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Abstract

A Degeneracy in the Analysis of Volatility and Covolatility Effects

Numerous financial applications examine the risk effect on future expected returns
and volatilities. This effect is generally specified as a linear function of lagged volatil-
ities and covolatilities. The aim of this paper is to point out that, in this framework,
estimation and testing need to be carried out with caution as some standard regularity
conditions of asymptotic theory are not satisfied. This paper shows the adjustements
in the asymptotic distributions of selected frequently used test statistics and estima-
tors.

Keywords: Volatility Model, Risk Premium, BEKK Model, Volatility Transmission,
Identifiability, Boundary, Invertibility Test.
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1 Introduction

One of the main financial problems is the measurement of risks and the analysis of risk effects on the
distribution of future returns. In many financial models, the risks are represented by a volatility-
covolatility matrix and the effect of risk on expected returns or future volatilities is specified as an
affine function of the current and lagged realized volatilities and covolatilities. Let us consider a

2-asset framework with the volatility matrix

Y, = O11,t 012,t _
O12,t 022t

The expected return on asset 1 can be written as:

* * *
Ei(r1t41) = Tpp41 +a1011,¢ + 2010124 + c1022¢ + afo11,0-1 + 2b7012,0—1 + 102241,

for example. This model can be used to examine the size of the ex-ante equity risk premium,
its sign, and its existence. Boudoukh et al (1993), Ostdiek (1985), Arnott, Ryan (2001), Arnott,
Bernstein (2002), Chen, Guo, Zhang (2006), Walsh (2006) have shown that the risk premium can
take either a positive or a negative sign depending on the environment, and tested the positivity of
the conditional risk premium using instrumental variables. Moreover, under the CAPM framework,
there exists a relation between the expected return and the variance of the market portfolio. As
a consequence, the effect of the variances-covariances of the assets is captured by a single market
portfolio. This implies that the risk premium is of reduced rank.

An analogous problem concerning the sign and rank of the risk premium arises in foreign
exchange markets [see e.g. Domowitz, Hakkio (1985), Macklem (1991) , Hakkio, Sibert (1995)].
The sign of the foreign exchange real risk premium can depend on the ratio of volatilities in both
countries. Moreover, the test of zero risk premium is equivalent to a test of the null hypothesis
that the forward exchange rate is an unbiased predictor of the future spot exchange rate.

Similar specifications of volatility-covolatility effects are introduced in multivariate ARCH
models (see, e.g. Engle, Granger, Kraft (1984), Bollerslev, Engle, Wooldridge (1988), Boller-
slev, Chou, Kroner (1992)) to describe the expected future volatility. For instance, a so-called

vech-representation implies:

~ ~ ~ * ~ * ~ * ~
Vi(rip41) =d+a1611,4 + 2016124 + €1022 + a1611,6-1 + 267 G121 + ¢ Fa2,0—1,
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where G5+ = vy, 4,5 =1,2.

In this model, it is interesting to test for the significance of the effect of lagged realized volatility,
or to check if the realized volatility effects can be summarized by a smaller number of factors as
in the BEKK model (Baba, Engle, Kraft, Kroner (1990)).

A linear form in the volatilities-covolatilities can always be written as:

aoy1 + 2bio1y +coay =Tr [( Z b > ( o 012 >] =Tr(AY), say,
c 012 022

where Tr is the trace operator. In practice, the matrix of sensitivity coefficients A is estimated
from T asset returns. We assume that the estimator Ay is a consistent, asymptotically normal
estimator of A.

This paper considers hypotheses testing and constrained estimation concerning matrix A,
mainly for A of dimension 2 x 2. The hypotheses of interest are:

1) the hypothesis of noninvertibility of matrix A;

2) the hypothesis that matrix A is positive semi-definite. Indeed, this condition is equivalent

to the nonnegativity of the linear form Tr(AX) (see Appendix 1, Lemma 1).

The constrained estimation concerns estimation of A assuming that its rank is less or equal to

At a first sight, these tests and estimation problems ! can seem rather standard. For instance,
the invertibility of matrix A is usually based on the singular value decomposition of the (asymptot-
ically) Gaussian random matrix A7 [see Anderson (1989), Gourieroux, Monfort, Renault (1995),
Bilodeau, Brenner (1999)]. The tests for matrix positivity are based on asymptotic test proce-
dures for the inequality restrictions ac — b*> > 0, a > 0 [see e.g. Gourieroux, Monfort (1989),
Wolak (1991)]. The estimation of A under the hypothesis of reduced rank is performed by quasi-
maximum likelihood methods as for the BEKK model [Engle, Kroner (1995), Jeantheau (1998),
Comte, Lieberman (2000)].

The purpose of this paper is to point out identifiability problems, boundary problems and
degeneracies occurring in these frameworks. They imply complicated asymptotic distributions both

for estimators and tests, can render standard practices misleading and stylized facts questionable.

lSimilar problems exist for the so-called vech-diagonal multivariate ARCH models, such as 0+ = d;j + a;;5:j.¢,
i,j=1,2,¢ < j. It is easy to check that the expected volatility-covolatility matrix is positive semi-definite, if and only
if, the matrix A = (a;;) is positive semi-definite. This condition is only sufficient for a larger dimension (Silberberg,
Pafka (2001)).
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In the paper, we apply standard estimators and test statistics and derive their correct asymp-
totic distributions. The analysis of the asymptotic admissibility of the test statistics and their
potential improvement are out of the scope of the present paper. In Section 2, we consider the
Wald test for non invertibility of matrix A based on its estimated determinant det Arp. We explain
why the Wald test statistic has a non-Gaussian distribution in the degenerate case A=0, and study
how this distribution depends on the asymptotic variance of the random matrix Ar. Section 3
discusses the constrained estimation of A when this matrix has reduced rank. The distribution of
the constrained estimator is non-standard if A=0. Section 4 considers the test of positive semi-
definiteness, that is, of the hypothesis defined by the inequality constraints a > 0,¢ > 0, ac—b% > 0.
In this case also, the standard asymptotic theory is not valid if A=0. We explain how it can be
corrected, when A is unconstrained [respectively, when A is of reduced rank] under the maintained
hypothesis. Finite sample properties of the standard test statistics in the degenerate case are

presented in Section 5. Section 6 concludes.

2 Testing for Invertibility

As mentioned in the introduction , there exist different approaches to testing for noninvertibility
of matrix A. The first one consists in performing a singular value decomposition of matrix A and
checking if the smallest singular value is close to zero. The distribution of the smallest singular
value is rather complicated and depends on the number of zero singular values [see Anderson (1989),
Bilodeau, Brenner (1999)]. The second approach consists in testing directly the significance of the
determinant. In the remainder of this section, the second approach is considered for the following
two reasons. First, the determinant inequality restrictions characterize positive semi-definiteness.

Second, the degeneracy problem is easier to explain in this context.

2.1 The constrained and unconstrained models

We are interested in a n x n matrix parameter A, which can be consistently estimated by an
asymptotically Gaussian estimator Ap. Let us denote by vec A the vector of length n? obtained

by stacking the columns of matrix A. We assume that:

VT vec(Ar) — vec(A)] 4 N(0,9), (2.1)

2

where 2 is a (n? x n?) invertible matrix and % denotes the convergence in distribution. Ap

summarizes the relevant information about A contained in the data. Thus, (2.1) will be considered
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as the unconstrained (asymptotic) model.

In this section, we want to test the null hypothesis of noninvertibility of matrix A:

Hp : (A is not invertible) = (det A = 0). (2.2)
2.2 Wald Test statistic

A standard approach to testing the null hypothesis Hy is based on the estimated determinant

detAq and its asymptotic distribution obtained by applying the d-method.

Since ?)((iitcﬁg = vec[cof (A)], where cof(A) is the (n xXn) matrix whose elements are the cofac-

tors of elements of A, we get:

VT (detAr — detA) KN N(0,vec[cof (A)]' Quec|cof (A)]). (2.3)

Then, the Wald test statistic is defined by:

R \/TdetAT
_ A . _ , 2.4
" Jvecleof (Ar))/Qr veclcof (Ar )2 .

where Q7 is a consistent estimator of Q. If vec[cof (A)] # 0, this Wald statistic follows asymptoti-
cally a standard normal distribution and a critical region of the type |éT| > 1.96 defines a test at

asymptotic level 5%.

2.3 The degenerate case

The standard approach described above is valid if vec(cof(A)) # 0, that is, if A # 0. Otherwise,
the asymptotic properties of the Wald test statistic are significantly altered. Indeed, when A = 0,
we have vTwec(Ar) 4 vec(Ass) ~ N(0,9), say. Thus we have: det(vTAr) 4 det(As), or

equivalently

T2 detAr % det(As). (2.5)

When n > 2 the asymptotic behavior differs from the standard behavior, since:
i) the speed of convergence is 1/(T"/?) instead of 1/+/T, that is larger;
ii) the limiting distribution is not Gaussian, but is the transformation of a multivariate Gaussian

distribution by the determinant transform.
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A similar analysis can be done for the test statistic {—CT. By noting that cof(\/T/lT) =
T(=D/2cof(Ar), we see that & 4 £(As), where

det(Ax)
[veclcof (Aoo)]'Quec[cof (Aw)]/2

§(As) = (2.6)

The distributions of det(Ay) and &(A~) are complicated, but feature invariance properties

with respect to linear transformations of matrix A, (see Appendix 2).

Proposition 1: For any (n X n) invertible matrices P, Q, we have:

i) det(PAxQ) = det(P)det(Ax )det(Q);

il) (P A P") = €(Aco).

The degenerate case considered in this section does not belong to the cases examined in Andrews
(2001), in which some parameters are not identifiable under the null. In our framework the matrix
A is always identifiable. This explains why the asymptotic distribution of the Wald statistic differs
from the distribution derived by Andrews (2001).

This degenerate case cannot be disregarded or circumvented 2since in practice the hypothesis
A=0 can have very appealing interpretations. For instance, this hypothesis is to be considered for
determining the autoregressive order of a multivariate ARCH model 2. Also, in the application
to risk premium, the constraint A=0 characterizes the hypothesis of nonpredictability of asset

returns.

2.4 Consequences for test results

The multiplicity of limiting distributions of the Wald test statistic under the null hypothesis re-
quires a careful analysis of type I error, since the asymptotic similarity on the boundary condition
is violated [see Hansen (2003)]. For instance, let us consider the practice of rejecting the null
hypothesis if the Wald statistic éT is sufficiently large in absolute value. The condition on the

(asymptotic) type I error is:

supp, lim Pliér| > ] =a

= Sup[supA:.detA=o0 Ao lim P(|éT| > ¢), supa—op lim P(|éT| >c)] =«
T—o00 T—o0

2For example, by introducing null hypotheses indexed by the number T of observations, such as Ho, 7 : [detA =
0,||A]| > h(T)] , where h(T) is strictly positive and tends to zero at an appropriate rate, when T tends to infinity.
Such a methodology is followed in the test of switching regimes, for the parameter representing the unknown
switching date [Andrews (1993)].

3See Andrews (2001), Francq, Zakoian (2006) for tests concerning the orders of univariate GARCH processes.
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= sup[(P(X] > ), P(IE(4x)| > )] = & (where X ~ N(0,1))

= cla) = Maz[® (1 - %),Q(a,ﬂ)], (2.7)

where @ is the cdf of the standard normal, and Q(a, ) the quantile computed by:

Pllg(As)] > Q(a, V)] = a, (2.8)

where vec(A) ~ N(0,Q).

Despite that function @) has a complicated expression (see Section 2.5), the value Q(«, ) is
easily approximated by Monte-Carlo, that is, by the corresponding sample quantile computed from
simulated values £(A2.),s = 1,...,.S, where vec(A43,)),s = 1,...5, are independently drawn in the

Gaussian distribution N (0, Q7).

2.5 Is an adjustement necessary in the symmetric (2,2) case?

As mentioned in the introduction, we are especially interested in (2,2) symmetric matrices
Ap = ar IzT with corresponding limits A, = (oo boo

br ér b Co
restrict the choice of  while searching for the possible distribution of £(A ) [see Appendix 3].

>. By Proposition 1, we can

Proposition 2: Up to a transformation A,, — PA, P', we can assume that

y Goo 1 0 €p?
Q=Var| b = 0 % 0 ,
Coo ep? 0 1

where parameters p and 7y are nonnegative, p < 1, and € is equal to +1 or -1, according to the sign
of the correlation between a., and cs.

Such a Gaussian random matrix can be easily simulated by writing

o = /1 —p2X + €pF,, coo = /1 — p?Y + pF, by =72, (2.9)
where X,Y, Z, F' are iid standard normals.
The Wald test statistic is:

UooCoo — b2

g(Aoo) = =
\/(Coo, —2boo; Ao ) A(Coos —2boo ;s Aoo)!

ocotoo T b2
_ GooC £ _ (2.10)
V2 + a2 + 26p2Cooloo + 4b2 2
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We provide in Table 1 the upper quantiles at 10%, 5% and 1% of the variable |{(As)| for
different values of parameters p,y and € = +/ — 1. These quantiles are computed by Monte-Carlo
with 5000 replications. They can be directly compared to the critical values 1.64, 1.96, 2.57 of
the standard normal distribution, which corresponds to the case when detA = 0 with A # 0. We
observe that these values are systematically smaller than their Gaussian counterparts. This implies

that the standard Wald test does not need to be corrected for the degeneracy at A=0.

3 Constrained Estimation of A

3.1 The Example of BEKK model

To ensure the positivity of the volatility H; = Vi(ry1), the multivariate GARCH literature (Engle,

Kroner (1995)) proposed the following constrained specification 4:

p q
H, =Cy+ Z Mth,jM]{ + Z Nkrt,kré_kN,'g, say,
j=1 k=1

where M;, N, Cop are (n,n) matrices and Cy >> 0. Accordingly, the volatility of asset i is:

p q
! ! !
hiit = co,ii + E M;jHyjM;j; + E Nixre—xry_ 1 Npss
j=1 k=1

where M;; (vesp. Ny) is the i'" row of M; (resp. Ni). A component of the first sum on the

right-hand side is of the form:

M;HM! = Tr(M;HM!) = Tr(M!M;H) = Tr(A;H), say,

where A; = MM, is of rank less or equal to 1.

Under a BEKK specification, the estimation of matrix A; has to be performed under constraints.
The usual practice consists in optimizing a quasi-likelihood function with respect to parameters M
(and N) [see e.g. Engle, Kroner (1995), Comte, Lieberman (2003)]. Let us consider the bidimen-

2

. m mims
sional case, A = ! 2
mims M3

two difficulties arise:

) . Due to a lack of identifiability of parameter M the following

i) First, there is a problem of global identifiability since the same matrix A is obtained for M

and -M. To solve this problem, it is common to use the following change of parameters:

4For ease of exposition, we have introduced only 1 positive component by lag.
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Azt (i ety ) =a( ) 8, s, (3.1)

m2/m1 (mg/m1)2

where o = m?, 3 = ma/m; (whenever m; # 0, or equivalently o # 0).

ii) Second, there is a problem of local identifiability at A = 0. The reason is that the Jacobian

OvechA 27)72;1 n(z)
=5V = 2 1
Olma,mo)’ 0 2ms

is of rank 2, except when A = 0.

The asymptotic theory for multivariate BEKK models doesn’t hold for estimation of parameters
a and 8 defined in (3.1), because it assumes the identifiability of parameter M (see Assumption
A4 in Comte, Lieberman (2003)). To overcome this difficulty Engle, Kroner (1995) introduce the
identifiability condition m; > 0 (Proposition 2.1). This condition eliminates both the global and
local identifiability problems.

In the next section, we derive the correct asymptotic distributions of the minimum distance
estimators of a and 3 based on a consistent, asymptotically normal estimator of A. For the appli-
cation to BEKK model, we assume that the quasi-maximum likelihood estimator is asymptotically
normal. This requires some additional assumptions for the BEKK model, such as the presence of
at least one non-zero ARCH effect [Ny; # 0 for at least one index k] to avoid another degeneracy

pointed out in Andrews (2001).

3.2 The constrained estimator

Let us now assume that matrix A is symmetric and of reduced rank. Then we can write A =

Q < ; > (1,3), where a and 3 are unconstrained °.

The constrained estimator of A based on Ay is the solution of the following minimization:

aT —
(&, Br) = argming g(ar — a,by — aB,ér —af®)Q' | br—apf | . (3.2)
éT — OABQ

The objective function is defined for all values of parameters «, 5. However, the stochastic coeffi-
cients involved in the objective function cannot be normalized uniformly with respect to the true
matrix A. Assumption 3 in Andrews (1999), p. 1349, is not satisfied and new asymptotic results

need to be derived.

5We do not assume a priori that A is positive semi-definite.
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The objective function can be concentrated with respect to a. The solution in « for a given 3

is:

1 1 1
a(fB) =< UechAT, B >/ < B8 , B8 >,
B2 B2 B2

where <, > denotes the inner product associated with Q;l.

The concentrated objective function is:

1 1 1
Up(B) =< vechAp,vechAr > —(< vechAr, ( B ) >)?/ < ( B ) , ( B ) > . (3.3)

Appendix 4 shows that this solution is finite.

The first-order condition is:

0 1 1 1 0 1
< vechAr, 1 >< B , B8 > — < vechAr, B8 >< 1 , B8 >=0.
26 B B B 26 B

The solution is a root of a polynomial of degree 5.

3.3 Asymptotic distribution of the constrained estimator

When A is not equal to zero (i.e. if @ # 0), the standard asymptotic theory holds and we have:

VT [( ar ) - ( y )} 4 N0, (I BRI, B)) ],

Br
1 g p
0 a 2a8 )°
When A=0, then the Jacobian has rank 1, and the standard asymptotic theory is no longer

where the Jacobian matrix is J(a, 8) = (

valid. Let us now consider this case. It follows from (3.4) that 37 is a solution of

1 1 1
Maxg <vechflT,(,3)>2/<(,3),(ﬂ)>
B 3 3

1 1 1
— Mawg<vech(\/TflT),(ﬂ)>2/<(,3),(,3)>.
B B? B?

It follows that BT tends to a limit S, which is a solution of the optimization:
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1 1 1
Mazs <vech(Ax), | B8 | >*/<| B |,| B |>. (3.5)
5 B B
Similarly, we note that:
\/TdT = \/TCK(BT)
1 1 1
= <wvech(NTAr),| Br | >/<| Br |,| Br | >
T T T
tends to a limit
1 1 1
Qo =< vech(Ax), | P | >/ < | Bo |,| B | >. (3.6)
% % %

Proposition 3 summarizes the above discussion.

Proposition 3

If A=0, then (\/TdT,BT) 4 (Qooy Boo), Where (o, Sxo) is a complicated nonlinear transfor-
mation of the Gaussian vector, derived from (3.5),(3.6).
Note that parameter § is not identifiable when A=0. Nevertheless its estimator BT admits a
limiting distribution.

The asymptotic limiting distributions of test statistics for a and 8 are non-standard too. For

instance, the t-statistic for the test of significance of parameter « is:

777&“ = ‘/T@T/&Q,T’

where 64,7 is the square root of the first diagonal element of the matrix [J(&r, BT)Q}l J(ér, Br)] L.

If A # 0, this statistic tends in distribution to a standard normal. If A=0, statistic fr tends to:

1
N% =<vech(Ax), | B | > /00,00, (3.7)
B

where 04,00 is the square root of the first diagonal element of the random matrix Yoo = [J (0, ﬂoo)()_l J(oo, Boo)'] L.

Similarly, the t-statistic for the test of significance of parameter 3,

ity = VThr/és1
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tends to

% = Boo/ 95,00, (3.8)
where 03, is the square root of the second diagonal element of X.
Table 2 presents the quantiles at 10%, 5%, 1% of the statistics [n%| and |n2,| , respectively,
for Gaussian matrices already considered in Section 2. These quantiles have been derived by
simulations with 5000 replications.

The quantiles associated with the t-statistic for a are less sensitive to parameters p and ~ than
the quantiles associated with the t-statistics for 3. Moreover both of them are much more sensitive
to parameter 7. They differ significantly from the Gaussian quantiles 1.64, 1.96, 2.57, especially
for parameter £.

Figure 1 shows the asymptotic distribution of S, for p = 0,7y =1. For p = 0,7 = 1, f is the
solution of Mazs(aeo + b + coo8?)? /(1 + B2 + 8*), where au, boo, Coo are independent standard

normal. Since

ﬂoo(_aoo;_boo;_coo) = /Boo(aoo;booacoo)a
Boo(combooaaoo) = l/ﬁoo(aoo:booacoo)a

the distribution of S, is symmetric and invariant with respect to transformation foo — 1/fc-
This explains the shape of the distribution displayed in Figure 1, with a mode at 0 and very heavy

tails.

[Insert Figure 1: Distribution of o]

4 Test for positivity

Let us now focus on the test for positivity of the symmetric matrix A. This test depends on the
maintained hypothesis, that is either ” A unconstrained”, or ”A of reduced rank”. The two cases

are discussed below.

4.1 A unconstrained

Usually the null hypothesis is written as Hy : {a > 0,ac — b*> > 0}, and the test of inequality

restrictions is performed along the lines developped ¢ by [ Gourieroux, Holly, Monfort (1980),
6

see e.g. example iv) in Andrews, (1996), p. 705.
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(1982), Kodde, Palm (1986), Gourieroux, Monfort (1989), Wolak (1991)]. However, due to the
degeneracy problem, this standard technique cannot be applied. The reason is that it requires the
Jacobian of the transformations defining the constraints, that is, (a,b,c) — (a,ac — b?) be of full
rank on the boundaries of the null hypothesis. However, for A=0, the Jacobian < i —02b 2 )
is of reduced rank.

In other words, the degeneracy problem can be explained as follows. The positivity condition
involves three restrictions and the null hypothesis should be written as Hy : {a > 0,¢ > 0,ac—b* >

0}. If either a (resp. c) is strictly positive, we deduce from ac—b* > 0 that ¢ (resp a) is nonnegative.

Thus, one of the two first inequalities seems to be redundant. In fact, this is not the case. For
0 0

instance, the restrictions a > 0,ac — b? > 0 are satisfied for A = ( 0 —1

), which is not positive
semi-definite.
Let us now consider the asymptotic properties of the asymptotic likelihood ratio test. The

log-likelihood function of the (asymptotic) unconstrained model is :

Ly(A) =T[—log2m — %log detQr — %Uech(fi;p - A)'Q}lvech(AT — A)], (4.1)

where vech denotes the vec-half operator. The likelihood ratio statistic for the positivity hypothesis

is:

65 = Q(MGI'ALT(A) - MG$A;A>>0LT(A))

Mina.assoTvech(Ar — A)' QO vech(Ar — A). (4.2)

The estimator of matrix A constrained by the positivity condition can take three different expres-
sions:

i) When Ap >> 0, it is equal to Ar .

ii) The solution of the minimization (4.2) can be a positive semi-definite matrix of rank 1.

iii) The solution of the minimization can be 0.

Under standard regularity conditions, the maximal value of the type I error under the null
is attained at A=0, and is computed from a mixture of chi-square distributions, with weights
corresponding to the probabilities of the three regimes i), ii), iii) computed under A=0.

However, as in previous sections, identification problems arise for A=0. Let us consider the
asymptotic behavior of the likelihood ratio statistic for A=0. Since the set of positive semi-definite

matrices is a positive cone, we get:
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¢k Mina.assoTvech(Ar — A)' Q7 vech(Ar — A)

ﬂ
Il

= MinA;A>>gvech(\/TAT — A)'Q}lvech(ﬁAT —A)

4 8 = Minaassovech(As — A)'Q tvech(As — A). (4.3)

Thus, (4.3) defines an asymptotic optimization problem under A=0. The regimes are determined
by the possible values of the objective function:

Value in regime i) : £L.F = 0;

Value in regime ii) : 2P = vech(As — A%)'Q 'vech(A — AY),

where vech(A2) = (Qoo, Qoo Boos Moo B%);

Value in regime iii) : €38 = vech(A)'Q Tvech(As).

The asymptotic probabilities of these regimes are denoted by 7! , 72 , 72

(ool [oeR) (ool

Let us now consider the type I error. We get

SUPA>>0 Tll_I}éo P[f; > c] = sup[supa>>o0,4+0 Tll_I}éo P[f; > C];PA:O[&}; > c]].

From the standard asymptotic theory for testing inequality constraints [see e.g. Gourieroux, Holly,
Monfort (1980), Gourieroux, Monfort (1989), Wolak (1991)], it follows that the first component
SUPA>>0,420 imT_s o P[EX > ¢] is bounded from above by the survival function corresponding to

a mixture of chi-square 7:

T (0) + w2 X2 (2) + w3 (3).

This survival function has to be compared with the survival function of ¢! under A=0. This

survival function is of the type:

T2 X7 (0) + 72 Qoo + T X (3),

where Q. denotes the asymptotic distribution of ¢%F. As in the previous sections, the limiting

distribution @@, and the probabilities of the regimes can be easily computed by simulations.

"Under regime ii), the standard theory implies a mixture of x2(1) and x2(2), which is bounded from above by a
2
x°(2).
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4.2 A of reduced rank

Section 3 considered the estimation of A when the rank of matrix A is less or equal to 1. In this
parametric framework, the positivity hypothesis can be written as Hp : (o > 0). It is usually tested
by a one-sided test based on the t-statistic %. As seen in Section 3, the asymptotic distribution
of this statistic is standard normal, except when o = 0 ( that is A=0). We provide in Table 3 the
one-sided critical value, that is the lower quantile of n% at 1%, 5%, 10%, derived by simulation

with 5000 replications.

5 Finite Sample Properties

To study the finite sample properties of the standard statistics, we generate iid Gaussian returns
(r1,¢,72,¢)", that are IIN(0,Id). The number of observations is T=50, 100, 200. Then, we consider
the following regressions:

Regression 1: 71 p =d+arf ;_y +20r ;1721 +0rd g + v

Regression 2: 7§, =d+arf;_; +2br1 s 1r21 +ord, g +vp

The first regression is a model with bivariate risk premium, while the second regression considers
the problem of volatility transmission.
For each regression, we provide the finite sample distributions of éT, N, ﬁg, where the Wald statis-
tics are derived from the OLS estimators of a,b,c with the OLS estimated variance-covariance
matrix Qp. The distributions of {—CT are displayed in Figures 2a-2b for the two regressions. We
observe fat tails, and different limiting distributions for the two regressions. Indeed, the limiting

OLS covariance matrices are different for the two regressions (see Section 2.5).

[Insert Figures 2a, 2b : Finite sample distribution of éT]

Let us now consider the finite sample distributions of the t-ratios for a and . All distributions
feature fat tails due to the stochastic variance in the denominator of the t-ratio.

[Insert Figures 3a, 3b : Finite sample distribution of 7]

[Insert Figures 4a, 4b : Finite sample distribution of ﬁg]

6 Concluding Remarks

The paper derives the correct limiting distributions of standard estimators and test statistics for the

analysis of the effect of volatilities and covolatilities on expected returns and future volatilities. The
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difficulties are due to a lack of identifiability and to the non-uniform convergence of the objective
function, when these effects vanish. Similar problems arise when the second-order causality is
examined. Indeed, the null hypotheses of unidirectional second-order causality involve inequality
restrictions with identifiability problems of the type considered in this paper (see Gourieroux,
Jasiak (2006), Gourieroux (2006), for the definition of causality hypotheses in terms of parameter

restrictions).
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Appendix 1
Positivity condition

Let us consider a linear form defined on symmetric positive semi-definite (2,2) matrices:

g = ( o 012 > — h(E) = aoy1 + 2bo1z + coas.
012 022

This linear form can be equivalently written as:

h(Z) = Tr[AS],

z IC) > and Tr is the trace operator, which computes the sum of diagonal elements

of a square matrix.

where A = (

Lemma 1: The linear form takes nonnegative values for any positive semi-definite matrix 3,

if and only if, matrix A is positive semi-definite.

Proof
Since the set of symmetric positive semi-definite matrices is a positive convex cone, it is equiv-
alent to check the positivity condition on the boundary of the set. This boundary corresponds to

the non invertible ¥ matrices. These matrices can be written as

=(5)en=(a 5).

We get

(%) = aa® + 2baf + cB? > 0, Va,p.

Let us assume a # 0. The condition becomes:

a+2b(B/a) +c(B/a)* >0, Ya,B,

which is equivalent to b?> — ac < 0 (the discriminant of the polynomial of degree 2 is nonpositive),
and a > 0.

By considering the other case a = 0, we see that ¢ > 0.

The set of conditions: a > 0,c¢ > 0,ac — b> > 0 is exactly the set of conditions for positive

semi-definiteness of matrix A. QED
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For dimension n larger that 2, it is known that the linear form ¥ — Tr(AX) takes nonnegative
values for any positive semi-definite matrix ¥, when A is symmetric positive semi-definite. However,
this condition is no longer necessary.

From the proof of Lemma 1, the positivity semi-definiteness condition on A is also required
if the linear form has to be nonnegative for any degenerate positive matrix ¥. This is important
in ARCH modeling where the realized volatility matrix is generally approximated by the square
returns ¥; = < rlrjf% 7“17%7;% >, that has rank 1. Thus, it is not necessary for our problem to
average square returns on a given window to be sure that ¥; is invertible (as suggested, for instance,

in Tse, Tsui (2002)).

Appendix 2
Proof of Proposition 1

Lemma 2: If P and Q are (n,n) invertible matrices, we get:

cof (PAQ) = det(P)det(Q)Q *cof(A)P~1.

Proof
From the identity Acof(A) = det(A)Id, it follows that

(PAQ)Q 'cof(A)Ptdet(P)det(Q) = det(A)det(P)det(Q)Id = det(PAQ)Id.

The result follows.

QED

Lemma 3: There exists a (n,n) permutation matrix A such that vec(A') = Avec(A). This

matrix satisfies A = A’ = A2,

Lemma 4: i) vec(PA) = diag(P)vec(A), where diag(P) denotes the bloc-diagonal matrix,
with diagonal block P.

ii) vec(AQ) = Adiag(Q")Avec(A).

iii) vec(PAQ) = diag(P)Adiag(Q") Avec(A).

Proof
i) We have
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PA = P(ai,...,a,) (where a; denotes the " column ofA)
= (Pay,..., Pay,).
Pa1
Thus, vec(PA) = = diag(P)vecA.
Pa,
ii) We have
vec(AQ) = Avec[(AQ)'] (from Lemma 3)
= Avec(Q'A)

= Adiag(Q')vec(A") (from part 7))

= Adiag(Q")AvecA (from Lemma 3).

iii) This is a direct consequence of parts i) and ii).

QED

Let us now consider the transformation:

As — AL = PALQ,

where P and Q are deterministic (n,n) invertible matrices. We have:

vec(AL) = diag(P)Adiag(Q")Avec(As) (from Lemma2),
QO = Var[vec(AL)] = diag(P)Adiag(Q")AQAdiag(Q)Adiag(P'),
det(AL) = det(P)det(Q)det(Ax),

cof(A%) = det(P)det(Q)Q 'cof(As)P 7,

vec[cof (A%))] = det(P)det(Q)diag(Q~")Adiag[(P")~"Avec[cof (Au)]-

If detP det@) > 0, we deduce that:

. det(A%) det(Ax)
A = = )
§(4) Vwvec[Cof (A% Q*vec[Cof (A%)] B
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where
By = wec[cof(As)] Adiag[(P)™'|Adiag[(Q")]diagPAdiag(Q")AQAdiag(Q)Adiag(P')

diag(Q ") Adiag[(P") ] Avec[cof (As)].

It follows directly that, if Q = P’, we have

detP detQ = (detP)> > 0,
and Be, = vec[cof (Ao )] Quec|cof(As)]- The result follows.

Lemma 5: For any (n,n) invertible matrix P, we have {(PAxP) = {(A).

Appendix 3

Proof of Proposition 2

i) Let us consider a matrix P = A0 . We get:
0 n

v aeA? booAp
PALP = ( b o)

Thus, it is always possible to standardize aoo and co to get V(o) = V(cs) = 1.

ii) Let us now prove that we can find a linear transformation in order to have
Cov(Goo, boo) = Cov(Coo, boo) = 0.

For P = < g, (f >, the matrix A* = PAP' is such that

ar, = G +2boa+ Coo?,
b:o = axf+ (1 + aﬁ)boo + Coo ¥,
o = oo 4 2000 + Coo-

The condition Cov(b’,, ¢k, ) = 0 implies

(o eRide ]

_ Cov(asf + beo, a0 f? + 2053 + o)
B Cov(booﬁ + Coo:aooﬁ2 +2bs 3 + coo) -

20
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By substituting this expression for « in the condition Cov(a?,,b% ) = 0, we get a polynomial in

of degree 5 (almost surely). This polynomial has at least one real root, which needs to be chosen

in order to obtain zero covariances.

Appendix 4
The solution in 3 is finite

When f tends to infinity, the quantity

1 1 1
pr(B) =<wvechAr,| B |>2/<| B |.| B |>
B? B B

tends to é%. Moreover, the condition ur(8) > ¢ is equivalent to:

1 1 1
< UechfiT, B >? @2 < B8 , B >> 0.
B B B

It is satisfied for a finite beta value, since the left-hand side of the inequality is a polynomial of

degree 3.
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Table 1: Critical Values of the Wald Test Statistic for Positive and Negative e

p y € Positive € Negative

10 5 1 10 5 1
0.0 05| 0945 | 1.092 | 1.428 | 0.903 | 1.074 | 1.399
0.0 | 1.0 | 0.989 | 1.141 | 1.472 | 0.922 | 1.092 | 1.491
00| 15| 0935 | 1.074 | 1.359 | 0.898 | 1.048 | 1.423
00| 20| 089 | 1.044 | 1.336 | 0.871 | 1.014 | 1.337
0.1 0.5 0.942 | 1.081 | 1.412 | 0.930 | 1.064 | 1.393
0.1 | 1.0| 0.980 | 1.135 | 1.465 | 0.927 | 1.096 | 1.457
0.1 15| 0936 | 1.083 | 1.356 | 0.894 | 1.046 | 1.424
0.1 2.0 0.894 | 1.046 | 1.318 | 0.869 | 1.015 | 1.326
0.2 0.5 0.929 | 1.098 | 1.411 | 0.941 | 1.066 | 1.384
0.2 1.0 0975 | 1.125 | 1.420 | 0.946 | 1.089 | 1.480
0.2 |15 0930 | 1.076 | 1.335 | 0.905 | 1.037 | 1.416
0.2 20| 0.890 | 1.046 | 1.309 | 0.868 | 1.016 | 1.331
0.3 05| 0928 | 1.054 | 1.391 | 0.930 | 1.074 | 1.361
0.3 1.0 0955 | 1.119 | 1.404 | 0.959 | 1.102 | 1.470
03] 15| 0923 | 1.064 | 1.306 | 0.919 | 1.044 | 1.396
0.3 ]20]| 0.896 | 1.038 | 1.294 | 0.876 | 1.002 | 1.336
04105 0915 | 1.062 | 1.407 | 0.926 | 1.079 | 1.323
0.4 ]1.0| 0939 | 1.104 | 1.380 | 0.970 | 1.114 | 1.441
04| 15| 0904 | 1.063 | 1.270 | 0.921 | 1.052 | 1.391
0.4 ] 2.0 0.889 | 1.026 | 1.287 | 0.878 | 1.015 | 1.340
0.5 0.5 | 0910 | 1.030 | 1.367 | 0.927 | 1.075 | 1.354
0.5 1.0 0930 | 1.075 | 1.339 | 0.991 | 1.125 | 1.437
0.5 15| 0.898 | 1.049 | 1.272 | 0.937 | 1.058 | 1.380
0.5 20| 0.866 | 1.027 | 1.268 | 0.880 | 1.017 | 1.340
06| 05| 0.899 | 1.047 | 1.337 | 0.934 | 1.095 | 1.360
0.6 | 1.0 | 0.923 | 1.058 | 1.300 | 1.008 | 1.147 | 1.440
0.6 | 1.5 | 0.889 | 1.042 | 1.259 | 0.951 | 1.082 | 1.358
06| 20| 0.858 | 1.018 | 1.260 | 0.888 | 1.038 | 1.329
0.7 05| 0878 | 1.052 | 1.281 | 0.936 | 1.108 | 1.353
0.7 ] 1.0 | 0.885 | 1.020 | 1.276 | 1.019 | 1.168 | 1.414
0.7 15| 0.857 | 1.028 | 1.262 | 0.965 | 1.106 | 1.377
0.7 20| 0.850 | 1.005 | 1.263 | 0.906 | 1.057 | 1.318
0.8 105 | 0866 | 1.041 | 1.255 | 0.939 | 1.101 | 1.372
0.8 ] 1.0 | 0.859 | 1.008 | 1.228 | 1.034 | 1.196 | 1.424
0.8 | 1.5 | 0.840 | 1.020 | 1.268 | 0.986 | 1.121 | 1.387
0.8 1021 0.833 | 0996 | 1.265 | 0.923 | 1.072 | 1.333
0905 | 0.841 | 0970 | 1.238 | 0.941 | 1.094 | 1.389
0.9 | 1.0 | 0.8433 | 0.992 | 1.249 | 1.049 | 1.189 | 1.515
09|15 | 0.837 | 0.995 | 1.268 | 0.999 | 1.155 | 1.415
09120 0833 | 0995 | 1.265 | 0.938 | 1.072 | 1.327
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Table 2: Upper Quantiles for the Student Statistic for @ and 8

p 7| 1a(10%) | 7a(5%) | 1a(1%) | 95(10%) | 15(5%) | ns(1%)
0.000 | 0.500 1.523 1.880 2.535 0.997 1.175 1.587
0.000 | 1.000 1.621 1.963 2.614 1.258 1.500 2.069
0.000 | 1.500 1.656 1.979 2.625 1.318 1.610 2.221
0.000 | 2.000 1.657 1.973 2.611 1.331 1.630 2.276
0.100 | 0.500 1.535 1.866 2.533 1.005 1.183 1.604
0.100 | 1.000 1.625 1.965 2.593 1.270 1.527 2.064
0.100 | 1.500 1.650 1.971 2.607 1.327 1.608 2.235
0.100 | 2.000 1.658 1.966 2.609 1.333 1.635 2.273
0.200 | 0.500 1.529 1.857 2.574 1.021 1.202 1.639
0.200 | 1.000 1.631 1.965 2.634 1.300 1.561 2.080
0.200 | 1.500 1.645 1.982 2.635 1.374 1.666 2.247
0.200 | 2.000 1.651 1.974 2.621 1.380 1.691 2.315
0.300 | 0.500 1.538 1.855 2.562 1.054 1.237 1.668
0.300 | 1.000 1.640 1.959 2.614 1.335 1.622 2171
0.300 | 1.500 1.669 1.998 2.631 1.432 1.748 2.360
0.300 | 2.000 1.664 1.976 2.612 1.455 1.772 2.398
0.400 | 0.500 1.540 1.870 2.567 1.094 1.284 1.740
0.400 | 1.000 1.667 1.987 2.683 1.416 1.737 2.319
0.400 | 1.500 1.691 2.017 2.673 1.539 1.877 2477
0.400 | 2.000 1.691 2.010 2.668 1.566 1.939 2.599
0.500 | 0.500 1.555 1.866 2.548 1.159 1.359 1.843
0.500 | 1.000 1.670 1.994 2.648 1.537 1.869 2.522
0.500 | 1.500 1.710 2.025 2.697 1.681 2.047 2.732
0.500 | 2.000 1.710 2.020 2.673 1.722 2.135 2.882
0.600 | 0.500 1.551 1.851 2.505 1.248 1.469 1.998
0.600 | 1.000 1.697 2.006 2.669 1.727 2.085 2.869
0.600 | 1.500 1.743 2.043 2.721 1.920 2.300 3.131
0.600 | 2.000 1.724 2.017 2.687 1.982 2.426 3.290
0.700 | 0.500 1.565 1.901 2.503 1.392 1.641 2.254
0.700 | 1.000 1.714 2.032 2.691 1.974 2.374 3.297
0.700 | 1.500 1.741 2.065 2.728 2.252 2.701 3.682
0.700 | 2.000 1.723 2.054 2.688 2.350 2.855 3.793
0.800 | 0.500 1.573 1.885 2.516 1.639 1.947 2.670
0.800 | 1.000 1.726 2.037 2.660 2.444 2.935 4.053
0.800 | 1.500 1.737 2.074 2.694 2.827 3.359 4.622
0.800 | 2.000 1.730 2.054 2.700 2.956 3.600 4.834
0.900 | 0.500 1.607 1.904 2.556 2.281 2.697 3.666
0.900 | 1.000 1.729 2.049 2.668 3.524 4.200 9.655
0.900 | 1.500 1.731 2.028 2.694 4.044 4.843 6.567
0.900 | 2.000 1.739 2.008 2.645 4.291 5.152 6.917

23
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Table 3: Lower Quantiles for the Student Statistic for «

p Y 1a(1%) | 7a(5%) | 1a(10%)
0.000 | 0.500 | -2.250 | -1.510 | -1.103
0.000 | 1.000 | -2.283 | -1.606 | -1.248
0.000 | 1.500 | -2.298 | -1.615 | -1.263
0.000 | 2.000 | -2.312 | -1.636 | -1.264
0.100 | 0.500 | -2.263 | -1.518 | -1.109
0.100 | 1.000 | -2.313 | -1.608 | -1.239
0.100 | 1.500 | -2.312 | -1.642 | -1.264
0.100 | 2.000 | -2.327 | -1.639 | -1.266
0.200 | 0.500 | -2.248 | -1.520 | -1.122
0.200 | 1.000 | -2.314 | -1.622 | -1.234
0.200 | 1.500 | -2.334 | -1.635 | -1.265
0.200 | 2.000 | -2.327 | -1.627 | -1.262
0.300 | 0.500 | -2.230 | -1.528 | -1.146
0.300 | 1.000 | -2.267 | -1.630 | -1.260
0.300 | 1.500 | -2.296 | -1.652 | -1.279
0.300 | 2.000 | -2.326 | -1.654 | -1.281
0.400 | 0.500 | -2.225 | -1.534 | -1.159
0.400 | 1.000 | -2.290 | -1.648 | -1.279
0.400 | 1.500 | -2.331 | -1.686 | -1.290
0.400 | 2.000 | -2.317 | -1.679 | -1.300
0.500 | 0.500 | -2.231 | -1.540 | -1.157
0.500 | 1.000 | -2.309 | -1.663 | -1.281
0.500 | 1.500 | -2.394 | -1.691 | -1.301
0.500 | 2.000 | -2.344 | -1.698 | -1.308
0.600 | 0.500 | -2.203 | -1.525 | -1.170
0.600 | 1.000 | -2.352 | -1.681 | -1.285
0.600 | 1.500 | -2.416 | -1.727 | -1.317
0.600 | 2.000 | -2.391 | -1.722 | -1.316
0.700 | 0.500 | -2.218 | -1.567 | -1.215
0.700 | 1.000 | -2.461 | -1.711 | -1.316
0.700 | 1.500 | -2.506 | -1.757 | -1.335
0.700 | 2.000 | -2.468 | -1.744 | -1.320
0.800 | 0.500 | -2.241 | -1.576 | -1.238
0.800 | 1.000 | -2.435 | -1.737 | -1.331
0.800 | 1.500 | -2.510 | -1.755 | -1.360
0.800 | 2.000 | -2.413 | -1.747 | -1.342
0.900 | 0.500 | -2.265 | -1.614 | -1.242
0.900 | 1.000 | -2.423 | -1.736 | -1.365
0.900 | 1.500 | -2.427 | -1.734 | -1.331
0.900 | 2.000 | -2.377 | -1.752 | -1.317

24
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Figure 1: Distribution of beta_infinity
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Figure 2a: Finite Sample Distribution of xi_T, Regression 1
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Figure 2b: Finite Sample Distribution of xi_T, Regression 2
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Figure 3a: Finite Sample Distribution of eta(alpha) T, Reg.1
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Figure 3b: Finite Sample Distribution of eta(alpha) T, Reg.2
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Figure 4a: Finite Sample Distribution of eta(beta) T, Reg.1l
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Figure 4b: Finite Sample Distribution of eta(beta) T, Reg.2
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