Lemma A.9 Let Qβ
n1 and Qβ

n1 (τ) be defined as in (4.19) and (4.20), respectively. Under

the assumptions of Theorem 4.1, for β = 0 or 1

sup
h∈Hn

hp/2
∣∣∣Qβ

n1 (τ)−Qβ
n1

∣∣∣ = Cτ ×OP (n−1),

with the OP (n−1) factor independent of τ and Cτ tending to zero when τ ↑ τH .

Proof. Write

n− 1

n
hp/2

[
Qβ

n1 (τ)−Qβ
n1

]

=
1

n2hp/2

∑
1≤i,j≤n

Uβ
i Kh (Xi −Xj)

(
Uβ

j − Ûβ
j

)
1{Tj>τ}

− K (0)

n2hp/2

n∑
j=1

Uβ
j

(
Uβ

j − Ûβ
j

)
1{Tj>τ}

= S1 − S2

By the Fourier Transform and Cauchy-Schwarz inequality

|S1| ≤



∫
K̂ (hu)

∣∣∣∣∣
1

n

n∑
j=1

(
Uβ

j − Ûβ
j

)
exp (2iπu′Xj)1{Tj>τ}

∣∣∣∣∣

2

du




1/2

×

hp

∫
K̂ (hu)

∣∣∣∣∣
1

n

n∑
j=1

Uβ
j exp (−2iπu′Xj)

∣∣∣∣∣

2

du




1/2

= [S11]
1/2 [S12]

1/2 .

By the monotonicity of ˆ̃K, to obtain the uniform rate for S11 it suffices to take h = hmin.

Now, by the inverse Fourier Transform S11 can be rewritten

S11 =
1

n2hp
min

∑

i6=j

(Uβ
i − Ûβ

i )1{Ti>τ}Khmin
(Xi −Xj) (Uβ

j − Ûβ
j )1{Tj>τ}

+
K (0)

n2hp
min

n∑
j=1

(
Uβ

j − Ûβ
j

)2

1{Tj>τ} = S111 + S112.

To handle S111, apply Lemma A.1 with α = 1/2. Then, |S111| is bounded by

OP (n−1)

n2hp
min

∑

i 6=j

{|Ti|+1}1{Ti>τ}γ(Ti)

[C(Ti)]−(1/2+ρ)
Khmin

(Xi−Xj)
{|Tj|+1}1{Tj>τ}γ(Tj)

[C(Tj)]−(1/2+ρ)
,
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where the OP (n−1) rate does not depend on τ . By (2.3) and taking conditional expecta-

tions, the expectation of a term in the last sum is

E
[{|Y1|+ 1}1{Y1>τ}

[C(Y1)]−(1/2+ρ)
Khmin

(X1 −X2)
{|Y2|+ 1}1{Y2>τ}
[C(Y2)]−(1/2+ρ)

]

= E [qρ,τ (X1)qρ,τ (X2)Khmin
(X1 −X2)]

with qρ,τ defined in Lemma A.4. Apply Lemma A.4 and deduce that |S111| is bounded by

Cτ × OP (n−1) for some constant Cτ independent of n but tending to zero as τ ↑ τH . To

bound S112, apply Lemma A.1 with α = 1/6 to obtain

|S112| ≤ 1

n2hp
min

n∑
j=1

(
Uβ

j − Ûβ
j

)2

1{Tj>τ}K (0) (A.9)

≤ n−1/3h−p
minOP (n−1)

1

n

n∑
j=1

γ (Tj)
2 {|Tj|+ 1}2

[C(Tj)]−(1/3+2ρ/3)
.

By Hölder inequality, the expectation of a term in the last sum is bounded by

E1/3
[
δ{|T |+ 1}4[1−G (T )]−3

]
E2/3

[{|T |+ 1}C(T )1/2+ρ
]
,

which is finite under Assumptions 4-(iv) and 7. Finally, recall that nh3p
min →∞. Collecting

results, suph∈Hn
S11 = Cτ × OP (n−1) . To handle S12, by the inverse Fourier Transform

and Corollary 4 of Sherman (1994) we obtain

S12 =
1

n2

∑

i6=j

Uβ
i Uβ

j Kh (Xi −Xj) +
K (0)

n2

n∑
j=1

[
Uβ

j

]2

= OP

(
n−1

)
,

and the rate OP (n−1) is uniform in h ∈ Hn. For S2, take absolute values, apply Lemma

A.1 with α = 1/4 and use n1/4h
p/2
min →∞ to deduce suph∈Hn

|hp/2S2| = oP (n−1).

Lemma A.10 Let the assumptions of Theorem 4.1 hold. Under H0, for β = 0 or 1

sup
h∈Hn

∣∣∣∣∣
Ṽ β

n (θ0)

V̂ β
n

− 1

∣∣∣∣∣ = oP (1) .

Proof. Recall that

[
V̂ β

n

]2

= V̂ β
n (θ)2 =

2

n(n− 1)hp

∑

i6=j

Ûβ
i (θ)2Ûβ

j (θ)2K2
h (Xi −Xj) .

37



The result is implied by the following statements:

sup
θ∈Θ,h∈Hn

∣∣∣Ṽ β
n (θ)2 − V̂ β

n (θ)2
∣∣∣ = oP (1) , (A.10)

sup
h∈Hn

∣∣∣Ṽ β
n (θ)2 − Ṽ β

n (θ0)
2
∣∣∣ ≤ ‖θ − θ0‖ ×OP (1) (A.11)

with OP (1) independent of θ ∈ Θ, and

Ṽ β
n (θ0)

2 → 2

∫
K2(u)duE

{
E2

[
Uβ(θ0)

2 | X]
g(X)

}
(A.12)

in probability, uniformly in h ∈ Hn. The limit is finite and strictly positive since Assump-

tion 4(iii) imply

for each x ∈ X , 0 < c1 ≤ E
[
Uβ(θ0)

2 | X = x
] ≤ c2 < ∞,

for some constants c1, c2. The convergence (A.12) is quite standard for any sequence of h

such that h → 0 and nh2p →∞. The expectation of Ṽ β
n (θ0) tends to the limit in (A.12)

(see also the proof of Lemma A.4 above) while the variance of Ṽ β
n (θ0) vanishes. To obtain

the convergence uniformly in h ∈ Hn, use E[Uβ
i (θ0)

4] < ∞ to deduce

K2 (0)

n2hp

n∑
i=1

Uβ
i (θ0)

4 = oP (1)

for h = hmin and h = hmax and apply Lemma A.2. To check (A.11), use a Taylor

expansion in θ, Lemma A.3 and the fact that γβ(Ti) and Uβ
i (θ0) have finite moments of

order 4. Finally, for proving (A.10) notice that by Assumption 5-(i) and Lemma A.1, for

each 0 ≤ α ≤ 1/2 and η > 0

|Ûβ
i (θ)− Uβ

i (θ)| ≤ c |nWin − γ (Ti)| (|Ti|+ 1) (for some constant c)

= OP

(
n−α

)
γ(Ti){C(n) (Ti)}α+η(|Ti|+ 1)

and since |Uβ
i (θ)| ≤ cγ (Ti) (|Ti|+ 1), we also have

∣∣∣Ûβ
i (θ)2 − Uβ

i (θ)2
∣∣∣ = OP

(
n−α

)
γ2(Ti){C(n) (Ti)}α+η(|Ti|+ 1)2.

Taking α and η sufficiently small, by elementary algebra, Lemma A.3, Cauchy-Schwarz

inequality and Assumptions 4-(iv) and 7 we obtain

sup
θ∈Θ,h∈Hn

∣∣∣Ṽ β
n (θ)2 − V̂ β

n (θ)2
∣∣∣ = oP (1).
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Like for Lemma A.1, the following result is designed to be applied under H0 and under

the alternatives and therefore the law of (T1, δ1), ..., (Tn, δn) may depend on n.

Lemma A.11 Suppose the conditions of Lemma A.1. Let X1, X2, ... be an independent

sample from the random vector X with support X ⊂ Rp and bounded density g. Moreover,

g is bounded away from zero on X . There exist positive constants a and M (independent

of n) such that for each n

E
[

T 4
1nγ

4(T1n)

C(n)(T1n)−2a

]
+ sup

x∈X
E

[
T 2

1nγ2(T1n)

C(n)(T1n)−a
| X1 = x

]
≤ M < ∞. (A.13)

Consider a kernel L(x1, ..., xp) = L̃(x1)...L̃(xp) where L̃ is a symmetric density of bounded

variation on the real line. Consider also a sequence of bandwidths bn → 0 such that

nb2p
n →∞. Let Y ∗

in = δinTin[1−G(Tin)]−1, i = 1, ..., n, and define

σ∗ 2
n (x) =

∑n
i=1 Y ∗ 2

in L((Xi − x)/bn)∑n
i=1 L((Xi − x)/bn)

−
(∑n

i=1 Y ∗
inL((Xi − x)/bn)∑n

i=1 L((Xi − x)/bn)

)2

, x ∈ X ,

an estimate of V ar(Y ∗
1n | X1 = x). Define σ̂∗ 2

n (x) similarly but with Ŷ ∗
in = δinTin[1 −

Ĝ(Tin)]−1 instead of Y ∗
in. Then, supx∈X |σ̂∗ 2

n (x)− σ∗ 2
n (x)| → 0 in probability.

Proof. For simplicity we focus on the case of the null hypothesis, the arguments under

the alternatives being similar. By the rate of convergence of an empirical process indexed

by an Euclidean family for a constant envelope and the condition n1/2bp
n →∞,

sup
x∈X

∣∣∣∣∣
1

nbp
n

n∑
i=1

L((Xi − x)/bn)− E [
b−p
n L((Xi − x)/bn)

]
∣∣∣∣∣ → 0,

in probability. Moreover, by a change of variable and the properties of the density g (·) ,

for all n, 0 < c1 ≤ E [b−p
n L((Xi − x)/bn)] ≤ c2 < ∞ for some constants c1, c2. Thus, to

prove the result it remains to show that

for k = 1, 2 , sup
x∈X

∣∣∣∣∣
1

nbp
n

n∑
i=1

[
Ŷ ∗ k

i − Y ∗ k
i

]
L((Xi − x)/bn)

∣∣∣∣∣ → 0,

in probability. We only consider the case k = 2 as the other case can be treated similarly.

By Lemma A.1, for any α ∈ [0, 1/2] and η > 0

∣∣∣Ŷ ∗
i − Y ∗

i

∣∣∣ ≤ OP (n−α)× |Ti|γ (Ti) C(Ti)
α+η, 1 ≤ i ≤ n,
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with the OP (n−α) factor independent of i. In view of this bound and using the identity

b2 − c2 = (b− c)2 + 2c(b− c), it is easy to see that the most difficult part is to show

sup
x∈X

∣∣∣∣∣
1

n

n∑
i=1

T 2
i γ2 (Ti) C(Ti)

2α+2ηL((Xi − x)/bn)

∣∣∣∣∣ = OP (bp
n). (A.14)

For 2α + 2η ≤ a, taking conditional expectations we deduce that

sup
x∈X

E
[
T 2

nγ2 (Tn) C(Tn)2α+2η L((X − x)/bn)
] ≤ c3b

p
n

for some finite c3 independent of n. Now, center the sum in (A.14) to obtain an empirical

process indexed by an Euclidean family of functions for a square integrable envelope.

(The Euclidean property is given by the bounded variation property of L and the first

part of condition (A.13).) Hence, after centering inside the absolute value in (A.14) we

obtain the (uniform) rate OP (n−1/2). Finally, use the condition n1/2bp
n →∞ to derive the

result under H0. The uniform rate OP (n−1/2) obtained after centering the sum in (A.14)

can also be derived when the law of the independent responses Y1, ..., Yn is the same but

depends on n. For this purpose use, for instance, the Main Corollary of Sherman (1994)

with k = 1 and for each n ≥ 1. The details are omitted.

Proof of Lemma 4.3. With the same convention for the superscripts (SD and WLS

replaced with 0 and 1, respectively) and omitting θ, let

U0
in =

δinTin

1−G(Tin)
− f(θ,Xi), Û0

in =
δinTin

1− Ĝ(Tin−)
− f(θ, Xi),

U1
in =

δin [Tin − f(θ, Xi)]

1−G(Tin)
, Û1

in =
δin [Tin − f(θ, Xi)]

1− Ĝ(Tin−)
,

i = 1, ..., n. Applying Lemma A.1 with α = 1/2 and using the boundedness of f(·, ·), for

β = 0 or 1

|Ûβ
in − Uβ

in| = |Rβ
in| ≤ OP (n−1/2)

δin

1−G (Tin)
{|Tin|+ 1}[C(n) (Tin)]1/2+η.
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Now, simplify the notation Kh(Xi −Xj) to Kij and write

1

n2hp

∑

i6=j

{
Ûβ

inÛ
β
jn−Uβ

inU
β
jn

}
Kij =

2

n2hp

∑

i 6=j

Rβ
inU

β
jnKij +

1

n2hp

∑

i6=j

Rβ
inR

β
jnKij

= 2

∫
K̂ (hu)

(
1

n

n∑
j=1

Uβ
jn exp (2iπu′Xj)

)(
1

n

n∑
j=1

Rβ
jn exp (−2iπu′Xj)

)
du

− 2K (0)

n2hp

n∑
j=1

Rβ
jnU

β
jn

+

∫
K̂ (hu)

∣∣∣∣∣
1

n

n∑
j=1

Rβ
jn exp (2iπu′Xj)

∣∣∣∣∣

2

du− K (0)

n2hp

n∑
j=1

[Rβ
jn]2.

The first integral can be bounded using Cauchy-Schwarz inequality and the bound of the

second integral. To show that the second integral is of order OP (n−1), apply Lemma A.1

with α = 1/2 and check that the expectation

E

[
1

hp
K12

γ(T1n){|T1n|+ 1}
[C(n) (T1n)]

−(1/2+η)

γ(T2n){|T2n|+ 1}
[C(n) (T2n)]

−(1/2+η)

]
(A.15)

is bounded, where γ(T1n) = δ1n[1−G (T1n)]−1. From Assumption 8-(ii), deduce that this

expectation equals

E

[
1

hp
K12E

[
|Y1n|+ 1

[C(n) (Y1n)]
−(1/2+η)

| X1

]
E

[
|Y2n|+ 1

[C(n) (Y2n)]
−(1/2+η)

| X2

]]

= E
[
h−pK12q

(n)
ρ (X1)q

(n)
ρ (X2)

]

and the last expectation is bounded by Assumption 9 and Lemma A.4. The rest of the

proof continues with arguments that we already used in the previous proofs.

Lemma A.12 Let Assumptions 4-(i) to (iii), 5, 6, 8, 9 hold true and let θ̂ denote either

θSD or θWLS.

i) If for all n ≥ 1, E [λn(X)∇θf (θ0, X)] = 0 and 0 ≤ |λn(·)| ≤ Mλ < ∞ for some

constant Mλ and if E |λn(X)| → 0, under the alternatives H1n defined in (4.28), θ̂− θ0 =

OP (n−1/2).

ii) If Assumption 10 hold, under the alternative H1, θ̂ − θ̄ = OP (n−1/2).
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Proof. i) Consider the SD approach and decompose

MSD
n (θ) =

1

n

n∑
i=1

[Y ∗
in − f (θ,Xi)]

2 − 2

n

n∑
i=1

[
Ŷ ∗

in − Y ∗
in

]
f (θ,Xi)

+
1

n

n∑
i=1

[
Ŷ ∗ 2

in − Y ∗ 2
in

]

= MSD
1n (θ) + MSD

2n (θ) + RSD
n

where Ŷ ∗
in = δinTin

[
1− Ĝ(Tin−)

]−1

and Y ∗
in is defined similarly but Ĝ is replaced with

G. First, we prove the consistency of θ̂SD. Opening the brackets and using elementary

arguments and condition E |λn(X)| → 0, deduce that

sup
θ∈Θ

∣∣∣∣∣M
SD
1n (θ)− 1

n

n∑
i=1

[γ (Tin) {f (θ0, Xi) + εi} − f (θ,Xi)]
2

∣∣∣∣∣ = oP (1).

Next, by the Main Corollary of Sherman (1994) applied for each n

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑
i=1

[γ (Tin) {f (θ0, Xi) + εi} − f (θ,Xi)]
2

−I − E [{ε + f (θ0, X)− f (θ, X)}2]∣∣ = oP (1),

where I = E[{γ2(Tin) − 1}{f(θ0, X) + ε}2]. The required Euclidean property is ensured

by the boundedness of ∇θf (·, ·) (see Assumption 5-(i)) and Lemma 2.14 of Pakes and

Pollard (1989) and the finite second order moment of ε. On the other hand, by Lemma

A.1 applied with some α ∈ (0, 1/2], supθ∈Θ

∣∣MSD
2n (θ)

∣∣ = oP (1). Deduce

sup
θ∈Θ

∣∣MSD
1n (θ) + MSD

2n (θ)− I − E [{ε + f (θ0, X)− f (θ,X)}2]∣∣ = oP (1).

Since θ0 is the unique maximizer of the expectation in the last display, deduce that

θ̂SD − θ0 = oP (1). To obtain the rate of convergence, let µin = Y ∗
in − f (θ0, Xi) and notice

that E [µin | Xi] = λn(Xi) and E [µin∇θf (θ0, Xi)] = 0. By the definition of θ̂SD and the
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second order Taylor expansion

MSD
1n (θ0)−MSD

1n (θ̂SD)

=
1

n

n∑
i=1

µ2
in −

1

n

n∑
i=1

[
µin −

{
f

(
θ̂SD, Xi

)
− f (θ0, Xi)

}]2

= − 1

n

n∑
i=1

{
f

(
θ̂SD, Xi

)
− f (θ0, Xi)

}2

+
2

n

n∑
i=1

µin

{
f

(
θ̂SD, Xi

)
− f (θ0, Xi)

}

≤ −‖θ̂SD − θ0‖2

{
1

n

n∑
i=1

Φ2(Xi)

}
+ (θ̂SD − θ0)

′
{

2

n

n∑
i=1

µin∇θf (θ0, Xi)

}

+(θ̂SD − θ0)
′
{

oP (1) +
1

n

n∑
i=1

[µin − λn(Xi)]∇2
θf (θ0, Xi)

+
1

n

n∑
i=1

λn(Xi)∇2
θf (θ0, Xi)

}
(θ̂SD − θ0)

= −An‖θ̂SD − θ0‖2 + (θ̂SD − θ0)
′B1n + (θ̂SD − θ0)

′C1n(θ̂SD − θ0).

Notice that An − A = oP (1), where A = E [Φ2(X)] > 0. On the other hand, by a

classical central limit theorem for triangular arrays we obtain ‖B1n‖ = OP (n−1/2). Similar

arguments and condition E |λn(X)| → 0 yield ‖C1n‖2 = oP (1). To handle MSD
2n (θ) , let

us write

MSD
2n (θ0)−MSD

2n (θ̂SD) = (θ̂SD − θ0)
′ 2
n

n∑
i=1

[
Ŷ ∗

in − Y ∗
in

]
∇θf (θ0, Xi)

+(θ̂SD − θ0)
′
[

1

n

n∑
i=1

[
Ŷ ∗

in − Y ∗
in

]
∇2

θf (θ0, Xi)

]
(θ̂SD − θ0)

= (θ̂SD − θ0)
′B2n + (θ̂SD − θ0)

′C2n(θ̂SD − θ0).

By Lemma A.1 applied with α = 1/2, Assumption 9 and the fact ∇2
θf (·, ·) is bounded

(see Assumption 5-(i)), we obtain ‖B2n‖ = OP (n−1/2) and ‖C2n‖2 = oP (1). Collecting

results and using the definition of θ̂SD

0 ≤ MSD
n (θ0)−MSD

n

(
θ̂SD

)

≤ −An‖θ̂SD − θ0‖2 + (θ̂SD − θ0)
′ {B1n + B2n}

+(θ̂SD − θ0)
′ {C1n + C2n} (θ̂SD − θ0).
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Now, consider the event En = {An ≥ 3A/4} ∩ {‖C1n + C2n‖2 ≤ A/4} and notice that

P (En) → 1. On the event En we have

A‖θ̂SD − θ0‖2 − 2 ‖B1n + B2n‖ ‖θ̂SD − θ0‖ ≤ 0 ,

that is ‖θ̂SD − θ0‖ ≤ 2A−1 ‖B1n + B2n‖. Deduce that θ̂SD − θ0 = OP (n−1/2).

For the WLS approach, we write

MWLS
n (θ) =

1

n

n∑
i=1

γ (Tin) [Yin − f (θ,Xi)]
2 − 2

n

n∑
i=1

[Win − γ (Tin)] Yinf (θ, Xi)

+
1

n

n∑
i=1

[Win − γ (Tin)] f 2 (θ, Xi) +
1

n

n∑
i=1

[Win − γ (Tin)] Y 2
in

= MWLS
1n (θ) + MWLS

2n (θ) + MWLS
3n (θ) + RWLS

n .

The term MWLS
1n (θ) can be handled like MSD

1n (θ) , while for MWLS
2n (θ) and MWLS

3n (θ) we

use Lemma A.1 with α = 1/2 and the Taylor expansion like we did for MSD
2n (θ) . Adapting

the arguments used for the SD case, deduce θ̂WLS − θ0 = OP (n−1/2).

ii) The case of a fixed alternative H1 can be treated using the same ingredients: Lemma

A.1 applied with suitable α ∈ (0, 1/2] and Taylor expansions. The details are omitted.

Proof of Theorem 4.4. By Lemma A.3 and the assumptions, supθ∈Θ

∣∣Qβ
n(θ)

∣∣ is

bounded in probability. Then Lemma 4.3 indicates that it remains to look at the limit of

Q̃β
n(θ̂). By Taylor expansion, arguments like those used in Lemma A.6 above and the fact

that θ̂ − θ̄ = OP (n−1/2), we obtain suph∈Hn

∣∣∣Q̃β
n(θ̂)− Q̃β

n(θ̄)
∣∣∣ = oP (1). Now, since

Uβ(θ̄) =
{
[γ (Ti)− 1]

[
m(Xi) + εi − βf

(
θ̄, Xi

)]
+ εi

}
+

{
m(Xi)− f

(
θ̄, Xi

)}

and E [γ (Ti) | Xi] = 1, we can decompose Q̃β
n(θ̄) in three parts, a degenerate and a zero-

mean U−process of order 2 (indexed by h) and

1

n(n− 1)hp

∑

i6=j

[
m(Xi)− f

(
θ̄, Xi

)] [
m(Xj)− f

(
θ̄, Xj

)]
Kh (Xi −Xj) .

By the arguments used for (A.12), this last part tends to E
[{

m(X)− f
(
θ̄, X

)}2
g(X)

]

and for β = 0 or 1 the variances [V̂ β
n ]2 converge to

2

∫
K2(u)duE

{
E2

[
Uβ(θ̄)2 | X]

g(X)
}

, (A.16)
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uniformly in h ∈ Hn. It is easy to see that for β = 0 or β = 1,

E
[
Uβ(θ̄)2 | X]

= E
[{

Y − βf(θ̄, X)
}2 G (Y )

1−G (Y )
| X

]
+ E

[
ε2 | X]

+
[
m(X)− f

(
θ̄, X

)]2
,

and thus there is no general order relationship between the limits in equation (A.16).

Proof of Theorems 4.5 and 4.6. Once again, Lemma 4.3 shows that we only need to

look at Q̃β
n(θ̂). Write Uβ

i (θ) = uin + vin + win + λn (Xi) + {f(θ0, Xi)− f (θ, Xi)} where

uin = [γ (Tin)− 1] λn (Xi)

vin = β {γ (Tin)− 1} {f(θ0, Xi)− f (θ,Xi)}
win = γ (Tin) εi + (1− β) [γ (Tin)− 1] f(θ0, Xi)

and notice that E (uin | Xi) = E (vin | Xi) = E (win | Xi) = 0 a.s. and there exists a

sequence of real numbers σ2
n tending to zero such that for each n ≥ 1, E (u2

in | Xi) ≤ σ2
n.

Using this decomposition of Uβ
i (θ) we can split Q̃β

n(θ̂) in several U−statistics of order 2.

By repeated applications of Taylor expansion and Lemma A.5, and using the fact that

θ̂ − θ0 = OP

(
n−1/2

)
deduce that

Q̃β
n(θ̂) =

1

n (n− 1)

∑

i6=j

winwjnKh (Xi −Xj) (A.17)

+
r2
n

n (n− 1)

∑

i6=j

λ (Xi) λ (Xj)
1

hp
Kh (Xi −Xj)

+OP

(
rnn−1/2

)
+ oP

(
n−1h−p/2

)
,

provided that λn (·) = rnλ (·) . Moreover, since
∣∣∣Uβ

i (θ̂)− win

∣∣∣ ≤ oP (1) [γ (Tin) + 1] with

oP (1) independent of i,

[
V̂ β

n (θ̂)
]2

− 2

n (n− 1) hp

2∑

i6=j

w2
inw

2
jnK

2
h (Xi −Xj) = oP (1) . (A.18)

From this and Lemma 2.1-(i) of Guerre and Lavergne (2005), the first U−statistic on the

right-hand side of (A.17) multiplied by nhp/2 and divided by V̂ β
n (θ̂) converges in law to

a standard normal distribution. Since the second U−statistic in (A.17) (without the r2
n

factor) converges to E [λ2(X)g(X)] in probability, and V̂ β
n (θ̂) converges to a positive finite
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constant in probability, the proof of Theorem 4.5 is complete. Under the condition (4.29)

in Theorem 4.6, the arguments used for (A.17) indicate that Q̃β
n(θ̂) can be decomposed

Q̃β
n(θ̂) =

1

n (n− 1)

∑

i6=j

winwjnKh (Xi −Xj)

+(θ̂ − θ0)
′ 2

n (n− 1)

∑

i6=j

λn (Xi)∇θf(θ0, Xj)
1

hp
Kh (Xi −Xj)

+
2

n (n− 1)

∑

i6=j

λn (Xi) wjn
1

hp
Kh (Xi −Xj)

+
1

n (n− 1)

∑

i6=j

λn (Xi) λn (Xj)
1

hp
Kh (Xi −Xj)

+{terms of smaller order}
= Q̃β

na + 2(θ̂ − θ0)
′Q̃β

nb + 2Q̃β
nc + Q̃β

nd + {terms of smaller order}.

By Lemma A.5, Q̃β
na = OP (n−1h−p) and |Q̃β

nc| ≤ OP (n−1/2)‖λn‖n, while Lemma A.2

implies |Q̃β
nb| = OP (1)‖λn‖n. Next, to obtain the rate of Q̃β

nd, we follow the lines of the

proof of Theorem 4 of Horowitz and Spokoiny (2001). See also Guerre and Lavergne

(2005) and Lavergne and Patilea (2006). That is, approximating λn(·) by a piecewise

polynomial function, we deduce

Q̃β
nd ≥ c{1 + oP (1)} [‖λn‖n − hs]2 ,

for some positive constant c, provided that λn(·) ∈ C(L, s) and the density g(·) is bounded

away from zero. For the standard deviation, use (A.18) to deduce that V̂ β
n (θ̂) = OP (1).

Collecting results and taking h of order n−2/(4s+p), deduce that for any positive constant

c, P(T β
n (θ̂) > c) → 1 and this proves Theorem 4.6.
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