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Abstract

A number of countries have recently implemented variants of a negative income
tax, to push the less skilled members of the economy into work, or to make work
pay in comparison with welfare benefits. In most cases, these measures have
resulted for the concerned groups in a decrease of the tax rates, that remain
positive, rather than in a subsidy, in conformity with the recommendations of
the current theory of optimal taxation. Indeed in the Mirrlees setup (continuous
labor supply or intensive margin, unobserved productivity, utilitarian planner)
the marginal tax rate is non negative at the optimum.

The purpose of the paper is to question this result of the theory. We study
economies where it is optimal to have people in the economy work more than in
the laissez-faire. We provide an example in the intensive setup. The utilitarian
optima in the extensive model seem to exhibit this property quite generally. We
hope that these results help towards providing some theoretical foundations for
low skilled work subsidy, and extending the scope of welfare to work programs.

JEL classification numbers: H21, H31.
Keywords: optimal taxation, heterogeneity, welfare.

Résumé

Plusieurs pays ont récemment introduit des systèmes d’impôt négatif avec
l’objectif d’encourager les agents ayant des productivités faibles à travailler. Dans
la plupart des cas, ces mesures, si elles ont fait baisser les taux d’imposition des
groupes concernés, n’ont pas conduit à véritablement subventionner le travail de
ces personnes, conformément aux préconisations de la théorie actuelle de la ta-
xation optimale. Dans le cadre de Mirrlees (offre de travail continue ou marge
intensive, productivité non observée et objectif social utilitariste), le taux mar-
ginal d’imposition est en effet positif à l’optimum.

Cet article examine ce résultat de la théorie. Nous étudions des économies où
il est optimal de faire travailler des agents davantage qu’au laissez-faire. Nous
donnons un exemple dans le cadre intensif. Les optima utilitaristes dans le mo-
dèle extensif semblent présenter cette propriété de manière assez générale. Nous
espérons que ces résultats contribueront à fonder théoriquement les subventions
au travail pour les basses productivités.

Mots-clés: taxation optimale, hétérogénéité, impôt négatif.

Please address correspondence to Guy Laroque, laroque@ensae.fr, INSEE-
CREST J360, 15 boulevard Gabriel Péri, 92245 Malakoff Cedex, France.



1 Introduction
A number of countries have recently implemented variants of a negative income
tax, to push the less skilled members of the economy into work, or to make work
pay in comparison with welfare benefits. In most cases, these measures have
resulted for the concerned groups in a decrease of the tax rates, that remain
positive, rather than in a subsidy (see e.g. CBO (2000) for the United States).
This is in conformity with the current recommendations of the theory of optimal
taxation. Indeed it is now well established in the Mirrlees setup (continuous labor
supply or intensive margin, unobserved productivity, utilitarian planner) that the
marginal tax rate is non negative at the optimum (Seade (1977), Seade (1982),
Werning (2000), Hellwig (2005)). The purpose of the present paper is to revisit
this theoretical result, to question its robustness when there are multiple dimen-
sions of heterogeneity1, and to draw its implications for labor market distortions.
This is done through two examples, one in the intensive setup, the other in the
extensive framework.

In fact, early on Diamond (1980), more recently Saez (2002), Beaudry and
Blackorby (2004), Boone and Bovenberg (2004), Boone and Bovenberg (2006),
Choné and Laroque (2005) and Laroque (2005) have described setups where the
positive tax rate result does not hold. A common feature of the (rather different)
models used in these works is that labor supply decisions involve a zero-one com-
ponent, an extensive margin. Furthermore there are typically several (sometimes
implicit) dimensions of heterogeneity. These studies exhibit cases where negative
tax rates can occur at an optimum. But it is fair to say that their theoretical
foundations remain unclear as well as their practical relevance. Also it is impor-
tant to note that the implications of negative tax rates are quite different in an
extensive model and in an intensive model. In the intensive model, they imply
that labor supply is distorted upwards compared with the laissez-faire. In the
extensive model negative tax rates are mostly related to the shape of the distri-
bution of agents in the economy, and to the best of our knowledge, the previous
literature has not studied the extent of labor supply distortions in this setup.

We use a framework which contains as limit cases both the intensive and the
extensive models, and allow for multiple dimensions of heterogeneity. We take
a very simple separable specification for the agents tastes, in fact much simpler
than the standard Mirrlees specification: utility is linear in commodity and for
the participating agents labor supply has a constant elasticity with respect to
wages. Technically, our line of approach is to look first for properties of all the
second best optimal allocations, then restricting the attention to those that are
consistent with a utilitarian criterion.

The study of the intensive model follows on the steps of Sandmo (1993), but
1Indeed Mirrlees (1976) in its Section 4 indicates, along a line that will be pursued further

here, that the sign of the marginal tax rate cannot be predicted when the agents in the economy
differ along several dimensions of heterogeneity.
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we allow for a general non-linear tax. There are two dimensions of heterogeneity,
productivity and a variable opportunity cost of work. The specification however
makes it possible to subsume these two dimensions into a single one2. We are able
to completely characterize the set of second best allocations, including the ones
that involve pooling, in line with the general analysis of Jullien (2000). Hetero-
geneity comes into play in the measurement of the agents’ utilities, which increase
with productivity and may either decrease or increase with the work opportunity
cost. It is likely to decrease when the cost is associated with poor living condi-
tions (i.e. a handicap); it increases when the cost reflects opportunities outside
the legal market (such as gardening at home or black market activities). We find
that the Mirrlees result, of positive marginal tax rates, extends here whenever
the distribution of opportunity costs is independent of that of productivities,
whatever the impact of these costs on the agents utilities. We give an example of
optimal negative marginal rates in an economy where agents with low productiv-
ities exhibit a large spectrum of opportunity costs, and are better off, the larger
their costs. The negative tax rate serves to screen out the agents with large costs,
who anyway benefit from working at home or on the black market, in the spirit
of the imperfect screening literature (e.g. Akerlof (1978) or Salanié (2002)).

The extensive model has built in several dimensions of heterogeneity, since
both differences in productivity and in fixed opportunity cost to work are an
essential feature of the model. It also presents technical difficulties because of
its intrinsic non convexity. We specifically study the shape of the second best
allocations that are consistent with a utilitarian criterion. For simplicity, and
for comparison with the intensive case, we restrict our attention to the situation
where work opportunity costs have a log-concave distribution and are distributed
independently of productivity in the population. To our surprise, we find that
all the utilitarian optima in the benchmark model involve upwards labor supply
distortions for low productivity workers. The optimal financial incentives to work
involve a subsidy: low productivity workers are paid more than their productivity
at the optimal allocation. The argument is as follows. In the absence of income
effects, the marginal cost of public funds, say c, is equal to 1, the social value of
transferring 1$ per head to everyone in the population (the population size having
been normalized to one). Consider then a small change in the tax schedule in
favor of the working agents of (low) productivity ω, sufficiently small not to
modify the situation of the other agents, of productivity different from ω. It has
two effects: it gives more money to the agents that are already working, and it
brings into the labor force some pivotal agents previously unemployed. Under
utilitarianism (and not full redistribution!), the social value of a marginal transfer
to the working agents of productivity ω is larger than that of a transfer to the

2With a similar aim as ours, Beaudry and Blackorby (2004) have studied a model with
several ‘true’ dimensions of heterogeneity. This makes the study of the optimal taxes much
more complicated.
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whole population, and in the benchmark model has a social value larger than c
per dollar transferred: the first effect is positive. The second effect comes from the
pivotal agents that enter the labor force. They are essentially indifferent between
working and not working, and their contribution is the difference between their
productivity ω and their pay. For the first order condition to hold, this difference
must be negative: pay has to be larger than productivity. The result appears to
hold in a number of cases, and it would be of interest to study more precisely its
domain of validity.

To summarize, non negative optimal marginal tax rates, which obtain under
utilitarianism in the Mirrlees model, appear to be non robust to the presence
of heterogeneity, apart from that affecting productivity, in the economy. Then
upwards distortions in labor supply may be useful for screening purposes. In our
simple intensive model, this occurs in a rather special case, when the low income
people are thought to be well off agents who shirk. In the extensive model,
under utilitarianism, the less skilled workers have typically their work subsidized:
they work more than in the laissez-faire, and the utilitarian optimal allocations
have more ‘working poors’ than the competitive equilibrium. All this should the
subject of further research.

2 The setup

2.1 The model

We consider an economy with a continuum of agents of measure 1. The agents
supply labor, in quantity h, h ≥ 0, to produce an undifferentiated commodity in
quantity ωh = y. Here ω, ω ≥ 0, denotes the idiosyncratic productivity of the
agent, and y her before tax income.

After government transfers, the after tax income of the agent is denoted R(y),
where the non linear function R : IR+ → IR summarizes the action of the tax
authority. The tax function T corresponding to R is defined by

T (y) = y −R(y),

so that a negative marginal tax rate corresponds to a derivative R′(y) larger than
one.

Faced with the function R, the typical agent choses her labor supply by max-
imizing a choice index

u(R; α, β, ω) = max
h≥0

{
R(0) + α if h = 0

R(ωh)− βv(h) if h > 0
(1)

We say that an agent participates in the labor market when she choses a positive
labor supply, so that her choice index is given by the bottom line of the formula.

3



This specification is adopted for convenience, but is in line with a number
of works in the literature. The choice index of the agent is linear in commodity
(labor supply does not depend on the income level). The penibility of labor is
described with the function v(h), which we specify as

v(h) =
h1+ 1

e

1 + 1
e

.

The parameter e, e ≥ 0, common to all the agents in the economy, is the elasticity
of the labor supply of the participating agents with respect to wage. In the
limiting case e = 0, when R is non decreasing, everyone supplies one unit of
labor when participating: we obtain the extensive model.

On top of her productivity ω, an agent is characterized by the non negative
idiosyncratic parameters α and β. The former, α, the fixed opportunity cost of
work, represents the gain of being at home, not doing any work at all. When α
is equal to zero, we fall back on the intensive model. The latter, β, the variable
opportunity cost of work, scales the penibility of labor. We note θ = (α, β, ω).
The distribution of agents’ characteristics has support Θ in IR3

+ and is known to
the government. The cumulative distribution function is H.

2.2 Second best optimality and utilitarianism

Given a function R, an allocation yR is a function from Θ into IR+ such that,
for all θ, yR(θ) = ωh for some h that maximizes the program (1) of the agent
of characteristics θ. In this paper, all allocations are associated in this way with
some function R. To alleviate notations, we shall drop the index R when this
does not create ambiguity. The allocation yR, and the associated function R are
feasible when ∫

Θ

[yR(θ)−R(yR(θ))] dH(θ) = 0.

An allocation yR∗ and the associated transfer function R∗ are second best
optimal when there does not exist another feasible allocation which gives at least
as much utility to everyone in the economy and strictly more to a subgroup of
agents of positive measure. By definition, R∗ is second best optimal if and only
if the program {

maxR

∫
Θ
[yR(θ)−R(yR(θ))] dH(θ)

u(R; θ) ≥ u(R∗; θ) for all θ in Θ
(2)

has solution R∗ and value 0. It follows that yR is second best optimal if and
only if there is a non negative measure Π on Θ, such that the function R∗ is a
maximum of the Lagrangian

L =

∫
Θ

[u(R; θ) dΠ(θ) + (yR(θ)−R(yR(θ)) dH(θ)]. (3)
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Note that by quasi-linearity of the utilities, the solution to the program where a
constant a is added to R∗ is a + R∗, with yR∗ equal to ya+R∗ . Therefore∫

Θ

dΠ(θ) = 1,

and Π is a probability measure. Furthermore, when looking for all the second best
allocations, it will be convenient to ignore the feasibility condition, which fixes
the intercept of the function R∗, and choose a simpler normalization condition,
such as infθ∈Θ u(R∗, θ) = 0.

To simplify the presentation, in most of the paper, we shall work under the
assumption that the measure Π is absolutely continuous with respect to the
distribution of the agents characteristics. Then, for any measurable set A,

Π(A) =

∫
A

π(θ) dH(θ),

and π(θ) is interpreted as the social weight of the agents of characteristics θ. In
fact, the results that we obtain are typically valid for a general measure, possibly
with discrete masses: they cover in particular the Rawlsian optimum, which
corresponds to a unit mass on the agents with the lowest utility level.

Second best optimality is an ordinal concept, which does not depend on the
particular representation of the agents’ utilities, up to an increasing transforma-
tion. For comparison with the literature, we also study the subset of allocations
that obtain under utilitarianism, a cardinal notion3. Let Ψ(u(R, θ), θ) be the
utility that society assigns to the agent θ when her choice index is u(R, θ). The
function Ψ is non decreasing and concave in its first argument (a requirement
of consistency with private values). The social value of a marginal transfer to
agent θ, Ψ′

u(u(R, θ), θ), depends in an arbitrary way on its second argument: for
instance society may dislike the agents who like staying at home (decreasing in
α), or would like to compensate people with a large penibility of labor (increasing
in β). The second best allocation is consistent with utilitarianism when the asso-
ciated weights are proportional to the marginal social utility for some admissible
function Ψ

π(θ) =
Ψ′

u(u(R, θ), θ)∫
Θ

Ψ′
u(u(R, θ), θ) dH(θ)

. (4)

When Ψ is allowed to vary with the parameter θ, it is easy to see that any
second best optimal allocation can be supported with a well chosen Ψ: consistency
with utilitarianism is not a binding restriction.

3It may be worth emphasizing that we stick here to a purely welfarist viewpoint. We do
not consider situations where the social objective includes moral considerations other than the
effects of policies on individual utilities, as discussed in Sen (1982) and Kaplow and Shavell
(2001).
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Figure 1: Second best optimality and utilitarianism

When the function Ψ does not depend on its second argument, the standard
situation studied in the optimal tax literature, the condition binds and can be
written as

π(θ1) > π(θ2) if and only if u(R, θ1) < u(R, θ2).

This is illustrated on the stylized Figure 1, which sketches an hypothetical econ-
omy with two types of agents in the plan of their choice indices (U1, U2). The
second best frontier is the black curve ABCD, while the subset of the frontier
that is consistent with utilitarianism is made of the union of AB and CD, where
B and D are the points where the frontier has slope −1: it must have a tangent
of slope smaller than 1 in absolute value below the 45 degree line, and larger than
1 above the 45 degree line.

Our purpose is to find properties of the second best optimal functions R, in
particular when the social weights are consistent with utilitarianism.

3 The intensive case
This situation obtains when the fixed opportunity cost of labour α is equal to
zero for all the agents in the economy. The specification then coincides with
that described in Atkinson (1990) for empirical purposes. Diamond (1998) also
studies the shape of the optimal tax rates in a quasi linear in consumption model,
where labor supply elasticity is not constant. The closest in spirit predecessor of
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our analysis is Boadway, Marchand, Pestieau, and del Mar Racionero (2002) who
have quasi linearity in hours worked with heterogeneous preferences for leisure,
but work in a discrete setup, with four different states.

3.1 A change of variable

It turns out that there is a convenient reformulation of the problem, introducing
the choice index of the participating agents as a variable, instead of the func-
tion R. Indeed, in general when there are several dimensions of heterogeneity
(productivity, penibility of labor) and the government has only one dimension
of observation (income), a major difficulty is to identify the set of idiosyncratic
shocks that are associated with a given level of income, which typically depends
on the announced transfer function. Here, the specification of the choice index
and of the way shocks enter the model allow to reduce the problem to a single
dimension of heterogeneity from the start, independently of the function R.

Proposition 1. 1. Consider a function R : IR+ → IR. Let

V (γ) = max
y≥0

{
R(y)− γ

y1+ 1
e

1 + 1
e

}
,

where
γ =

β

ω1+ 1
e

.

V is a convex nonincreasing function, which satisfies

V ′(γ) = −v(yR(γ)),

whenever it is differentiable, so that R(yR(γ)) = V (γ)− γV ′(γ).

2. Conversely, to any convex nonincreasing function V corresponds a real func-
tion R̃ : IR+ → IR+ through

R̃(q) = min
γ≥0

V (γ) + γq.

R̃(.) is concave non decreasing in its argument. If V has been derived from
a function R as in 1., R̃(.) coincides with the function R◦v−1 when R◦v−1

is concave, which implies that R itself is non decreasing.

We shall denote Γ the support of the distribution of γ, with γ ≥ 0 and γ
its lower and upper (possibly infinite) bounds. From the point of view of the
agents the only thing that matters is the level V (γ) of their choice index, and
Proposition 1 shows that without loss of generality we can consider any convex
nonincreasing function. Also, without loss of generality, the government can
restrict the R functions to be non decreasing and such that R ◦ v−1 be concave.
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3.2 Optimal tax

Using the change of variable, the Lagrangian (3) becomes

L =

∫
V dΠ(θ) +

∫
[y − (V − γV ′)] dG(γ).

Since V depends only on γ, the Lagrangian depends only on the marginal dis-
tribution of dΠ in the dimension γ, which will be denoted dΠ(γ), with a slight
abuse of notation, and Π(γ) is its cumulative distribution. We can write

L =

∫
V dΠ(γ) +

∫
[y − (V − γV ′)] dG(γ)

By integration by parts (apply Lemma A.1. in Appendix with F = V , f = V ′,
y = Π, y(θ = 0) and y(θ) = 1), the Lagrangian becomes

L =

∫
(y + γV ′) dG(γ) +

∫
V ′(G− Π) dγ,

where V ′ = −v(y). Note that it depends only on the allocation y, i.e. the
derivative of the choice index (and not on its level V ).

The problem is to maximize L on the set of nonincreasing and positive func-
tions y, or, equivalently, on the set of nondecreasing and negative functions V ′.
The Lagrangian is strictly concave in V ′. It is maximized on a convex set. It
follows that it has a unique maximum.

Lemma 1. An allocation y is second best optimal if and only if there exists a
nondecreasing function Π : [γ, γ] → [0, 1] such that V ′(γ) = −v(y) is the solution
to

maxL =

∫
(v−1(−V ′) + γV ′) dG(γ) +

∫
V ′(G− Π) dγ,

on the set of nondecreasing and negative function V ′.

The set of second best optimal allocations is easy to describe when the dis-
tribution of heterogeneity is continuous, i.e.

Assumption 1 (Continuous distribution). The parameter γ is distributed in the
economy with the c.d.f. G of support [γ, γ], 0 < γ < γ < ∞. Furthermore G has
a continuous positive density g.

We have

Proposition 2. Suppose that Assumption 1 holds. A non negative decreasing
function y(γ) defined on Γ is a second best allocation if and only if the function

Π(γ) =

 G(γ)− g(γ)

[
1

v′(y(γ))
− γ

]
for γ in [γ, γ)

1 for γ = γ

8



is non negative and non decreasing.
Then both y(γ) and Π(γ) are continuous on (γ, γ). There is no distortion at

the top when Π is continuous at γ: γv′(y(γ)) = 1. There is no distortion at the
bottom when Π(γ) = 0: γv′(y(γ)) = 1. The social weights π(γ) associated with
this allocation are the (Stieltjes) derivative of Π(γ).

Proof: I) Necessity. Since y is increasing, V ′ is strictly positive and a necessary
condition for optimality is that the pointwise derivative of the Lagrangian in
Lemma 1 be equal to zero. This yields the condition of the Proposition.

Continuity is proved as follows. Since y(γ) is decreasing, any discontinuity
has to be downwards. That creates a downwards discontinuity for −1/v′(y) and
therefore for Π, a contradiction with the fact that Π is non decreasing. The no
distortion properties are straightforward consequences of the first order condition.

II) Sufficiency. The measure Π defined in the proposition is an adequate
multiplier for the second best program. The function

V (γ) =

∫ γ

γ

v′(y(γ)) dG(γ)

is convex non increasing. It maximizes the Lagrangian of Lemma 1 since its
derivative is a pointwise maximum of a concave function of V ′.

Remark 3.1. Here is a general version of Proposition 2 with proof in the Ap-
pendix, which allows for pooling (i.e. y may be constant on some interval). In
what follows, a pooling interval is a maximal interval where y is constant.
Proposition 3. Suppose that Assumption 1 holds. A nonnegative nonincreasing
function y(γ) defined on Γ is a second best allocation if and only if there exists a
nonnegative and nondecreasing function Π(γ) with values in [0, 1] such that∫ γ

γ

{
G(γ̃)− g(γ̃)

[
1

v′(y(γ))
− γ̃

]}
dγ̃ ≥

∫ γ

γ

Π(γ̃) dγ̃ (5)

for all γ, and (5) is an equality at any γ where y is decreasing.
Proposition 2 has established the existence of a one-to-one relationship be-

tween distributions of social weights and second best allocations without pooling.
This property does not hold any more when we allow for the possibility of pooling
(case of Proposition 3): different distributions may, in general, give rise to the
same second best allocation.

More precisely, pooling occurs when the Π function of Proposition 2 has de-
creasing parts. It turns out that pooling intervals can be generated by mass
points in the distribution of social weights, but, in general, they can also be gen-
erated by (many) smooth distributions of weights. In the appendix, we explain
geometrically how to construct the (set of) cumulative distribution functions Π
associated with a given allocation y.
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Figure 2: Social weights and negative marginal tax rates

3.3 Utilitarianism and marginal tax rates

The program of the typical consumer yields the first order condition

R′(y) = γv′(y),

or, using the equality R′ = 1− T ′

T ′(y)

1− T ′(y)
=

1

γv′(y)
− 1.

Let pI(γ) be the average value of the social weights of all the agents with idio-
syncratic characteristics smaller than γ:

pI(γ) =
Π(γ)

G(γ)
=

1

G(γ)

∫ γ

γ

π(x) dG(x).

Using Proposition 2, we get an expression of the optimal tax rate as a function
of the distribution of the heterogeneity in the population and of the social weights:

T ′(y(γ))

1− T ′(y(γ))
=

G(γ)

γg(γ)
(1− pI(γ)) . (6)

Under Assumption 1, G/g is well defined and positive for all γ larger than γ, and
the marginal tax rate has the same sign as (1− pI(γ)).

10



Consider the standard Mirrlees case where β is constant across the population,
and ω has a continuous distribution on [ω, ω]. Then

γ =
β

ω1+ 1
e

γ =
β

ω1+ 1
e

,

and productivity, as well as utility, decreases with γ. Utilitarianism is equivalent
to have social weights which increase with γ, which in turn implies that pI(γ)
increases with γ. Since pI(γ) = 1, pI(γ) < 1 for all γ < γ, and we (fortunately)
get the standard result: the marginal tax rate is always positive, but for the
boundaries of the domain where it is equal to zero.

The situation can change when there are other dimensions of heterogeneity,
which non trivially act on the agents utility levels. Suppose as an illustration that
the utility is of the shape Ψ[V (γ), β], with Ψ concave in its first argument, i.e. Ψ′

V

decreasing in V . When Ψ′
V does not depend on β, the standard argument applies

and optimal marginal tax rates are non negative. But Ψ′
V can be decreasing

in β: this is the case when the utility of the agent is a concave transformation
of [V (γ) + βK], where K > 0 and the additive term βK stands for the ‘home’
production of the agent supposed to increase with her variable cost to work on the
market. It can also be increasing in β, when a negative K in the above formula
stands for a handicap: larger β’s are associated with a lower quality of life, on
top of the direct market effects. Let

π̃(γ, β) =
Ψ′

V [V (γ), β]∫
Ψ′

V [V (γ), β] dH(θ)
,

so that the weights of interest to characterize the optimal allocation and tax
schedule are

π(γ) =

∫
π̃(γ, β) dG(β|γ),

where G(β|γ) is the distribution of β conditional on the parameter γ. There are
a variety of situations where tax rates are non negative:

Proposition 4. Assume that Ψ′
V [V, β] is decreasing in V , increasing (resp. de-

creasing) in β and that the distribution of β, conditional on γ, is first order
stochastically increasing (resp. decreasing) in γ.

Then the weights π(γ) are increasing and marginal tax rates are non negative.

Proof: Let
f(a, b) =

∫
π̃(a, β) dG(β|b).

f is increasing in a, since π̃, proportional to Ψ′
V [V (a), β], is. It is increasing

in b by first order stochastic dominance. It follows that π(γ) = f(γ, γ) is also
increasing in its argument.
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Since β = γ/ω1+1/e, it is plausible that G(β|γ) be first order stochastically
increasing in γ. Then if Ψ′

V is increasing in β, i.e. larger opportunity costs are
due to a handicap, the optimal marginal tax rates are non negative.

As a counterpart to the above proposition, it is easy to build examples with
negative marginal tax rates, say when Ψ′

V decreases with β while the conditional
distribution of β given γ increases. Consider the following economy. At the lowest
wage rate ω, there are a variety of β’s, a continuous distribution on [β, β]. For
all the wage rates above the minimum, a continuous distribution on (ω, ω], there
is a unique value of β, equal to β. In terms of γ’s, we have:

γ =
β

ω1+ 1
e

γm =
β

ω1+ 1
e

γ =
β

ω1+ 1
e

.

The agent γ is the most productive with the smallest opportunity cost to work.
All the agents of the segment [γ, γm] differ only by their productivities. All the
agents in [γm, γ] have the same low productivity ω, but have different, increasing,
opportunity costs. Figure 2 represents in a stylized way a possible profile of π(γ),
when the social weights are decreasing in β. Following standard utilitarianism, π
is increasing on [γ, γm]; it is supposed to decrease further on, the home production
effect more than compensating the mechanical increase in γ as β rises. The agent
with the largest social weight is the γm person with lowest productivity and
opportunity cost to work. The associated function pI(γ), which measures the
average height of π(x) for x smaller than γ, is also represented: pI(γ) increases
whenever it lies under the graph of π, decreases when it is above the graph,
and has an horizontal tangent when it crosses the π curve. Also, we know that
pI(γ) = 1. In the situation depicted on Figure 2, all the agents in the segment AB
face negative tax rates. As noted by Saez (2002), page 1054, negative marginal
tax rates at the bottom of the wage distribution as here can only occur if the
social weight of the γ agent, smallest productivity, largest work opportunity cost,
is smaller than the average social weight4.

4 The extensive model
We now turn to the study of second best optimal allocations in the extensive
model.

4.1 Social weights and optimal taxes

The extensive model obtains as a limit case of model (1) when the elasticity e
tends to zero: then the function v tends to zero for all h smaller than 1, and to +∞

4Indeed the function pI has to decrease towards one, and therefore must lie above the graph
of π.
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for all h larger than 1. If the agent participates, she is indifferent supplying any
quantity of labor smaller than 1, since the variable opportunity cost βv(h) then
is equal to zero. It follows that the after tax income schedule R(y) can be taken
to be non decreasing without loss of generality5. Then, when she participates,
the agent supplies one unit of labor and her before tax income y is equal to ω.
As a consequence, before tax income can take any value in the support Ω of
productivity, as well as the value 0. The function R has to be defined on {0}∪Ω.

Let D(y) = R(y)−R(0) denote the financial incentive to work for an income
y. The choice index of the typical agent, taken from (1), is

u(R; θ) = R(0) + max[α, D(ω)].

An agent works whenever α is less than or equal6 to D(ω). This implies∫
Θ

[yR(θ)−R(yR(θ))] dH(θ) =

∫
α≤D(ω)

[ω −D(ω)] dH(θ)−R(0),

and the Lagrangian (3) becomes

L =

∫
Θ

{
max[α, D(ω)] dΠ(θ) + [ω −D(ω)]11α≤D(ω) dH(θ)

}
.

After simple manipulations, the objective becomes

L =

∫
Θ

π(θ)α dH(θ) +∫
ω

∫ D(ω)

α=α(ω)

11α(ω)≤D(ω) {[D(ω)− α] dΠ(θ) + [ω −D(ω)] dH(θ)} .

We have shown

Lemma 2. An income tax schedule R(.) is second best optimal if and only if
there is a probability measure of cdf Π(θ) such that the incentive schedule D(ω) =
R(ω)−R(0) maximizes∫

ω

{
[ω −D(ω)]F (D(ω)|ω) dG(ω) + 11α(ω)≤D(ω)

∫ D(ω)

α(ω)

[D(ω)− α] dΠ(θ)

}

on the set of non decreasing functions D(.), such that D(0) = 0.

5Take any, possibly sometimes decreasing, function R̃(y). Let R(y) = maxy≥z R̃(z). The
agents have the same behavior under R and R̃.

6For efficiency, the agents that are indifferent between working and not working should
be put to work when their productivity is larger than the incentive cost to the government,
ω > D(ω) and left on the dole when the inequality is in the other direction, ω < D(ω). To
avoid an overburden of notations, in the following equations, we suppose that all those agents,
typically a set of measure zero, are working.
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It is convenient to work under

Assumption 2. For all ω, the distribution of opportunity costs of work α, condi-
tional on ω, is continuous with support [α(ω), α(ω)], α(ω) > α(ω) ≥ 0, and cumu-
lative distribution function F (α|ω). Its probability distribution function f(α|ω)
is positive everywhere on its support.

When Π(θ) is absolutely continuous with respect to H(θ), with pdf π(θ),
under Assumption 2, the criterion can be rewritten as∫

ω

L(D(ω); ω) dG(ω) (7)

where

L(D; ω) = [ω −D]F (D|ω) +

∫ D

α(ω)

[D − α]π(θ) dF (α|ω).

Since under Assumption 2, L(α(ω); ω) is equal to zero, the program can be re-
stricted7 to the domain of non decreasing functions D(.), satisfying D(ω) ≥ α(ω).

Unfortunately, contrary to the intensive case, the function L is not a concave
function of D. Nevertheless, at any point ω where the solution is strictly in-
creasing and larger than α(ω), it satisfies the first order condition for a pointwise
maximum89

∂L

∂D
(D; ω) = [ω −D]f(D|ω)− F (D|ω)[1− pE(D|ω)] = 0,

where pE(D|ω) is the average social weight of the agents of productivity ω and
of work opportunity cost smaller than D

pE(D|ω) =
1

F (D|ω)

∫ D

α(ω)

π(θ) dF (α|ω). (8)

7Whenever at the optimum L(D(ω);ω) = 0, D(ω) is indeterminate and can take any value
less than or equal to α(ω), without changing the objective: the condition D(0) = 0 can always
be satisfied.

8The second order condition is
∂2L

∂D2
(D;ω) = [ω −D]f ′(D|ω)− (2− π(D,ω))f(D|ω) < 0.

In general, there may exist several solutions to the first order condition, corresponding to local
maxima or minima.

9As in the intensive case, the optimum may involve pooling, with regions where D stays
constant because of the monotonicity condition. In a pooling interval [ω1, ω2], whenever D
does not hit the lower bound maxω∈[ω1,ω2] α(ω), the first order conditions become∫ ω2

ω1

∂L

∂D
(D;ω) dG(ω) = 0

and ∫ ω2

ω

∂L

∂D
(D;ω) dG(ω) ≤ 0

for all ω1 ≤ ω ≤ ω2.
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The expression of ∂L/∂D has a direct economic interpretation: the first term [ω−
D]f(D) is the gain in government income obtained from the new f(D) workers
that participate because of the increase in D; the second term F (D)[1− pE(D)]
is the loss on the existing workers F (D) which depends on their social weights
(and indeed is a social gain for those of weights larger than 1).

The tax supported by the workers of productivity ω is T (ω) = ω−D(ω)−R(0),
so that the first order condition can be rewritten as

ω −D(ω) = R(0) + T (ω) =
F [D(ω)|ω]

f [D(ω)|ω]
[1− pE(D(ω)|ω))]. (9)

This equation is strikingly similar to (6), which describes optimal taxes in the
intensive model. However, the formal similarity hides important differences. In
the intensive model this is the marginal rate of taxation that appears on the left
hand side, while here it is the level of tax. The right hand sides look the same,
but again this is deceptive. The average weight here, pE(D(ω)|ω)), is that of
the subset of the employed (α ≤ D(ω)) agents of productivity equal to ω. In
the intensive model it is the average weight of the agents of parameter β/ω1+1/e

smaller than the current γ, i.e. of larger productivity or smaller opportunity cost
to work. Social weights larger than 1, corresponding to a group of people whose
average social weight is larger than that of society as a whole, which are associated
with negative rates in the intensive model, here correspond to a financial incentive
D(ω) larger than ω. In both models the beneficiaries have their labor supplies
distorted upwards, compared with laissez-faire.

Remark 4.1. A limit case of some technical interest is the situation where every-
one has the same work opportunity cost, say α0, so that Assumption 2 does not
hold. This situation is studied by Homburg (2002), with a general utility function.
Then (7) is to be maximized over D, D non decreasing, with

L(D; ω) = {ω − α0π(ω) + D[π(ω)− 1]}11D≥α0 .

Under quasi linearity, existence of a (finite) solution requires conditions on the
weights. Typically there is a lot of pooling. Consider only the situation where
π(ω) is non increasing in ω: this is the case of interest under utilitarianism, since
D(ω) has to be non decreasing, and utility is presumably increasing in D. Recall
that the sum of weights is normalized to 1. Then the first order condition for a
pooling equilibrium (see footnote 9), i.e. :∫ ω

ω

[π(x)− 1] dG(x) ≤ 0,

for all ω, is satisfied, and simple calculations show that the optimum has D(ω) =
α0 for all ω, all agents are indifferent between working or not, with the agents of
productivities larger than α0 at work. Labor supply is efficient. The utilitarian
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optimum does not leave any surplus to the workers and everyone is treated equally.
Heterogeneity in the form of some dispersion of work opportunity costs give more
scope for redistribution, based on the unknown value of α.

Remark 4.2. At any second best allocation, the utility of an agent depends
on her characteristics (α, ω), the incentives to work D that she faces, and the
(uniform) transfer from the government R(0). This makes it easier to look for a
utilitarian optimum than in the intensive case, where the allocation depended on
the whole function R. Indeed, building on (4), the weights are proportional to
Ψ′

u[u(α, ω, D, R(0)), α, ω] and can be written as

π̂(α, ω, D) =
Ψ′

u[u(α, ω, D, R(0)), α, ω]∫
α,ω

Ψ′
u[u(α, ω, D(ω), R(0)), α, ω] dH(α, ω)

.

This (primal) formulation can be used instead of the (dual) π(α, ω). Indeed one
can let either

pE(D|ω) =


π(α(ω), ω) for D = α(ω)

1

F (D|ω)

∫ D

α(ω)

π(α, ω) dF (α|ω) for D > α(ω),

or

pE(D|ω) =


π̂(α(ω), ω, α(ω)) for D = α(ω)

1

F (D|ω)

∫ D

α(ω)

π̂(α, ω, D) dF (α|ω) for D > α(ω).

All the analysis below is valid in both cases.

4.2 Typical shapes of optimal tax schemes

The extensive model has imbedded at its heart two dimensions of heterogeneity,
which cannot be reduced to one. This gives a lot of leeway to get results of
the type ‘any kind of tax function can occur’ manipulating (9): one can play
with the distribution F (α|ω), as in Choné and Laroque (2005) for a Rawlsian
planner. To be more constructive, we first posit a set of natural assumptions on
the distribution of characteristics and on the shape of the social weights, which
seem to fit the underlying structure of the model. In Section 4.2.1, properties of
the tax schedules are derived under these assumptions. Then Section 4.2.2 shows
that in the standard model, under the distribution assumptions, a utilitarian
planner would have social weights that conform with the assumptions. Finally
Section 4.2.3 discusses limits and possible extensions of the analysis.

For comparison with the literature on the intensive model, we put restrictions
on the distribution of the agents characteristics. First, we do not want the corre-
lation between productivity and the opportunity cost of work to play a role, and
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in the main analysis we assume independence of the two distributions: F (α|ω)
does not depend on ω. It simplifies the exposition to suppose that the lower
bound of productivity is not larger than the lower bound of the opportunity cost
to work. Also we suppose that the distribution of heterogeneity is well behaved.
Formally, in this section, on top of Assumption 2, we assume

Assumption 3. The cdf F (α|ω) of the work opportunity cost α is independent of
productivity. Furthermore ln(F (α)) is concave on its support (α, α], and α > ω.

Two properties of the social weights turn out to be useful in the analysis. The
first one is formalized in the following assumption:

Assumption 4. The average weight of the employed agents pE(D|ω) is a func-
tion pE(D) independent of productivity. It is continuously differentiable, strictly
decreasing for D in [α, α], non increasing for D larger than α.

The second property is related to a threshold for the financial incentive to
work, equal to the value Dm which makes the average social weight of the em-
ployed agents equal to the marginal cost of public funds, here 1. Formally

Definition 1. Let Dm be the smallest root of the equation pE(D) = 1 if any, with
Dm = α if pE(D) < 1 for all D, and Dm = +∞ when pE(D) > 1 for all D.

The location of Dm with respect to the support of the distribution of work
opportunity costs [α, α] is an important determinant of the shape of the optimal
tax schedule, as the following proposition already indicates:

Proposition 5. Suppose that the average social weight of the unemployed agents
is larger than or equal to that of the workers. Under Assumption 4, if Dm ≥ α,
then at the optimum everyone works, the incentives to work are maximal: for all
ω, D(ω) ≥ Dm and pE(D(ω)) = 1.

Proof: The proposition relies on the fact that the social weights sum up to 1:∫
Ω

[F (D(ω))pE(D(ω)) + (1− F (D(ω)))pU ] dG(ω) = 1, (10)

where pU denotes the average social weight of the unemployed. An optimum
maximizes

∫
ω

L(D(ω); ω) dG(ω) over the set of non decreasing functions D(.).
Now for D ≥ α,

∂L

∂D
(D, ω) = pE(D)− 1.

It follows that it is never optimal to choose a value of D, D larger than α, such
that pE(D) < 1. Consequently at the optimal allocation, under Assumption 4,
pE(D(ω)) is larger than or equal to 1 for all ω’s. The left hand side of (10) is the
arithmetic average of terms all at least equal to 1. For the equality to hold, they
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Figure 3: The extensive model: ‘well behaved’ optimal financial incentives to
work

must all be equal to 1: as a consequence, pE(D(ω)) = 1 for all ω, which implies
that D(ω) ≥ Dm ≥ α. Everybody works, since the incentives to work are larger
than the maximal opportunity cost.

Typically, a redistributive government puts as much weight on the unemployed
as on the workers. Then when Dm ≥ α, which probably can only occur in
rich economies with high productivities, Proposition 5 shows that the optimal
allocation exhibits pooling, everyone receiving a very high wage D(ω), possibly
larger than productivity. For simplicity, in most of what follows, we shall limit
ourselves to the (more realistic) situations where Dm is smaller than α.

4.2.1 Properties of the tax schemes

We are now in a position to describe the qualitative properties of the optimal
tax schedule. The first proposition deals with all non pooling equilibria, the next
ones provide a more precise characterization of the optimum.

Proposition 6. Consider an economy satisfying Assumptions 2 to 4. Suppose
that the optimum D(ω) is strictly increasing in the region α > D(ω) > α (no
pooling). Then in this region:

1. For ω ≥ Dm, the financial incentive to work D(ω) is smaller than before
tax income ω: labor supply is distorted downwards compared to laissez-faire.
Furthermore the marginal tax rate is nonnegative.
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2. For ω ≤ Dm, the financial incentive to work D(ω) is larger than before tax
income ω: labor supply is distorted upwards compared to laissez-faire.

Proof: Since by assumption the optimal schedule is (strictly) increasing, the first
order condition (9) for a pointwise maximization holds in the region

ω −D(ω) =
F [D(ω)]

f [D(ω)]
[1− pE(D(ω))].

Then ω ≥ Dm if and only if 1 ≥ pE(Dm).
When D is larger than Dm, using Assumption 4, the right hand side of the

above equation, [1− pE(D)]F (D)/f(D), is increasing as the product of two non
negative increasing functions. This implies that ω−D(ω) is an increasing function
of ω: the marginal tax rate is non negative.

A possible shape of the optimal incentive schedule is drawn on Figure 3, which
obtains in the cases described in the following proposition.

Proposition 7. Consider an economy that satisfies Assumptions 2 to 4, with a
finite Dm, Dm ≤ α.

Assume that
M(D) = D +

F (D)

f(D)
[1− pE(D)]

is strictly increasing for α ≤ D ≤ Dm.
Then there is no pooling at the optimum for α ≤ ω ≤ M(α). The optimal

incentives D(ω) are uniquely defined for all ω such that M(α) ≥ ω ≥ α, and are
solution to the equation

M(D(ω)) = ω,

on this interval. Furthermore D(ω) is an increasing function of ω on [α, M(α)]
which satisfies

D(α) = α,

D(ω) >
< ω whenever D <

> Dm.

Finally, when α is finite, D(ω) is constant, equal to α, for ω larger than M(α).

Proof: Note that M(D) is increasing for D > Dm, since the last term in its
expression is the product of two nonnegative positive non decreasing functions.

We look for the function D(ω) which maximizes
∫

ω
L(D(ω); ω) dG(ω). We

have
∂L

∂D
(D; ω) =

{
f(D)[ω −M(D)] for α ≥ D ≥ α
pE(D)− 1 for D > α.

At the lower end of the domain, when α > α:

∂L

∂D
(α; ω) = (ω − α)f(α) ≥ 0.
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The preceding computations imply that, under the monotonicity assumption of
M(D), the function L(., ω) has a single maximum in the interval [α, α], which is
the unique root δ(ω) of the equation M(D) = ω when ω ≤ M(α), and is equal to
α for ω ≥ M(α). On the half line [α, +∞), L(., ω) also has a single maximum,
which is equal to max(α, Dm), and is decreasing whenever Dm is smaller than α.

Following Proposition 5, we focus on the case Dm ≤ α. Then the function
L(.; ω) has a unique global maximum D(ω) for all ω. It is equal to δ(ω) for ω
less than M(α), and to α for larger ω’s. This point wise maximization yields a
non decreasing function D(ω), and therefore corresponds to the global optimum.
The location of D(ω) with respect to the 45 degree line is a straightforward
consequence of the shape of M(D).

Figure 3 illustrates the two foregoing propositions in the ‘well-behaved’ sit-
uation10. The financial incentives to work are a continuous increasing func-
tion of productivity. Under Assumptions 2 to 4, there is a low skilled region,
α ≤ ω ≤ Dm, where labor supply is distorted upwards, while for higher produc-
tivities labor is taxed and the marginal tax rate is positive. In the more restricted
case of Proposition 7, the marginal tax rate is negative for low enough produc-
tivities (indeed, since D(α) = α and D(ω) > ω in a neighborhood, D′ has to
be larger than one in the region). Of course, if one is interested subsidizing low
skilled work, the significance of these results hinges on the extent of the region
[α, Dm]. Under utilitarianism, in a benchmark model, we next show that it is
indeed non empty: Dm > α.

4.2.2 Benchmark model

The properties of the social weights that underlie the foregoing propositions are
satisfied under utilitarianism in a natural benchmark model. Consider the para-
meter α as an incidental cost of work (and not as a benefit in case of not working).
The utility of the typical agent is

Ψ[u(R, θ)− α] = Ψ[R(0) + max(0, D(ω)− α)],

for some increasing concave function Ψ. Then the unemployed agents are the
worse off agents in the economy and, given R(0), the social weights consistent
with utilitarianism are of the form π̃(D − α), where

π̃(x) =
Ψ′[R(0) + max(0, x)]∫

α,ω
Ψ′[R(0) + max(0, D(ω)− α)] dH(α, ω)

.

The weights do not depend on ω. Concavity of the utility function implies that
π̃(x) is decreasing for positive x, and π̃(x) is equal to π̃(0) for all negative x.

10It is similar to Figure IIa in Saez (2002), who discusses from a more applied perspective
the occurrence of negative marginal tax rates.
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The average social weight of the employed agents pE(D) decreases (Assump-
tion 4) in the benchmark model. This feature may seem natural to a utilitarist,
but in fact it depends both on the welfare criterion and on the shape of the
distribution of α. A simple differentiation yields

p′E(D) =
f(D)

F (D)
[π̃(0)− pE(D)] +

1

F (D)

∫ D

α

π̃′(D − α) dF (α).

An increase in D increases the wealth of all the already employed agents, and
therefore decreases their average social weights (the second term), but it brings
into employment new blood, formerly unemployed with a high social weight (the
first term). In the benchmark model, the former effect dominates:

Lemma 3. Under Assumptions 2 and 3, Assumption 4, i.e. pE(D) is decreasing,
holds in the benchmark model.

Proof: The continuous differentiability of pE(D) is straightforward. We first
show that it is decreasing. For D > α, this is a direct consequence of the
monotonicity of π. For D in the support of F , we have

F (D)2p′E(D) =

[
π̃(0)f(D) +

∫ D

α

π̃′(D − α)f(α) dα

]
F (D)

− f(D)

∫ D

α

π̃(D − α)f(α) dα.

So p′E ≤ 0 is equivalent to

π̃(0) +
1

f(D)

∫ D

α

π̃′(D − α)f(α) dα ≤ 1

F (D)

∫ D

α

π̃(D − α)f(α) dα. (11)

For α ≤ D, we have, thanks to the log-concavity of F

f(α)

f(D)
≥ F (α)

F (D)
.

Since π̃′ ≤ 0, we have

π̃(0) +
1

f(D)

∫ D

α

π̃′(D − α)f(α) dα ≤ π̃(0) +
1

F (D)

∫ D

α

π̃′(D − α)F (α) dα

=
1

F (D)

∫ D

α

π̃(D − α)f(α) dα

which gives (11).

In the benchmark model, also the average weight of the unemployed agents is
equal to π̃(0), so that, following Proposition 5, we typically have α < Dm < α.
Furthermore, more importantly, subsidizing low skilled labour seems to be the
norm:
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Figure 4: The extensive model: a possible shape of optimal financial incentives
to work with a uniform distribution of work opportunity costs

Proposition 8. In the benchmark model, under Assumptions 2 and 3, if Dm =
α < α, then at the optimum allocation nobody works and incentives to work are
minimal: D(ω) = α for all ω.

Proof: The property is a simple consequence of the fact that the social weights
sum up to 1:∫

Ω

[F (D(ω))pE(D(ω)) + (1− F (D(ω)))π̃(0)] dG(ω) = 1, (12)

since in the benchmark model all the unemployed agents have the same weight
π̃(0), here also equal to pE(α) = pE(Dm) = 1. From Lemma 3, the weights
strictly decrease with D, and all the weights on the left hand side of (12) are at
most equal to 1. They must therefore be all equal to 1, i.e. pE(D(ω)) = 1 for all
ω. The strict monotonicity of pE(D) yields the desired result.

Under utilitarianism, in the benchmark model, apart from the special situa-
tion where incentives to work are constant and equal to the minimum opportunity
cost of work, it is optimal to subsidize low skilled work, at least when there is no
bunching (Proposition 6).

One can examine situations more complicated than the ones described in
Proposition 7 or Figure 3. Specifically, the function M(D) may very well be non
increasing for D < Dm, in which case the first order condition ω = M(D) typically
has several solutions. The proof of Proposition 7 goes through by selecting the
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solution D(ω) associated with the global maximum of L(D; ω), provided this
selection is increasing in ω. The shape of the incentive curve in the region below
Dm then could look quite different, for instance having D(α) > α and possibly
exhibiting upward discontinuities at solution switches. This is illustrated in the
following example (proof in the Appendix):

Proposition 9. Consider a benchmark economy satisfying Assumptions 2 and 3.
Suppose that the opportunity cost α is uniformly distributed on [α, α] and that
α < Dm < α.

Then D(ω) is increasing and concave whenever some agents of productivity ω
work, i.e. on the set {ω|D(ω) > α}. Moreover:

1. If π̃(0) ≤ 2, the conditions of Proposition 7 are verified, D(α) = α and
D′

+(α) = 1/(2−π̃0) > 1. At the optimum, none of the agents of productivity
smaller than α work.

2. If π̃(0) > 2, there exists ω0, ω ≤ ω0 < α, such that D(ω) > α for all ω ≥ ω0

and D(ω) ≤ α for productivities smaller than ω0. There is an upwards
discontinuity in the incentives to work at ω0.

The situation where the social weights of the unemployed agents are high
(π̃(0) > 2) is shown on Figure 4. None of the agents with very low productivities,
ω < ω0, work. But for all ω larger than or equal to ω0, a fraction of the agents
do some work. In fact the upwards distorsion to labor supply here is particularly
strong: some agents with productivity smaller than the minimal cost of going to
work participate in the labor force. The curve AB on the Figure has equation
M(D) = ω: it describes the roots of the first order condition. There is a single
root, corresponding to a global maximum of L for ω larger than α, but there
are two roots in a part of the low productivity region. The bold line describes
the solution. The curve is concave, implying a progressive tax system. It is not
always the case that there are negative marginal tax rates at the beginning of the
curve, close to ω0, contrary to the situation when π̃0 < 2 of Figure 3. But there
is an upwards discontinuity in the tax schedule at ω0, indeed an infinite negative
marginal tax rate.

Remark 4.3. We have focussed on the shape of incentives in the low productivity
region. We do not attempt a full classification of the optimal tax schedules,
which satisfy other properties. For instance, Theorem 6 of Choné and Laroque
(2005) applies here: all the utilitarian optimal allocations correspond to incentive
schemes located above the Rawlsian (Laffer) curve. Theorem 3 of Laroque (2005)
also applies: any incentive scheme above the Laffer curve which does not overtax
and such that D(ω) ≤ ω corresponds to a second best optimal allocation. Note
that in a benchmark model, from the above results, none of these allocations
satisfy a utilitarian criterion. All the utilitarian optimal allocations are such that
D(ω) > ω for some ω’s, a property discussed in Remark 2.3 of Laroque (2005).
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4.2.3 Discussion and extensions

A number of the qualitative features of the solution carry over to the more general
model where the utilities of the agents take the form

R(0) + αu + max(0, D(ω)− α)),

where α = αu + αc is the opportunity cost of working, which separates into two
terms, αu the utility of staying at home, and αv a pure sunk cost of going to work.
The social weight of an agent is therefore of the form π̃(αu + max(0, D(ω)− α))
with, under utilitarianism, π̃ a decreasing function of its argument. As in the
intensive example, society puts a low weight on the shirkers who enjoy staying
unemployed (high αu’s). The average weight of the workers who have a financial
incentive equal to D can then be written

pE(D) =
1

F (D)

∫ ∫
αu+αc≤D

π̃(D − αc) dF (αc, αu).

The polar case where αc = 0 is easy to handle. It yields pE(D) = π̃(D) which is
decreasing and the previous arguments carry over to this situation. The economy
then is quite different from our real world: here the unemployed agents have
a higher utility than the employed with the same productivity, and therefore
smaller social weights. It follows that, for small D, there is a zone of subsidy
where pE(D) is larger than 1: Dm is larger than α.11

More generally, a sufficient condition (proved in the Appendix) for pE(D) to be
a decreasing function of D is that αu, conditional on α, first order stochastically
increases with α:

Lemma 4. Let αu and αc be nonnegative random variables and α = αu + αc.
We suppose that F , the c.d.f. of α, is log-concave and that αu, conditional on α,
first-order stochastically increases with α. Then

pE(D) =
1

F (D)

∫ ∫
αu+αc≤D

π̃(D − αc) dF (αc, αu)

is nonincreasing with D.

Lemma 4 applies when αu and αc are uniformly or exponentially distributed
(computations available upon request).

The driving property that leads to subsidize unskilled work can be restated as
follows: the average weight that society puts on the workers of lowest productivity
is larger than the marginal value of public funds (with our notations pE(α) > 1,

11It is not sure that pE(D) becomes smaller than 1 for large enough D (Dm may be equal to
+∞). Then the utilitarian criterion would subsidize the workers through a lump sum tax on
everyone, R(0) < 0.
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or equivalently Dm > α). This property is satisfied in the benchmark model,
as well as in the cases just discussed. Looking more closely (see the proof of
Proposition 8), a reason for this fact is the ‘voluntary’ nature of unemployment
in these models. The (social) utility level of the unemployed agents is never less
(and sometimes higher) than the utility of the pivotal employee. It follows that
the average social weight of the low producivity marginal employees is at least
as large as that of the unemployed, and therefore the largest in the economy:
Dm > α.

In practice, situations where the social weight attached to the unemployed
agents is larger than that attached to the employees abound: for instance this
would be the case in the presence of ‘involuntary’ unemployment, or, in the spirit
of the discussion of the intensive model, when a large opportunity cost to work is
associated with a handicap (the marginal social value Ψ′

u[u, α] is increasing with
α). It is then easy to design economies where the average social weight of the
lowest paid workers is smaller than the marginal value of public funds (Dm = α).
In these economies, after tax income is everywhere smaller than productivity.

Similarly, the analysis has proceeded under the assumption that the social
welfare function is smooth, so that the distribution of the agents’ weights has
no mass point. When it does have a mass point on the unemployed agents,
Proposition 8 does not apply and there is no warranty that Dm > α. In particular,
the case of a Rawlsian planner who puts a Dirac mass on the least favored agent
in the economy corresponds here to a situation where pE(D) is equal to zero for all
D, and Dm = α. Then the optimal incentive scheme satisfies 1. of Proposition 6:
it is everywhere smaller than productivity and the marginal tax rate is always
positive. This is in line with the results of Choné and Laroque (2005).

This paper has investigated the optimality of work subsidies in intensive and
extensive frameworks, respectively. It would be of interest to know whether and
when the subsidy result still holds in the mixed situation where both the extensive
and intensive margins operate. Boone and Bovenberg (2004) analyze such a
model where the utility is quasi linear (but linear in hours of work, rather than
in consumption as here). There is a fixed cost of searching for a job work which
is constant across the population, and the random outcome of search creates
heterogeneity. They find cases where work is subsidized (Section 4.3), but do not
characterize them in terms of the economic fundamentals. More work is needed
in this area.
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A Appendix

Lemma 5. Let f be in L1(θ, θ) and F be given by F (θ) =
∫ θ

θ
f(t) dt. Let y be a

nondecreasing and bounded function on [θ, θ].
Then the following integration by parts formula holds∫ θ

θ

f(θ)y(θ) dθ = F (θ)y(θ)− F (θ)y(θ)−
∫ θ

θ

F dy, (13)

where
∫ θ

θ
F dy is defined as a Riemann-Stieltjes integral, that is, as the limit of

S =
n∑

i=0

F (ti) [y(θi+1)− y(θi)]

for any mesh (θ0 = θ, θ1, ..., θn, θn+1 = θ) and any ti ∈ (θi, θi+1), when the mesh
size maxi |θi+1 − θi| tends to zero.
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Proof of Lemma 5

First note that the left hand side of Eq. (13) is well defined since the function
fy is Lebesgue integrable. Note also that the function F is continuous and almost
everywhere differentiable with F ′ = f a.e.

A simple computation shows that

S = −F (t0)y(θ)− y(θ1)[F (t1)− F (t0)]− ...− y(θn)[F (tn)− F (tn−1)] + F (tn)y(θ)

= −F (t0)y(θ) + F (tn)y(θ)−
n∑

i=1

y(θi)

∫ ti

ti−1

f(t) dt.

By the Lebesgue Theorem, the last sum tends to
∫ θ

θ
f(θ)y(θ) dθ when the mesh

size tends to zero, which (together with the continuity of F ) gives (13).

Proof of Proposition 3

Suppose first that y is second best optimal. The derivative of the Lagrangian
is

< dL, H >=

∫ [
− 1

v′(y)
+ γ

]
Ḣ dG(γ) +

∫
Ḣ(G− Π) dγ.

Since the problem is concave, a function V is the solution if and only if

< dL, H >≤ 0

for all admissible variations Ḣ (ie, for all functions Ḣ such that V̇ +εḢ is negative
and non decreasing for ε small enough).

When y is strictly decreasing, < dL, H > must be zero for all Ḣ (since, in
that case, V̇ and V̇ + εḢ are increasing for small ε). It follows that we have in
the no pooling region

Π(γ) = G(γ)− g(γ)

[
1

v′(y)
− γ

]
.

In a pooling interval [γ
i
, γi], the functions y and V̇ are constant and any H

such that Ḣ is decreasing is not an admissible test function (since V̇ + εḢ is
decreasing in [γ

i
, γi]).

It is easy to check that if H satisfies

Ḣ =

{
1 in [γ

i
, γi]

0 otherwise.,
(14)

then H and −H are admissible variations, so we must have: < dL, H >= 0. It
follows that ∫ γi

γ
i

{
G(γ̃)− g(γ̃)

[
1

v′(y)
− γ

]}
dγ =

∫ γi

γ
i

Π(γ̃) dγ̃. (15)
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Figure 5: Pooling in the intensive case

Now if H satisfies

Ḣ(γ̃) =

{
−1 for γ̃ < γ in [γ

i
, γi]

0 for γ̃ > γ in [γ
i
, γi]

(16)

for some γ ∈ [γ
i
, γi], then H is admissible (but −H is not) and we must have:

< dL, H >≤ 0. It follows that∫ γ

γ
i

{
G− g

[
1

v′(yi)
− γ̃

]}
dγ̃ ≥

∫ γ

γ
i

Π(γ̃) dγ̃. (17)

The conditions (15) and(17) are equivalent to the first statement of the propo-
sition. The last statement (geometrical interpretation) follows from the convexity
of the function

∫ γ

γ
Π(γ̃) dγ̃.

The sufficient part follows from the fact that conditions (15) and(17) are
equivalent to < dL, H >≤ 0 for all admissible variations H, since the set of non-
increasing functions Ḣ on [γ

i
, γi] is generated by the set of functions H satisfying

(14) and (16).

Proposition 3 has a geometric interpretation, shown on Figure 5. Let Y be
defined by

Y (γ) =

∫ γ

γ

{
G(γ̃)− g(γ̃)

[
1

v′(y(γ))
− γ̃

]}
dγ̃,
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and Y ? be the convex hull of Y . Then y is second best optimal if and only if the
slope of Y ? is in [0, 1] and Y = Y ? outside the pooling intervals.

The derivative of Y ? is the c.d.f. of a social weight distribution for which the
allocation y is optimal. The distribution of social weights Π is unique outside
pooling intervals, but it is not unique in the pooling intervals: Π can be the
derivative of any convex function below Y which coincides with Y outside the
pooling intervals.

Proof of Lemma 4

We note Fc(αc|α) the cdf of the distribution of αc conditional on α, and
similarly, with a subscript u that of αu conditional on α. Let

K(α) =

∫ α

α

π̃(D − αc) dFc(αc|α)

= π̃(D − α) +

∫ α

0

π̃′(D − αc)Fc(αc|α) dαc, (18)

where we have used Fc(α|α) = 1.

It is easy to check that pE(D) nonincreasing is equivalent to

K(D) +
1

f(D)

∫ D

0

∫ α

0

π̃′(D − αc) dFc(αc|α) dF (α) ≤ 1

F (D)

∫ D

0

K(α) dF (α).

(19)
By log-concavity of F , we have (using π̃′ ≤ 0)

1

f(D)

∫ D

0

∫ α

0

π̃′(D−αc) dFc(αc|α) dF (α) ≤ 1

F (D)

∫ D

0

∫ α

0

π̃′(D−αc) dFc(αc|α)F (α) dα

By integration by parts

1

F (D)

∫ D

0

K(α) dF (α) = K(D)− 1

F (D)

∫ D

0

K ′(α)F (α) dα.

It follows that (19) is implied by∫ D

0

∫ α

0

π̃′(D − αc) dFc(αc|α)F (α) dα ≤ −
∫ D

0

K ′(α)F (α) dα. (20)

By (18), we get

K ′(α) =

∫ α

0

π̃′(D − αc)
∂Fc

∂α
dαc.

It follows that (20) is equivalent to∫ D

0

∫ α

0

π̃′(D − αc)

[
fc(αc|α) +

∂Fc

∂α

]
dαc.F (α) dα ≤ 0. (21)
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which is satisfied when

fc(αc|α) +
∂Fc

∂α
=

∂Fc

∂αc

+
∂Fc

∂α
= −∂Fu

∂α
≥ 0

that is, when αu first-order stochastically increases with α.

Proof of Proposition 9: Let

λ =

∫
Θ

Ψ′[R(0) + max(0, D(ω)− α)] dH(θ).

Then

pE(D) =
1

λ

∫ D

α

Ψ′[R(0) + D − α]
dα

α− α
.

Integrating by parts and substituting yields

M(D) = 2D − α− 1

λ
[Ψ(R(0) + D − α)−Ψ(R(0))].

The function M(D) is strictly convex in D and M ′(α) = 2− π̃(0).
1) Case π̃0 ≤ 2. M(D) is strictly increasing and Proposition 7 applies. The

convexity of M(D) implies the concavity of D(ω).

2) Case π̃(0) > 2. As in the proof of Proposition 7, we consider the pointwise
maximum of L(D; ω) for D ≥ α. Since it is increasing in ω, it satisfies the
monotonicity condition and is the optimum.

Recall that L(α, ω) = 0. Now,

∂L

∂D
(D; ω) = (ω −M(D))f(D) =

1

α− α
(ω −M(D))

for α ≤ D ≤ α is a concave function of D which becomes negative for large
enough D. We consider three cases:

a. For ω > α, ∂L/∂D(α; ω) is positive. There is a single zero D(ω) of the
derivative, solution to ω = M(D), which maximizes L(D, ω).

b. For ω = α, ∂L/∂D(α; ω) is equal to zero. ∂2L/∂D2(α; ω) = (π̃(0)− 2)f(α)
is positive, so that there is another root D(α), larger than α (D = α is a
local minimum of L). Recall that L(α, ω) is equal to zero for all ω: the
maximum is positive.

c. Finally consider ω < α. The function ∂L/∂D(·; ω) is linear increasing in ω:
when ω decreases from α, its smallest root increases, its largest root (a local
maximum of L), say ∆(ω), decreases, until eventually they both disappear,
say at ω1, ω1 < α. Note that L(∆(ω), ω) is an increasing function of ω.
Since L(α, α) = 0, L(∆(ω1), ω1) is negative. Let ω2, ω2 > ω1, be such that
L(∆(ω2), ω2) is equal to zero. Define ω0 = max(ω, ω2), D(ω) = ∆(ω) for
ω0 ≤ ω ≤ α, and D(ω) = α for ω smaller than ω0.
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It is easy to check that the D(ω) function thus defined indeed is the solution of
the problem.
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