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Abstract

The notion of completeness between two random variables has been considered
recently to provide identification in nonparametric instrumental problems. This con-
dition is quite abstract, however, and characterizations have been obtained only in
special cases. The aim of this paper is to provide general sufficient conditions to
achieve completeness or bounded completeness. The difference between these two
notions is stressed, and implications for the nonparametric instrumental regression
are given.
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Résumé

La notion de complétude entre variables aléatoires a été considérée récemment pour
obtenir l’identification dans les problèmes non-paramétriques instrumentaux. Cette
condition est assez abstraite, cependant, et des caractérisations n’ont été obtenues
que dans quelques cas particuliers. L’objectif de ce papier est de présenter des con-
ditions suffisantes générales permettant d’obtenir la complétude ou la « complétude
bornée ». La différence entre ces deux notions est soulignée, et les conséquences de
ces résultats sur la régression non-paramétrique instrumentale sont examinées.

Mots-clés : complétude, identification non-paramétrique, variables instrumentales.
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1 Introduction

Let X and Z denote two random variables. Analogously to the completeness of a statistic

for a parameter, X is said to be complete for Z if, for all measurable real functions h such

as E[|h(X)|] < +∞,
(
E[h(X)|Z] = 0 a.s.

)
=⇒

(
h(X) = 0 a.s.

)
. (1.1)

X will be bounded complete if the same holds for any bounded h. Note that completeness is

equivalent to the injectivity of the conditional expectation operator. Thus, not surprisingly,

it has appeared to be a key identifying condition in nonparametric instrumental problems.

Darolles et al. (2002) and Newey and Powell (2003) used it in the study of nonparametric

instrumental regression, Florens et al. (2003) in the theory of local instrumental variables,

Blundell et al. (2003) in the estimation of Engle curves with endogenous total expenditures,

and Hu and Schennach (2006) in the case of nonclassical measurement error problems.1

This dependence condition is quite abstract though, and a characterization or at least

sufficient conditions on the joint distribution of (X, Z) are desirable. Newey and Powell

(2003) address the finite support and exponential families cases, Darolles et al. (2002)

the normal distributions and Blundell et al. (2003) focus on the analysis of a particular

semiparametric model. However, results are still lacking in the general case to properly

define completeness in terms of dependence between the two variables. The aim of this

paper is to go one step in this direction by considering a nonparametric model on (X,Z).

In this framework, bounded completeness is implied by a large support condition and weak

technical assumptions on the distribution of the error of the model. Completeness, on

the other hand, requires stringent conditions on this distribution. This difference between

completeness and bounded completeness is in line with previous results of the statistical

literature, see e.g. Lehmann (1986, p. 173), Hoeffding (1977) and Mattner (1993) (see also

Blundell et al., 2003, for a discussion on this point).
1Indeed, their assumption 2 is equivalent under technical conditions to a completeness condition.
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Besides, the paper shows that despite the seemingly asymmetry between X and Z, their

roles can be, up to a certain extent, exchanged in our nonparametric model. This result

can be useful when the causality between X and Z is reversed, as it happens for instance

in the measurement error model of Hu and Schennach (2006).

Implications for the nonparametric instrumental regression are also examined. We con-

sider a nonparametric system which can be seen as generalization of the linear model with

instruments. In this setting, the rank condition can be formulated roughly as a large sup-

port assumption. If one is reluctant to impose additional structure on the errors, only local

nonparametric identification will be achieved in general. However, global identification can

be recovered under the extra assumption that the derivative of the regression function is

bounded.

The paper is organized as follows. The main results are given in section two. Section

three examines the consequence of these results on the identification of nonparametric

instrumental regression. The proofs are deferred to section four.

2 Main results

In the sequel, X and Z belong to Rp and Rq respectively, with p ≤ q. X and Z may

share elements in common, and we let W denote these common elements, W ∈ Rr. For

instance, in an instrumental nonparametric regression (see e.g. Newey and Powell, 2003),

W corresponds to the exogenous components of X. The remaining elements of X and

Z are called respectively X0 and Z0, so that X = (X0,W ) and Z = (Z0,W ). In this

framework, we will say that X is complete (resp. bounded complete) for W if (1.1) holds

for all h such as, for PW− almost all w, h(., w) is integrable with respect to PX0 (resp.

bounded). In the following, we first recall the existing result when X0 has a finite support,

and then we address the infinite support case.
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2.1 Finite support case

When X0 and Z0 have finite supports, which are denoted respectively (x1, ..., xs) and

(z1, ..., zt), completeness can be easily characterized.

Proposition 2.1 (Newey and Powell, 2003) X is complete for Z if and only if

P(rank(P (W )) = s) = 1,

where P (W ) is the matrix of typical elements P(X0 = xi|Z0 = zj,W ).

In the finite support case, completeness has two implications. First the support of Z0 should

be at least as rich as the one of X0 (t ≥ s). Second, the dependence between X0 and Z0

should be strong enough for s distinct conditional distributions P (X0 = .|Z0 = zj,W ) to

exist. Note also that in this case, completeness and bounded completeness are equivalent.

2.2 Infinite support case

The situation is more involved when the support of X0 is infinite. By a direct adaptation of

classical statistical results, completeness can be obtained when the conditional distribution

of X belongs to an exponential family. Unfortunately, condition (2.1) is unnatural in terms

of dependence between X and Z, except for special cases such as normal variables.

Proposition 2.2 (Newey and Powell, 2003) Suppose that with probability one, the dis-

tribution of X0 conditionally on Z is absolutely continuous with respect to the Lebesgue

measure with density

fX0|Z0,W (x, z, w) = s(x,w)t(z, w) exp(µ(z, w)′τ(x,w)), (2.1)

where, almost surely, τ(.,W ) is one-to-one and the support of µ(Z) given W is an open

set. Then X is complete for Z.
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We now explore a more general situation by considering a nonparametric link between X

and Z. More precisely, suppose that there exists maps µ1 and ν1, from respectively Rp and

Rq to Rp−r, such that

µ1(X) = ν1(Z) + ε1. (2.2)

Furthermore, we consider the following assumptions.

A1. For PW -almost all w, µ1(., w) is one-to-one.

A2. Z0 ⊥⊥ ε1 |W .

A3. For PW -almost all w, the measure of ν1(Z0, w) is continuous with respect to the

Lebesgue measure and its support is Rp−r.

A4. For PW -almost all w, ε1 admits a density fε1|W (., w).

When X0 is real, A1 is satisfied if for instance µ1(X0, W ) = g(X0) for any monotonous func-

tion g. A2 states that µ1(X) can be decomposed into two (conditionally) independent parts.

Because mean-independence can always be achieved by setting ν1(Z) = E(µ1(X)|Z),2 A2

means in fact that there exists µ1 such that mean-independence can be strengthen into

independence.

A3 is a continuity and large support condition. Note that it may hold without the dis-

tribution of Z being continuous. Only one continuous component is required. The large

support condition is restrictive but widespread in the literature (see e.g. Manski (1988)

or Lewbel (2000)). Moreover, only ν1(Z), not necessarily Z, should satisfy this condition.

This means that p− r regressors with large support may be sufficient. Lastly, A4 restricts

the analysis to the case of continuous residuals.

To achieve completeness or bounded completeness, further restrictions on ε1 are required.

The assumptions below, which are adapted from Mattner (1993), enable to underline the

difference between the two notions.
2Then, indeed, E(ε1|Z0,W ) = 0 = E(ε1|W ).
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A5. PW−almost surely, the characteristic function ψε1|W of ε1 conditionally on W vanishes

nowhere.

A6. ε1 is gaussian or satisfies, PW -almost surely on w and for all x, y ∈ Rp−r, there exists

C(.) and k(.) such as

fε1|W (x + y, w) ≤ C(w)(1 + ||x||2)k(w)fε1|W (y, w),

where ||.|| is the euclidian norm. Moreover ψε1|W (., w) is infinitely often differentiable

in Rp\A for some finite set A.

A7. One of the following statement holds:

i) For PW−almost all w, there exists s0 ∈ Rp−r such as E(exp(−s′0X0)|W = w) < ∞
and t ∈ Cp−r, |Re(t)| < |s0|, such as ψε1|W (t, w) = 0.

ii) For PW−almost all w, ε1 is not normal conditionally on W = w and there exists

δ1, δ2 > 0 such as E
(
exp

(
δ1||ε1||1+δ2

) |W = w
)

< +∞.

A5 is often assumed in deconvolution problems (see e.g. Devroye (1989), Liu and Taylor

(1989), Fan (1991), Fan and Truong (1993) or Li and Vuong (1998)) and is satisfied, among

others, by gaussian, Student, Laplace and α−stable distributions. The only common

continuous distributions that fail to satisfy it are the uniform and triangular ones. A6, on

the other hand, is restrictive. It imposes in particular that fε1|W (., w) is either gaussian or

has heavy tails.3 The condition holds for instance for Student and α− stable distributions

(see Mattner, 1992). Lastly, the second part of assumption A7 i) should not be seen as the

opposite of assumption A5, because the zeros of the characteristic function are allowed to be

complex and not only real (see Mattner, 1993, for examples of distributions satisfying this

condition). Assumption A7 ii) is satisfied for instance when the support of ε1 is compact.

Theorem 2.3 Suppose that (2.2) and A1-A4 hold. Then

1) if A5 holds, X is bounded complete for Z.
3Put x = −y to see that 1/fε1|W must be at most of polynomial order. It can also be shown (see

Mattner, 1992) that A7 is implied by the condition 0 < c(w) ≤ fε1|W (x,w)(1+ ||x||)γ(w) ≤ C(w) < ∞ for
all x ∈ Rp−r and some real c(w), C(w) and γ(w) > 0.
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2) If A5 and A6 hold, X is complete for Z.

3) If A7 holds, X is not complete for Z.

The proposition is based on the results of Gosh and Singh (1966) and Mattner (1992,

1993) on the completeness of location families. It emphasizes the difference between com-

pleteness and bounded completeness. Whereas the first is satisfied for many densities,

completeness imposes stringent restrictions on fε1|W . fε1|W cannot have a bounded sup-

port for instance. On the other hand, because A5 and A7 may hold together (see Mattner,

1993, for examples), X can still be bounded complete for Z in such situations.

The easiest way to interpret (2.2) is that Z causes X. However, it may be convenient

sometimes to suppose instead that X causes Z. In the measurement error model of Hu

and Schennach (2006) for instance, the unobserved variable must be complete for the

measured variable. In this case, the model (2.2) is unnatural because we would prefer to

write the measure as a function of the unobserved variable and an independent error rather

than the contrary. Consider now the following model:

µ2(Z) = ν2(X) + ε2, (2.3)

where µ2 and ν2 are maps from Rq (resp. Rp) to Rq−r. We assume the following hypotheses,

which are close to A1-A3.

A8. X0 ⊥⊥ ε2 |W .

A9. For PW -almost all w, ν2(., w) is a one-to-one diffeomorphism on Rq−r. Moreover, the

conditional distribution of ν2(X0, w) admits a bounded positive density on Rq−r with

respect to the Lebesgue measure.

Assumption A8 is exactly equivalent to A2. Assumption A9 is similar but stronger than

A3. In particular, ν2(., w) being one-to-one implies q = p. Moreover, restrictions are

imposed on the conditional density of ν2(X0, w). On the other hand, no conditions like A1

are set on µ2(., w).
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Theorem 2.4 Suppose that (2.3), A4-A5 (for ε2) and A8-A9 hold. Then X is bounded

complete for Z.

Thus, even if completeness seems asymmetric in X and Z, to a certain extent the roles of

X and Z can be exchanged. In this sense, the condition is similar to the rank condition in

linear instrumental models.

3 Implications for the nonparametric instrumental regression

The previous result sheds light on the nonparametric instrumental regression. Indeed,

suppose that {
Y = ϕ(X) + η

µ1(X) = ν1(Z) + ε1

(3.1)

with E(η|Z) = 0. Such a system may be seen as the nonparametric version of the linear

model with instruments. In this framework, the rank condition corresponds to the large

support assumption A3 and the technical conditions A5 or A6 on ε1. If one is reluctant

to impose A6, bounded completeness and thus local identification of ϕ will be obtained

solely. Identification is achieved globally only when ϕ is known to be bounded. This can

happen for theoretical reasons, as for instance, in Blundell et al. (2003), or when X0 has a

finite support, as in Florens et al. (2003).

Proposition 3.1 Suppose that (3.1) and A1-A5 holds. Then ϕ is identified on

B = {h/(h− ϕ)(., w) is bounded for PW -almost all w}.

If ϕ(., w) is bounded for PW -almost all w, then ϕ is identified globally.

This result is rather negative, because if ϕ(., w) is not bounded (e.g., ϕ(., w) is a linear

form), only local nonparametric identification is achieved. However, global identification

can be recovered if ϕ(., w) has a bounded derivative under the system defined by (3.1),

with µ1(X0,W ) = X0.4

4This particular case is considered for the sake of simplicity. The result could be extended to any known
diffeomorphism µ1(., w) whose inverse has a bounded derivative.
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A10. For PW -almost all w, x 7→ ϕ(x,w) is differentiable and ∂ϕ
∂x

(., w) is bounded.

Proposition 3.2 Suppose that (3.1) with µ1(X0,W ) = X0, A2-A5 and A10 hold. Then

ϕ is globally identified.

Roughly speaking, the result stems from the fact that under (3.1), the order of the derivative

and the expectation can be exchanged. This enables to identify E
(

∂ϕ
∂x

(X0,W )
∣∣Z)

and thus
∂ϕ
∂x

(X0,W ) by bounded completeness.

4 Proofs

4.1 Theorem 2.3

Let T0 = µ1(X) and T = (T0,W ). First, completeness (resp. bounded completeness) of X

for Z can be deduced from completeness (resp. bounded completeness) of T for Z. Indeed,

suppose that for all g such that E[|g(X0, w)|] < +∞ (for PW -almost all w),

(E[g(T )|Z] = 0 a.s.) ⇒ (g(T ) = 0 a.s.) .

Then, by A1 there exists ψ1 such that X = ψ1(T ) almost surely. Moreover, if E[|h(X0, w)|] <

+∞, then E[|h ◦ ψ1(T0, w)|] < +∞ and

(E[h(X)|Z] = 0 a.s.) ⇒ (h ◦ ψ1(T ) = 0 a.s.) ⇒ (h(X) = 0 a.s.) .

The same holds with bounded functions h(., w), because h(., w) bounded implies that

h ◦ ψ1(., w) is bounded.

Now, let us rewrite the completeness statement. First, by conditional independence of Z0

and ε1,

E[h(T )|Z] = E[h(ν1(Z) + ε1,W )|Z]

=

∫
h(ν1(Z) + u, W )fε1|W (u, W )du a.s.

=

∫
h(t,W )fε1|W (t− ν1(Z),W )dt a.s.
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Conditionally on W , the support of ν1(Z) is Rp−r and its distribution is continuous. More-

over, T0 is continuous conditionally on W . Hence, for any h such that h(., w) is integrable

(resp. is bounded), completeness (resp. bounded completeness) of T for Z is equivalent

to, PW−almost surely in w,

(∫
h(t, w)fε1|W (t− u,w)dt = 0 almost everywhere in u

) ⇒ (h(t, w) = 0 a.e. in t)

(4.1)

This statement corresponds to the completeness of the location family with density fε1|W ,

except that the left part of (4.1) holds almost everywhere and not everywhere. But in

theorem 1.3 of Mattner (1992) (and hence in his theorem 1.1), the statement also holds

almost everywhere, so that we can apply it to obtain part 2 of the theorem. Moreover, a

quick inspection of lemma 2.3 and theorem 2.4 of Mattner (1993) shows that it also holds

almost everywhere. Part 3 is then a consequence of these two results.

To obtain part 1, we adapt the proof of theorem 2.4 of Gosh and Singh (1966). Let L1 (resp.

L∞) denote the space of equivalent classes of integrable (resp. essentially bounded) func-

tions with respect to the Lebesgue measure. Let w be such as h(., w) ∈ L∞, Ψε|W (., w) does

not vanish anywhere and the left part of (4.1) holds (the set of such w being of probability

one). Let fw,u(x) = fε1|W (x − u,w), Pw = span
{
fw,u, u ∈ Rp−r /

∫
h(t, w)fw,u(t)dt = 0

}

and Qw = {fw,u / u ∈ Rp−r}.

Let Aw = {u / fw,u ∈ Pw}. Because the Lebesgue measure of cAw is zero, there exists a

sequence un of elements of Aw such as un → u for all u ∈ cAw. By Scheffe’s theorem (see

e.g. van der Vaart (1998), p. 22), ||fw,un−fw,u||L1 → 0. Thus Qw is included in the closure

of Pw.

Now, by Wiener’s tauberian theorem (see e.g. Yoshida (1974), p. 357), Qw is dense in

L1. Thus, Pz is dense in L1. By continuity of the linear form φ 7→ ∫
h(t, w)φ(t)dt and the

Riesz theorem (see e.g. Rudin (1998), p. 158), h(t, w) = 0 for almost every t and almost

all w.
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4.2 Theorem 2.4

E[h(X)|Z] = 0 implies that for any bounded measurable g, E[h(X)g(µ2(Z))|W ] = 0. In

other terms,

E[h(X)E(g(µ2(Z))|X)|W ] = 0.

By A8 and A9, the distribution of µ2(Z) is continuous conditionally on X. Thus,
∫

h(x,w)

[∫
g(u)fµ2(Z)|X0,W (u, x, w)du

]
dPX0|W=w(x) = 0

for PW−almost all w. By Fubini’s theorem,
∫

g(u)

[∫
h(x,w)fµ2(Z)|X0,W (u, x, w)dPX0|W=w(x)

]
du = 0.

Because this holds for every bounded measurable g, we get, for almost all w and almost

everywhere in u, ∫
h(x,w)fµ2(Z)|X0,W (u, x, w)dPX0|W=w(x) = 0.

Hence, using (2.3), A8 and a change of variable t = ν2(x,w),
∫

h(ψ2(t, w), w)fν2(X0,w)|W (t, w)f−ε2|W (t− u,w)dt = 0

for almost everywhere in u and where ψ2(., w) denotes the inverse map of ν2(., w). Now,

because fν2(X0,w)|W (., w) is bounded by A9, h(ψ2(., w), w)× fν2(X0,w)|W (., w) is bounded for

every bounded h. Hence, we can apply the same device than in the previous proof, and

h(ψ2(., w), w)× fν2(X0,z)|W (., w) = 0 almost everywhere. The result follows because

fν2(X0,z)|W (., w) 6= 0 and ψ2(., w) is one-to-one.

4.3 Proposition 3.1

E(Y |Z) = E(ϕ(X)|Z), so that any candidate ϕ′ of ϕ satisfies

E[(ϕ′ − ϕ)(X)|Z] = 0.

10



If ϕ′ ∈ B, we can apply theorem 2.3, so that ϕ′(X) = ϕ(X) almost surely. If ϕ(., W )

is known to be bounded, any candidate must be also bounded so that (ϕ′ − ϕ′)(.,W ) is

bounded. Thus, in this case ϕ(.,W ) is globally identified.

4.4 Proposition 3.2

Because E(Y |Z) = E(ϕ(X)|Z) and fX0|Z0,W (x, z, w) = fε1|W (x−ν1(z, w), w), we get, almost

surely,

E(Y |Z0 = z,W = w) =

∫
ϕ(u + ν1(z, w), w)fε1|W (u,w)du

= E(Y |ν1(Z0,W ) = ν1(z, w),W = w).

In other terms, for almost all t and w,

E(Y |ν1(Z) = t,W = w) =

∫
ϕ(u + t, w)fε1|W (u,w)du.

Let w be such as ϕ(., w) is differentiable. Because ∂ϕ
∂x

(., w) is bounded, there exists M(w)

such as for every t,
∣∣∣∣
∂

∂t

[
ϕ(u + t, w)fε1|W (u,w)

] ∣∣∣∣ ≤ M(w)fε1|W (u,w)

where the inequality must be understood termwise. Because the right term is integrable,

t 7→ E(Y |ν1(Z) = t,W = w) is differentiable and, almost everywhere,

∂E(Y |ν1(Z) = t,W = w)

∂t
=

∫
∂ϕ

∂x
(u + t, w)fε1|W (u, w)du.

Upon adding E(ε1|W ) to ν1, we can always suppose that E(ε1|W ) = 0. This normalization

makes ν1(.) identifiable because then, by A2, ν1(Z) = E(X|Z). Hence E(Y |ν1(Z) = t,W =

w), and thus its derivative, are identifiable (almost surely).

Let ϕ′ denote a candidate for ϕ and g = ϕ′ − ϕ. Then, for almost every t,
∫

∂g

∂x
(x,w)fε1|W (x− t, w)dx = 0.
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In other terms,

E
(

∂g

∂x
(X0,W )

∣∣Z
)

= 0 a.s.

Because g has a bounded derivative and X is bounded complete for Z by theorem 2.3,
∂g
∂x

(X0,W ) = 0 almost surely. Hence ∂ϕ
∂x

(X0,W ) is identified almost surely. Now, there

exists ϕ0 such as

ϕ(x,w) =

∫ x

0

∂ϕ

∂x
(u,w)du + ϕ0(w).

In other terms,

Y =

∫ X0

0

∂ϕ

∂x
(u,W )du + ϕ0(W ) + η.

Thus,

E
(

Y −
∫ X0

0

∂ϕ

∂x
(u,W )du

∣∣W
)

= ϕ0(W )

Hence ϕ0 is identified and the result follows.
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