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Abstract

The problem of estimating a nonlinear regression model when the dependent variable
is randomly censored is considered. The parameter of the model is estimated by least
squares using synthetic data, that is a suitable transformation of the response variables
that preserves the conditional expectation. Two such transformations are considered.
Consistency and asymptotic normality of the least squares estimators are derived. The
proofs are based on a novel approach that uses i.i.d. representation of synthetic data
through Kaplan-Meier integrals. The asymptotic results are completed by a small com-
parative simulation study.

Key words: asymptotic normality, consistency, Kaplan-Meier integral, nonlinear
regression, right censoring, synthetic data.

MSC 2000: 62N02, 62J02, 62F12

Résumé

Nous considérons le problème de l’estimation d’un modèle de régression non linéaire, dans
le cas où la variable explicative est censurée aléatoirement. Le paramètre de ce modèle
est estimé par moindres carrés basés sur des ”synthetic data”, c’est à dire une certaine
transformation des observations qui préserve l’espérance conditionnelle. Deux transfor-
mations de ce type sont considérées. Les preuves sont basées sur une nouvelle approche
utilisant des représentations i.i.d. des ”synthetic data”, grâce aux représentations i.i.d.
des intégrales Kaplan-Meier. Les résultats sur les propriétés asymptotiques sont enrichis
par une étude comparative des différents estimateurs par simulation.

Mots clefs : normalité asymptotique, convergence, intégrale Kaplan-Meier, régression
non linéaire, censure à droite, synthetic data.



1 Introduction

The nonlinear regression model is a common way to infer about the dependence between
two random variables Y and X. Assuming that

E [Y | X] = f (θ0, X) , θ0 ∈ Θ ⊂ Rk,

where f is a known function, and given an i.i.d. sample of Y and X, a classical way
to deal with the estimation of the parameter θ0 consists in using a (nonlinear) least
squares procedure. In presence of random censorship, the situation appears to be more
complex. Assume that, instead of i.i.d. replications (X,Y ) ∈ Rd+1, one only observes n
independent copies of (X, δ, T ) where

T = Y ∧ C, δ = 1{Y≤C},

where C is a censoring random variable and 1A denotes the indicator function of the set A.
Then the least squares procedure must be properly adapted to account for censorship.
In the particular case of linear regression (that is when f is linear), several methods
have already been studied, mostly using martingales techniques. But inquiring into their
theoretical properties, the existing results strongly rely on the particular shape of the
linear regression function. Therefore the extension of these techniques to the more general
nonlinear regression model does not seem straight.

In the linear case, the existing estimators can be split into two main categories,
namely weighted least-squares and synthetic data estimators. None of the two approaches
dominates the other, that is, depending on the distribution of C or Y , either one or the
other approach have better finite sample and asymptotic properties. The weighted least-
squares approach was first considered by Zhou (1992a). Using suitable weights in the least
squares criterion, Zhou proposes an estimator that accounts for censorship. The weights
he used were then connected by Stute (1999) to the jumps of a distribution function
estimating P (X ≤ x, Y ≤ y). It is the only method that has been fully extended to the
nonlinear model case. An alternative method that we call the synthetic data approach,
is based on transformations of T = Y ∧ C which have the same conditional expectation
as Y . Such estimation methods were developed in Koul, Susarla and Van Ryzin (1981)
and Leurgans (1987). Buckley and James (1979) estimator could be also included in
the synthetic data type estimators. However, the transformation proposed by Buckley
and James depends also on θ0 and thus the implementation of this method requires an
iterative algorithm. For this reason, this approach will not be considered below.

The aim of this paper is to obtain asymptotic properties for a whole class of synthetic
data estimators in the case of nonlinear regression. Our class, which is closely related
to the transformations studied by Fan and Gijbels (1994), extends the estimators of
Koul, Susarla and Van Ryzin (1981) and Leurgans (1987) to nonlinear regressions. For
deriving the asymptotic results, instead of using martingales techniques as it was done in
the linear case, we will propose a new way to understand estimators of Koul, Susarla and
Van Ryzin (1981) and Leurgans (1987). Then they will be easily connected to Kaplan-
Meier integrals, such as those studied by Stute (1993, 1996).

The reminder of the paper is organized as follows. In section 2, the model and
the nonlinear least squares estimation method are introduced. Section 3 contains a new
representation of empirical means involving synthetic data as Kaplan-Meier integrals plus
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a negligible reminder. This representation is the key element for the new approach used
to obtain asymptotic results. Consistency and asymptotic normality for the nonlinear
least squares estimator are derived in section 4 and 5. In section 6, our theoretical study
is completed by an empirical comparison with Stute’s estimator (1999). Some concluding
remarks are gathered in section 7. The technical proofs are relegated to the appendix.

2 Model and estimator

In regression analysis with censored responses, one must first make some assumptions on
Y, C and X and their dependence relationships. Following Stute (1996, 1999), consider
the identifiability conditions

I1. Y and C are independent,

I2. P (Y ≤ C | Y,X) = P (Y ≤ C | Y ) .

Condition I1 is a common identification condition when using the Kaplan-Meier es-
timator. Conditions like I1 and I2 allow studying Koul, Susarla and Van Ryzin (1981)
estimator. This estimator, which will be denoted KSV in the following, relies on the
following transformation

Y ∗
KSV =

δT

1−G (T−)
(2.1)

where G (t) = P (C ≤ t). It follows from condition I2 that E [Y ∗
KSV | X] = E [Y | X].

Leurgans proposed another transformation of the censored response

Y ∗
L =

∫ (
1{T>t}

1−G (t)
− 1{t<0}

)
dt. (2.2)

In this case, to obtain E [Y ∗
L | X] = E [Y | X] , the following stronger condition is needed:

I2 ′. C and (X, Y ) are independent.

Weaker assumptions have also been proposed in some particular cases. In the case
of polynomial regression with one covariate X, Heuchenne and Van Keilegom (2006)
only require that Y and C are independent conditionally to X ∈ R. Heuchenne and
Van Keilegom (2005) extends the analysis to the case of a nonlinear, not necessarily
polynomial, univariate regression. However, this latter estimator requires some kernel
smoothing and thus happens to have bad performances when the number of covariates
increases. Moreover, discrete covariables cannot be considered. These drawbacks do not
affect our approach.

If Y ∗ were available, the parameter θ0 could be estimated through a standard least
squares procedure. Unfortunately, the transformations in (2.1) and (2.2) cannot be di-
rectly computed from the data. They would require exact knowledge of the distribution
function G. Although G is unknown, it can be estimated from the data, typically by its
Kaplan-Meier estimator

Ĝ (t) = 1−
∏

i:Ti≤t

(
n− i

n− i + 1

)1−δi

.
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Define

Ŷ ∗
i,KSV =

δiTi

1− Ĝ (Ti−)
, 1 ≤ i ≤ n,

Ŷ ∗
i,L =

∫ (
1{Ti>t}

1− Ĝ (t)
− 1{t<0}

)
dt, 1 ≤ i ≤ n,

MKSV
n (θ) =

1

n

n∑
i=1

(
Ŷ ∗

i,KSV − f (θ,Xi)
)2

,

ML
n (θ) =

1

n

n∑
i=1

(
Ŷ ∗

i,L − f (θ,Xi)
)2

,

θ̂KSV = arg min
θ∈Θ

MKSV
n (θ) ,

θ̂L = arg min
θ∈Θ

ML
n (θ) .

We call θ̂KSV and θ̂L the KSV and Leurgans estimator, respectively. Other estimators
can be computed by using convex combinations of (2.1) and (2.2). For α ∈ R, follow Fan
and Gijbels (1994) and define

Ŷ ∗
i,α = (1 + α) Ŷ ∗

i,L − αŶ ∗
i,KSV ,

Mα
n (θ) =

1

n

n∑
i=1

(
Ŷ ∗

i,α − f (θ, Xi)
)2

,

θ̂α = arg min
θ∈Θ

Mα
n (θ) .

See section 3 of Fan and Gijbels (1994) for a motivation of the definition of Ŷ ∗
i,α.

In the following, we derive asymptotic properties (consistency and asymptotic nor-
mality) for the class of estimators θ̂α which contains θ̂KSV and θ̂L as particular cases.
Before getting into the details, let us give a flavor of our approach. In the case of uncen-
sored dependent observations, the asymptotics of the nonlinear least-squares estimators
can be derived from the behavior of the functionals like

1

n

n∑
i=1

Yiϕ (θ, Xi) and
1

n

n∑
i=1

ψ (θ, Xi)

where ϕ and ψ are defined by f and its derivatives. The first sum can be seem as an
integral with respect to the empirical distribution function of the observations (X, Y ).
In the presence of censoring, a natural way to proceed with this integral is to replace
the empirical process by a suitable empirical measure that accounts for censored Y. On
contrary, as in the framework we consider the covariates X are not censored, the second
sum in the last display remains unchanged.

3 Kaplan-Meier integrals for synthetic data

Consider F(X,Y ) (x, y) = P (X ≤ x, Y ≤ y) the (d + 1)−variate distribution function of
(X,Y ). Stute (1993) proposed to estimate F(X,Y ) by putting on (Xi, Yi) the same weights
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as the Kaplan-Meier estimator puts on Yi in the univariate case. Stute’s estimator can
be written

F̂(X,Y ) (x, y) =
n∑

i=1

Wi:n1{Xi≤x}1{Ti≤y}

where Wi:n is the jump of the Kaplan-Meier estimator of F (t) = P (Y ≤ t) at observation
i. Stute (1993, 1996) derived strong law of large numbers and distributional convergence
for functionals like

∫
φ (x, y) dF̂(X,Y ) (x, y). The asymptotics of Stute (1999)’s estima-

tor for the nonlinear regression model under random censorship were derived from the
asymptotics of such a functional with φ (x, y) = (y − f (θ, x))2. The simplicity and intelli-
gibility of this method, along with the possibility to obtain asymptotic variance formulas
of the same form for each estimator, invites to inquiring into a similar connection to those
multivariate Kaplan-Meier integrals in the case of the synthetic data approach. For this
purpose, first note that

Wi:n =
1

n

δi

1− Ĝ (Ti−)
,

see equation (2) in Zhou (1992a) or Satten and Datta (2001) for a full proof of this
result. A direct consequence of this remark is the following representation lemma which
will permit studying KSV estimator.

Lemma 1 Let g (x) be any measurable function. Then

1

n

n∑
i=1

g (Xi) Ŷ ∗
i,KSV =

∫
g (x) y dF̂(X,Y ) (x, y) .

A similar representation of the empirical means involving Leurgans’ synthetic obser-
vations Ŷ ∗

L can be derived. Let H (t) = P (T ≤ t) and F (t) = P (Y ≤ t). Let Ĥ be the
empirical distribution of Ti and F̂Y the Kaplan-Meier estimator one would obtain from
Yi, 1 ≤ i ≤ n. The starting point for the representations with synthetic observations Ŷ ∗

L

is the identity

Ŷ ∗
L =

∫ ∞

−∞




(
1− F̂ (t)

)
1{T>t}

1− Ĥ (t)
− 1{t<0}


 dt, (3.1)

a direct consequence of the well known property 1− Ĥ (t) = (1− F̂ (t))(1− Ĝ (t)).
To avoid complicated expansions, in the following we will assume T > 0. This is

just for an easier formulation of the results and a better comparison with the proof of
asymptotic normality in the linear model case (Zhou, 1992b). This restriction does not
affect asymptotic properties, since all difficulties in proving asymptotic results stands in
the right tail of T . Note that in equation (3.3) below the measure F̂(X,Y ) can be replaced

by F̂Y , the Kaplan-Meier estimator of the distribution function of Y, and thus the first
integral in that equation is a one-dimensional integral. For the sake of unifying notation,
we prefer to write (3.3) in this way.

Lemma 2 Let g be a bounded measurable function, F (t,X) = P (Y ≤ t | X) and let

K (g, t) = E [g (X) (1− F (t,X))] =
E

[
g (X)1{T>t}

]

1−G(t)
.
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Assume T = Y ∧ C > 0 and suppose that for some ε ∈ (0, 1/2)

∫ |y|
(1−H (y))1/2+ε

dF(X,Y ) (x, y) < ∞. (3.2)

Then,

1

n

n∑
i=1

g (Xi)
(
Ŷ ∗

i,L− Y ∗
i,L

)
=

∫(∫ y

0

K (g, t)

1− F (t)
dt

){
dF̂(X,Y ) (x, y)− dF(X,Y ) (x, y)

}
(3.3)

+

∫
K (g, y)

1−H (y)

(
1

n

n∑
i=1

{
1{Ti≤y} −H (y)

}
)

dy

+Rn

with Rn = oP

(
n−1/2

)
.

The proof of this lemma is postponed to the appendix. Note that identity (3.3)
is related to equation (3.6) in Zhou (1992b). In view of (3.1), the first term of the
decomposition (3.3) can be interpreted as the contribution of the estimation of F by F̂ ,
while the second one comes from the approximation of H by Ĥ. Note that condition
(3.2) will be fulfilled for a large class of models including F and G both exponential or
both gaussian (with 1 − F decreasing faster than 1 − G), or F being gaussian and G
exponential.

4 Consistency

Consistency can be quickly derived using the above representations if f is differentiable
with respect to θ. However, we show that consistency can be achieved even without such
differentiability conditions. In the following, we shall say that a function ψ (θ,X) satisfies
the property (P ) if :

(P ) ∀ θ1, θ2 ∈ Θ, |ψ (θ1, X)− ψ (θ2, X)| ≤ Φ (X) ‖θ1 − θ2‖a ,

with E
[
Φ2 (X)

]
< ∞ and for some a > 0.

Assumption 1 i) E [Y | X] = f (θ0, X) for some θ0 ∈ Θ, where Θ is a compact subset
of Rk. Moreover, θ0 is unique with this property.
ii) The function f : Θ× Rd → R satisfies property (P ) and E [f 2 (θ0, X)] < ∞.

Assumption 2 E [Y ∗2
α ] < ∞ for α = −1 and α = 0.

Assumption 3 The censoring C satisfy conditions I1 and I2 ′ if α 6= 1, I1 and I2 if
α = 1, and P (Y = C) = 0. The distribution functions F and G are continuous and
0 < τH = τF ≤ ∞, where τL = inf {t | L (t) = 1} for any distribution function L.

Assumption 1 i) states that the regression model is correct and guarantees the iden-
tification of θ0. Assumption 1 ii) represents a sufficient condition for f 2 (θ, X) to satisfy
a law of large numbers uniformly over Θ. See e.g. Pakes and Pollard (1989) or van
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der Vaart and Wellner (1996). Assumption 2 is equivalent to E [Y ∗2
α ] < ∞ for any

α ∈ R, and this is a minimal condition for applying nonlinear least squares with the
unobserved Y ∗

α . This assumption will suffice to prove consistency for θ̂α even if Y ∗
α is

replaced by Ŷ ∗
α in the definition of the nonlinear least squares estimator. As explained in

section 2, the independence between C and (X, Y ) imposed by Assumption 3 ensures that
E [Y | X] = E [Y ∗

α | X] , while the condition P (Y = C) = 0 allows to switch the roles
of Y and C and thus to estimate G by the classical Kaplan-Meier estimator Ĝ. When
τF > τH , there is no way to access to information about the law of Y beyond τH , so that,
in general, there is no way to consistently estimate θ0. The last part of Assumption 3
removes this case. The proof of the following theorem is postponed to the appendix.

Theorem 3 Under Assumptions 1 to 3, θ̂α → θ0 in probability.

5 Asymptotic normality

In the case of linear regression, Zhou (1992b) gave a proof of asymptotic normality of
Leurgans’ estimator that strongly relies on the particular shape of the regression function.
In fact, in the linear setting the least squares estimator θ̂ is a linear function of the Ŷ ∗

i .
In the nonlinear regression model, in general there is no explicit solution of the equation
defining θ̂. In such a case, the i.i.d. representations of the Kaplan-Meier integrals derived
by Stute (1996) become a valuable tool. Let us now introduce some notation similar to
that of Stute (1996), and recall the asymptotic representation of Kaplan-Meier integrals
derived in Stute (1993, 1996). In the following, ∇θg (resp. ∇2

θg) denotes the vector (resp.
matrix) of first (resp. second) order partial derivatives of a function g with respect to θ.

Assumption 4 i) The vector valued function ∇θf (θ, .) is bounded and its components
satisfy property (P).

ii) The matrix valued function ∇2
θf (θ, .) is bounded and its components satisfy prop-

erty (P).
iii) E

[
(T γ0 (T ) δ)2] < ∞ where γ0 (y) = (1−G (y−))−1 .

Let
H̃0 (y) = P (T ≤ y, δ = 0) , H̃11 (x, y) = P (X ≤ x, T ≤ y, δ = 0)

and for any measurable function φ, let

γφ
1 (y) = (1−H (y))−1

∫
1{y<t}φ (x, t) γ0 (t) dH̃11 (x, t) ,

γφ
2 (y) =

∫ ∫
(1−H (v))−2 1{v<y,v<t}φ (x, t) γ0 (t) dH̃0 (v) dH̃11 (x, t) .

Consider
φ0 (x, y) = y∇θf (θ0, x) (5.1)

and

φ̃0 (x, y) =

∫ y

0

(1− F (t))−1 K (∇θf (θ0, .) , t) dt. (5.2)

Note that
∣∣∣φ̃0 (x, y)

∣∣∣ ≤ Cy, provided that |∇θf (θ0, .)| ≤ C.
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Under Assumption 4 and condition (3.2), Stute (1993, 1996)’s results imply

∫
φ (x, y)

{
dF̂(X,Y ) (x, y)− dF(X,Y ) (x, y)

}
= n−1

n∑
i=1

{
ηφ

i − E
[
ηφ

i

]}
+ oP

(
n−1/2

)

with
ηφ

i = δiγ0 (Ti) φ (Xi, Ti) + (1− δi) γφ
1 (Ti)− γφ

2 (Ti) . (5.3)

The role of condition (3.2) is to ensure
∫ |y|C1/2 (y) dF(X,Y ) (x, y) < ∞, where

C (y) =

∫ y−

0

(1−H (w))−1 (1−G (w))−1 dG (w) .

See equations (1.6) and (1.10) to (1.12) in Stute (1995).
Now, we come to the asymptotic representation theorem for synthetic data estimators.

Theorem 4 Assume that θ0 is an interior point of Θ and let

Ω = E
[∇θf (θ0, X)∇θf (θ0, X)′

]
.

Suppose that Assumptions 1 to 3 and 4 hold and that condition (3.2) is satisfied. Let

φ0 (x, y) and φ̃0 (x, y) be defined as in (5.1) and (5.2). Then for α ∈ R,

θ̂α − θ0 = Ω−1 1

n

n∑
i=1

[
αηφ0

i + (1 + α) Ψθ0
i − f (θ0, Xi)∇θf (θ0, Xi)

]
+ oP

(
n−1/2

)
(5.4)

where function ηφ0

i is defined as in (5.3), and

Ψθ0
i = Y ∗

i,L + η
eφ0

i − E
[
η
eφ0

i

]
+

∫ τH

0

(
1{Ti≤y} −H (y)

)

1−H (y)
K (∇θf (θ0, .) , y) dy.

In view of the asymptotic representation (5.4), in order to achieve asymptotic nor-
mality, the variance of

∫
K (∇θf (θ0, .) , y) (1−H (y))−1 (

1{T≤y} −H (y)
)
dy

must be finite. This is the case provided that
∫ τH

0

(∫ u

0

|K (∇θf (θ0, .) , v)|
1−H (v)

dv

)
|K (∇θf (θ0, .) , u)| du < ∞. (5.5)

As ∇θf (θ0, .) is bounded, it is easy to check that (5.5) is implied by the condition∫
y (1−G (y))−1 dF (y) < ∞. Here, it is implied by Assumption 4 and therefore no

additional condition will be needed to deduce the following corollary.

Corollary 5 Under the same hypothesis as in Theorem 4,

√
n

(
θ̂α − θ0

)
=⇒ N (

0, Ω−1ΣαΩ−1
)

with Σα the covariance matrix of αηφ0

i + (1 + α) Ψθ0
i − f (θ0, Xi).
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To estimate the limit covariance matrix, one can follow the lines of Stute (1999), that
is one can replace the random variables γi by their empirical counterparts

γn
0 (y) =

1

1− Ĝ (y−)

γn,φ
1 (y) =

(
1− Ĥ (y)

)−1
∫

1{y<w}φ̂ (x,w) γn
0 (w) dH̃11

n (x,w)

γn,φ
2 (y) =

∫ ∫ (
1− Ĥ (v)

)−2

1{v<y,v<w}φ̂ (x,w) γn
0 (w) dH̃0

n (v) dH̃11
n (x,w)

with H̃0
n (t) = n−1

∑n
i=1 1{Ti≤t, δi=0} and H̃11

n (x, t) = n−1
∑n

i=1 1{X≤x, Ti≤t, δi=1}, and φ̂ is

obtained by plugging in θ̂α instead of θ0. The integrals

∫ τH

0

(
1{Ti≤y} −H (y)

)
(1−H (y))−1 K (∇θf (θ0, X) , y) dy,

can be estimated by

∫ τH

0

(
1{Ti≤y} − Ĥ (y)

)(
1− Ĥ (y)

)−1

K̂
(
∇θf(θ̂α, .), y

)
dy,

where

K̂
(
∇θf(θ̂α, .), y

)
=

1

n

n∑
i=1

∇θf
(
θ̂α, Xi

) 1{Ti>t}
1− Ĝ (Ti−)

.

Then covariance can be estimated by the empirical covariance of these estimated random
variables. Validity of such techniques are discussed in Stute (1996, 1999) for the γi, or
in Zhou (1992b) for the second part due to Leurgans’ estimator (see remark 3.3 in Zhou,
1992b).

6 Empirical evidence

To assess the performances of these estimators for finite sample sizes and compare them
to Stute’s estimator (1999), we proceeded to a small empirical experiment. We considered
the function f (θ, x) as in Stute (1999),

f (θ, x) =
1

θ1 + θ2

exp (θ1x1 + θ2x2) .

The true parameter is θ0 = (0.5, 0.3)′ and X = (X1, X2)
′ consists of two independent

random variables with uniform distribution on [0, 1]. The purpose of the simulations is
to estimate the mean squared error (MSE) E[‖θ̂ − θ0‖2] for each of the following four
estimators θ̂: KSV, Leurgans, Stute, and FG estimator, that is an estimator θ̂α based
on the adaptive choice of α inspired by Fan and Gijbels (1994). Let us recall that Stute
(1999)’s estimator can be defined as the value of θ that minimizes

∫
[y − f (θ, x)]2 dF̂(X,Y ) (x, y) .
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The sample based α we use for FG estimator is

min
{i: δi=1, Ŷ ∗i,L−Ti>0}

Ŷ ∗
i,L − Ti

Ŷ ∗
i,KSV − Ŷ ∗

i,L

.

This choice is closely related to α̂ defined by Fan and Gijbels (1994), equation (11),
the difference being that in our framework we do not need to use kernel smoothing for
estimating the distribution G.

The sample size was taken n = 30 and n = 100. For each sample size, 5000 samples
of (Y, X ′)′ were simulated. Given a sample of (Y, X ′)′ several levels of censoring were
considered. We do not report the results for KSV estimators as they were far worse in
all cases considered.

Insert Figure 1 here

In the first simulation experiment, the residual ε = Y −f (θ0, X) was generated from a
standard normal variable independent of X. As in Stute (1999), the censoring distribution
was uniform on [0, t] where t gives the strength of censorship: large (small) values of t
produce light (heavy) censoring. Note that, in this particular setting, Assumption 3 is
partially violated, because τH < τF = ∞. This was already the case in Stute (1999) who
also used this kind of assumption. See discussion in Stute (1999), p.1094. The results
of this first simulation study are displayed in Figure 1. Leurgans (nonlinear) estimator
outperforms the three competitors, especially in presence of heavy censoring. The poor
performance of θ̂α with the sample based choice of α is due to the failure of the KSV
(nonlinear) estimator.

Insert Figure 2 here

For the second simulation, we considered heteroscedastic normal errors ε with condi-
tional variance

E
(
ε2 | X)

= (1 + X1 + X2)
−2 .

Moreover, the censoring variable C was generated from an exponential law of parameter
λ defining the level of censoring. In this setup, Assumption 3 is fulfilled. With such
a configuration, the observations (Yi, X

′
i)
′ with large f (θ, Xi) are very informative, but

more subject to censoring. By definition, Stute’s estimator partly overlooks the informa-
tion carried by these observations when they are censored. Then, Leurgans (nonlinear)
estimator is expected to behave better. This intuition is confirmed by the results plotted
in Figure 2: Stute is worse than Leurgans and FG estimator. In this case, FG estimator
performs well, perhaps due to the slightly better behavior of KSV estimator.

7 Conclusion

The linear regression model with a right censored dependent variable received extensive
attention in survival data analysis. On contrary, nonlinear (parametric) regression with
censored responses was quite little investigated. In this paper we propose a new way
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to estimate the parameters of the nonlinear regression in the presence of censoring. A
class of estimators is introduced. The estimators are obtained by least squares based on
synthetic responses. Heteroscedastic errors with unknown conditional variance and dis-
crete covariates are allowed. A small empirical investigation indicates that our estimators
outperform the estimator of Stute (1999) in finite samples. This can be explained by
the fact that Stute’s estimator drops a part of the information carried by the censored
observations, while the estimators we propose use this information.

The synthetic responses are obtained from the original observations through a trans-
formation that depends on data. See Koul, Susarla and Van Ryzin (1981) and Leurgans
(1987). Consequently, the synthetic observations are not i.i.d. even if the original data
were. This complicates the asymptotic analysis of least squares estimators. In the lin-
ear regression case, martingale arguments were used to deal with this problem. Such
arguments heavily relies on the particular shape of the regression function. Our idea is
to derive new representations of empirical means involving synthetic observations using
Kaplan-Meier integrals. With at hand such representations and given the i.i.d. repre-
sentations of the Kaplan-Meier integrals obtained by Stute (1993, 1996), the asymptotic
properties of the least squares estimator becomes straight. The extension to a weighted
least squares procedure designed to yield less variable estimates in the presence of het-
eroscedastic errors is also quite easy. We argue that our approach is potentially even more
valuable and can be also applied to semi- or nonparametric regression models. This last
issue will be investigated in future work.

A Appendix

In the following, to simplify notation we only deal with positive random variables Ti. The
general case does not rise any problem since the difficulty stands in the vicinity of τH .

Proof of Theorem 3. For the sake of simplicity, we only consider case α = 0 and
α = −1 corresponding to Leurgans and KSV-estimator respectively. The case α ∈ R can
be directly adapted from this proof.

By Assumption 2, θ0 = arg minθ∈Θ Γ (θ), where Γ (θ) = E [f 2 (θ, X)]−2E [Y f (θ, X)],
and θ̂α = arg minθ∈Θ Γα

n (θ), where Γα
n (θ) = n−1

∑
i f

2 (θ,Xi) − 2n−1
∑

i Ŷ
∗
i,αf (θ, Xi).

Assumption 1 ensures that {f 2 (θ, ·) : θ ∈ Θ} satisfies a uniform law of large numbers
(e.g., Pakes and Pollard, 1989, or van der Vaart and Wellner, 1996). Deduce that
n−1

∑
i f

2 (θ, Xi) → E [f 2 (θ,X)] almost surely (a.s.) uniformly over Θ.
For the case α = −1, use the representation of Lemma 1, to write

2n−1
∑

i

Ŷ ∗
i,KSV f (θ, Xi) = 2

∫
yf (θ, x) dF̂(X,Y ) (x, y) .

Now, as in Stute (1999), apply an uniform version of Stute (1993)’s law of large numbers
to conclude that supθ∈Θ |Γα

n (θ)− Γ (θ)| → 0 a.s., and thus to obtain the consistency.
For the case α = 0, we could also use the asymptotic properties of the Kaplan-

Meier integrals. However, if we were to use a uniform version of the representation in
Lemma 2 with the reminder term Rn of order oP (n−1/2), the conditions imposed to derive
consistency would be too strong. Instead of proving a representation like in Lemma 2

10



but with a reminder of order oP (1) uniformly in θ, for the sake of simplicity, we provide
a more direct argument in this case. Rewrite

1

n

∑
i

Ŷ ∗
i,Lf (θ,Xi) =

1

n

∑
i

(
Ŷ ∗

i,L − Y ∗
i,L

)
f (θ, Xi) +

1

n

∑
i

Y ∗
i,Lf (θ, Xi) .

The second sum converges to the desired limit uniformly over Θ, while the first sum is
of order oP (1) uniformly over Θ as a consequence of Cauchy-Schwarz inequality, Lemma
A.1 below and the uniform law of large numbers.

Lemma A.1 Assume that E [Y ∗2
L ] < ∞ and G is continuous. Then

1

n

n∑
i=1

(
Ŷ ∗

i,L − Y ∗
i,L

)2

= oP (1) .

Proof. Write

Ŷ ∗
i,L − Y ∗

i,L =

τH∫

0

1{Ti>t}
1−G (t)

Ĝ (t)−G (t)

1− Ĝ (t)
dt

≤ sup
t≤T(n−kn)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

T(n−kn)∫

0

1{Ti>t}
1−G (t)

dt

+ sup
t≤T(n)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

τH∫

T(n−kn)

1{Ti>t}
1−G (t)

dt,

where T(j) denotes the j-th order statistics of the sample T1, ..., Tn. Then, for each
i = 1, ..., n

(
Ŷ ∗

i,L − Y ∗
i,L

)2

≤ 2

(
sup

t≤T(n−kn)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

)2



T(n−kn)∫

0

1{Ti>t}
1−G (t)

dt




2

+2

(
sup

t≤T(n)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

)2



τH∫

T(n−kn)

1{Ti>t}
1−G (t)

dt




2

.

As 1{Ti>t} (1−G (t))−1 is positive, T(n−kn) can be replaced by τH in the first integral of
the last display. Summing the inequalities for each i yields

1

n

n∑
i=1

(
Ŷ ∗

i,L − Y ∗
i,L

)2

≤ 2

(
sup

t≤T(n−kn)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

)2 n∑
i=1

Y ∗2
i,L

n
(A.1)

+
2

n

(
sup

t≤T(n)

∣∣∣∣∣
Ĝ (t)−G (t)

1− Ĝ (t)

∣∣∣∣∣

)2 n∑
i=1




τH∫

T(n−kn)

1{Ti>t}
1−G (t)

dt




2

.
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By Csörgö’s theorem (Csörgö, 1996)

sup
x≤T(n−kn)

∣∣∣∣∣
Ĝ(x)−G(x)

1− Ĝ(x)

∣∣∣∣∣ = OP

(
k−1/2

n

)
,

provided that G is continuous. Applying Csörgö’s theorem with kn =
⌊
(log n)2⌋ and

using the law of large numbers for Y ∗2
i,L, the first term on the right hand side of (A.1) is

easily seen to converge to zero in probability. Since

sup
t≤T(n)

∣∣∣∣
(
Ĝ (t)−G (t)

)(
1− Ĝ (t)

)−1
∣∣∣∣ = OP (1) ,

(e.g. Zhou, 1992b, equation (5.9)) to prove that the second term on the right hand side
of (A.1) converges to zero in probability, it suffices to show

Sn = n−1

n∑
i=1




τH∫

T(n−kn)

1{Ti>t} (1−G (t))−1 dt




2

→ 0,

in probability. Let an be a sequence tending to infinity with P
(
T(n−kn) ≥ an

) → 0. Then,
we have with probability tending to 1

Sn ≤ n−1

n∑
i=1




τH∫

an

1{Ti>t} (1−G (t))−1 dt




2

.

Taking the expectation of the two parts leads to

E [Sn] ≤ E







τH∫

an

1{T>t} (1−G (t))−1 dt




2


with the right part tending to zero with probability 1 in view of E [Y ∗2
L ] < ∞ and

dominated convergence theorem. As Sn appears to be a sum of positive quantities, it
follows that Sn = oP (1) and this completes the proof.

Proof of Lemma 2. First, simplify notation: F̂ (t) is the Kaplan-Meier estimator of
F (t) = P(Y ≤ t). Write

Ŷ ∗
L − Y ∗

L =

∫ τH

0

(
F (t)− F̂ (t)

)
1{T>t}

1−H (t)
dt + I(T )

with

I(T ) =

∫ τH

0

(
1− F̂ (t)

)
1{T>t}

1−H (t)

(
Ĥ (t)−H (t)

1− Ĥ (t)

)
dt.
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Next, decompose

1

n

n∑
i=1

g (Xi)
(
Ŷ ∗

i,L − Y ∗
i,L

)
=

∫ τH

0

K (g, t)

1− F (t)

(
F (t)− F̂ (t)

)
dt

+
1

n

n∑
i=1

g (Xi) I(Ti) +

∫ τH

0

R0n (t) dt

=

∫ τH

0

(∫ y

0

K (g, t)

1− F (t)
dt

) {
dF̂ (y)− dF (y)

}

+
1

n

n∑
i=1

g (Xi) I(Ti) +

∫ τH

0

R0n (t) ,

where the last equality can be obtained by Fubini’s theorem. On the other hand, rewrite

I (T ) =

∫ τH

0

(
1− F̂ (t)

)
1{T>t}

(1−H (t))2

(
Ĥ (t)−H (t)

)
dt + R1n (T ) . (A.2)

Replacing F̂ by F in equation (A.2) leads to

I (T ) =

∫ τH

0

1{T>t}
(1−H (t)) (1−G (t))

(
Ĥ (t)−H (t)

)
dt + R1n (T ) + R2n (T ) .

Now, rewrite

1

n

n∑
i=1

g (Xi) I (Ti) =

∫ τH

0

n−1
∑n

i=1 g (Xi)1{Ti>t}
(1−H (t)) (1−G (t))

(
Ĥ (t)−H (t)

)
dt

+
1

n

n∑
i=1

g (Xi) (R1n (Ti) + R2n (Ti))

=

∫ τH

0

K (g, t)

1−H (t)

(
Ĥ (t)−H (t)

)
dt

+

∫ τH

0

R3n (t)

(1−H (t)) (1−G (t))

(
Ĥ (t)−H (t)

)
dt

+
1

n

n∑
i=1

g (Xi) (R1n (Ti) + R2n (Ti)) .

We can write
∫ τH

0

K (g, t)

1−H (t)

(
Ĥ (t)−H (t)

)
dt = −

∫ τH

0

K (g, t)

1−H (t)

({
1− Ĥ (t)

}
− {1−H (t)}

)
dt

which shows that the integral on the left side is almost surely finite. It remains to prove
that the reminders R0n to R3n are negligible. For this, recall that

for any a > 0, sup
t

∣∣∣Ĥ (t)−H (t)
∣∣∣ (1−H (t))−1/2+a = OP

(
n−1/2

)
, (A.3)

sup
t

(1−H (t))
(
1− Ĥ (t)

)−1

= OP (1) , (A.4)

sup
t

(
1− F̂ (t)

)
(1− F (t))−1 = OP (1) . (A.5)
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See, for instance, Shorack and Wellner (1986) and Zhou (1992b). Moreover, notice that
condition (3.2) implies

∫ τH

0

(1− F (t))1−ε

(1−H (t))1/2
dt < ∞ and

∫ τH

0

(1− F (t))1/2

(1−G (t))1/2+ε
dt < ∞, (A.6)

for some ε > 0. Indeed,

J ≤
∫ τH

0

(1− F (t))1/2−ε

(1−G (t))1/2+ε
dt =

(
1

2
− ε

) ∫ τH

0

∫ t

0

ds

(1−H (s))1/2+ε
dF (t)

≤
(

1

2
− ε

) ∫ τH

0

tdF (t)

(1−H (t))1/2+ε
< ∞

with J any of the integrals in (A.6).
The order of R0n. We have to prove that

∫ τH

0

n−1
∑

i g (Xi)1{Ti>t} − E
[
g (X)1{T>t}

]

1−H (t)

(
F (t)− F̂ (t)

)
dt = oP

(
n−1/2

)
.

For some fixed ε > 0, the family of functions

{
(x, t) → g (x)1{t>s} (1−H (s))−1/2+ε : s ≥ 0

}

is Euclidean for a square integrable envelope (see Pakes and Pollard, 1989, for the defi-
nition of a Euclidean family of functions; see also example 2.6.23 in van der Vaart and
Wellner, 1996), so that

n−1
∑

i

[
g (Xi)1{Ti>t} − E

(
g (X)1{T>t}

)]
(1−H (t))−1/2+ε = OP

(
n−1/2

)

uniformly in t. From Stute (1993) and equation (A.5) above,

sup
t

∣∣∣F (t)− F̂ (t)
∣∣∣

(1− F (t))1−ε ≤
[
sup

t

∣∣∣F (t)− F̂ (t)
∣∣∣
]ε


sup

t

∣∣∣F (t)− F̂ (t)
∣∣∣

1− F (t)




1−ε

(A.7)

= oP (1) OP (1) = oP (1) .

Therefore ∣∣∣∣
∫ τH

0

R0n (t)

∣∣∣∣ ≤ oP

(
n−1/2

) ∫ τH

0

(1− F (t))1/2−2ε

(1−G (t))1/2+2ε
dt

and the last integral above is finite by the arguments used to prove (A.6).
The order of R1n. We have

R1n (T ) =

∫ τH

0

(
1− F̂ (t)

)
1{T>t}

(1−H (t))2


Ĥ (t)−H (t)√

1− Ĥ (t)




2

dt.
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Rewrite, for any ε ∈ (0, 1)

R1n (T ) =

∫ τH

0

(
Ĥ (t)−H (t)

{1−H (t)}1/2−ε/4

)1+ε
(1− F (t))1{T>t}

(1−H (t))3/2+ε/2+(1+ε)ε/4

(
1− F̂ (t)

1− F (t)

)

×
(

Ĥ (t)−H (t)

1−H (t)

)1−ε (
1−H (t)

1− Ĥ (t)

)
dt.

By equations (A.3) to (A.5),

∣∣∣∣∣
1

n

n∑
i=1

g (Xi) R1n (Ti)

∣∣∣∣∣ ≤ OP

(
n−1/2−ε/2

)∫ τH

0

(1− F (t)) n−1
∑n

i=1 |g (Xi)|1{Ti>t}

(1−H (t))3/2+ε/2+(1+ε)ε/4
dt.

Now, observe that for a given ε ∈ (0, 1), the family of functions

hs (X, T ) = g (X)
1{T>s}

(1−H (s))1−ε − E

[
g (X)

(1−H (t,X))

(1−H (t))1−ε

]
, s ≥ 0, (A.8)

is an Euclidean family for the integrable envelope g (X) (1−H (T ))−1+ε (one more time,
see van der Vaart and Wellner, 1996). By the uniform law of large numbers,

sup
s≥0

∣∣∣∣∣
1

n

n∑
i=1

hs (Xi, Ti)

∣∣∣∣∣ → 0

almost surely. As g is bounded and E [1−H (t,X)] = 1−H(t), by (A.6)

∣∣∣∣∣
1

n

n∑
i=1

g (Xi) R1n (Ti)

∣∣∣∣∣ ≤ OP

(
n−1/2−ε/2

)
{

oP (1) +

∫ τH

0

(1− F (t))1/2

(1−G (t))1/2+ε
dt

}

= OP

(
n−1/2−ε/2

)
= oP

(
n−1/2

)
.

The order of R2n. As g is bounded, for some C > 0

∣∣∣∣∣
1

n

n∑
i=1

g (Xi) R2n (Ti)

∣∣∣∣∣ ≤ C

∫ τH

0

∣∣∣F (t)− F̂ (t)
∣∣∣

(1−H (t))1/2+ε

(
1− Ĥ (t)

)

(1−H (t))

∣∣∣Ĥ (t)−H (t)
∣∣∣

(1−H (t))1/2−ε
dt.

By (A.3) and (A.4), for any ε ∈ (0, 1)

∣∣∣∣∣
1

n

n∑
i=1

g (Xi) R2n (Ti)

∣∣∣∣∣ ≤ OP

(
n−1/2

) ∫ τH

0

∣∣∣F (t)− F̂ (t)
∣∣∣

(1− F (t))1−ε

(1− F (t))1−ε

(1−H (t))1/2+ε
dt

= oP

(
n−1/2

)

where for the last equality we use (A.6) and (A.7).
The order of R3n. By the uniform law of large numbers applied with the family

defined in (A.8)

sup
s≥0

|R3n(s)|
(1−H (s))1−ε = oP (1) .
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Now, by (A.3) and (A.6)
∣∣∣∣∣
∫ τH

0

R3n (t)

1−G (t)

Ĥ (t)−H (t)

1−H (t)
dt

∣∣∣∣∣ ≤ oP

(
n−1/2

) ∫ τH

0

(1−H (t))1/2−ε/2

(1−G (t))
dt

= oP

(
n−1/2

) ∫ τH

0

(1− F (t))1/2−ε/2

(1−G (t))1/2+ε/2
dt

= oP

(
n−1/2

)
.

Proof of Theorem 4. For simplicity, only the case θ ∈ R is considered, the extension
to multidimensional parameter being straight. Moreover, it suffices to consider α = 0 and
α = −1, the general case following by a simple convex combination. A Taylor expansion
of ∇θM

α
n yields

θ̂α − θ0 = − (∇2
θM

α
n (θ1n)

)−1∇θM
α
n (θ0) ,

for some θ1n between θ0 and θ̂α. The proof is complete if for α = −1 and α = 0

∇2
θM

α
n (θ1n) =

2

n

n∑
i=1

[∇θf (θ1n, Xi)]
2 − 2

n

n∑
i=1

∇2
θf (θ1n, Xi)

(
Ŷ ∗

i,α − f (θ1n, Xi)
)
→ Ω

in probability and ∇θM
α
n (θ0) admits an i.i.d. representation. For α = −1,

∇2
θM

α
n (θ1n) = 2

∫ {
[∇θf (θ1n, x)]2 +∇2

θf (θ1n, x) f (θ1n, x)
}

dF̂X (x)

−2

∫
y∇2

θf (θ1n, x) dF̂(X,Y ) (x, y) .

As for the first integral in the last display we can apply a classical uniform law of large
numbers for uncensored data, to obtain the convergence of∇2

θM
α
n (θ1n) towards Ω in prob-

ability it remains to investigate the second integral. By Assumption 4(ii), the convergence
of Kaplan-Meier integrals and the consistency of θ̂α we have

∣∣∣∣
∫

y∇2
θf (θ1n, x) dF̂(X,Y ) (x, y)

∣∣∣∣ ≤
∫

y
∣∣∇2

θf (θ1n, x)−∇2
θf (θ0, x)

∣∣ dF̂(X,Y ) (x, y)

+E
[
Y∇2

θf (θ0, X)
]
+ oP (1)

≤ |θ1n − θ0|
∫

yΦ (x) dF̂(X,Y ) (x, y)

+E
[
Y∇2

θf (θ0, X)
]
+ oP (1)

= |θ1n − θ0| {E [|Y |Φ (X)] + oP (1)}
+E

[
Y∇2

θf (θ0, X)
]
+ oP (1)

= E
[
Y∇2

θf (θ0, X)
]
+ oP (1).

Deduce that ∇2
θM

α
n (θ1n) → Ω in probability when α = −1. For α = 0, proceed as in

Theorem 3 and use Lemma A.1 to obtain

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑
i=1

∇2
θf (θ, Xi) Ŷ ∗

i,L −
1

n

n∑
i=1

∇2
θf (θ, Xi) Y ∗

i,L

∣∣∣∣∣ = oP (1) .
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As θ1n → θ0 in probability, deduce that n−1
∑

i∇2
θf (θ1n, Xi) Ŷ ∗

i,L → E [∇2
θf (θ0, Xi) Y ∗

L ].
Therefore ∇2

θM
α
n (θ1n) → Ω in probability.

On the other hand, by our Lemma 1 and the results of Stute (1996)

∇θM
α
n (θ0) =

1

n

n∑
i=1

(
ηφ0

i − f (θ0, Xi)∇θf (θ0, Xi)
)

+ oP

(
n−1/2

)

when α = −1. For α = 0, apply Lemma 2 to obtain

∇θM
α
n (θ0) =

1

n

n∑
i=1

(
Y ∗

i,L − f(θ0, Xi)
)∇θf (θ0, Xi)

+

∫ (∫ y

0

K (∇θf (θ0, .) , s)

1− F (s)
ds

) (
dF̂Y (y)− dFY (y)

)

+

∫
K (∇θf (θ0, .) , y)

1−H (y)

(
1

n

n∑
i=1

{
1{Ti≤y} −H (y)

}
)

dy

+oP

(
n−1/2

)
.

Use the i.i.d. representation of Kaplan-Meier integrals (Stute, 1996) to complete the
proof.
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Figure 1: Mean squared error of Stute, Leurgans and FG estimators with homoscedastic errors.
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Figure 2: Mean squared error of Stute, Leurgans and FG estimators with heteroscedastic errors.
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