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Résumé

Nous considérons le problème de la mesure et du test de l’évolution d’indicateurs complexes
issus d’enquêtes par sondage. Il s’agit dans ce cadre d’estimer des variances de statistiques non-
linéaires, mais aussi des covariances. L’échantillonnage rotatif peut en effet entraîner une forte
corrélation positive entre indicateurs. Ces corrélations sont souvent négligées dans les tests de
stabilité temporelle, conduisant à des conclusions en général trop conservatrices. Nous obtenons
les variances et covariances par une adaptation de la delta-méthode fonctionnelle aux sondages.
La théorie est ensuite appliquée à l’évolution du taux de pauvreté en France.

Mots clés : échantillons dépendants, linéarisation, delta-méthode fonctionnelle, différentiabil-
ité au sens d’Hadamard.

Abstract

This paper addresses the issue of measuring and testing evolutions of complex indicators in
the framework of survey sampling. This involves the computation of variances of complex statis-
tics, but also of covariances. Indeed, rotating designs may bring important positive correlations
between indicators. These correlations are often neglected in testing temporal stability, leading to
conclusions deemed to be too conservative. We obtain variances and covariances by adapting the
functional delta method to survey sampling. The theory is then applied to the evolution of the
poverty rate in France.

Keywords : dependent samples, linearization, functional delta method, Hadamard differen-
tiability.
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Introduction
A major issue in social studies is to assess whether the evolution of an indicator is significant or
not. To answer these questions, the statistician faces two problems. Firstly, these statistics are
highly non linear, so that usual variance formulas cannot be applied directly. Secondly, samples
used in the computation of social indicators are often dependent. Rotating surveys and panels are
examples of such dependent samples. This induces a correlation through time between indicators,
which is generally positive. Hence, neglecting it leads to conclusions which are too pessimistic.
This paper presents a general framework which enables to handle both problems.

The body of literature on the variance of complex statistics is large, and can be divided into
two parts. First, many adaptations of the bootstrap to finite populations have been proposed
(for recent papers on it, see Bertail and Combris (1997), Booth et al. (1994), Lahiri (2003), Rust
and Rao (1996) and for an older survey, Rao et al. (1992)). This method is popular because it
avoids analytical computations. However, it is seldom theoretically justified for complex surveys
(multistage surveys or unequal probabilities designs) and may be hard to implement in such designs.
The second strain returns to variances of totals by linearizing complex statistics. This method
has been developed for statistics which are solutions of estimating equations (see Binder (1983),
Binder and Patak (1994) and Demnati and Rao (2004) for theory, Binder and Kovacevic (1995)
and Binder and Kovacevic (1997) for applications), L-statistics (see Shao (1994)) or statistics which
are differentiable in a particular sense (see Deville (1999)). In this article we rely on the second
approach, and present a framework based on the functional delta method. This approach is not
new in classical statistics (see for instance Gill (1989)) but, to the best of our knowledge, has been
used only once in survey sampling (see Bertail et al. (2003)). We show that the functional delta
method is based on a functional central limit condition on sampling designs, which is stronger than
the usual normality condition often admitted by statisticians to make inference. But the scope
of applications is also larger, including not only regular functions of means but also maps of the
empirical distribution function which are smooth in a weak sense, namely Hadamard differentiable.
In that sense it generalizes the paper of Deville (1999), which considers the more restrictive class
of Fréchet differentiable statistics (see for instance Shao and Tu (1995) for a discussion on the
difference between these two notions).

The issue of estimating covariances has also been considered in the linear case, see e.g. Kish
(1965) or Berger (2004b). But the case of nonlinear statistics has not been considered so far. We
show that in fact, under a straightforward multivariate generalization of the functional central
limit condition, linearization can still be applied to compute covariance terms. Moreover, we state
an independence condition under which the estimator of the covariance does not depend on the
probabilities of response. This is satisfying because these probabilities are unknown and can be
consistently estimated only under restrictive assumptions on the response model.

The present paper is organized as follows. Section one is devoted to the theoretical foundations
of linearization. The second section considers the computation of covariances when samples are
dependent. Finally, the theory is applied in the third section to test the significance of the evolution
of the poverty rate in France between 1996 and 2001. Based on the French “Taxable Income
Survey”, linearization is used to estimate the variance covariance matrix through time and to test
the hypothesis of stable poverty.

1 Linearization based on functional delta method
Whereas computing variances of total was well known from the beginning of survey sampling
theory (see for instance Horvitz and Thompson, 1952), the problem of estimating the accuracy of
nonlinear statistics has remained open for years. Indeed, it is generally impossible to obtain exact
formulas. This is the reason why linearization is so attractive. The idea is simply to approximate
nonlinear statistics by totals. Since asymptotic distributions of totals are often known, linearization
gives a first order approximation of the distribution of the statistic and thus enables us to compute
confidence intervals (and a fortiori variance). As we will see, the great advantage of linearization
method, over bootstrap in particular, comes from the fact that it easily takes complex sample
designs, calibration and also (see section 2) temporal dependency into account. This is particularly
satisfying in applied statistics.
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Let us call U = {1, ..., N} the whole population, S the random sample of size n (which is
assumed non random) and (wk)k∈U the sampling weights, wk = 1

πk
where πk = Pr(k ∈ S) is

the first order inclusion probabilities of k. Linearization is based on the asymptotic behavior
of estimators when the population size tends to infinity. Hence, all these quantities depend in
fact on N but for the sake of simplicity, we let this dependency implicit. To give sense to these
asymptotics, we need regularity conditions on both the population and the sampling design, which
will be maintained throughout the paper. More precisely, and in a way very close to Deville (1999),
we suppose that, for any variable of interest (yk)k∈U and when N →∞,





1
N

∑
k∈U yk −→ E(y)

1
N

∑
k∈S wkyk

P−→ E(y)
nV

(
1
N

∑
k∈S wkyk

) −→ V y
as

nV̂
(

1
N

∑
k∈S wkyk

) P−→ V y
as.

(1.1)

Because only the sampling is random, the first and third conditions must be understood in terms
of convergence of sequences. In the first, E(y) is simply a notation, which would refer to the usual
expectation in the case of a superpopulation model where the (yk)k∈U are drawn independently
from a distribution (for a more formal view on superpopulation models, see for instance Fuller
and Isaki (1982)). The third condition states that properly normalized variances of means, which
depend both on the variable of interest and the survey sampling, also admit a limit. Lastly,
we suppose, with the second and fourth assumptions, that their respective estimators become
more and more accurate when N → +∞. This assumption is usually satisfied when n → +∞.
The estimator of variance considered here is the Horvitz-Thompson estimator, which is always
computable as soon as the second order inclusion probabilities are known and not zero. For more
details on other estimators of variance, see for instance Berger (1996) or Berger (2004a).

Now let T be a parameter of interest and T̂ its sample estimation. T will be considered
linearizable1 if there exists variables (linkT )k∈U such as

T̂ − T√
V (

∑
k∈S wklinkT )

d−→ N (0, 1). (1.2)

As a variance of a total, V
(∑

k∈S wklinkT
)
can be consistently estimated. Hence, if T is

linearizable, one can easily make inference on that parameter. We now describe two main situations
for which this occurs.

The most simple one arises for differentiable real functions of means, T = g
(

1
N

∑
k∈U yk

)
.

Suppose that ∑
k∈S wkyk −

∑
k∈U yk√

V (
∑

k∈S wkyk)
d−→ N (0, 1). (1.3)

Then the following proposition shows how to adapt the usual delta method to our framework.

Proposition 1.1 (delta method) if g is differentiable at E(y) with g′(E(y)) 6= 0 and
or 1) g’ is continuous at E(y),
or 2)

√
n

(
1
N

∑
k∈U yk − E(y)

)
admits a limit h,

then T is linearizable with

linkT = g′
(

1
N

∑

k∈S

wkyk

)
yk

N
,

where it is understood that in the variance of
∑

k∈S wklinkT , we do not take into account the
variance of linkT itself (g′

(
1
N

∑
k∈S wkyk

)
is assumed to be non-random).

Proof : see appendix A.

Conditions to apply the delta method are more restrictive than in classical statistics, where dif-
ferentiability at E(y) suffices. This stems from the fact that the parameter of interest is 1

N

∑
k∈U yk,

which changes with N , and not E(y). As van der Vaart (1998) (see section 3.4), we propose
1The definition given here is slightly different from the usual one (Deville (1999)).
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two extra assumptions to circumvent this problem. By the law of the iterated logarithm (see
van der Vaart (1998), section 2.7), the second hypothesis is almost surely satisfied for instance if
n = o

(
N

log(log(N))

)
and under a superpopulation model where the (yk)k∈U are drawn independently

from F (and in this case h = 0).
Hence in the case of smooth functions of means, linearization mainly relies on (1.3), which is a

regularity condition on the sampling design. There is no general answer to the question of which
sampling design satisfy this condition, although results have been obtained for some families of
sampling designs. See, among others, Hájek (1964), Rosen (1972a), (1972b), Krewski and Rao
(1981) and Berger (1998) and, for a complete survey on asymptotics in finite population sampling,
Sen (1988).

Many complex statistics are in fact smooth functions of means. Among inequalities indicators,
the Theil and Atkinson indexes for instance belong to this class. However, quantiles for instance
cannot be expressed in such a framework. On the other hand, most statistics T can be written as
T (FN ) with

FN (t) =
1
N

∑

k∈U

1{yk ≤ t}.

Where 1{A} = 1 if A, 0 otherwise. The plug-in estimator of T is then T (FS) with

FS(t) =
1∑

k∈S wk

∑

k∈S

wk1{yk ≤ t}.

Furthermore we denote by F (t) the limit of FN (t) when N → +∞. Then the linearization of T
lies on the simple idea that the delta method can be generalized to maps of functions. This is the
principle of the functional delta method (see e.g. van der Vaart (1998), chapter 20). Roughly, if T
is “smooth” at F and FS − FN is small enough, then

√
n(T (FS)− T (FN )) ' dTF (

√
n(FS − FN )), (1.4)

where dTF is a linear function. The right part of (1.4) is thus a mean which depends on S through
FS . Hence, as previously, we can expect T (FS) to be asymptotically normal under a smoothness
condition on T and regularity of the sampling design.

This intuition can be formalized as follows. Firstly, the smoothness of T is expressed in terms
of Hadamard differentiability. A statistic is said to be Hadamard differentiable at F with respect
to the tangent space B if there is a linear and continuous function dTF such as :

T (F + tht)− T (F )
t

− dTF (h) −→ 0 as t → 0, ||ht − h||∞ → 0, and h ∈ B,

where ||.||∞ denotes the supremum norm.2 Moreover T is said to be continuously Hadamard
differentiable if

T (Ft + tht)− T (Ft)
t

− dTF (h) −→ 0 as t → 0, ||ht − h||∞ → 0 (h ∈ B), ||Ft − F ||∞ → 0.

Special directional derivatives will be useful hereafter. As Deville (1999), but in a slightly
different way than usually, we define the influence functions by IT (y, F ) = dTF (gy), where
gy : x 7→ 1{y ≤ x}.

Hadamard differentiability is stronger than Gateaux differentiability, which corresponds to ht =
h, but weaker than the Fréchet differentiability, which is differentiability in the usual sense. Many
nonlinear statistics are in fact Hadamard differentiable, so that it has been extensively used, for
instance in duration models (see e.g. Gill (1989)). We just display the examples of the poverty
rate, which will be used in the application section 3, and of the interquantile ratio. The proofs of
the claims are deferred to appendix A.

2In fact we could choose another norm, see e.g. Barbe and Bertail (1995) for a discussion on that point.
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Example 1 (poverty rate) A general poverty rate, for a distribution of income F , is defined (see
Deville (1999)) as

J(α,β)(F ) = F (βF−1(α)),

for 0 < α, β < 1. The classical poverty rate corresponds to α = 0, 5 and β = 0, 5 ( Insee) or 0, 6
(Eurostat). if F is differentiable everywhere and F ′(F (α)) 6= 0 , F 7→ J(α,β)(F ) is Hadamard
differentiable tangentially to the set of continuous functions (but it is not continuously Hadamard
differentiable). Moreover, its influence function exists for y > 0, y 6= F−1(α) and satisfies

IJ(α,β)(y, F ) = 1{y ≤ βF−1(α)} − βF ′(βF−1(α))
F ′(F−1(α))

1{y ≤ F−1(α)}.

Example 2 (Interquantile ratio) The interquantile ratio Rα is defined by

Rα(F ) =
F−1(1− α)

F−1(α)
,

for 0 < α < 1/2. The usual choice of α = 0.1 leads to the interdecile ratio. If F is differentiable
at F−1(α) and F−1(1 − α) with F ′(F (α)) 6= 0 and F ′(F (1 − α)) 6= 0 , F 7→ Rα(F ) is Hadamard
differentiable tangentially to the set of functions which are continuous at F−1(α) and F−1(1− α)
(but it is not continuously Hadamard differentiable). Moreover its influence function exists for
y /∈ {F−1(α), F−1(1− α)} and satisfies

IRα(y, F ) =
1

F−1(α)

[
−1{y ≤ F−1(1− α)}

F ′(F−1(1− α))
+ Rα(F )

1{y ≤ F−1(α)}
F ′(F−1(α))

]
.

Now, the regularity condition on the sampling design writes formally
√

n(FS − FN ) d−→ W, (1.5)

where W is a centered continuous gaussian process. In other terms, the empirical process
GS =

√
n(FS−FN ) converges weakly to a gaussian process.3 Eventually, because weak convergence

does not imply convergence of moments, the variance estimator can be inconsistent because of
“heavy tails” due to the sampling design, just as in bootstrap schemes (see Shao (1990)).4 A
uniform integrability condition is required to handle this issue.

lim
M→+∞

lim sup
N

E[(dT 2
F (GS)−M)1{dT 2

F (GS) > M}] = 0. (1.6)

Once these new conditions on T and the sampling design have been introduced, we obtain the
following generalization of the usual delta method.

Proposition 1.2 (functional delta method) If (1.5) holds, and
or 1) T is continuously Hadamard differentiable at F with respect to the tangent space B including
the paths of W ,
or 2)

√
n(FN − F ) admits a limit function h and T is (simply) Hadamard differentiable at F with

respect to the tangent space B including h and the paths of W + h,
then √

n(T (FS)− T (FN )) d−→ N (0, V (dTF (W ))) .

Moreover, if (1.6) holds, V (dTF (W )) 6= 0 and IT (yk, F ) exists for all k ∈ N, then T is linearizable
and

linkT =
1∑

k∈S wk

[
IT (yk, F )− 1∑

k∈S wk

∑

k∈S

wkIT (yk, F )

]
,

where, once again, we do not take into account the randomness of linkT in the computation of the
variance of

∑
k∈S wklink(T ).

3Weak convergence of a sequence of processes Gn is defined by the convergence, for all h continuous and bounded,
of E∗[h(Gn)] where E∗ is the outer expectation, see van der Vaart and Wellner (1996) section 1.3 for more details.

4This contrasts with classical theory where the asymptotic variance writes (under weak regularity conditions)
V (IT (Y, F )) (where Y is a random variable with cdf F ) and can thus always be estimated consistently by its
empirical counterpart.
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As in the simple delta method, extra assumptions are needed compared to classical statistics,
because the parameter of interest T (FN ) varies with N . Bertail et al. (2003) emphasize on con-
tinuous Hadamard differentiability (see their property 1). This, however, excludes many statistics
such as the poverty rate and the interquantile ratio. On the other hand, if

√
n(FN − F ) → h,

simple Hadamard differentiability suffices. Thanks to the functional law of the iterated logarithm
(see for instance van der Vaart (1998), section 19.1), this assumption is satisfied with probability
one if n = o

(
N

log(log(N))

)
and under a superpopulation model on the (yk)k∈U . If, furthermore,

(1.6) and regularity conditions on F hold,5 the poverty rate and the interquantile ratio are then
linearizable.

Hence, the functional delta method is a very powerful tool for making inference on complex
statistics. However, there is a price to pay for allowing more flexibility on T . Indeed, the regularity
condition (1.5) on the sampling design is more restrictive than (1.3), since (1.5) implies (see van der
Vaart (1998), theorem 18.14):




∀ t = (t1, ...tk)

√
n(FS(t1)− FN (t1), ..., FS(tk)− FN (tk)) d−→ N (0, Σt).

The process
√

n(FS − FN ) is asymptotically tight.

By the Cramér-Wold device, the first condition is satisfied if and only if (1.3) holds for every
variable y′k which is a linear combination of the (1{yk ≤ t})t∈R. But the second condition adds
restrictions on the sampling design. The question of how demanding these restrictions may be is
beyond the scope of this paper and has not been studied in the literature yet. But we still can
see that there is a trade-off between the smoothness imposed on T and the regularity imposed on
the sampling design. Theoretical results for complex statistics such as the poverty headcount in
complex surveys like the French “Taxable Income Survey” (see next section for a description) are
thus hard to assess and often admitted by the statisticians. In the following, (1.3) will be referred
to as a “weak normality condition”, and (1.5) as a “strong normality condition”.

Up to now, we have described two main situations in which linearization can be established.
However, this linearization is seldom directly applicable. Indeed, F is unknown and thus IT (y, F )
cannot be determined in general, as examples 1 and 2 emphasize. However, if IT (y, F ) depends
on a finite number of unknown parameters, as in the poverty rate or the interquantile ratio, this
problem can be handled by the following proposition, which generalizes a result of Deville (1999).

Proposition 1.3 Let T be a linearized statistic with link(T ) = IT (yk, F ) = v(yk, θ) where θ ∈ Rp

(p independent of N) is unknown but can be estimated consistently by θ̂. Suppose that
1) there exists a neighborhood V of θ such as

sup
u∈V

∣∣∣∣V
(∫

v(y, u)dGS(y)
)
− V

(∫
v(y, u)dW (y)

) ∣∣∣∣ → 0. (1.7)

2) u → V
(∫

v(y, u)dW (y)
)
is continuous at θ.

Then T is also linearizable with

link(T ) =
1∑

k∈S wk

[
v(yk, θ̂)− 1∑

k∈S wk

∑

k∈S

wkv(yk, θ̂)

]
.

Assumption (1.7) can be seen as a strong uniform integrability condition, because it enables
variance estimators to converge for all u ∈ V and not only at u = θ. The second assumption is
weaker than Deville’s (1999), which assumes continuity of θ → v(y, θ) for all y. This last assumption
is indeed too stringent for many applications, as the example of the poverty rate emphasizes (the
same applies to the interquantile ratio).

Exemple 1 (continued) The influence function of the poverty rate can be written

v(yk, θ) = 1{y ≤ βθ1} − βθ3

θ2
1{y ≤ θ1},

5For instance, F = 0 on ]−∞, 0] and F is differentiable everywhere. Note that under a superpopulation model,
with probability one yk /∈ {F−1(α), F−1(1− α)} for all k ∈ N, so that IT (yk, F ) exists for all k.
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where θ = (θ1, θ2, θ3) = (F−1(α), F ′(F−1(α)), F ′(βF−1(α))). Hence θ 7→ v(yk, θ) is not continuous
(because it is not continuous in θ1). On the other hand, V (dTF (W )) is continuous in θ. This follows
from

dTF (W ) =
∫

IT (y, F )dW (y) = W (βF−1(α))− F ′(βF−1(α))
F ′(F−1(α))

W (F−1(α))

and the fact that V (W (t)) → V (W (s)) as t → s.6 Hence if (1.7) holds, we can choose

linkT =
1∑

k∈S wk

[
1{y ≤ βF−1

S (α)} − J(α,β)(FS)− βF̂ ′(βF−1
S (α))

F̂ ′(F−1
S (α))

(
1{y ≤ F−1

S (α)} − α
)
]

,

where F̂ ′ is any locally uniformly consistent estimator of F ′.7

Lastly, we have supposed until now that the weights were wk = 1/πk. Yet, in most official
surveys, the weights are obtained by a calibration procedure and thus depend on S. Variance
of such estimators have been studied by Deville and Särndal (1992), Stukel et al. (1996) and by
Deville (1999). In the case of linearization, the result of interest is (Deville, 1999) that V (T (FC))
(where FC is the estimated distribution function obtained with the calibration weights) can be
replaced by V

(∑
k∈S

ek

πk

)
, where ek are the residuals of the regression of linkT on the auxiliary

variables xk used in the calibration.

2 Computation of covariances when samples are dependent
Under the normality conditions stated above, the linearization method enables to yield confidence
intervals and to make tests on a wide range of complex statistics. Unfortunately, the applied
statistician (or economist) is often more interested in assessing whether or not evolutions over
time are significant. Since many surveys such as the French “Taxable Income Survey” exhibit time
dependency (see next section for a precise description of this dependency), calculating confidence
intervals without taking into account the covariance term would make us overestimate variance
and lower the chances of finding significant evolutions in our data. In this subsection, we show
that linearization can be used to estimate this covariance.

Let us consider (S1, S2) two samples from a same population U , (w1k, w2k)k∈U the correspond-
ing weights, and T = (T1, T2) a parameter of interest. T1 and T2 are two parameters which depend
on different variables of interest, for instance the income at dates t and t+1. We suppose that
its estimator T̂ = (T̂1, T̂2) is based on (S1, S2). Since the aim is to study linear combinations of
(T̂1, T̂2) (for example the difference), a bidimensional version of linearization is now required.

(
V

( ∑

k∈S1

w1klinkT1,
∑

k∈S2

w2klinkT2

))−1/2

(T̂ − T ) d−→ N (0, I2), (2.1)

where I2 is the 2× 2 identity matrix. If T is a smooth function of a mean of (y1k, y2k) on S1×S2,
equation (2.1) is satisfied under a weak gaussian condition :

V (t̂y)−1/2(t̂y − ty) d−→ N (0, I2), (2.2)

where ty = (
∑

k∈U y1k,
∑

k∈U y2k) and t̂y = (
∑

k∈S1
w1ky1k,

∑
k∈U w2ky2k).

If F1 7→ T1(F1) and F2 7→ T2(F2) are Hadamard differentiable, then this is also the case of
F = (F1, F2) 7→ T (F ) = (T1(F1), T2(F2)). Consequently the functional delta method can be used
under a strong gaussian condition :

√
n(FS − FN ) d−→ W (2.3)

6Indeed by continuity of W , W (t)
t→s−→ W (s) almost surely. Thus convergence in distribution holds, whence

E
�
eiuW (t)

�
= e−

u2
2 V (W (t)) → e−

u2
2 V (W (s)).

7That is, for any x there exists a neighborhood V of x such as supy∈V |cF ′(y)− F ′(y)| → 0. This assumption is
satisfied for instance for the kernel estimator in the i.i.d. case (see for instance Schuster (1969)). In section 3 we
use such an estimator, so that we suppose that it still holds in our framework.
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where FN = (F1,N , F2,N ), F1,N (resp. F2,N ) being the cumulative distribution function of the
(y1k)k∈U (resp. (y2k)k∈U ) in U and FS = (F1S1 , F2S2) is defined analogously. W is now a
bidimensional continuous gaussian process. It is worth noticing that conditions on (S1, S2) to
assess (2.3) (or even (2.2)) are stronger than the ones for single surveys. But to the best of our
knowledge, they have not been studied yet in the literature.

Proposition 2.1 (multivariate functional delta method) If (2.3) holds and
1) T1 and T2 are continuously Hadamard differentiable at F1(= limN→∞ F1,N ) and F2 with respect
to the tangent spaces B1 and B2 with W ∈ B1 ×B2,
or
2)
√

n(F1,N − F1, F2,N − F2) admits a limit function h and T1 and T2 are simply Hadamard
differentiable at F with respect to the tangent space including h and the paths of W + h,
then, √

n(T (FS)− T (FN )) d−→ N (0, V (dTF (W ))).

Moreover, suppose that dT1F1 6= 0, dT2F2 6= 0, that (1.6) is satisfied for dT 2
1F1

(GS1) and dT 2
2F2

(GS2),
and that the following cross uniform integrability condition holds :

lim
M→+∞

lim sup
N

E[(dT1F1(GS1)dT2F2(GS2)−M)1{dT1F1(GS1)dT2F2(GS2) > M}] = 0.

Then T is linearizable and linkT = (linkT1, linkT2) where

linkTi =
1∑

k∈Si
wik

[
ITi(yik, Fi)− 1∑

k∈Si
wik

∑

k∈Si

wikITi(yik, Fi)

]
i ∈ {1, 2}.

Proposition (1.3) has also a direct multivariate generalization, so that under regularity condi-
tions, one can compute variables linkT satisfying (2.1) and depending only on (S1, S2) and not on
(F1, F2) which is unknown.

Now, if T is linearizable, V (T̂1) (resp. V (T̂2)) can be approximated by V (
∑

k∈S1
w1klinkT1)

(resp. V (
∑

k∈S2
w2klinkT2)) as explained in the first section. Moreover, Cov(T̂1, T̂2) can be ap-

proximated by

Cov

( ∑

k∈S1

w1klinkT1,
∑

l∈S2

w2llinlT2

)
=

∑

k,l∈U

w1kw2llinkT1linlT2∆12
kl ,

where ∆12
kl = Pr(k ∈ S1, l ∈ S2) − Pr(k ∈ S1)Pr(l ∈ S2). Thus the covariance can be estimated

by

Ĉov =
∑

k∈S1, l∈S2

w1kw2llinkT1linlT2

(
1− Pr(k ∈ S1)Pr(l ∈ S2)

Pr(k ∈ S1, l ∈ S2)

)
. (2.4)

Note that, similarly to the Horvitz-Thompson estimator of variance, this estimator may be of
few practical interest because the second order probabilities Pr(k ∈ S1, l ∈ S2) are often hard to
compute. Several solutions have been proposed to handle this problem (see e.g. Kish, 1965, or
Berger, 2004b). We shall, however, stick to this estimator in our application because the second
order probabilities are in fact computable in the French “Taxable Income Survey”. Furthermore,
despite the complexity of this survey, they lead to quite simple estimators.

In the case of unit nonresponse, (2.4) can be rather complex. However, and as we will see in
the application, the following device may help to simplify the estimator. Let us define R1 (resp.
R2) the subsample of respondents in S1 (resp. S2). Then, under the hypothesis that response
behaviors of two persons at two different time are independent, we have

Pr(k ∈ R1, l ∈ R2) = Pr(k ∈ S1, l ∈ S2)P (k ∈ R1|k ∈ S1)P (l ∈ R2|k ∈ S2),

which remains valid for k = l under the assumption that responding to the first survey does
not influence the response to the second one.8 Hence,

Pr(k ∈ R1)Pr(l ∈ R2)
Pr(k ∈ R1, l ∈ R2)

=
Pr(k ∈ S1)Pr(l ∈ S2)

Pr(k ∈ S1, l ∈ S2)
,

8In other words, we suppose that people do not weary of answering the survey.
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and therefore the estimator can be rewritten

Ĉov =
∑

k∈R1, l∈R2

w1kw2llinkT1linlT2

(
1− Pr(k ∈ S1)Pr(l ∈ S2)

Pr(k ∈ S1, l ∈ S2)

)
, (2.5)

where w1k = P̂ r(k ∈ R1) = Pr(k ∈ S1)P̂r(k ∈ R1|k ∈ S1). As we will see in subsection 3.2, the
advantage of (2.5) is that Pr(k∈S1)Pr(l∈S2)

Pr(k∈S1, l∈S2)
is rather simple, so that this expression can be quite

simple.

3 Application to testing the evolution of the poverty rate in
France

In this last section we apply the results obtained previously to answer a typical question that
national statistical offices often address. What can be said about the evolution of a social indicator
during a given time span ? On the one hand, reading naively point estimator tables may lead
to over-interpret the data, which may not be accurate enough to exhibit statistically significant
trends. On the other hand, neglecting dependency between samples may lead to too conservative
conclusions.

We focus here on the poverty headcount defined as the proportion of people who earn less than
50% of the median of incomes. The estimators are computed on the basis of the French “Taxable
Income Survey”. The details of the sampling design and the computation of the variances are
given in the first subsection. As the survey exhibit a strong time dependency, covariances must
also be computed, which is the purpose of the second subsection. The third subsection presents a
simple solution to linearize an individual indicator like the poverty rate when the sample is based
on households. Lastly, the fourth subsection displays the tests of evolution themselves.

3.1 Computation of the variance terms

The French “Taxable Income Survey” is based on the Annual Labour Force Survey, which was
conducted by the INSEE until 2002. If we neglect the details of its implementation (triple-stage
sampling), the design of this wave survey is basically a stratified area sample design (see Roth,
1991 and also INSEE Résultats, Enquête Emploi, 1999).

The strata are groups of same urban unit in each French region (where Provence-Alpes-Côte
d’Azur and Corsica are gathered together). In each stratum, primary units are area groups, which
are made of four areas each.9 Once an area group is selected, one of its area is surveyed. The
year after, this area is still surveyed, with one more area of the group. Each area is surveyed three
successive years, so that the third year, three areas are surveyed (the last area is used as a reserve).
Lastly, a group can be sampled only once.

We model the Taxable Income Survey sample design as a stratified cluster sampling design. In
stratum h ∈ {1, ..., H}, a sample Sah of mh areas from Mh is drawn by a simple random sampling
without replacement (SRSWOR hereafter) with a sampling rate of 1/300.10 Thus we neglect the
effect of drawing groups rather than areas directly.

In addition to unit nonresponse of the Labour Force Survey per se, the “Taxable Income Survey”
is not based on the full sample of respondents of the Labour Force Survey. Indeed this survey
matches respondents from the Labour Force Survey with their income tax returns, which are
provided by the French Internal Revenue Service. Sometimes, no tax return can be found for a
household in the Annual Labor Force Survey sample. Such failures to match respondents and tax
returns are considered as unit nonresponses. We model global nonresponse as a Poisson sampling
with a constant per stratum sampling rate fh. In other words, we suppose that in each stratum h
every household has the same probability to respond and to be matched, namely 1/fh, and that
response (and matching) is independent from a household to another. The sample of respondents
in area g of stratum h is denoted Rhg.

9An area theoretically includes 40 households in the case of urban units with fewer than 100,000 inhabitants
and 20 for the one with more than 100,000 inhabitants.

10For practical reasons, and whereas there is a small variation between strata, we have to assume that the
sampling rate is identical in each stratum.
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Eventually, adjustments are made for total nonresponse. There are two major calibration stages
independent from each other. First, the sample of the Labour Force Survey is calibrated on the
demographic structure. Then, another calibration is made after the matching with the data from
the tax administration. For the sake of simplicity, and even though it is not equivalent in principle,
we act as if there were a single calibration stage and we regress the dependent variable, that is to
say the linearized function of the poverty rate, on all of the variables used for either calibration
simultaneously.11 As mentioned in the first section, the variance formulas (and covariance formulas
as well) are then computed on the residuals of the regression of the linearized function12 on these
variables (these residuals are denoted zk hereafter).

To sum up, the French “Taxable Income Survey” can be modeled as a two-stage sampling
where the first stage is a stratified random sampling of geographical clusters (area sampling) and
the second one is a Poisson sampling design. We thus have in each stratum13 the classical variance
formula for the estimator of the total tz :

V (t̂z) = VSU + VPU =
M

m

1− f

f

M∑
g=1

Ng∑

k=1

z2
gk + M2

(
1− m

M

) S2

m
,

where Ng is the number of households in area g, zgk is the variable of interest for household k

in area g, S2 = 1
M−1

∑M
g=1

(
tzg − 1

M tz
)2 and tzg is the total of the variable of interest on area g.

Then the variance can be estimated by

V̂ = V̂SU + V̂PU =
M

m

1− f̂

f̂2

∑

g∈Sa

∑

k∈Rg

z2
gk + M2

(
1− m

M

) s2

m
, (3.1)

where s2 = 1
m−1

∑
g∈Sa

(
t̂zg − 1

m t̂z
)2

and f̂ , t̂zg and t̂z are the Horvitz-Thompson estimator of
f, tzg and tz. Note that V̂PU and V̂SU are biased, but the sum of the two is unbiased 14 if we
ignore the bias stemming from the estimation of f .

3.2 Estimation of the covariances

Figure 1 shows how the French “Taxable Income Survey” is built. S, M and E refer respectively
to the exiting, median and entering third of the Labour Force Survey. The entering third becomes
median and then exiting third thus constituting a 3-years long panel. Cells in grey correspond to
the subsamples of the “Taxable Income Survey”.

Year
1996 S M E
1997 S M E
1998 S M E
1999 S M E
2000 S M E
2001 S M E

Figure 1: Sample Dependency Structure of the “Taxable Income Survey”

To compute covariances, we first note that, because samples in different strata are independent
from one another,

Cov =
H∑

h=1

Covh.

11These variables used for calibration are tymen (household type; 5 modes), reg (region; 8 modes), pretud (dummy
variable indicating whether the reference person is a student), wact (ILO classification of status in employment;
4 modes), age combined with gender (total of 10 modes, like in the calibration of the Labour Force Survey) and
individual occupational category (7 modes).

12See subsection 3.1 for details on the computation of this linearized function.
13For the sake of simplicity the index h is omitted thereafter (Sah is replaced by Sa for instance).
14See for instance Tillé (2001).
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Thus we can restrict to covariances in a given stratum. Moreover, we neglect the covariances
between samples at t and t′ when |t − t′| > 2. Theoretically there is yet a (generally negative)
covariance due to the fact that areas are drawn only once. However, because of the small sampling
rate, these correlations are negligible and we only address the cases (t, t + 1) and (t, t + 2).

3.2.1 Case of t (sample S1) and t + 1 (sample S2) when t ≥ 1998

Let us consider the “complete” sample S1 ∪ S2. It is constituted of a SRSWOR of exiting, median
and entering areas of date t, and of entering areas of date t + 1. Once S1 ∪ S2 has been drawn, we
reshuffle randomly areas in order to have four sub-sample of equal size. Denoting by πc

k (resp. πk)
the inclusion probability of k in the “complete” sampling (resp. in only S1 or S2), we have

{
πc

k = mc

M
πk = m

M = 3
4πc

k.

Let us now compute the second order inclusion probability P (k ∈ S1, l ∈ S2). We face two
cases depending on whether k and l are in the same area.
– If k and l are in the same area, then

Pr(k ∈ S1, l ∈ S2) = Pr(k ∈ S1 ∩ S2) =
1
2
πc

k =
2
3

m

M
.

– If k and l are in two different areas : then, denoting by P (k ∈ i) the probability of being in the
i-th sub-sample (with 1 =exiting ones at date t, 2 = median ones at date t, 3 =entering ones at
date t and finally 4entering ones at date t + 1),

Pr(k ∈ S1, l ∈ S2) = πc
klP (k /∈ 4, l /∈ 1)

= πc
kl(P (k /∈ 4)− P (k /∈ 4, l ∈ 1))

= πc
kl

(
3
4
− 1

3
P (k, l ∈ {1, 2, 3})

)
,

where the third equality stems from the symmetry between samples 1, 2 and 3. Now picking up k
and l in {1, 2, 3} amounts to picking them both with a SRSWOR in a population of size 3

4mc = m
among mc = 4/3m. Therefore,

Pr(k ∈ S1, l ∈ S2) = πc
kl

(
3
4
− 1

3
m(m− 1)

4
3m( 4

3m− 1)

)

=
πc

kl

4

(
3− m− 1

4
3m− 1

)

=
πc

kl

4
3m− 2
4
3m− 1

.

Given the fact that the “complete” sampling is a SRSWOR of mc areas among M ,

πc
kl =

mc(mc − 1)
M(M − 1)

=
4
3m( 4

3m− 1)
M(M − 1)

,

and thus
Pr(k ∈ S1, l ∈ S2) =

m(3m− 2)
3M(M − 1)

.

After rearranging the sums (see appendix B for the detail of computation), this yields

Ĉov =
(

1− 3
2

m

M

) ∑

g∈Sa1∩Sa2

t̂z1g t̂z2g +
(

1− 3m(M − 1)
M(3m− 2)

) 
t̂z1 t̂z2 −

∑

g∈Sa1∩Sa2

t̂z1g t̂z2g


 ,

where Sa1 (resp. Sa2) denotes the sample of area at t (resp. t+1) and z1 (resp. z2) is the variable
of interest at t (resp t + 1).
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3.2.2 Case of t (sample S1) and t + 2 (sample S2) when t ≥ 1998.

The reasoning is similar (see appendix B for details) and leads to

Ĉov =
(
1− 3

m

M

) ∑

g∈Sa1∩Sa2

t̂z1g t̂z2g +
(

1− 3m(M − 1)
M(3m− 1)

) 
t̂z1 t̂z2 −

∑

g∈Sa1∩Sa2

t̂z1g t̂z2g




with the same notation as previously.

3.2.3 Particular cases

In 1996 and 1997, the pattern of the sampling renewal differs from other years. This leads to
different covariance estimators, which are given below. 15

• 1996-1997 : Ĉov =
(
1− 2m

M

)∑
g∈Sa1∩Sa2

t̂z1g t̂z2g+
(
1− 2m(M−1)

M(2m−1)

)(
t̂z1 t̂z2 −

∑
g∈Sa1∩Sa2

t̂z1g t̂z2g

)

• 1996-1998 : since there is no common subsample between these two years, we assume Cov = 0.

• 1997-1998 : Ĉov =
(
1− 3m

M

)∑
g∈Sa1∩Sa2

t̂z1g t̂z2g+
(
1− 3m(M−1)

M(3m−1)

)(
t̂z1 t̂z2 −

∑
g∈Sa1∩Sa2

t̂z1g t̂z2g

)

• 1997-1999 : for the same reason as for 1996-1998, we assume Cov = 0.

3.3 Accounting for clustering specific to households

The linearization of poverty rate has been carried out and implemented within a general framework.
But it needs to be adapted to a recent change in the INSEE’s estimations of such indices, namely
the use of individual distributions derived from household surveys.

More precisely, the variable on which the poverty rates are estimated is the living standard,
which is identical for every member of the household.16 Yet, the INSEE and Eurostat estimate
poverty rates based on the population of individuals. To address this issue, we could consider the
sample of individuals (i.e. individuals who belong to surveyed households) instead of the sample
of households. However, the hypothesis of Poisson sampling for unit nonresponse is not realistic in
this case, because in the Labour Force survey the whole household is considered a nonrespondent
as soon as one of its members does not answer. Instead, we use the fact that the distribution of
living standards on individuals can be easily deduced from the one on households.

Let Jind denote the individual poverty rate, that is

Jind(α,β) = Find
(
βF−1

ind(α)
)
,

where Find and F−1
ind are defined on the population of individuals. For example,

Find(x) =
1

Nind

∑

i∈Uind

1{yi ≤ x} =
1∑

k∈Uhh
nk

∑

k∈Uhh

nk1{yk ≤ x},

where Nind is the number of individuals, Uind (resp. Uhh) is the population of individuals (resp.
households) and nk is the size of household k. Find (and also F−1

ind) can therefore be estimated at
the household level by using the individual weights instead of the household weights, or, in other
words, multiplying the household weights by the number of individuals in the household. Hence,
with obvious notations,

Ĵind(α,β,w) = Ĵhh(α,β,nw).

The same reasoning holds for the linearized function of Jind(α,β). Indeed, the variance of Ĵind(α,β)

can be approximated by V (dJ(FSind − Find)) (dJ being the differential of Jind(α,β) at F∞ind =
limN→∞ Find). Now, the living standard of every member of the household is identical, so that
liniJind(α,β) is identical for every member of the same household. In other words, the variance of

15Detail of the computation of these special cases can be obtained from the authors upon request.
16The living standard is the disposable income (i.e. income after benefits and taxes) of the household, deflated

by an equivalence scale to account more accurately for household size and structure.
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Jind(α,β) can be estimated by the variance of the total of the variable nklinkJind(α,β) (weighted by
wk) at the household level. Furthermore,

linkJind(α,β,w) =
1∑

l∈Shh
wlnl

[
1{yk ≤ βF−1

Sind(α)} − Ĵind(α,β)

−β
F̂∞ind′(βF−1

Sind(α))

F̂∞ind′(F
−1
Sind(α))

(1{yk ≤ βF−1
Sind(α)} − α)

]

= linkJhh (α,β,nw),

where F̂∞ind′ is a kernel estimator17 of F∞ind
′. Hence, the variable of interest, at the household level, is

yk = nklinkJhh (α,β,nw). The variable zk considered in subsections 3.1 and 3.2 is then the residual
of the regression of yk on the variables used in the calibration.

3.4 Testing evolutions

Between 1996 and 2001, while the economic situation in France improved, the poverty rate displayed
a decrease (see figure 2). However, the question whether this decrease is significant or not has
remained open. Thanks to the covariance terms calculated (see table 1), we can accurately test
the significance of the difference of any pair of poverty rates, taking the sample dependency into
account.

5,0%

5,5%

6,0%

6,5%

7,0%

7,5%

8,0%

1995 1996 1997 1998 1999 2000 2001 2002

Povery rates
95% confidence
interval

Figure 2: Evolution of the 50% poverty rates

Sources: Taxable Income Survey 1996-2001, INSEE-Directorate General of Taxation; “poor field”: i.e.
excluding students and households reporting negative income. Computations by the authors.

Table 2 gives the p-values of tests conducted on pairs of years, the null hypothesis being the
equality of the two poverty rates. If dependency is neglected, no year-to-year evolution is significant
at the level of 5%. But taking dependency into account allows us to accept the 1998-1999 and
2000-2001 changes as real decreases. On the other hand, the decreases of the beginning of the
period cannot be considered significant, as well a the slight increase between 1999 and 2000 which
appears as a mere blip.

17We use a gaussian kernel and a bandwidth determined by the rule of thumb. The effect of a change of the
bandwidth is very small on the final estimator of variance.
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Table 1: Variance-Covariance Matrix for the Poverty Rate (50% of the median)

Year 1996 1997 1998 1999 2000 2001
1996 6.15E-06 1.53E-06 0 0 0 0
1997 2.55E-06 6.84E-07 0 0 0
1998 1.78E-06 6.35E-07 2.60E-07 0
1999 1.61E-06 6.112E-07 2.21E-07
2000 1.63E-06 5.73E-07
2001 1.59E-06
Sources: Taxable Income Surveys 1996-2001, INSEE- French Internal Revenue Service;
“poor field”: i.e. excluding students and households reporting negative income. Computa-
tions by the authors.
Lecture: The matrix is symmetric. Thus, only the upper triangle is filled.

Table 2: Tests of significance of the evolution of the poverty rate

taking dependence into
account

neglecting dependence

Years t-value p-value t-value p-value
1996-1997 1.82 0.07 1.47 0.14
1997-1998 1.57 0.12 1.30 0.19
1998-1999 2.27 0.02 1.79 0.07
1999-2000 -1.00 0.32 -0.79 0.43
2000-2001 2.39 0.02 1.92 0.05
1998-2000 1.11 0.27 1.02 0.31
1999-2001 1.23 0.22 1.14 0.26
Sources: Taxable Income Surveys 1996-2001, INSEE-French Internal Revenue
Service; “poor field”: i.e. excluding students and households reporting negative
income. Computations by the authors.

Conclusion
In this paper we address the issue of measuring evolutions for complex statistics when surveys are
dependent. We present a linearization framework which generalizes the paper of Deville (1999) and
enables to handle non regular statistics such as quantiles. This method can be used to compute
variances but also, under a multivariate functional theorem, covariance terms. We then apply
the theory to the evolution of the poverty rate in France between 1996 and 2001. As expected,
neglecting the covariance terms lead to too conservative conclusions.
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4 Appendix A : proofs of section 1
4.1 Proposition 1.1

1) By the fourth assumption of (1.1) and (1.3),

√
n

 
1

N

X
k∈S

wkyk − 1

N

X
k∈U

yk

!
d−→ N (0, V y

as).

If g is continuously differentiable at E(y), by the uniform delta method (see van der Vaart (1998) page
37),

√
n

"
g

 
1

N

X
k∈S

wkyk

!
− g

 
1

N

X
k∈U

yk

!#
d−→ N (0, g′2(E(y))V y

as). (4.1)

The result follows because g′2(E(y))V y
as can be consistently estimated by g′2( 1

N

P
k∈S wkyk)nV

�
1
N

P
k∈S wkyk

�
.

2) By Slutski’s lemma,
√

n

 
1

N

X
k∈S

wkyk − E(y)

!
d−→ N (h, V y

as).

Then by the delta method applied at E(y),

√
n

"
g

 
1

N

X
k∈S

wkyk

!
− g(E(y))

#
d−→ N (hg′(E(y)), g′2(E(y))V y

as).

Now, by definition of differentiability,

√
n

"
g

 
1

N

X
k∈U

yk

!
− g(E(y))

#
→ hg′(E(y)).

By applying once more Slutski’s lemma, we obtain (4.1). The conclusion follows ¤

4.2 Poverty rate

To prove Hadamard differentiability, we use the chain rule (see van der Vaart (1998) section 20.2) by noting
that the poverty rate can be written as the composed map ψ2 ◦ ψ1 where�

ψ1(F ) = (F, βF−1(α))
ψ2(F, x) = F (x).

If F is differentiable at F−1(α), ψ1 is Hadamard differentiable at F tangentially to the set of functions
that are continuous at F−1(α), because quantiles are (see van der Vaart (1998) section 21.2). Let us show
that ψ2 is also Hadamard differentiable at (F, βF−1(α)) tangentially to

C = {(h, x)/h is continuous at x, F is differentiable at x }.

Let εt ∈ R, ε → ε and ht ∈ RR, ||ht − h||∞ → 0. As F is differentiable at x,

ψ2(F + tht, x + tεt)− ψ2(F, x)

t
− εF ′(x)− h(x) =

�
F (x + tεt)− F (x)

t
− εF ′(x)

�
+ (ht(x + tεt)− h(x)).

The result follows because both terms tend to zero when t → 0 (the second by continuity of h at x and
uniform convergence of ht). The last point to check to apply the chain rule is that dψ1|F (h) ∈ C for all
continuous h. This stems from the fact that

dψ1|F (h) =

 
h,
−βh

�
F−1(α)

�
F ′ (F−1(α))

!
.

Indeed, by assumption h (resp. F ) is continuous (resp. differentiable) everywhere, thus it is continuous

(resp. differentiable) at
−βh(F−1(α))
F ′(F−1(α))

.

To obtain the influence function, first note that dJ(α,β)|F (gy) is well defined for all y > 0, y 6= F−1(α)
although gy is not continuous at y. Indeed, we have shown that h must be continuous at F−1(α) (to
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belong to the tangent space of ψ1) and at
−βh(F−1(α))
F ′(F−1(α))

(to belong to C). This requirement is fulfilled here,

because y 6= F−1(α) and
−gy(F−1(α))
F ′(F−1(α))

∈ {0, −β

F ′(F−1(α))
}, and both are inferior to y > 0.

Now apply the chain rule :
dJ(α,β)F = dψ2|(F,βF−1(α)) ◦ dψ1|F

Furthermore, dψ2|(F,x)(h, ε) = εF ′(x) + h(x), so that

dJ(α,β)|F (h) = dψ2|(F,βF−1(α))

 
h,
−βh

�
F−1(α)

�
F ′ (F−1(α))

!
= −β

F ′
�
βF−1(α)

�
F ′ (F−1(α))

h
�
F−1(α)

�
+ h

�
βF−1(α)

�
.

The result follows directly by putting h = gy.

To conclude, note that the poverty rate is not continuously Hadamard differentiable. Indeed, it is not
even continuously Gateaux differentiable, because ||Ft − F ||∞ → 0 does not imply F ′t (u) → F ′(u) for a
given u ¤

4.3 Interquantile ratio

The interquantile ratio Rα(F ) can be written as the composed map ψ4 ◦ ψ3(F ) where�
ψ3(F ) = (F−1(α), F−1(1− α))

ψ4(x, y) = x
y
.

ψ3 is Hadamard differentiable tangentially to the set of functions which are continuous at F−1(α) and
F−1(1 − α). ψ4 is also differentiable (tangentially to R2). Thus by the chain rule Rα is also Hadamard
differentiable tangentially to the set of functions which are continuous at F−1(α) and F−1(1− α).

gy is continuous at every x 6= y, thus it is continuous at F−1(α) and F−1(1−α) if y /∈ {F−1(α), F−1(1−
α)}. Hence the influence function exists for these values of y. It is easily obtained by applying the chain
rule and noting that

dψ4|(x,y)(u, v) =
1

y
[u− ψ4(x, y)v] .

Eventually, the influence function depends on F ′
�
F−1(α)

�
and F ′

�
F−1(1− α)

�
, thus it is not contin-

uously Gateaux differentiable and a fortiori Hadamard differentiable ¤

4.4 Proposition 1.2

1) By uniform functional delta-method (see van der Vaart and Wellner (1996), section 3.9.1), since W ∈ B,

√
n(T (FS)− T (F ))

d−→ dTF (W ).

The result follows because dTF is a linear functional and W is a centered Gaussian process.

2) The proof is very similar to the one of simple delta method. By Slutski’s lemma (see van der Vaart
(1998) section 18.2)

√
n(FS − F ) =

√
n(FS − FN ) +

√
n(FN − F )

d−→ W + h.

Because W + h ∈ B, we can apply the (simple) functional delta-method (see van der Vaart and Wellner
(1996) section 3.9.1) √

n(T (FS)− T (F ))
d−→ dTF (W + h).

Furthermore, by definition of the Hadamard differentiability, because h ∈ B,
√

n(T (FN )− T (F )) −→ dTF (h).

Hence, by linearity of dTF , √
n(T (FS)− T (FN ))

d−→ dTF (W ).

The first part of the proposition follows because W is a centered gaussian process and dTF is linear.
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For the second part of the proposition, we first prove that

V (dTF (GS)) → V (dTF (W )), (4.2)

First note that dTF (GS) is well defined. Indeed,

GS =

√
nP

k∈S wk

X
k∈S

wk

 
gyk −

1

N

X
l∈U

gyl

!
,

and by assumption IT (yk, F ) exists for all k ∈ N. Now write hm = dT 2
F ∧m. Then for every m

|E[dT 2
F (GS)]− E[dT 2

F (W )]| ≤ |E[dT 2
F (GS)]− E[hm(GS)]|

+|E[hm(GS)]− E[hm(W )]|+ |E[hm(W )]− E[dT 2
F (W )]|. (4.3)

Fix ε > 0. Because hm → dT 2
F , the third term tends to zero by dominated convergence. Hence there

exists m1 such as |E[hm(W )]−E[dT 2
F (W )]| < ε for every m ≥ m1. By assumption (1.6), there also exists

m2 such as for every m ≥ m2

lim sup
N
|E[dT 2

F (GS)]− E[hm(GS)]| < ε.

Now take m3 = m1 ∨m2. There exists N1 such as, for every N ≥ N1, E[|dT 2
F −hm3 |(GS)] < 2ε. Moreover

hm3 is continuous and bounded, hence the second term of (4.3) tends to zero when N → +∞ by definition of
weak convergence. In other terms, there exists N2 such as for all N ≥ N2, |E[hm3(GS)]−E[hm3(W )]| < ε.
Thus, for every N ≥ N1 ∨N2, |E[dT 2

F (GS)] − E[dT 2
F (W )]| ≤ 4ε. To see why this implies (4.2), note that

assumption (1.6) implies

lim
M→+∞

lim sup
N

E[(|dTF (GS)| −M)1{|dTF (GS)| > M}] = 0. (4.4)

Indeed for M ≥ 1/4, 1{|dTF (GS)| > √
M} ≤ (|dTF (GS)|+√

M)1{|dTF (GS)| > √
M}, so that

(|dTF (GS)| −
√

M)1{|dTF (GS)| >
√

M} ≤ (dT 2
F (GS)−M)1{dTF (GS)2 > M}.

Hence, using (4.4) similarly than (1.6) yields E[dTF (GS)] → E[dTF (W )] = 0 and consequently (4.2) holds.
Now, by linearity,

dTF (GS) =

√
nP

k∈S wk

X
k∈S

wk

 
IT (yk, F )− 1

N

X
l∈U

IT (yl, F )

!
.

Thus
T (FS)− T (FN )r

V
�

1P
k∈S wk

P
k∈S wkuk

� d−→ N (0, 1),

where uk = IT (yk, F )− 1
N

P
l∈U IT (yl, F ). Note that the left term is well defined because V (dTF (W )) 6= 0,

so that V
�

1P
k∈S wk

P
k∈S wkuk

�
6= 0 for all N large enough.

Hence we are reduced to the variance of a ratio. An application of the simple delta method shows
that, since uk is centered, the variance is in fact asymptotically equivalent to the variance of the mean
1
N

P
k∈S wkuk. To conclude, let θ = 1

N

P
k∈U IT (yk, F ). Because any (consistent) estimator bV of

V ( 1
N

P
k∈S wkuk) is a quadratic form of θ, it is continuous in θ. Thus replacing θ bybθ = 1P

k∈S wk

P
k∈S wkIT (yk, F ) in bV does not affect its consistency. By the same reasoning, we can also

replace 1/N by 1/
P

k∈S wk. Whence the second statement of the proposition ¤

4.5 Proposition 1.3

It suffices to show that ����V �Z v(y, bθ)dGS(y)

�
− V

�Z
v(y, θ)dW (y)

� ���� P−→ 0,

where, in the first variance, we do not take into account the variance due to bθ. By continuity of u 7→
V
�R

v(y, u)dW (y)
�
at θ, there exists a neighborhood V ′ of θ such as for all u ∈ V ′,����V �Z v(y, u)dW (y)

�
− V

�Z
v(y, θ)dW (y)

� ���� < ε.
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Furthermore, since bθ is consistent, there exists N0 such as for all N ≥ N0, bθ ∈ V ∩ V ′ with probability
1− η for all η > 0. Now,����V �Z v(y, bθ)dGS(y)

�
− V

�Z
v(y, θ)dW (y)

� ���� ≤����V �Z v(y, bθ)dGS(y)

�
− V

�Z
v(y, bθ)dW (y)

� ���� +

����V �Z v(y, bθ)dW (y)

�
− V

�Z
v(y, θ)dW (y)

� ����.
With probability 1− η, the first term is inferior to the supremum on V. Hence by assumption (1.7), there
exists N1 ≥ N0 such as the first term is inferior to ε with probability 1 − η. With the same probability,
the second term is also bounded by ε. Whence the result ¤

5 Appendix B : proofs of section 3
5.1 Case of t (sample S1) and t + 1 (sample S1)

We start from(2.5) to compute the covariances. In the double sum, we must distinguish depending on
whether k and l belong to the same area or not. In the second case, the formula of single and double order
inclusion probabilities lead to

Pr(k ∈ S1)Pr(l ∈ S2)

Pr(k ∈ S1, l ∈ S2)
=

m2/M2

m(3m− 2)/(3M(M − 1))
=

3m(M − 1)

M(3m− 2)
.

Otherwise,
Pr(k ∈ S1)Pr(l ∈ S2)

Pr(k ∈ S1, l ∈ S2)
=

m2/M2

2m/3M
=

2m

3M
.

Let Sa1 (resp Sa2) denote the sample of areas drawn at t (resp at t+1). Then the covariance estimator
writesdCov =

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

X
k,l∈Rg

wkzk w′lz
′
l +

�
1− 3m(M − 1)

M(3m− 2)

� X
g1∈Sa1
g2∈Sa2
g1 6=g2

X
k∈Rg1
l∈Rg2

wkzk w′lz
′
l

=

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g +

�
1− 3m(M − 1)

M(3m− 2)

� X
g1∈Sa1
g2∈Sa2
g1 6=g2

btz1g1
btz2g2

=

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g

+

�
1− 3m(M − 1)

M(3m− 2)

�2664 X
g1∈Sa1∩Sa2

btz1g1

0BB@ X
g2∈Sa2
g2 6=g1

btz2g2

1CCA+
X

g1∈Sa1/Sa2

btz1g1

0BB@ X
g2∈Sa2
g2 6=g1

btz2g2

1CCA
3775

=

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g +

�
1− 3m(M − 1)

M(3m− 2)

�0@ X
g1∈Sa1∩Sa2

btz1g1(btz2 − btz2g1) +
X

g1∈Sa1\Sa2

btz1g1
btz2

1A
=

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g

+

�
1− 3m(M − 1)

M(3m− 2)

�0@btz2

0@ X
g1∈Sa1∩Sa2

btz1g1 +
X

g1∈Sa1\Sa2

btz1g1

1A−
X

g∈Sa1∩Sa2

btz1gbtz2g

1A
=

�
1− 3

2

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g +

�
1− 3m(M − 1)

M(3m− 2)

� btz1
btz2 −

X
g∈Sa1∩Sa2

btz1gbtz2g

!
¤

5.2 Case of t (sample S1) and t + 2 (sample S2)

We follow the same path, the “complete” sample S1 ∪ S2 being now constituted of the entering, median
and exiting subsamples of date t, the entering ones of date t + 1 and the entering ones of date t + 2. Now

mc =
5

3
m; πc

k =
5

3
πk.
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As previously, we distinguish two cases.
– If k and l are in the same area, that area has to be in the entering sample at t and thus

Pr(k ∈ S1, l ∈ S2) =
1

3

m

M
.

– If k et l are in two different areas, the probability can be written as previously, that is

Pr(k ∈ S1, l ∈ S2) = πc
klP (k /∈ {4, 5}, l /∈ {1, 2})

= πc
kl(P (k /∈ {4, 5})− P (k /∈ {4, 5}, l ∈ {1, 2}))

= πc
kl

�
3

5
− 2

3
P (k, l ∈ {1, 2, 3})

�
.

where the third equality stems for the symmetry of 1, 2 and 3. Now picking up k and l in {1, 2, 3} amounts
to picking them both according to a SRSWOR of 3

5
mc = m among mc = 5/3m. Therefore,

Pr(k ∈ S1, l ∈ S2) = πc
kl

�
3

5
− 2

3

m(m− 1)
5
3
m( 5

3
m− 1)

�
=

πc
kl

5

�
3− 2(m− 1)

5
3
m− 1

�
=

πc
kl

5

3m− 1
5
3
m− 1

.

Besides, the “complete” sample is actually a SRSWOR of mc areas among M , so that

πc
kl =

mc(mc − 1)

M(M − 1)
=

5
3
m( 5

3
m− 1)

M(M − 1)
,

and thus
Pr(k ∈ S1, l ∈ S2) =

m(3m− 1)

3M(M − 1)
.

Hence, as previously,

dCov =
�
1− 3

m

M

� X
g∈Sa1∩Sa2

btz1gbtz2g +

�
1− 3m(M − 1)

M(3m− 1)

� btz1
btz2 −

X
g∈Sa1∩Sa2

btz1gbtz2g

!
¤
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