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1 Introduction

The second pillar of Basel II regulation concerns the control of internal models used by banks to
measure and monitor the risk included in their asset portfolios. For a given portfolio with current
allocation at and a given prediction horizon h, the practice consists in estimating the distribution of
portfolio returns yt+h(at) for the period (t, t + h), and in deducing associated risk measures. These
measures can be quantiles of the portfolio returns distribution (the so-called Value-at-Risk or VaR),
other quantile based measures such as the expected shortfall (also called Tail-VaR, or conditional tail
expectation), or more generally a distortion risk measure (DRM) (see Wang, 1996). However, the
analysis of the return distribution of the current portfolio allocation can be insufficient. Indeed, it is
important to look if this allocation can be improved, or if a small change of portfolio allocation has
severe implications in terms of risk. In other words, we are interested in the ways the distribution of
yt+1(at) depends on allocation at.

In Section 2, we introduce nonparametric estimators of the sensitivity of the distortion risk mea-
sures with respect to the portfolio allocation, called delta-DRM, and derive their asymptotic properties.
Their finite sample properties are compared by a simulation study. In Section 3, we consider the port-
folio allocation, which minimizes a distortion risk measure under budget constraint and restriction on
another distortion risk measure. The framework includes the minimization of the VaR (or Tail-VaR)
under expected return restriction as well as the minimization of Tail-VaR under VaR restriction. Then,
we explain how to estimate the efficient portfolio allocation nonparametrically. The tests of efficiency
of a given portfolio allocation are developed in Section 4. We discuss alternative test procedures based
on a comparison of either risky allocations, or delta-DRM, or realized extended Sharpe (RES) perfor-
mances. An analysis of finite sample properties of the estimators of the efficient allocation and of the
extended Sharpe ratio is presented in Section 5. By considering Gaussian simulated returns, we have
also the possibility to compare the empirical estimators introduced in our paper with the standard
parametric estimators of the Gaussian framework. Section 6 concludes.

2 Sensitivity of distortion risk measures

In this section, we provide the expression of the sensitivity of distortion risk measures (or delta-
DRM), which, loosely speaking, is a weighted expectation of the VaR sensitivity [called delta-VaR in
the literature (see Garman, 1996)] with respect to the portfolio allocation. In the later part of this
section, we introduce nonparametric estimators of delta-DRM and derive their asymptotic properties.
For expository purpose, we drop the time index from the expression of returns and allocations in
the definition of delta-DRM. The time is reintroduced to index the observations when the estimation
problems are considered.

2.1 Expression of the delta-DRM

The DRMs are generally applied to portfolio loss (and profit) instead of profit (and loss). More
precisely, we consider the opposite of the portfolio return y(a) = −a′r, where a denotes the vector
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of allocations and r the d × 1 primitive asset returns. For convenience, we denote x = −r as the
primitive asset losses, and thus, y(a) = a′x. Throughout the paper, we use (X, Y ) for the random
variables and the lower cases for their realized values. A DRM for this portfolio is defined as:

Π(H, a ; F ) =
∫ 1

0
Q(1− u;a) dH(u), (2.1)

where F is the joint distribution of X, Q(·;a) is the quantile function of Y (a) = a′X, that is the
inverse of the cdf G(·;a) of the (opposite) portfolio return. H is the cumulative distribution function
of a positive measure, called distortion function (or Choquet capacity). As special cases, the VaR with
risk level p is obtained when H(u; p) = 1(u≥p) corresponds to a point mass at p, and the Tail-VaR
with risk level p is obtained when H(u; p) = (u/p)∧1 corresponds to the uniform distribution on [0, p].
In both examples above, the distortion function is parametrized by an additional parameter p and is
used to define a family Π(p;a, F ) of DRMs when p varies.

The delta-DRM provides the marginal risk contribution of a particular asset to the risk measure
of the portfolio, and can be written as:

∂Π
∂a

(H, a;F ) =
∂

∂a

∫ 1

0
Q(1− u;a)dH(u)

=
∫ 1

0

∂Q

∂a
(1− u;a)dH(u). (2.2)

The explicit expression of VaR sensitivity with respect to portfolio allocation a has been derived in
Gourieroux et al. (2000):

∂Q

∂a
(1− u;a) = E[X|a′X = Q(1− u;a)]. (2.3)

Thus, we get:
∂Π
∂a

(H, a;F ) =
∫ 1

0
E[X|a′X = Q(1− u;a)] dH(u). (2.4)

Let us now discuss some features of the delta-DRM with useful implications for portfolio analysis.
i) The delta-DRM is homogeneous of degree zero in a. Indeed, the DRM is homogeneous of degree
one, since we have a′ ∂Q

∂a (·;a) = E[a′X|a′X = Q(·;a)] = Q(·;a), which is the Euler characterization
of homogeneous function of degree one.
ii) The delta-DRM is a weighted expectation of delta-VaRs at all risk levels. For instance, the delta-
VaR(p) itself is a weighted expectation with weight equal to 1 at level p and equal to 0 otherwise. If
H is differentiable, the expression (2.4) implies that the weighting function is the distortion density
defined as ∂H(u)/∂u. As shown in the next subsection, this facilitates the estimation of the delta-
DRM once a delta-VaR estimator is available. Indeed, we can simply plug the delta-VaR estimator
within the expectation expression (2.4).
iii) The delta-DRM can be alternatively interpreted as the expectation of the product between the
distortion density and the primitive asset loss. More precisely, if function H is continuous and differ-
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entiable,1 we get the following expression (see Appendix B):

∂Π
∂a

(H, a;F ) = E


X

∂H
(
1−G(a′X;a)

)

∂u


 . (2.5)

The delta-DRM is equal to the expected co-movement between the primitive asset loss and the subjec-
tive perception, which is represented by the weights assigned to the losses. Indeed, the risk contribution
of a particular asset is influenced jointly by the potential loss of the asset and how the risk measure is
defined. The delta-DRM associated with the identity distortion function is simply the expected loss
of the primitive asset.

2.2 Nonparametric estimators of the delta-DRM

We have seen in Section 2.1 that the delta-DRM can be written as a linear combination of delta-
VaRs. In this section, we introduce nonparametric estimators of the delta-DRM. A first nonparametric
estimator of the delta-DRM is obtained by substituting a kernel estimator of the delta-VaR into the
expression (2.4). An alternative estimator of the delta-DRM is deduced from expression (2.5), under
additional conditions on the distortion function.

2.2.1 Kernel estimator of the delta-DRM

Let us consider a sequence of observed (opposite) asset returns x1, . . . ,xT . The delta-VaR admits
the interpretation (2.3) as a conditional expectation. A kernel estimator of the delta-VaR is defined
as follows:

∂Q̃T

∂a
( · ;a) =

1
ThT

∑T
t=1 xt k

(
a′xt− bQT (·;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt− bQT (·;a)

hT

) , (2.6)

where Q̂T (u;a) = inf
{

y : 1
T

∑T
t=1 1(a′xt≤y) ≥ u

}
is the empirical quantile, k is a symmetric kernel

function such that
∫

k(u)d u = 1 and
∫

u k(u)d u = 0, and hT denotes the bandwidth. The estimator
(2.6) is a Nadaraya-Watson estimator of the regression function q → E[X|a′X = q] after substitution
of the theoretical quantile Q(·;a) by its sample counterpart (see e.g. Yatchew, 2003, Chapter 3, for
the definition and properties of the Nadaraya-Watson estimator).

The kernel estimator of the delta-DRM is defined as:

∂Π̃T

∂a
(H, a) =

∫ 1

0

∂Q̃T

∂a
(1− u;a) dH(u) =

∫ 1

0

1
ThT

∑T
t=1 xt k

(
a′xt− bQT (1−u;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt− bQT (1−u;a)

hT

) dH(u). (2.7)

Since the empirical quantile function is a stepwise function, the integral (2.7) can be replaced by a
1The result still holds, if the distortion function H is continuous and almost everywhere differentiable. For instance,

the distortion function associated with Tail-VaR is not differentiable when u = p, but the equality (2.5) is still valid
with the right derivative of H. However, the relation is not valid for the application to the delta-VaR, in which H is not
continuous.
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summation. We get the equivalent expression:

∂Π̃T

∂a
(H, a) =

T∑

i=1

∑T
t=1 xt k

(
a′xt−y∗i (a)

hT

)

∑T
t=1 k

(
a′xt−y∗i (a)

hT

)
[
H(1− i− 1

T
)−H(1− i

T
)
]

, (2.8)

where y∗1(a) < y∗2(a) < · · · < y∗T (a) is the order statistics of the (opposite) observed portfolio returns
associated with allocation a.

The expression (2.7) is valid for any distortion function H, implying that the kernel estimator can
be applied in the general framework, which includes delta-VaR as a special case. Although the rate
of convergence of the kernel estimator of delta-VaR is

√
ThT , the kernel estimator of a delta-DRM

will converge at rate
√

T due to its integral expression as shown in Section 2.3 (Similar results can be
found in Ait-Sahalia (1993) and Gagliardini and Gourieroux (2006)).

2.2.2 Empirical estimator of delta-DRM

Alternatively, if the distortion function H is continuous and differentiable, the delta-DRM can be
estimated by the sample analog of expression (2.5). The empirical estimator of the delta-DRM is
defined as the sample average of the products between the observed (opposite) primitive asset returns
and distortion densities,2

∂Π̂T

∂a
(H;a) =

∂Π
∂a

(H, a, F̂T ) =
1
T

T∑

t=1

xt

∂H
(
1− ĜT (a′xt;a)

)

∂u
, (2.9)

where ĜT (y;a) = 1
T

∑T
t=1 1(a′xt≤y) is the sample cdf of Y (a). This estimator is also equal to:

∂Π̂T

∂a
(H;a) =

1
T

T∑

t=1

x∗t
∂H

(
1− t/T

)

∂u
, (2.10)

where x∗t , t = 1, . . . , T , are the observations of (opposite) primitive asset returns reordered according to
the order statistics of (opposite) portfolio returns

(
y∗t (a)

)
.3 For instance, the estimator for delta-TVaR

can be calculated by:
∂T̂V aRT (p;a)

∂a
=

1
Tp

T∑

t=[T (1−p)]

x∗t ,

where [·] denotes integer part. The empirical estimator is easier to compute and will also converge at
the standard parametric rate

√
T .

2In some special cases (e.g. H(u; p) = up, for p < 1), the estimator can be unbounded since the empirical distortion
density goes to infinity when t = T . This problem can be solved by replacing T by T + 1 in the distortion density.

3This estimator can be seen as a L-statistics constructed on two dependent series xt and yt(a) (see e.g. Shorack and
Wellner, 1986, Chapter 19).
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2.3 Asymptotic properties of the delta-DRM estimators

The accuracy of the estimated risk measures and their sensitivities are often overlooked by prac-
titioners. However, this potential estimation error can put investors in a very risky position. This
issue has been categorized as the estimation risk in the risk management terminology of the Basle
Committee. In this section, we derive the asymptotic distributions of both nonparametric estimators
of the delta-DRM.

2.3.1 Asymptotic distributions of the estimators

The kernel estimator of the delta-DRM is defined as an integral of Nadaraya-Watson estimator of
the delta-VaR, which is known to be asymptotically Gaussian. The empirical estimator of the delta-
DRM is defined as a sample average. Thus, with i.i.d. observations xt, t = 1, . . . , T , the Central Limit
Theorem applies directly. Thus, both estimators will converge to Gaussian processes. These results
are summarized in the proposition below (see Appendices C.1–C.4).4

Proposition 1. For an i.i.d. sequence xt = (x1
t , . . . , x

d
t ), t = 1, . . . , T , following a joint distribution

F (X) = C
(
F 1(X1), . . . , F d(Xd)

)
with copula function C and marginal cdf F i(Xi), if H is differen-

tiable, we have:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a, F )

)

⇒
∫

Rd

{∫

R

∂

∂y

(
E[X|a′X = y]

)∇H(y;a)1a′x≤ydy

}
dK(

F 1(x1), . . . , F d(xd)
)

−
∫

Rd

{
x− E[X|a′X = a′x]

}
∇H(a′x;a) dK(

F 1(x1), . . . , F d(xd)
)
.

If H is twice differentiable, we have:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a, F )

)

⇒
∫

Rd

{∫

Rd

z
∂2H

(
1−G(a′z;a)

)

∂u2
1(a′x≤a′z)dF (z)

−
{

x− E[X|a′X = a′x]
}
∇H(a′x;a)

}
dK(

F 1(x1), . . . , F d(xd)
)
.

√
T

(
∂Π̂T

∂a
(H, a)− ∂Π

∂a
(H, a, F )

)

⇒
∫

Rd

{∫

Rd

−z
∂2H

(
1−G(a′z;a)

)

∂u2
1(a′x≤a′z)dF (z) + x∇H(a′x;a)

}
dK(

F 1(x1), . . . , F d(xd)
)
,

where ⇒ denotes the weak convergence of processes,5 ∇H(y;a) =
∂H

(
1−G(y;a)

)
∂u , and K is a multi-

4We assume that the distortion function is continuous and differentiable. The asymptotic variances associated with
the VaR and Tail-VaR are provided in Appendix C.5.

5The processes are indexed by allocation a. When the distortion function depends on some pessimism parameter,
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dimensional Brownian bridge on [0, 1]d.

The i.i.d. assumption is crucial for obtaining the proposition above. This assumption is implicitly
used in the historical simulation method suggested by Basel committee. On the other hand, a similar
result can be derived when xt is stationary, in which case, Central Limit Theorem for stationary
processes must be applied (see Gourieroux and Liu, 2006 Appendix A.3 for a brief discussion).

2.3.2 Estimation of the asymptotic variance

The variance-covariance matrices of both delta-DRM estimators corresponding to portfolio alloca-
tion a are given by (see Appendix C.5):

Ω(a,a) = lim
T→∞

V

[√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a, F )

)]
= V

[
A(a′X,H)− (

X − E[X|a′X]
)∇H(a′X;a)

]
,

Σ(a,a) = lim
T→∞

V

[√
T

(
∂Π̂T

∂a
(H, a)− ∂Π

∂a
(H, a)

)]
= V

[
X∇H(a′X;a)−A(a′X,H)

]
,

where,

A(y, H) =
∫

z1(y≤a′z)

∂2H
(
1−G(a′z;a)

)

∂u2
dF (z)

= E

[
X∗1(a′X∗≥y)

∂2H
(
1−G(a′X∗;a)

)

∂u2

]
,

and X∗ is independent of X with the same distribution. These variance-covariance matrices cannot
be ordered and none of the estimator of delta-DRM is better than the other one.

Estimators of the variance-covariance matrices can be derived as follows: let us define the pseudo-
observations of the components within the variance-covariance matrices as Ŝ1t = x∗t

∂H(1−t/T )
∂u ,

Ŝ2t =
[
x∗t − ∂ eQT (1−t/T ;a)

∂a

]
∂H(1−t/T )

∂u and Ŝ3t = 1
T

∑T
i=t x∗i

∂2H(1−i/T )
∂u2 . The variance-covariance ma-

trices can be consistently estimated by their pseudo sample counterparts:

Ω̂(a,a) =
1
T

T∑

t=1

(
Ŝ3t − Ŝ2t

)(
Ŝ3t − Ŝ2t

)′
− 1

T

T∑

t=1

(
Ŝ3t − Ŝ2t

) 1
T

T∑

t=1

(
Ŝ3t − Ŝ2t

)′
,

Σ̂(a,a) =
1
T

T∑

t=1

(
Ŝ1t − Ŝ3t

)(
Ŝ1t − Ŝ3t

)′
− 1

T

T∑

t=1

(
Ŝ1t − Ŝ3t

) 1
T

T∑

t=1

(
Ŝ1t − Ŝ3t

)′
, (2.11)

where x∗t is defined as before [see e.g. Genest et al. (1995) for related results and regularity conditions,
in the framework of copula estimation].

the results can be extended to processes doubly indexed by the allocation and the pessimism parameter (see Gourieroux
and Liu, 2006 for the analysis of sensitivity w.r.t. pessimism parameter).
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2.4 Finite sample properties of the estimators of the delta-DRM

The empirical estimator is less smooth than the kernel estimator with respect to allocation, es-
pecially if the distortion functions are discontinuous. Figure 1 illustrates this feature by considering
simulated portfolios including two primitive assets. The two series of (opposite) returns are simulated
from a bivariate Gaussian white noise. The covariance matrix is estimated from returns of the 1st
and 5th deciles (in term of capitalization) of NYSE equity portfolios provided by CRSP. We use 250
observations corresponding to year 2000. The allocation (a1) associated with asset 1 (resp. a2 = 1−a1

associated with asset 2) is chosen to vary from 0.01 to 0.99 and the delta-DRM is estimated by both
the kernel (solid lines) and empirical (dashed lines) approaches.6 We consider two risk measures, that
are the Tail-VaR (TVaR in short with H(u; p) = (u/p)∧ 1) and the Proportional Hazard risk measure
(PH in short with H(u; p) = up). TVaR is designed to measure the extreme losses (e.g. p = 0.05)
with weighting function:

∇H(a′X;a) =
1
p
1(

a′X≥Q(1−p;a)
),

which is not continuous in a. In the left graph of Figure 1, we observe that the kernel estimator (solid
line) of the delta-TVaR is much smoother than the empirical estimator (dashed line). In fact, the
empirical estimator is not appropriate for estimating the sensitivity associated with the Tail-VaR (see
also Scaillet, 2004). However, the right graph of Figure 1 shows that both estimators of the delta-PH
are sufficiently smooth. Indeed, the PH risk measure assigns weights, which are continuous functions
of a, at all loss levels.7

Let us now study the accuracy of both estimators in finite sample. We replicate 1000 times the
previous simulation and compute the associated simulated variances. The finite sample variances of
the kernel estimators (solid lines) and of the empirical estimators (dashed lines) for both the delta-
TVaR and delta-PH are provided in Figure 2. The finite sample accuracies of both estimators are of
similar magnitudes. More precisely, the variance of the empirical estimator of the delta-TVaR is up to
20% higher than that of the corresponding kernel estimator. When considering delta-PH, the kernel
estimator is less accurate, but the difference is only 5%.

3 Efficient portfolio

The mean-variance approach has been prevalent in portfolio management for the past decades
(see e.g. Markowitz, 1952). In this framework, efficient portfolios are constructed by minimizing the
variance while keeping a desired level of expected return and under a budget constraint. However, this
approach can be misleading if the return distributions deviate from Gaussian. Indeed, the variance
may not be a proper measure of risk. A few alternatives have been introduced to analyze the port-
folio decision based on DRMs, such as VaR

[
Basak and Shapiro (2001)

]
and TVaR

[
Lemus (1999),

Rockafellar and Uryasev (1999, 2000),Yamai and Yoshiba (2002)
]
. In a recent work, Gourieroux and

6Following Scaillet (2004), we choose the bandwidth parameter h = 0.5syT−1/5, where sy is the estimated standard
deviation of yt.

7The weighting function associated with PH is ∇H(a′X) = p
`
1−G(a′X; a)

´p−1
(see e.g. Gourieroux and Liu, 2006).

7



Monfort (2005) provide a complete analysis of expected utility based efficient portfolios, including the
estimation of efficient portfolios and tests for portfolio efficiency. Their approach corresponds to the
so-called direct approach of stochastic dominance. In this section, we revisit this issue of portfolio
choices for the dual approach of risk comparison based on DRM (see e.g. Wang and Young, 1998 for
a comparison of direct and dual approaches of stochastic dominance).

3.1 The efficiency frontier

i) The optimization problem

Let us consider a market with a risk-free asset and d primitive risky assets. Without loss of
generality, the risk-free rate is set equal to zero; the current prices of risky assets are set equal to
1; we consider an agent facing a one-period investment decision on the allocation a = [a1, ..., ad]′ of
his/her initial wealth W0. We impose no positivity restriction on the allocations, that is, short sales
are allowed. Let us denote by x = [x1, ..., xd]′ the vector of one-period (opposite) returns on the d risky
assets. Similar to the mean-variance problem, the agent can solve the following DRM-DRM problem:

min
a0, a

Π(H1, (a0,a), F0), s.t. Π(H0, (a0,a), F0) = Π∗0 and a0 +
d∑

i=1

ai = W0, (3.1)

where a0 is the allocation in the risk-free asset and Π∗0 is a predetermined value. This includes several
familiar optimization problems as special cases. For instance, by letting H0(u) = u and H1(u) = 1(u≥p)

(resp. H1(u) = (u/p) ∧ 1), we get the standard mean-VaR (resp. mean-TVaR) optimization problem.
By defining H1(u) = (u/p) ∧ 1 and H0(u) = 1(u≥p), we get the following optimization problem in the
VaR-TVaR space:

min
a0,a

TV aR(p), s.t. V aR(p) = Π∗0 and a0 +
d∑

i=1

ai = W0. (3.2)

The optimization problem (3.2) is coherent with the current regulation, in which the reserves are
invested in a risk-free asset and used to bind a VaR(5%) constraint. In this framework, the constraint
is an inequality constraint V aR(5%) ≤ Π∗0, which will be binding at the optimum.

Note also that convexity properties of the DRM with respect to portfolio allocation is useful to
ensure a unique solution to the DRM-DRM optimization problem and sufficient first-order conditions.
Such conditions are satisfied for the DRM when the distortion function is concave (see Denneberg,
1994).

Since a DRM is drift invariant,8 the solution of the DRM-DRM problem depends on W0 only by
means of the budget constraint. Thus, for the allocations in risky assets, the optimization is equivalent
to:

min
a

Π(H1,a, F0), s.t. Π(H0,a, F0) = Π0, (3.3)

where Π0 = Π∗0 −W0 and F0 is the joint distribution of excess returns.

8A function ρ is drift invariant if ρ(X + c) = ρ(X) + c, for any constant c.
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ii) The first-order conditions

Let us denote λ the Lagrange multiplier associated with the DRM constraint. The optimization
of the Lagrangian implies the following first-order conditions:

∂Π
∂a

(H1,a
∗, F0)− λ∗

∂Π
∂a

(H0,a
∗, F0) = 0, (3.4a)

Π(H0,a
∗, F0) = Π0, (3.4b)

whose solution a∗, λ∗ are the efficient portfolio and optimal Lagrange multiplier, respectively.9 Since
the DRM is homogeneous of degree one with respect to portfolio allocations, the system (3.4) implies:

(a∗)′
∂Π
∂a

(H1,a
∗, F0)− λ∗(a∗)′

∂Π
∂a

(H0,a
∗, F0) = 0

⇔ Π(H1,a
∗, F0)− λ∗Π(H0,a

∗, F0) = 0

⇔ λ∗ =
Π(H1,a

∗, F0)
Π(H0,a∗, F0)

=
Π(H1,a

∗, F0)
Π0

. (3.5)

iii) The two funds separation theorem

The efficient allocation is characterized by:

∂Π
∂a

(H1,a
∗, F0)− Π(H1,a

∗, F0)
Π0

∂Π
∂a

(H0,a
∗, F0) = 0, (3.6a)

Π(H0,a
∗, F0) = Π0. (3.6b)

The efficient allocation a∗ depends on the level Π0 of the DRM constraint. Since the DRM are
homogeneous function of degree one in the allocation, the equation (3.6a) is equivalent to:

∂Π
∂a

(H1,
a∗

Π0
, F0)−Π(H1,

a∗

Π0
, F0)

∂Π
∂a

(H0,
a∗

Π0
, F0) = 0.

Thus, the optimal allocation associated with level Π0 is Π0 times the optimal allocation associated
with level 1, and all efficient portfolios are proportional to a same portfolio when Π0 varies. This is
the well-known two-funds separation theorem (see e.g. Cass and Stiglitz, 1970, Ross, 1978), which is
extended here to DRM measures of risk. The two-funds separation theorem is clearly a consequence
of the homogeneity property. The efficiency frontier can be represented in the DRM-DRM space. The
drift invariance and homogeneity properties imply that the efficiency frontier is a half-line starting at
the point (W0,W0) corresponding to a full risk-free investment with a slope equal to λ∗.

iv) The optimization of the performance

The optimal Lagrange multiplier extends the standard notion of Sharpe ratio introduced in the
mean-variance framework (see Sharpe, 1966) to the case of DRM. For instance if the DRM defining
the constraint is the VaR(p) and the DRM to be optimized is TVaR(p), the Lagrange multiplier is
simply the amplifying factor considered in Gourieroux and Liu (2006). Moreover, the extended Sharpe

9The solutions a∗, λ∗ depend on H0, H1, Π0, F0. This dependence will be mentioned only when necessary.
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ratio:
λ(H0,H1,a, F0) =

Π(H1,a, F0)
Π(H0,a, F0)

(3.7)

is homogeneous of degree zero in the allocation. As a consequence the efficiency frontier can also be
derived by minimizing the extended Sharpe ratio. Thus, an efficient allocation will also satisfy the
first-order condition:

∂λ

∂a
(H0,H1,a

∗, F0) =
1

Π(H0,a∗, F0)

[
∂Π
∂a

(H1,a
∗, F0)− λ(H0,H1,a

∗, F0)
∂Π
∂a

(H0,a
∗, F0)

]
= 0. (3.8)

The solution a∗ of this first-order condition (3.8) is unique up to a multiplicative factor.
The solution becomes unique under the additional constraint Π(H0,a

∗, F0) = Π0, or if we consider
the modified first-order condition:

∂Π
∂a

(H1,a
∗, F0)− Π(H1,a

∗, F0)
Π0

∂Π
∂a

(H0,a
∗, F0) = 0. (3.9)

Indeed, by pre-multiplying (3.9) by (a∗)′ and applying the homogeneity property, we get:

Π(H1,a
∗, F0)− Π(H1,a

∗, F0)
Π0

Π(H0,a
∗, F0) = 0

⇔ Π(H0,a
∗, F0) = Π0.

Note that the theoretical results derived in Section 3.1 are also valid in a dynamic framework with
serially dependent returns, considering the conditional distribution instead of the unconditional one.

3.2 Empirical estimator of the efficient allocation

Nonparametric estimators of the optimal allocation a∗ and extended Sharpe ratio λ∗ can be defined
in two different ways according to the nonparametric estimator of the delta-DRM, which is used. For
expository purpose, we consider below the empirical estimator, but a similar analysis can be done with
the kernel estimator. The empirical estimators âT , λ̂T are solutions of the empirical counterparts of
first-order conditions (3.4):





∂Π
∂a (H1, âT , F̂T )− λ̂T

∂Π
∂a (H0, âT , F̂T ) = 0,

Π(H0, âT , F̂T ) = Π0.
(3.10)

The system above provides jointly an estimator of the efficient allocation and of the extended Sharpe
performance. This system is equivalent to:





∂Π
∂a (H1, âT , F̂T )− Π(H1,baT , bFT )

Π0

∂Π
∂a (H0, âT , F̂T ) = 0,

λ̂T = Π(H1,baT , bFT )
Π0

,

(3.11)

which corresponds to the optimization of the extended Sharpe performance.
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3.3 Asymptotic properties of the estimated efficient allocation and extended Sharpe

performance

The estimators F̂T , âT , and λ̂T converge to their theoretical counterparts, F0, a∗ and λ∗, when
T →∞. Thus, the first-order conditions (3.11) can be expanded when F̂T , âT and λ̂T are close to F0,
a∗, λ∗, respectively. The expansions are performed in Appendix D and summarized below.

Proposition 2.

i)
√

T (âT − a∗) =
[
− ∂2Π

∂a∂a′
(H1 − λ∗H0,a

∗, F0) +
1

Π0

∂Π
∂a

(H0,a
∗, F0)

∂Π
∂a′

(H1,a
∗, F0)

]−1

√
T

(
∂Π̂T

∂a
(H1 − λ∗H0,a

∗, F0)− ∂Π
∂a

(H1 − λ∗H0,a
∗, F0)

)

−
[
− ∂2Π

∂a∂a′
(H1 − λ∗H0,a

∗, F0) +
1

Π0

∂Π
∂a

(H0,a
∗, F0)

∂Π
∂a′

(H1,a
∗, F0)

]−1

(a∗)′

Π0

∂Π
∂a

(H0,a
∗, F0)

√
T

[
∂Π̂T

∂a
(H1,a

∗, F0)− ∂Π
∂a

(H1,a
∗, F0)

]
+ op(1);

ii)
√

T (λ̂T − λ∗) =
1

Π0

∂Π
∂a′

(H1,a
∗, F0)

√
T (âT − a∗) +

1
Π0

(a∗)′
√

T

[
∂Π̂T

∂a
(H1,a

∗, F0)− ∂Π
∂a

(H1,a
∗, F0)

]
+ op(1).

Thus, the asymptotic properties of âT , λ̂T can be derived from the asymptotic properties of the
estimated DRM sensitivities (see Proposition 1).

If the DRM is twice differentiable, we can explicit its second-order derivative by differentiating
(2.5) with respect to a. More precisely, we have:

∂2Π
∂a∂a′

(H, a, F ) =
∂

∂a′
E


X

∂H
(
1−G(a′X;a)

)

∂u




= −E

[
X

∂2H(1−G(a′X;a))
∂u2

{
g(a′X;a)X ′ +

∂G(a′X;a)
∂a′

}]

= −E

[
XX ′ ∂

2H
(
1−G(a′X;a)

)

∂u2
g(a′X;a)

]
+ E

[
XE

[
X ′|a′X]∂2H

(
1−G(a′X;a)

)

∂u2
g(a′X;a)

]
,

since ∂G(Y ;a)/∂a = −E[X|Y ]g(Y ;a). Then, by applying the iterated expectation theorem, we get,

∂2Π
∂a∂a′

(H, a, F ) = −E

[
V (X|a′X)

∂2H
(
1−G(a′X;a)

)

∂u2
g(a′X;a)

]
. (3.12)

Since V (a′X|a′X) = 0, we see that a′ ∂2Π
∂a∂a′ (H, a, F )a = 0, and the Hessian of the DRM has a

diminished rank d−1. This is a consequence of the homogeneity property of the DRM. If the distortion
function is concave, ∂2H

∂u2 is negative and the matrix ∂2Π
∂a∂a′ is positive semi-definite. This provides a

proof of the result by Denneberg (1994) mentioned above.
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4 Efficiency test of a given portfolio

The asymptotic expressions of the delta-DRM estimators and the estimated efficient allocations can
be used to construct different tests of the efficiency of a given portfolio a0, say. As usual three types of
test statistics can be considered by analogy with the Wald, Lagrange Multiplier and Likelihood Ratio
tests introduced in the statistical literature. For expository purpose, we provide the results associated
with the empirical estimators of the delta-DRMs. A similar analysis can be performed for the kernel
estimator.

4.1 The null hypothesis

Let us consider a given allocation in risky assets a0, say. The hypothesis to be tested is the
DRM-DRM efficiency of a0 for given risk measures, that are given distortion functions H0,H1. If
a∗(H0,H1,Π0, F0) denotes the efficient allocation associated with constraint level Π0, the null hypoth-
esis can be written as:

H0 =
{
∃Π0 s.t.: a∗(H0,H1,Π0, F0) = a0

}
(4.1)

=
{

a∗(H0,H1,Π0, F0) and a0 are proportional
}

.

Alternatively, the efficiency hypothesis can also be defined from the extended Sharpe ratio by:

H0 =
{

a0 optimizes λ(H0,H1,a, F0)
}

. (4.2)

The null hypothesis involves d − 1 independent restrictions on the true distribution F0, and we can
expect test procedures with d− 1 degree of freedom.

4.2 The constrained and unconstrained estimators

The general results of Section 3.2, 3.3 cannot be used directly. Indeed, the estimator
âT = âT (H0,H1,Π0) assumes a known constraint level Π0. This is not the case when considering
the tests for efficiency. However, we can define the realized constrained level under the null:

Π̂0T = Π(H0,a0, F̂T ), (4.3)

and look for the efficient allocation and Lagrange multiplier corresponding to this level. The uncon-
strained estimators are denoted by ̂̂aT ,

̂̂
λT and satisfy the first-order conditions:





∂Π
∂a

(H1, ̂̂aT , F̂T )− Π(H1, ̂̂aT , F̂T )

Π̂0T

∂Π
∂a

(H0, ̂̂aT , F̂T ) = 0,

̂̂
λT =

Π(H1, ̂̂aT , F̂T )

Π̂0T

.

(4.4)
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The estimators constrained by the null hypothesis are ̂̂a0T = µ̂T a0 and ̂̂
λ0T , say. The estimator of the

constrained allocation satisfies the first-order condition:

∂Π
∂a

(H1, µ̂T a0, F̂T )− Π(H1, µ̂T a0, F̂T )

Π(H0,a0, F̂T )

∂Π
∂a

(H0, µ̂T a0, F̂T ) = 0.

By using the homogeneity property of the DRM, we get:

∂Π
∂a

(H1,a0, F̂T )− µ̂T
Π(H1,a0, F̂T )

Π(H0,a0, F̂T )

∂Π
∂a

(H0,a0, F̂T ) = 0.

Then, pre-multiplying the system by a′0 and using the Euler condition, we get: µ̂T = 1. We deduce
that the constrained estimators are:

̂̂a0T = a0,
̂̂
λ0T =

Π(H1,a0, F̂T )

Π(H0,a0, F̂T )
,

where ̂̂
λ0T is the realized extended Sharpe (RES) ratio of portfolio a0.

4.3 Asymptotic expansion of the unconstrained estimated allocation

The asymptotic expansion of the difference between the unconstrained and constrained efficient
allocations ̂̂aT − a0 is derived in Appendix E.

Proposition 3. We get:

√
T (̂̂aT − a0) = B−1A

√
T

[
∂Π̂T

∂a
(H1 − λ0H0,a0, F0)− ∂Π

∂a
(H1 − λ0H0,a0, F0)

]
+ op(1),

= B−1
√

T
∂Π
∂a

(H1 − ̂̂
λ0T H0,a0, F̂T ) + op(1),

where

A = Id− 1
Π(H0,a0, F0)

∂Π
∂a

(H0,a0, F0)a′0,

B = − ∂2Π
∂a∂a′

(H1 − λ0H0,a0, F0) +
1

Π(H0,a0, F0)
∂Π
∂a

(H0,a0, F0)
∂Π
∂a′

(H1,a0, F0).

The matrix A is such that:

a′0A = a′0

(
Id− 1

Π(H0,a0, F0)
∂Π
∂a

(H0,a0, F0)a′0

)

= a′0 −
a′0

∂Π
∂a (H0,a0, F0)

Π(H0,a0, F0)
a′0

= a′0 − a′0 = 0, by the Euler condition.

Thus, matrix A has rank d− 1. In particular, if Σ denotes the asymptotic variance-covariance matrix
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of
√

T
[

∂bΠT
∂a (H1 − λ0H0,a0, F0)− ∂Π

∂a (H1 − λ0H0,a0, F0)
]
, we have asymptotically

√
T (̂̂aT − a0)

d→ N
(
0, B−1AΣA′(B′)−1

)
. (4.5)

The variance-covariance matrix of
√

T (̂̂aT −a0) has also a diminished rank d− 1, since the difference
between estimated efficient allocations satisfies the restriction ∂Π

∂a′ (H0,a0, F0)
√

T (̂̂aT − a0) = op(1)
due to the DRM constraint.

4.4 The test statistics

The test statistics for the efficiency hypothesis are the following.

i) The Wald statistic

The Wald statistic is based on a comparison of the estimated efficient allocation with the given
allocation a0. It is defined as:

ξW =
√

T (̂̂aT − a0)′
[
V̂ (̂̂aT )

]−√
T (̂̂aT − a0), (4.6)

where
[
V̂ (̂̂aT )

]− = B̂′(ÂΣ̂Â′
)−

B̂ is a consistent estimator of the asymptotic variance-covariance ma-
trix of

√
T (̂̂aT − a0), and [·]− denotes a generalized inverse. Indeed, we know that V (̂̂aT ) has the

reduced rank d− 1.

ii) The delta-DRM statistic

The delta-DRM statistics is given by:

ξdelta−DRM =T
∂Π
∂a′

(
H1 − ̂̂

λ0T H0,a0, F̂T

) (
ÂΣ̂Â′

)−∂Π
∂a

(
H1 − ̂̂

λ0T H0,a0, F̂T

)
. (4.7)

From Proposition 3, we deduce the result below.

Proposition 4. Under the null hypothesis of efficiency, the Wald and delta-DRM statistics are asymp-
totically equivalent and follow asymptotically a chi-square distribution with d− 1 degree of freedom.

iii) The RES based statistic

Finally, let us consider the statistic

ξλ = T

(
̂̂
λT − ̂̂

λ0,T

)
, (4.8)

based on the comparison of RES ratios. This is the analogue of the standard likelihood ratio test
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encountered in maximum likelihood theory. Under the null hypothesis, we have:

T

(
̂̂
λT − ̂̂

λ0T

)
= T

[
λ(H0,H1, ̂̂aT , F̂T )− λ(H0,H1,a0, F̂T )

]

=
√

T
[√

T (̂̂aT − a0)
]′ ∂λ

∂a
(H0,H1,a0, F̂T ) + op(1)

=
√

T (̂̂aT − a0)′
∂2λ

∂a∂F ′ (H0,H1,a0, F0)
√

T (F̂T − F0) + op(1), (4.9)

since under the null ∂λ
∂a(H0,H1,a0, F0) = 0.

Moreover, the unconstrained efficient allocation ̂̂aT satisfies the first-order conditions:

∂λ

∂a
(H0,H1, ̂̂aT , F̂T ) = 0;

these conditions can be expanded to get:

∂2λ

∂a∂a′
(H0,H1,a0, F0)

√
T (̂̂aT − a0) +

∂2λ

∂a∂F ′ (H0,H1,a0, F0)
√

T (F̂T − F0) + op(1) = 0.

By substituting in (4.9), we get the following proposition.

Proposition 5. Under the null hypothesis of efficiency,

T

(
̂̂
λT − ̂̂

λ0T

)
=
√

T (̂̂aT − a0)′
[
− ∂2λ

∂a∂a′
(H0,H1,a0, F0)

]√
T (̂̂aT − a0) + op(1)

=
√

T (̂̂aT − a0)′
[
− ∂2Π

∂a∂a′
(H1 − λ0H0,a0, F0)

]√
T (̂̂aT − a0) + op(1).

In general − ∂2Π
∂a∂a′ (H1 − λ0H0,a0, F0) is not a generalized inverse of V (̂̂aT ), and the RES based

statistic is not equivalent to the two other statistics. This result is compatible with the general theory
of asymptotic tests when the objective function cannot be interpreted as a log-likelihood function (see
Gourieroux and Monfort, 1995, Vol. 2, Chapter 18).

5 Finite sample properties

We will now discuss the finite sample properties of the empirical estimators of the efficient allocation
and extended Sharpe ratio for a TVaR-VaR optimization problem. By considering Gaussian returns in
the Monte-Carlo, we will also compare the nonparametric estimators with the parametric estimators
computed using the Gaussian assumption. Let us first describe the DRM-DRM problem in a Gaussian
framework.
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5.1 The DRM-DRM problem in a Gaussian framework

Let us assume Gaussian (opposite) excess returns: X ∼ N(−m,Ω). The quantile function associ-
ated with the (negative) portfolio return y(a) = a′x is given by:

Q(u;a) = −a′m + Φ−1(u)(a′Ωa)1/2. (5.1)

We deduce the expression of a DRM in the Gaussian framework:

Π(H, a,Φ) =
∫ 1

0

[
−a′m + Φ−1(u)(a′Ωa)1/2

]
dH(u)

= −a′m + (a′Ωa)1/2β(H), (5.2)

where β(H) =
∫ 1
0 Φ−1(1−u)dH(u). Thus, the DRM is an affine combination of the expected (negative)

portfolio return and its standard error.
Let us now consider a DRM-DRM problem such as:

min
a

−a′m + (a′Ωa)1/2β(H1) s.t. − a′m + (a′Ωa)1/2β(H0) = Π0. (5.3)

The first-order conditions imply that the efficient allocation is proportional to the efficient mean-
variance allocation a∗0 = Ω−1m. In particular, it is easily checked that the set of efficient allocations
is given by:

a∗ = Ω−1m
Π0

m′Ω−1m

[ (
m′Ω−1m

)1/2

− (m′Ω−1m)1/2 + β(H0)

]
,

which is generated by the vector a∗0 and only depend on the choice of (Π0,H0).10 We can note
that a∗ is equivalent to mean-variance efficient allocation when the expected return is equal to
Π0

(
m′Ω−1m

)1/2
/

[
− (

m′Ω−1m
)1/2 + β(H0)

]
. The associated extended Sharpe ratio is:

λ∗ =
−a∗′m + (a∗′Ωa∗)1/2β(H1)
−a∗′m + (a∗′Ωa∗)1/2β(H0)

=
− (

m′Ω−1m
)1/2 + β(H1)

− (m′Ω−1m)1/2 + β(H0)
. (5.4)

The extended Sharpe ratio is in a one-to-one relationship with the standard Sharpe ratio, that is
m′Ω−1m, but depends on both selected distortion measures.

5.2 The Monte-Carlo study

Let us consider two risky assets with excess returns independently drawn in a Gaussian distribution

with parameters m = (0.00044, 0.007)′, Ω =

(
0.0031 0.0028
0.0028 0.0064

)
. These parameters are estimated

using the same data set as in Section 2.4.11 The corresponding mean-variance efficient portfolio is
10As long as the convexity of the Lagrangian objective function is ensured.
11The returns are multiplied by 10 before calculating these parameters. This is to ensure the numerical invertibility

of the variance-covariance matrix from the simulated data.
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a∗0 = (−1.415, 1.722)′, and can be normalized as ã0 = (−4.6, 5.6)′ to get a sum of the components
equal to 1.

Then, we introduce a TVaR-VaR problem for risk level p = 5%, 10%, respectively. For a given risk
level and a given set of T = 501 return observations, we compute:

i) the empirical estimate of the efficient allocation normalized by ̂̂a1

T + ̂̂a2

T = 1;

ii) the empirical estimate of the extended Sharpe ratio;

iii) the parametric estimate of the normalized efficient allocation Ω̂−1
T m̂T /

(
ι′Ω̂−1

T m̂T

)
, where m̂T and

Ω̂T are the realized mean and volatility, ι is a d× 1 vector of ones;

iv) the parametric estimate of the standard Sharpe ratio m̂′
T Ω̂−1

T m̂′
T ;

v) the implied Sharpe ratio from the empirical estimate of extended Sharpe ratio

λ̃T =




̂̂
λT β(H0)− β(H1)

̂̂
λT − 1




2

.

These computations are replicated S = 400 times to get the finite sample distributions.
The finite sample distributions of the normalized estimated allocation in asset 1 (a1)∗ are provided

in Figure 3. The solid line corresponds to the parametric estimator, the dashed line (resp. shorter
dashed line) to the empirical estimator when p = 0.05 (resp. p = 0.1) and the vertical (thick) line
indicates the true efficient allocation ã1

0. These curves are produced for the range [−100, 100], but it is
important to note that more simulated values for the parametric estimator are outside this range than
those for the empirical estimators. This is a consequence of the lack of robustness of the parametric
mean-variance approach to extreme returns. It is observed that all estimators feature bias in finite
sample. The bias is larger for the maximum likelihood parametric estimator than for the empirical
estimator when p = 0.05, and that for the empirical estimator when p = 0.1. The average biases are
7, 6.26 and 5.46, respectively. The order of their finite sample variances are the same as that of their
biases. The parametric estimator can be very noisy (1656.32). Between the empirical estimators, the
one with p = 0.05 has slightly larger variance than that with p = 0.1 (139.02 v.s. 117.76).

The distributions of implied Sharpe ratios are plotted in Figure 4. The vertical (thicker) line
represents the true value (i.e. 0.107). The parametric estimator (solid line) exhibits the smallest bias
(the bias is 0.013) and finite sample variance (0.002). As expected, due the shortage of observations,
the empirical estimator with p = 0.05 (dashed line) is less accurate as compared to the one with
p = 0.1 (shorter dashed line), in the sense that it has a larger bias (the average biases of the implied
Sharpe ratio are 0.219 and 0.13, respectively) and a larger variance (0.094 v.s. 0.038).

17



6 Conclusion

In this paper, we first introduce two nonparametric estimators of the delta-DRM, defined as the
sensitivity of DRM with respect to portfolio allocations, and derive their asymptotic distributions.
Then, these estimators are used to calculate the efficient portfolio allocations assuming a DRM ob-
jective and a DRM constraint. We show that the limiting behaviors of the estimators of efficient
allocations only depend on the asymptotic properties of the delta-DRM. Three test statistics are pro-
posed to test the efficiency hypothesis for a given portfolio. These test statistics are analogous to the
standard Wald, LM and LR test statistics in the Maximum Likelihood context. Finally, a Monte-Carlo
study is implemented to compare the finite sample properties of the nonparametric estimators and the
parametric estimators in a Gaussian framework. We find that, when estimating the efficient allocation
in finite sample, the empirical estimator may be preferred to its parametric counterpart even though
the parametric model is well specified. While considering the implied Sharpe ratio, the parametric
estimator dominates. Of course, the advantage of the empirical estimator is its consistency even if the
parametric model is misspecified.
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Appendices

Appendix A Preliminary lemma

Lemma 1 (Scaillet (2004), Proof of Proposition 3.1). Let us consider a d-dimensional random vector
X with a continuous joint distribution F . For any given d× 1 real vector a, any continuous function
Ψ : R→ R, any continuous function ϕ: Rd → R, any value ξ and any kernel k such that

∫
k(u)d u = 1

and
∫

u k(u)d u = 0, we have, as T →∞:

(i).

1
hT

∫

R
xk

(
a′x− y

hT

)
Ψ(y)d y = −xΨ(a′x) + O(h2

T ),

1
hT

∫

R
E[X|a′X = y]k

(
a′x− y

hT

)
Ψ(y)d y = −E[X|a′X = a′x]Ψ(a′x) + O(h2

T );

(ii).

1
hT

E

[
ϕ(X)k

(
a′X − ξ

hT

)]
= E

[
ϕ(X)|a′X = ξ

]
g(ξ;a) + O(h2

T ),

1
hT

E

[(
ϕ(X)k

(
a′X − ξ

hT

))2
]

= E
[
ϕ(X)ϕ(X)′|a′X = ξ

]
g(ξ;a)

∫
k(u)2d u + O(hT ),

where hT is the bandwidth satisfying hT → 0 and T hT →∞ as T →∞, and g(·;a) is the pdf of a′X.

Appendix B Comovement interpretation of the delta-DRM

Proof. If H is continuous and differentiable in u, the ith right hand side of equation (2.4) can be
written as:

RHSi =
∫ 1

0

∫
Rd−1

xi

aj f

(
x1, . . . ,

Q(1−u;a)−Pl6=j alxl

aj , . . . , xd

) ∏
l 6=j dxl

g(Q(1− u;a);a)
∂H(u)

∂u
du.

By applying the change of variables y = Q(1− u;a), this expression becomes:

RHSi =
∫

R

∫
Rd−1

xi

aj f

(
x1, . . . ,

y−Pl6=j alxl

aj , . . . , xd

) ∏
l 6=j dxl

g(y;a)
∂H(1− (G(y;a))

∂u
d

(
1−G(y;a)

)

=
∫

Rd

xi

aj
f

(
x1, . . . ,

y −∑
l 6=j alxl

aj
, . . . , xd

)
∂H(1− (G(y;a))

∂u

∏

l 6=j

dxld y.
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Since 1
aj f

(
x1, . . . ,

y−Pl6=j alxl

aj , . . . , xd

)
is the joint density of distribution of (X l, l 6= j) and a′X, we

deduce the result.

Appendix C Asymptotic expansions of the estimators

C.1 Regularity conditions

A sufficient set of regularity conditions for deriving the asymptotic expansions of the random
estimators and applying functional limit theorems is given below.

1. Conditions on the return process and portfolio allocation:

Assumption A. 1. The process (xt) is a strong white noise, that is the xt’s are i.i.d. random
vectors.

Assumption A. 2. The distribution of (X) is continuous, with a continuous strictly positive
density.

Assumption A. 3. E [||X||γ ] < ∞ for some γ > 0.

Assumption A. 4. The true portfolio allocation belongs to a bounded set A =
∏d

i=1

(
ai, ai

)
,

say.

Assumption A.2 avoids nonstandard behavior, when the distribution features some point masses
(see e.g. Laurent, 2003 for a discussion of this problem), and Assumption A.3 imposes a uniform
tail behavior for the portfolio returns. The value of γ has to be sufficiently large to give a
meaning to the DRM of interest.

Assumption A. 5. The distribution of X given a′X = y is continuous on {a′X = y} with a
continuous strictly positive density. The conditional moments E

[||X||γ
∣∣a′X = y

]
exist for any

y and any a ∈ A.

2. Conditions on the distortion function:

Assumption A. 6 (Smoothness). The distortion function H is increasing on (0, 1], twice con-
tinuously differentiable.

Assumption A. 7 (Boundedness). [see Shorack (1972), or Shorack and Wellner (1986), Chap-
ter 19] We have

∣∣∣∂H(u)
∂u

∣∣∣ ≤ cu−α(1 − u)−β, for α < 1/2 − 1/γ, β < 1/2 − 1/γ, γ > 0 and
c < ∞.

Assumption A.7 ensures that the weighting function do not attribute too much weight on extreme
risks. It is used jointly with Assumption A.3 on the tail behavior of the return distribution.
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Assumption A. 8. The discretized distortion function (resp. first, second order derivative of
the distortion function) tends uniformly to the true distortion function (resp first, second order
derivative of the distortion function).

This assumption is introduced to get a negligible discretization error.

3. Conditions on the kernel:

Assumption A. 9. [see Fermanian and Scaillet (2005)] k is a strictly symmetric Parzen kernel
of order 2 on R such that limu→∞ uk(u) = 0,

∫ |u|k(u)du < ∞,
∫

k(u)du = 1 and
∫

uk(u)du = 0.
k is three times differentiable, k′ and k′′ are integrable and k′′′ is bounded.

Assumption A.9 is satisfied by standard kernels such as the Gaussian kernel. It is not satisfied
by some optimal kernels, such as the Epanechnikov kernel.

4. Conditions on the bandwidth:

Assumption A. 10. Th5
T → 0 and Th

7/2
T →∞ when T tends to infinity.

Assumption A.10 removes the bias from the kernel estimator (see Yatchew (2003)).

Under this set of conditions, we can apply the multivariate Functional Central Limit Theorem to the
sample cdf.

Multivariate Functional Limit Theorem. Let x1, ...,xT be i.i.d. random observations in Rd with
continuous marginal cdfs F j(xj) with j = 1, ..., d, u = (u1, . . . , ud) =

(
F 1(x1), ..., F d(xd)

)
a 1 × d

vector of uniformly distributed ranks and F̃T (x) its joint sample cdf, we have:

√
T

(
F̃T (x)− F (x)

) ⇒ K(u), (C-1)

where K is a multivariate Brownian bridge on [0, 1], which is Gaussian with zero mean and covariance,

COV
(K(u),K(u′)

)
= C(u ∧ u′)− C

(
u

)
C

(
u′

)
, (C-2)

where u ∧ u′ = {min(u1, (u′)1), . . . ,min(ud, (u′)d)}.

Note that, for any real function Ψ such that E[Ψ(X)2] < ∞, we have:

E

[∫
Ψ(x)dK

(
F 1(x1), . . . , F d(xd)

)]
= 0,

E

[(∫
Ψ(x)dK

(
F 1(x1), . . . , F d(xd)

))2
]

= V
(
Ψ(x)

)
.

22



C.2 Kernel estimator

Let us consider the expansion of the kernel estimator of the delta-VaR (2.6). We have:

√
ThT

(
∂Q̃T

∂a
( · ;a)− ∂Q

∂a
( · ;a)

)

=
√

ThT

(
∂Q̃T

∂a
( · ;a)− E

[
X|a′X = Q(· ;a)

]
)

=
√

ThT




1
ThT

∑T
t=1 xt k

(
a′xt− bQT (·;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt− bQT (·;a)

hT

) −
1

ThT

∑T
t=1 xt k

(
a′xt−Q(·;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt−Q(·;a)

hT

)



+
√

ThT




1
ThT

∑T
t=1 xt k

(
a′xt−Q(·;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt−Q(·;a)

hT

) −
E

[
X1(

a′X=Q(· ;a)
)
]

g
(
Q(·;a);a

)




= ∇KT

(
Q(·;a);a

)√
ThT

(
Q̂T (·;a)−Q(·;a)

)
+

1
g
(
Q(· ;a);a

) 1√
hT

∫

Rd

xk

(
a′x−Q(· ;a)

hT

)√
Td

[
F̂T (x)− F (x)

]

− E[X|a′X = Q(· ;a)]
g
(
Q(· ;a);a

) 1√
hT

∫

Rd

k

(
a′x−Q(· ;a)

hT

)√
Td

[
F̂T (x)− F (x)

]
+ op(

√
hT )

where:

∇KT

(
Q(·;a);a

)
=

∂

∂Q(·;a)




1
ThT

∑T
t=1 xt k

(
a′xt−Q(·;a)

hT

)

1
ThT

∑T
t=1 k

(
a′xt−Q(·;a)

hT

)

 ,

and F̂T (x) = 1
T

∑T
t=1 1(xt≤x) denotes the sample multivariate cdf and we use the standard expansion

for the Nadaraya-Watson estimator. Thus, we get:

√
ThT

(
∂Q̃T

∂a
( · ;a)− ∂Q

∂a
( · ;a)

)
=

1
g
(
Q(· ;a);a

) 1√
hT

∫

Rd

xk

(
a′x−Q(· ;a)

hT

)√
Td

[
F̂T (x)−F (x)

]

− E[X|a′X = Q(· ;a)]
g
(
Q(· ;a);a

) 1√
hT

∫

Rd

k

(
a′x−Q(· ;a)

hT

)√
Td

[
F̂T (x)− F (x)

]
+ op(

√
hT ).

Due to its integral expression, the kernel estimator of the delta-DRM will converge at the standard
parametric rate

√
T . Indeed, we have:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a)

)

=
∫ 1

0
∇KT

(
Q(1− u;a);a

)√
T

(
Q̂T (1− u;a)−Q(1− u;a)

)
dH(u)

+
∫ 1

0

1
g
(
Q(1− u ;a);a

)
{

1
hT

∫

Rd

xk

(
a′x−Q(1− u ;a)

hT

)√
Td

[
F̂T (x)− F (x)

]}
dH(u)

−
∫ 1

0

E[X|a′X = Q(1− u ;a)]
g
(
Q(1− u ;a);a

)
{

1
hT

∫

Rd

k

(
a′x−Q(1− u ;a)

hT

)√
Td

[
F̂T (x)− F (x)

]}
dH(u) + op(1).
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By a change of variables, y = Q(1− u ;a) ⇔ u = 1−G(y;a), we obtain:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a)

)

= −
∫

R
∇KT

(
y;a

)√
T

[
Q̂T (1−G(y;a);a)− y

]
dH

(
1−G(y;a)

)

−
∫

R

1
g
(
y;a

)
{

1
hT

∫

Rd

xk

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]}
dH

(
1−G(y;a)

)

+
∫

R

E[X|a′X = y]
g
(
y;a

)
{

1
hT

∫

Rd

k

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]}
dH

(
1−G(y;a)

)
+ op(1).

When H is first-order differentiable, we get:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a)

)

=
∫

R
∇KT

(
y;a

)√
T

[
Q̂T (G(y;a);a)− y

]∂H(1−G(y;a))
∂u

g(y;a)d y

+
∫

R

{
1

hT

∫

Rd

xk

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]} ∂H(1−G(y;a))
∂u

d y

−
∫

R
E[X|a′X = y]

{
1

hT

∫

Rd

k

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]} ∂H(1−G(y;a))
∂u

d y + op(1)

= −
∫

R
∇KT

(
y;a

) {∫

Rd

1a′x≤y

√
Td

[
F̂T (x)− F (x)

]} ∂H(1−G(y;a))
∂u

d y

+
∫

R

{
1

hT

∫

Rd

xk

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]} ∂H(1−G(y;a))
∂u

d y

−
∫

R
E[X|a′X = y]

{
1

hT

∫

Rd

k

(
a′x− y

hT

)√
Td

[
F̂T (x)− F (x)

]} ∂H(1−G(y;a))
∂u

d y + op(1),

where the second equality is a consequence of the Bahadur representation of the nonparametric quantile
estimator:

√
T

(
Q̂T (G(y;a);a)− y

)
= − 1

g(y;a)

∫

Rd

1a′x≤y

√
Td

[
F̂T (x)− F (x)

]
+ op(1).

By commuting the integrations with respect to x and y and applying Lemma 1 i) in Appendix A, we
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deduce the limiting behavior of the kernel estimator:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a)

)

⇒
∫

Rd

{∫

R

∂

∂y

(
E[X|a′X = y]

)
Ψ(y;a)1a′x≤ydy

}
dK(

F 1(x1), . . . , F d(xd)
)

−
∫

Rd

xΨ(a′x;a) dK(
F 1(x1), . . . , F d(xd)

)
+

∫

Rd

E[X|a′X = a′x]Ψ(a′x;a) dK(
F 1(x1), . . . , F d(xd)

)

=
∫

Rd

∫

R

∂

∂y

(
E[X|a′X = y]

)
Ψ(y;a)1a′x≤ydydK(

F 1(x1), . . . , F d(xd)
)

−
∫

Rd

{
x− E[X|a′X = a′x]

}
Ψ(a′x;a) dK(

F 1(x1), . . . , F d(xd)
)
. (C-3)

C.3 Empirical estimator

Let us now consider the expansion of the empirical estimator (2.9). When H is twice differentiable,
we have:

√
T

(
∂Π̂T

∂a
(H, a)− ∂Π

∂a
(H, a)

)

=
√

T

(∫

Rd

x
∂H

(
1− ĜT (a′x;a)

)

∂u
d F̂T (x)−

∫

Rd

x
∂H

(
1−G(a′x;a)

)

∂u
dF (x)

)

=
√

T

(∫

Rd

x
∂H

(
1− ĜT (a′x;a)

)

∂u
d F̂T (x)−

∫

Rd

x
∂H

(
1−G(a′x;a)

)

∂u
d F̂T (x)

)

+
√

T

(∫

Rd

x
∂H

(
1−G(a′x;a)

)

∂u
d F̂T (x)−

∫

Rd

x
∂H

(
1−G(a′x;a)

)

∂u
dF (x)

)

= −
∫

Rd

x
∂2H

(
1−G(a′x;a)

)

∂u2

√
T

[
ĜT (a′x;a)−G(a′x;a)

]
dF (x)

+
∫

Rd

x
∂H

(
1−G(a′x;a)

)

∂u

√
Td

[
F̂T (x)− F (x)

]
+ op(1).

Since G(a′z;a) = P [a′X ≤ a′z] =
∫
Rd 1(a′x≤a′z)dF (x), and ĜT (a′z;a) =

∫
Rd 1(a′x≤a′z)dF̂T (x), the

right hand side of the expansion can be rewritten as:

∫

Rd

{∫

Rd

−z
∂2H

(
1−G(a′z;a)

)

∂u2
1(a′x≤a′z)dF (z) + x

∂H
(
1−G(a′x;a)

)

∂u

}√
Td

[
F̂T (x)−F (x)

]
+op(1),

which weakly converges to:

∫

Rd

{∫

Rd

−z
∂2H

(
1−G(a′z;a)

)

∂u2
1(a′x≤a′z)dF (z) + x

∂H
(
1−G(a′x;a)

)

∂u

}
dK(

F 1(x1), . . . , F d(xd)
)
.
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C.4 Alternative expansion of the kernel estimator

If the distortion function H is twice differentiable, we can integrate by part the first component in
the asymptotic expression of the kernel estimator given in (C-3). Let us denote by Z a variable with
the same distribution as X. We have:
∫

R

∂

∂y

(
E[Zi|a′Z = y]

)∇H(y;a)1a′x≤ydy

=1a′x≤y∇H(y;a)E[Zi|a′Z = y]

]∞

−∞
−

∫

R
E[Zi|a′Z = y]1a′x≤yd∇H(y)

=∇H(∞;a)E[Zi|a′Z = ∞] +
∫

R
1a′x≤y

∂2H
(
1−G(y;a);a

)

∂u2

∫
Rd−1

zi

aj f

(
z1, . . . ,

y−Pl 6=j alzl

aj , . . . , zd

) ∏
l 6=j d zl

∫
Rd−1

1
aj f

(
z1, . . . ,

y−Pl 6=j alzl

aj , . . . , zd
) ∏

l 6=j d zl
g(y;a)dy.

Since g(y;a) =
∫
Rd−1

1
aj f

(
z1, . . . ,

y−Pl6=j alzl

aj , . . . , zd

) ∏
l 6=j d zl and

∫
Rd dK(

F 1(x1), . . . , F d(xd)
)

= 0,

we get:
∫

Rd

∫

R

∂

∂y

(
E[Zi|a′Z = y]

)∇H(y;a)1a′x≤ydydK(
F 1(x1), . . . , F d(xd)

)

=
∫

Rd

∫

Rd

1a′x≤a′z
∂2H

(
1−G(a′z;a);a

)

∂u2
zif(z1, . . . , zd)dz1 · · · dzddK(

F 1(x1), . . . , F d(xd)
)

+∇H(∞)E[Zi|a′Z = ∞]
∫

Rd

dK(
F 1(x1), . . . , F d(xd)

)

=
∫

Rd

∫

Rd

1a′x≤a′z
∂2H

(
1−G(a′z;a);a

)

∂u2
zif(z1, . . . , zd)dz1 · · · dzddK(

F 1(x1), . . . , F d(xd)
)
.

The above equation holds for any asset i = 1, . . . , d. Thus, we deduce that:

√
T

(
∂Π̃T

∂a
(H, a)− ∂Π

∂a
(H, a)

)
⇒

∫

Rd

∫

Rd

z 1a′x≤a′z
∂2H

[
1−G(a′z;a);a

]

∂u2
dF (z) dK(

F 1(x1), . . . , F d(xd)
)

−
∫

Rd

[
x− E[X|a′X = a′x]

]
∇H(a′x;a) dK(

F 1(x1), . . . , F d(xd)
)
. (C-4)

C.5 Asymptotic variances

The asymptotic variance-covariances of both estimators are obtained by using (see C.1):

V

(∫

Rd

ψ(x)dK
(
F 1(x1), . . . , F d(xd)

))
= V

(
ψ(x)

)
.
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a) If the distortion function H is twice differentiable, the variance-covariance matrices of the limiting
processes are:

Ω(a,a) = V

[∫
z1(a′X≤a′z)

∂2H
(
1−G(a′z;a);a

)

∂u2
dF (z)− (

X − E[X|a′X]
)∇H(a′X;a)

]
,

Σ(a,a) = V

[
X∇H(a′X;a)−

∫
z1(a′X≤a′z)

∂2H
(
1−G(a′z;a);a

)

∂u2
dF (z)

]
.

b) However, the distortion functions H associated with the VaR and Tail-VaR are not twice differen-
tiable. The variance-covariance matrices of their kernel estimators are given below.
b.i) For the delta-VaR, we have:

lim
T→∞

V

(√
T hT

[
∂Ṽ aRT,k(p, a)

∂a
− ∂V aR(p, a)

∂a

])

=
1

g
(
Q(1− p ;a) ; a

)
∫

k2(u)d u

[
E

[
x2|a′x = Q(1− p;a)

]−
(
E

[
x|a′x = Q(1− p;a)

])2
]

.

Proof. Let us denote g = g
(
Q(1− p ;a) ; a

)
; we get:

V

(√
T hT

[
∂Q̃T (·,a)

∂a
− ∂Q(·,a)

∂a

])

=
1
g2

1
hT

{
E

[
X2k2

(
a′X −Q(·;a)

hT

)]
−

[
E X k

(
a′X −Q(·;a)

hT

)]2
}

+
(E [X|a′X = Q(·;a)])2

g2

1
hT

[
E k2

(
a′X −Q(·;a)

hT

)
−

(
E k

(
a′X −Q(·;a)

hT

))2
]

−2 (E [X|a′X = Q(·;a)])
g2

1
hT

{
E

[
X k2

(
a′X −Q(·;a)

hT

)]

−E

[
X k

(
a′X −Q(·;a)

hT

)]
E

[
k

(
a′X −Q(·;a)

hT

)]}
.

By applying Lemma 1 ii) in Appendix A for ϕ(x) = 1,x,x2, respectively, we deduce:

lim
T→∞

V

(√
T hT

∂Ṽ aRT (p, a)
∂a

− ∂V aR(p, a)
∂a

)

=
1
g

∫
k2(u)d u

[
E

[
X2|a′X = Q(1− p;a)

]−
(
E

[
X|a′X = Q(1− p;a)

])2
]

+ o(1).

ii) For the delta-TVaR, we have:

ΩTV aR(p) = V

(
−1

p
E

[
X|a′X = Q(1− p;a)

]
1a′X≤Q(1−p;a) −

1
p
X1a′X≥Q(1−p;a)
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+
1
p
E

[
X|a′X = Q(1− p;a)

]
1a′X≥Q(1−p;a)

)
.

Appendix D Expansions of âT and λ̂T

i) Let us consider the first equation of system (3.10). We get:

[
∂2Π

∂a∂a′
(H1 − λ∗H0,a

∗, F0)− 1
Π0

∂Π
∂a

(H0,a
∗, F0)

∂Π
∂a′

(H1,a
∗, F0)

]√
T (âT − a∗)

+
[

∂2Π
∂a∂F ′ (H1 − λ∗H0,a

∗, F0)− 1
Π0

∂Π
∂a

(H0,a
∗, F0)

∂Π
∂F ′ (H1,a

∗, F0)
]√

T (F̂T − F0) =op(1),
(D-1)

where ∂Π
∂F ′ stands for Hadamard derivative. Equivalently, we have:

[
− ∂2Π

∂a∂a′
(H1 − λ∗H0,a

∗, F0) +
1

Π0

∂Π
∂a

(H0,a
∗, F0)

∂Π
∂a′

(H1,a
∗, F0)

]√
T (âT − a∗)

=
√

T

[
∂Π̂T

∂a
(H1 − λ∗H0,a

∗, F0)− ∂Π
∂a

(H1 − λ∗H0,a
∗, F0)

]

− 1
Π0

∂Π
∂a

(H0,a
∗, F0)

√
T

[
Π̂T (H1,a

∗, F0)−Π(H1,a
∗, F0)

]
+ op(1).

The result of Proposition 2 i) follows by noting that Π̂T (H1,a
∗, F0) = (a∗)′ ∂bΠT

∂a (H1,a
∗, F0).

ii) Let us now consider the expansion of λ̂T , we get:

√
T (λ̂T − λ∗) =

1
Π0

∂Π
∂a′

(H1,a
∗, F0)

√
T (âT − a∗) +

1
Π0

√
T

[
Π̂T (H1,a

∗, F0)−Π(H1,a
∗, F0)

]
+ op(1).

Appendix E Expansion of ̂̂aT

The expansion of the first equation of (4.4) provides:

B
√

T (̂̂aT − a0)

=
√

T

[
∂Π
∂a

(H1,a0, F̂T )− Π(H1,a0, F̂T )

Π(H0,a0, F̂T )

∂Π
∂a

(H0,a0, F̂T )

]
+ op(1)

=
√

T

[
∂Π
∂a

(H1,a0, F̂T )− a′0
∂Π
∂a (H1,a0, F̂T )

a′0
∂Π
∂a (H0,a0, F̂T )

∂Π
∂a

(H0,a0, F̂T )

]
+ op(1)

=
[
Id− 1

Π(H0,a0, F0)
∂Π
∂a

(H0,a0, F0)a′0

]√
T

[
∂Π̂T

∂a
(H1 − λ0H0,a0, F0)− ∂Π

∂a
(H1 − λ0H0,a0, F0)

]
+ op(1).

Note finally that the first equality can be written as:

B
√

T (̂̂aT − a0) =
√

T
∂Π
∂a

(
H1 − ̂̂

λ0T H0,a0, F̂T

)
+ op(1).
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delta-TVaR(0.05) delta-PH(0.7)

Figure 1: Estimators of delta-TVaR and delta-PH
The average of estimates are obtained from a sample size 250 and a simulation size 1000. The delta-TVaR and delta-PH
are estimated for a1 varying from 0.1 to 0.9 and the risk/pessimistic parameters are equal to 0.05 and 0.7, respectively.
The kernel estimators are represented by solid line and the empirical estimators by dashed line.

delta-TVaR(0.05) delta-PH(0.7)

Figure 2: Finite sample variances of estimators of delta-TVaR and delta-PH
The variances are calculated from a sample size 250 and a simulation size 1000. The delta-TVaR and delta-PH are
estimated for a1 varying from 0.1 to 0.9 and the risk/pessimistic parameters are equal to 0.05 and 0.7, respectively. The
kernel estimators are represented by solid line and the empirical estimators by dashed line.
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Figure 3: Finite sample distribution of estimators of (a1)∗
The densities are estimated from 400 simulated values of the normalized allocation on asset one using
kernel method. The curves are provided for the range [−100, 100]. The true value (vertical line) is
-4.6. The densities plotted are for i) the parametric estimator (solid line); ii) the empirical estimator
when p = 0.05 (dashed line); and iii) the empirical estimator when p = 0.1 (shorter dashed line).
The averages calculated from the simulated estimates are 2.4, 1.66 and 0.86, respectively. The finite
sample variances are 1656.32 (parametric), 139.02 (empirical when p = 0.05) and 117.76 (empirical
when p = 0.1).
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Figure 4: Finite sample distribution of estimators of standard Sharpe ratio
The densities are estimated from 400 simulated values of the standard Sharpe ratio using kernel
method. The true value (vertical line) is 0.107. The densities plotted are for i) the parametric
estimator (solid line); ii) the empirical estimator when p = 0.05 (dashed line); and iii) the empirical
estimator when p = 0.1 (shorter dashed line). The averages calculated from the simulated estimates
are 0.12, 0.326 and 0.237, respectively. The finite sample variances are 0.002 (parametric), 0.094
(empirical when p = 0.05) and 0.038 (empirical when p = 0.1).
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