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Abstract

We consider the stochastic volatility model
ng = 0¢ dBt,

with B a Brownian motion and o of the form

o = @(/Ota(u)de),

where WH is a fractional Brownian motion, independent of the driving Brownian
motion B, with Hurst parameter H > 1/2. This model allows for persistence in the
volatility o. The parameter of interest is H and the functions ® and a are treated as
nuisance parameters. For a fixed objective time T, we construct from discrete data
Yi/m: 1 =0,...,nT, a wavelet based estimator of H, inspired by adaptive estimation
of quadratic functionals. We show that the accuracy of our estimator is n~1/(47+2)
and that this rate is optimal in a minimax sense.

Résumé

On considere le modele a volatilité stochastique défini par les équations précédentes,
oll B est un mouvement brownien et W un mouvement brownien fractionnaire,
indépendant de B, de parametre de Hurst H > 1/2. Ce modele permet de reproduire
des propriétés de persistance dans la volatilité o. Le parameétre d’intérét est H et
les fonctions ® et a sont traitées comme des parametres de nuisance. Pour un temps
objectif fixé T, on construit a partir des données discretes Y;/,, i« = 0,...,nT, un
estimateur par ondelettes de H, inspiré de I’estimation adaptative des fonctionnelles
quadratiques. On montre que la précision de notre estimateur est n=1/(47+2) ¢t que
celle-ci est optimale au sens minimax.
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1 Introduction
1.1 Stochastic volatility and volatility persistence

Since the celebrated model of Black and Scholes, the behaviour of financial
assets is modeled by processes of type

dSt = Mt dt + o dBt,

where S is the price of the asset, B a Brownian motion and p a drift process.
The volatility coefficient o represents the fluctuations of S and plays a crucial
role in trading, option pricing and hedging. It is well known that stochastic
volatility models, where the volatility is a random process, are a way to deal
with the endemic time-varying volatility and to reproduce various stylised
facts observed on the markets, see Shephard [30], Barndorff-Nielsen, Nico-
lato and Shephard [3]. Among these stylised facts, there are many arguings
about volatility persistence. This presence of memory in the volatility has in
particular consequences for option pricing, see Taylor [31], Comte, Coutin and
Renault [8]. Hence continuous time dynamics have been introduced to capture
this phenomenon, see Comte and Renault [9], Comte, Coutin and Renault [8]
or Barndorff-Nielsen and Shephard [4]. Paradoxically, in statistical finance,
the question of volatility persistence has been mostly treated with discrete
time models, see among others Breidt, Crato and De Lima [6], Harvey [16],
Andersen and Bollerslev [1], Robinson [29], Hurvich and Soulier [20], Teyssiére
[33]. Concurrently, statistical methods to detect this volatility persistence have
been specifically developed for these models, see Hurvich, Moulines and Soulier
[18], Deo, Hurvich and Lu [12], Hurvich and Ray [19], Lee [23], Jensen [22]. In
this paper, our objective is to build for continuous time models a statistical
program allowing to recover information about volatility persistence.

1.2 A diffusion model with fractional stochastic volatility

We consider a class of diffusion models whose volatility is a non-linear trans-
formation of a stochastic integral with respect to fractional Brownian motion.
Recall that a fractional Brownian motion (W ¢ > 0), with Hurst parameter
H €]0,1] is a self-similar centered Gaussian process with covariance function

1
BW/ W] = (sl + 27 = [t = "),

As soon as H > 1/2, the use of fractional Brownian motion (fbm for short) is
a way to allow for persistence. Indeed, its increments are positively correlated



and the value of the Hurst parameter quantifies the presence of so-called long-
memory in the dynamic, see Mandelbrot and Van Ness [25], Taqqu [13]. We
define on a rich enough probability space (€2, .4, P) a Brownian motion B and
a fractional Brownian motion W independent of B, with unknown Hurst
parameter H € (1/2,1). We fix an objective time 7" > 0 and we consider the
1-dimensional stochastic process Y defined by

t
Ytzyw/asst, v €R, te0,7T], (1)
0

where ¢ is another 1-dimensional stochastic process of the form

o) = @(/Ota(u)dwf). (2)

The functions ® and a are deterministic and unknown. The stochastic integral
with respect to fractional Brownian motion is defined as the limit in L?(IP) of
the associated Riemann sums (for details and properties, we refer to Lin [24]).

This framework is an extension of the model introduced in mathematical
finance by Comte and Renault [9]. Remark also that for H = 1/2, under
smoothness assumptions on ¢, letting

a=1, f=(®*)od ' and g = (®*)" 0 d
we equivalently have
do? = g(o?)dt + f(o2)dW,.

Thus, we (partially) retrieve the standard stochastic volatility diffusion frame-
work, see for example Hull and White [17], Melino and Turnbull [26] or Musiela
and Rutkowski [27] for a more exhaustive study.

Finally, the assumptions on a and ® in the model (1)-(2) are the following:

Assumption A.

(i) t — a(t) is continuously differentiable,
(ii) There exist 0 < a < 3 < T such that inf,cf, g a*(t) > 0.

Assumption B. Let [ denote the indicator function,
(i) x — ®(x) is twice continuously differentiable,

(ii) For some ¢; >0, ¢o > 0 and v > 0, |[(9?)'(2)| > c1|z| jzeo,1) + c2ljzp>1,
(iii) For some c¢3 > 0 and m > 0, [(®?)"(z)] < c3(1 + |z|™).



1.8 Statistical model and results

We consider the preceding model. For technical reasons (see section 2.1.2), we
take T > 3. We observe the diffusion at the sampling frequency n, that means
we observe

Y" = {Yijm, i =0,...,nT}.

For simplicity, we assume throughout the paper n = 2. We study the prob-
lem of the inference of H based on Y™ .

A rate v, — 0 is said to be achievable over H C (1/2,1) if there exists an
estimator H, = H,(Y™) such that the normalized error

{vgl(ﬁn - H)}nzl (3>

is bounded in probability, uniformly over H. The rate v,, is moreover a lower
rate of convergence on ‘H if there exists C' > 0 such that

liminf inf sup P[v,'|F — H| > C] > 0, (4)
H

n—oo  F pge

where the infimum is taken over all estimators F' = F(Y™). We prove in this
paper that the rate v, (H) = n~"/“#+2) i5 optimal in a minimax sense. This
means that (3) and (4) agree with v, = v,(H). We also exhibit an optimal
estimator based on the behaviour of the wavelet coefficients of the process o2.
Theorem 1 Grant assumptions A and B. The rate v,(H) = n~Y/@H+2) g
achievable over every compact set H C (1/2,1). Moreover, the estimator H,
explicitly constructed in section 2.2 achieves the rate v, (H).

Our next result shows that, under an additional restriction on the non-degeneracy
of the model, this result is indeed optimal.

Assumption C.
For some ¢4, > 0, ¢c5 > 0, ¢4 # ¢5 and ¢g > 0, we have ¢y < |®(z)| < ¢5 and
| (z)| < c.

Theorem 2 Grant assumptions A, B and C. The rate v,(H) = n~1/(4H+2) jg
a lower rate over every compact set H C (1/2,1) with non empty interior.



1.4 Discussion

e Contrary to other works, we do not consider intrinsically discrete data, but
discretly observed data from a continuous underlying dynamic. Thus, as the
objective time T is fixed, the dynamic between two data depends on the sam-
pling frequency. This approach largely differs from those based on ergodic
properties: in our context, the available information quantity does not in-
crease because of longer observation period but because of higher sampling
frequency. The estimation rates are naturally different according to the ap-
proaches. Compare our accuracy with the rate n=(2°=¢) obtained by Hurvich,
Moulines and Soulier in an ergodic context, see [18].

e Through this model, we aim at showing that we can recover the smoothness
of the volatility from historical data. The following proposition, whose proof
is given in appendix, shows that the Hurst parameter can be interpreted as a
regularity parameter thanks to Besov smoothness spaces (see appendix).

Proposition 1 (Smoothness of the volatility process). Under assumptions A
and B,

(i) Almost surely, the trajectory of t — o7 belongs to the Besov space Bgoo
but, for all ¢ < oo, a.s. it does not belong to qu.

(ii) For all s < H, almost surely, the trajectory of t — o2 belongs to the Besov
space B3, ., but, if moreover there exists ¢ > 0 such that |(9?)'(x)| > ¢,
then, a.s. it does not belong to B .

e The accuracy v,(H) is slower by a polynomial order than the usual n='/2 of
regular parametric models. This rate of convergence seems to be characteristic
of high frequency parametric inference from noisy data in presence of fractional
Brownian motion. Indeed, this rate is also found by Gloter and Hoffmann [14]
in the high frequency inference of the finite dimensional parameter 6 in the
model

d}/; = O¢ dBt, O = @(9, WtH)

Gloter and Hoffmann [15] also obtain this rate in the high frequency estimation
of the Hurst parameter in the following model:

2

where a is an unknown variance function and &' a centered white noise.



1.5  Organisation of the paper

In section 2, we present our estimation method for the volatility Hurst para-
meter. Section 3 states the main propositions which lead to theorems 1 and 2.
We prove in sections 4, 5 and 6 the results stated in section 3 concerning the
upper bound whereas theorem 1 is proved in section 7. We end with the proof
of theorem 2 in section 8. The proof of proposition 1 is given in appendix.

2 [Estimation strategy

2.1 FEstimation of the Hurst parameter: preliminaries

2.1.1 Estimation of H from direct observation of a fractional Brownian mo-
tion

Imagine we observe high frequency data at sampling rate n~! of the trajectory
of a fractional Brownian motion on the interval [0, 1]. Then, we can recover
the Hurst parameter at the parametric accuracy n~/2. Indeed, we can use as
follows local properties of the trajectory of the fractional Brownian motion, see
Istas and Lang [21], see also Berzin and Leon [5]. Let s = (sq, ..., s,) € RPt!
be such that for some positive integer m(s):

for k=0,...,m(s)—1: Zsiik =0 and ZSiim(s) £ 0.
i=0 i=0
We define, for some sequence s and ¢ = 0,..., N — p — 1, the generalized
difference “
Ninf=3" ij<z+]>.
=0 "

The integer m(s) is called the order of the difference. For instance, the usual
difference s = (—1,1) is of order 1 and s = (1, -2, 1) is of order 2. Consider

V,(H) = i(Ai,an)%

1=1

Istas and Lang [21] show that for m(s) > 1, there exists a constant L > 0
such that !

1
75717
NZD
1" The condition m(s) > 1 is necessary for H > 2, if H < 2, the result holds with
m(s) = 1.

n* W, (H) = L+




with &, bounded in probability. Then, an estimator achieving the rate n='/2

is for example

=1 th/2J(H)>
H==(1+log, 22\
2( o

2.1.2  Estimation of H from noisy observation of a fractional Brownian mo-
tion

Trying to recover the Hurst parameter from noisy data is more difficult. In-
deed, Gloter and Hoffmann [15] show that the statistical structure of model
(5) is significantly modified by the noise. They prove that the rate n~/(“#+2)
is optimal to estimate H in the minimax sense of (3) and (4). Their estima-
tion strategy is based on the behaviour of the energy levels of the fractional
Brownian motion that reflects the Besov properties of the trajectories. We
adapt this strategy in this paper.

Pick a mother wavelet ¢ with 2 vanishing moments. Hence, the wavelet sup-
port has a minimal length of 3, see Daubechies [10]. For j and k positive
integers, let

bin(@) = 212020z — k), djy = /zpjkwfds and Q; = . .
k

The sequence of energy levels (Q;, 7 > 0) has the following scaling property ?:

Qj+1 _ 2721{

Q, + o(1) as j — +o0. (6)

—

Gloter and Hoffmann [15] construct estimators d3, of the d3, up to a maximal
resolution level J, = | 1log,(n)]. Setting

k

one obtain a sequence of estimators:

~

= 1 i
H;, = —ilog2 éj,n o g=1,.. . J, (7)

Eventually, the estimator is H J:n Where the optimal resolution level J is
defined following the rules of adaptive estimation of quadratic functionals:

~ 27
J;:max{jzl,...,Jn, szn}. (8)

2 For the moment, we do not specify the meaning of of(-).



2.2 Construction of an estimator

2.2.1 An FEuler scheme-type transformation

By an Euler scheme-type transformation, we boil down the problem to a re-
gression model. Indeed, we have

n

with

75 = ([ atwawt),
0

and , _ v
i1 i1 it+1

itl 2 ==
g =n| ["et-ot)dt+ ([ odn) - [T ot

n

Conditional on the fbom W and up to negligible terms, the £ are martingale
increments with variance of order 1.

2.2.2  Estimation of the energy levels

Let ¥ be a mother wavelet with 2 vanishing moments and support [0, 7. Let

kT

di = /k 7 o2 (t)dt and Q; = S d2,.
k

2J

By proving a scaling-type property on the energy levels analogous to (6), we
can follow the strategy of section 2.1.2. The main difficulty lies here in the
non-linearity introduced by the function ®2.

We now present the estimation of the energy levels. To get rid of boundary
effects, without any loss of generality in our asymptotic framework, we do not
take into account the wavelets 1);;, whose support is not totally included in
[0, 7]. We have

T2N-I -1 k141

=0 2f T 2N

A first natural estimator of dj, is

T2N -1 N ESY
o n 27 ' 2N
dji, = Z Zk2N—j+l/k : Y (t)dt.
=0 27 2N
Let
2
My ( k laudBu) ~ [ o2
2 TN 3 taN



From (9), we have the following decomposition:

ajvk— djr = bji + e + fik,

with
T2N—-1 1 LN
bjr = Z wﬂc( )(%2 Ji2—N Ut>dt7
1=0 TN

TQN—Ll i +1
2]

=0 5 2N
T2N=9—1 |k I+l ko4 41
27 ' 2N 27 ' 2N 2 2
fiw=n Y /k Jobip@)dt [ T (0F = 07y gp-n)dE.
2 TN 2 TN

—2
In order to precisely estimate djzk, we can not use d;;, because of the remaining
term e?k that we have to compensate. The other terms are negligible.

Qonditional on WH, (M, t > 0)is a continuous local martingale. Let
E = E[ |W#] denote the expectation conditional on W#. Then, by the
independence of the Brownian increments,

T2N=-71 -1 +l+

lwyk() ) [M2 +l+1]

=0 2 2N 2V

Let
t

Nk,ht == /k UudBu

LA

27 ' oN

By Ito’s formula,
t
Myt = 2/0 UuNu]{u> L +2LN}dBu-

=27

Let

~ ~ 2
a?,k,l = E[M21 k l+1] = 2<E{(Yk2j+(l+1)21v - Yk;2j+l2N)2]> :

772] 21\[

2 ~ 2
We need to compensate aj,,, so we estimate a3, , by

2
sz ( Z Yk2—j+(l+1+p)2—N —Yk2—j+(z+p)2‘N)2> ’

p 1

where h(n) = |n'/?|. Let



T2N—i_1 LANNES] 2
— 2 27 2
Uik=n" Y </k N @/)jk(t)dt) alp-
N

1=0 27 T3

Finally we define

—

—9 ~ —
2 = _2 : 2
djk = djk — Vjk and Qj = djk'

k

We thus obtain our estimator H. J:n of H with the same specifications as in
(7) and (8).

3 The behaviour of the energy levels
We present here the steps that enable us to prove theorems 1 and 2.
3.1  Upper bound

Recall that .
— @2(/ &(u)de), t €[0,T].
0
Let
diy = / o2y, (t)dt and Q; = Z

We write ¢ for a constant depending on @, a, H , ¥ and continuous in its
arguments.

Proposition 2 (Limit of the energy levels). Under assumptions A and B,
there exists c(v) > 0 depending on v and H, continuous in its arguments and
c >0, such that

IE[ 25105 — c(y) /[)TCLQ(U){(@Q)/(/OU a(v)de) }Qdu

More precisely, proposition 2 enables us to obtain the following result:

] < 27912,

Proposition 3 (Scaling property). Under assumptions A and B, we have
(i) For all € > 0, there exist jo and r > 0 such that for all j > jo,
P21Q; > 1] > 1 ¢,
(i1) For all € > 0, there exist jo and M > 0 such that for all j > jo,

]P’[ZJ/Q sup QZH —o72H

>3

EM}gs.
l



Finally, we have the following result for the estimator:

Proposition 4 (Deviation of the estimator).
Let j,(H) = {(2H+ 1)t logz(n)J and H be a compact set included in (1/2,1).

Under assumptions A and B, for oll H € H, J,, > j,(H) and for any L > 0,
the sequence

We then prove that propositions 3 and 4 together imply theorem 1.

{n2r  up 2710, - @,
>35> jn(H)~L

1s bounded in probability, uniformly over H.

3.2 Lower bound
Let P? denote the law of the data Y™ = {Y;,, i =0,...,nT} conditional on
WH = f. The key point of the lower bound is the following:

Proposition 5 (Distance in total variation). Under assumptions A, B and
C, there exists ¢ > 0 such that

P} —Pyllzy < cnllf — gl

where || - |7y denotes the distance in total variation and || - ||o the usual L?
norm of functions on [0, T| with respect to the Lebesque measure.

4 Proof of proposition 2
4.1 Notation

In all the proofs, assumptions A and B are in force and we repeatedly use
the notation ¢ and ¢ for constants depending on ®, a, H, 1, continuous in
their arguments and that may vary from line to line. Finally, for a function f,

[ flloe = sup; [£(£)]-

4.2 Technical lemmas

We establish here several useful lemmas. We apply here ideas of Gloter and
Hoffmann, see [14], initially developed for generalized differences.

10



Lemma 1 Let f and g be two continuous deterministic bounded functions
such that |f| < g. We have

B[( [ swane) T <el( ["iaiave) ] <e[( ["gwavg) ]

Proof. Recall that (see Lin [24])

([ saw)] < sl

Thus, the expectation of the square of the partial sums converges to the ex-
pectation of the square of the stochastic integral. We have

E

;0 = i S TR W)

where the limit is taken in L?(P). The results hold by stationarity arguments
and because we easily check that

(p—q)Tn

H H
IE[(W(p—{q—l})Tn—l - W —1)WTn_1} > 0. 0O

We now prove 2 lemmas on the expectation and covariance of the wavelet
coefficients for the stochastic integral.

t T t
Lemma 2 Letd; = / a(u)dWr, By = / Gi)ik(t)dt and F(t) = / ¥(u)du.
0 0 0
For all positive integers j, k, there exists a bounded (independently from j and
k) variable Z such that,

E[5] = 277420 (c(¢)a(k27)? +2772),

where c(1) is positive and such that

(1) :]EK/()TF(t)thH)Z}

Proof. The coefficient 3} is equal to

| 23 (ko)
21/2/0L¢(v) (/0 . a(u)dwf> do.

By linearity and Fubini’s theorem, 3;; is equal to

2-Jk 2—J kJrT
9-i/2 / / w)dodWH + 2772 / / w)dodw .

27— k

11



Because F'(0) = F(T') = 0, we have
, 279 (k+T) A
By = —279/2 / F(2u — k)a(u)dWH,

2-7k

We can already remark that 3, is a Gaussian random variable. Let
E,=F@Q9k+{p—1127Tn"YY = k)= F({p— 1}Tn""),

a, = a2k +{p—1}277Tn").
By stationarity of the increments of the fbm, 27 E[ﬁjzk] is the limit as n tends
to infinity of the sum of the following two terms:

E} =Y Fla,(277Tn™ )",
p=1

Ey =2 Z Fqu%aqE[(W(I;—{q—l})Q—an—l - W(I;—q)Q—an—l)WQIian—l}'

1<p<g<n
By self-similarity property, we get

n

. . i 2
QJE[@?k] = TLLHEOO 272HE K > Fpap[Wﬁn,l - W{g—uTnl]) ]
p=1

_ szHE{ ( /OT F(t) (a(k29) + tzja/(ek,j))thH>2],

with k277 < 6y ; < (k+T)277, by Taylor’s formula. By lemma 1 and because
a and o’ are bounded, we get the result for E[37,]. The positivity of ¢(t)) comes
remarking that, by Ito’s formula,

T T
/ FH)AWH = — / D) WHAL,
0 0

This quantity is a non degenerate Gaussian variable, see Tewfik and Kim [32]

or Delbeke and Abry [11]. The positivity of ¢() follows. O

Lemma 3 (Decorrelation of the wavelet coefficients).
Let 6, and Bj, be as in lemma 2. There exists ¢ such that, for all j, k, k',

| Couo(BjBiwr)| < 27702 e(1 4 |k — K/[)2H72) 4 /3420,

Proof. We write 6 for the value where the last term of a Taylor expansion is
taken. Let

T
djr, = /0 V()W dt.
Let ' .
F,=F({p—13Tn™"), apr=a27k+ {p—1}27Tn"),

12



_ H H _
‘/jzpak - W2_jk+p2_]TTL_1 - W2_]k+{p—1}2_JTn_1’ rj7p7q7k7k/ - E[‘/}’pzk‘/j7q»k/]'

Let k > k'. We have

n
E[B;kBir] = ngrfoo 27 Z FyFoap kg 17 p.g e k-
p,g=1

So, E[B;xBjr] is the limit of the sum of the four following terms:

Ty = a(k27)a(k'27)Eld;rd;w],
Ty=2"%a(k277) > FFy({g—13Tn")d (0)r;pg i

p,q=1
T3 = 2_2ja(k'2_j) Z FF({p — 1}Tn_1>a/(6)7"j,p,q,k,k’7
p,q=1
Ty=2"" % F,F,({p—1Tn " )({qg - 13Tn")d (0)d (0)7)pqnr-

p,g=1

Using that
—72H
Tipakk =277 T0pqk—k0

and Cauchy-Schwarz inequality, we easily prove that T5, T3 and T} are less than
c2727272/1 Then, we use results on the decorrelation of the wavelet coefficients

of the fbm which are easily obtained by fourth order Taylor expansions,

for example Tewfik and Kim [32] or Delbeke and Abry [11]. O

Lemma 4 Let 6¢, B and c(¢) be as in lemma 2. Let € : [0,T] — R
deterministic bounded function. Define
T(29-1)

Si) =2 Y {28 — ()27’ (k27) Mo
k=0

Then, '
E[%;(£)%] < cll€llZ2.

Proof. We have

TRI-1) | |
S0 =2 > {285 — 2P7E[BL] 4+ 27V Z} -4,
k=0

with Z a bounded variable, by lemma 2. Hence E[¥;(£)?] is less than

T(27 -1

QQJE{ Z 2]4H{ﬁ]2k — E| ?k]}{ﬁ?k’ - E[ﬁfk']}sz—jfkfz—j + cl|€|1%

k,k'=0

13
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o T(27-1)
< MY N B Y BB IEB e Era-irra-i + cll€]l,
k,k'=0
with Yy, = 37, /E[5%,] — 1. We apply Mehler’s formula and we get that E[3;(€)?]

is less than _
T(29-1)

227 1€N1%2 >0 Cov(Bim, Bw)* + cllélla
k,k'=0
.. @y
< 2232]4H||£Hz05( Z 2—2](1+2H)<1+|k_k/|)4(H—2)
k,k'=0

022 (] [ /)22y 92 MH?H) +efl¢]%, by lemma 3,

(27 -1) T(2-1) 400
<Al ( X S e S S 1)

< él|€]|A.27, because of the convergence of the infinite series for H € (1/2,1). O

Lemma 5 Assume that § : [0,T] — R is bounded and vanishes outside the
interval [k2770, kK'27°) C [0,T] for some k,k',jo > 1, k # k'. Then, there
exists ¢ > 0 such that for j > jo9, we have

E[2(€)*] < clléll5|k" — k|27~

Proof. We have

T(27-1)

BIS€7 <o X 6nsllgn |1+ |2 — 2y

z,2!

2 l€aaal (L4 |2 = 2D 4 27V e €] ) + el
By similar computations on the series as in proof of lemma 4, we get

E[25()°] < cllélloo D [a-1] + €]l

As £,5-5 is different from zero only if k2770 < 2277 < k'27%, there are less
than |k — k/|2777° + 1 admissible values for z and so,

E[Z;(€)%] < &l¢] |k — k|27, O

We now decompose the function ¢ — ((®2)")2(f5 a(u)dW/ ) in a wavelet basis
with support [0,7]. Thus, we use the same wavelet as before but in another
context.

14



Lemma 6 (Decomposition in a wavelet basis). Let h = ((®?)")2. Let ¢ be the
scaling function associated to 1. We write ¢or(t) = ¢(t — k),

k= /h(/ota(u)de)qﬁOk(t)dt and cj, = /h(/ota(u)de)z/ij(t)dt.

Then,
r 400 T(27-1)

t
W[ a@av) =Y aou®) +3 X cavul®)
0 k=0 J=0 k=0
where r is a constant value depending on T and with

Elco+ -+ ¢ <é Elcg] < c2I1+2H),

t
Proof. From now on, we write J(s,t) for / a(v)dW . Since the first moment

of 1 vanishes, we have

= [ V(R0 D]dt =277 | " ()R (0, (k + u)2 ) du
297 D) L0, (k4 1)277) — J(0, k27 }H ().

Here, 7 is a value between J(0,k277) and J(0, (k + u)277). By the continuity
of the sample path of the stochastic integral, we know there exists a random
point 6 between k277 and (k4 u)277 such that n = J(0, ). Thus, we have

. T , .
& < 0277/ V() {J (k277 (k +w)277)}*(R'[J(0,0)])*du.
0
By lemma 1 and because J(k277, (k +u)277) is a Gaussian variable,

E[J(k277, (k +u)279)"] < c|ja||*. 2774,

By assumption B3, {n'[J(0,0)]}* < ¢(1 + |J(0,8)|™)*. To control E|J(0,6)],
since J(0,t) is a Gaussian process starting from 0 with continuous trajectories,
we can use Dudley’s entropy bound: there exists a universal constant ¢ such

that
d(0,T)
E[ sup |J(0,4)]] gc/ Jlog N(T, d, £)de,
0

te€[0,7)
where d*(s,t) = E[|J(0,t) — J(0, s)|?] and N(T,d,¢) is the minimal number
of balls of radius € needed to recover [0, 7. Since

E[]7(0,2) = J(0,5)]"] < clt — s|*",

3 Remark that Assumption B implies there exist ¢ and m positive such that

|(®@2)(z)] < ¢(1 + |#|™) and consequently there exist ¢ and m such that
[(((@2))?) ()] < (1 + |2[™).
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we easily get that N(T,d,¢) is less than ¢T'e~'/#. Using that H belongs to

(1/2,1), we easily bound E|J(0,0)| by a constant c. Then, since J(0,t) is a

Gaussian process, we also get E[{#'[J(0,0)]}*] < c. Hence by Cauchy-Schwarz,

E[ka] < 270+2H) By Taylor expansion of the coefficients, we also get E[co +
ot <e O

Lemma 7 Let h be as in lemma 6. We have

[ 9i(1+2H) Z{ )27 a2 (k 2j)}h</0ta(u)de)H . o

Proof. We know from lemma 6

r +o00 T(QJ 1)

t
h</ a(u)de) = chgb% + Z Z C]ki/ij
0 k=0 7=0 k=0
. . . t
Let S;(h) = 200428 Z{ﬁﬁ - c(¢)2_3a2(k:2_])}h( / a(u)dwf>. We can
0
rewrite S;( Z 2 (ok) + Z S;jy, with
Jj1=0
T(27-1)
Sig = D iikZi(Yjn)-
k=0

For i =0 to k, E{ |ci2j(¢)01)|} < ¢2//2 by lemma 4. Now we prove that

+o0
El > ISM@ < 22,

j1=0

If 51 < j, by lemma 5,

T(291-1)

E[1Sml] <e 30 2700 (BIZ () ) < g0/ a9l

Because H > 1/2,

J

> E[[S;,]] <@

Jj1=0
If j < j1, ¥,k has support [k277', (k 4+ T)277], so X;(;,x) = 0 unless there
exists 1 € [0,T(2 — 1)] such that 277 € [k2791, (k + T)2771], that is:

k2 < i < (k+T)277,

Thus, there are less than ¢27 possible values for ¢ and moreover, for such 7, the
sum defining 3,(¢;,1) is reduced to one single term, so, combining this result

16



with lemma 2, we get

E[S; (k)7 < clltgnllz < 27,

and
]E[ |Sjj1” <c X 9= (1+2H)/2951/2 < 9ig=iH
1<k<T (2791 -1)
Finally

S E[I5,00] = S E[Sml]+ S B[Sl <@ o

Jj1=0 Jj1=0 J1=j+1

Lemma 8 (Riemann’s approzimation).

Let h = ((®%))? and H(x,y,2) = a2(x)h(/yz a(u)de) Then,

Hl nZT:H (k/n,0,k/n) — / H(t, O,t)dtH < en V2,

Proof. Let 6 denote the value where the last term of a Taylor expansion is
taken. Let

Hi(z.y.2) = a* ()t ([ a(waw])
Hy(a..2) = (@) (@ ( [ a(waw).

1 nT T
We have that EH > H(k/n,0,k/n) — / H(t, O,t)dtH is less than
n = 0

Z/k/" [|(k/n — ) H3(0,0, k/n) — J(k/n, t)Hi(t,0,0)| | dt.

By assumption B, it is less than

CZ/ [(k/n =Dl (@) [l (|B(O)] + T (0, k/n)]| | (6)])
+ [[a[lool T (e /m, ) [{1 4+ |7(0, 6) "} ]
which is less than
CZ/ [(k/n = )1+ 170, k/n) {1+ |T(0,6)["})
+ [T (k/n, 1) {1+ 17 (0,0)[™}]dt.
Finally, since E|[J(k/n,t)|] < en™ and E[|J(0,0)" | + E[|J(0,0)]] < ¢

we obtained the desired bound. O
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4.8 Proof of proposition 2

t
Proof. Recall that J(s,t) = / a(v)dW!. Let 6 denote the value where the

last term of a Taylor expansions is taken. Let

B = / wjk(t)cl>2< /0 ta(u)dwf>dt,

which is equal to

275 (02)[J(0, k277)] /0 ' V(u)J (k277 (k +u)277)du
4273 /0 ' Y(u)[J(k277, (k +u)279)]2(®%)(0)dw.

This can be rewritten as
(@)L, R2 )+ 275 [ ()l (277, ( + w)2 (@) (@)

So, ?k is equal to

2

L0, k2 )55+ 270 ([ w02, Ok + w2 P (6)du)

PRI, K252 [ ()2, (k)2 (82 (6)du
Hence

k

> {2j2H5]2k — c(w)zja2(k21)h</” a(u)de)} =T+ Ty + T3,

L 0

with Ty = {225 — ()27’ (k279)}h[J (0, k27)),

1, =25 05 [T ula(ka (k)2 () (0)u
Ty =223 " To(k)Ta(K),
and T3 (k)= 2(@2)'[J(0, k2*j)]ﬁjk,

To(k)= 24 [ oI (k27, (k -+ u)2 )8 (6)du

0

Clearly, E“Tgl] < 2728 and E“Tg\} < 2791 By lemma 7, we have
E{ T 1” < 279/? and we finally get the result by lemma 8. O
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5 Proof of proposition 3

Proof. We begin by the proof of (i). With the notation of assumption A,
there exists 7 > 0 such that

o) [ ) (@10, w]Ydu = n [ {100 du

Let
B
Z=n [ {(@)[J0,u)))*du

Suppose there exists € > 0 such that for all » > 0, P[Z < r] > e. Since
Z >0, P[Z = 0] > . By assumption B, this implies J(0, %) = 0 on («, 3) with
positive probability which is absurd by assumption A and because J(0,u) is
a continuous Gaussian process. Then, for € > 0, there exists » > 0 such that

IP’[ZZQ?“} >1—c.

By Markov’s inequality, we have

thus,
Zsup]P’[QQjHQj ¢ [Z — r,Z—i—r]} < +o0.

j>0 H
Then, by Borel Cantelli’s lemma, for large enough j a.s.

We now prove (ii). Let ¢ > 0, r and jy associated by proposition 3 (i) and
J > jo- We have
QH—l . 2—2H

Qs
<e+ ]P’[SUP Qi1 —2727Q)| > MQ*j/QTQlHT}
1>

P[Qj/z sup > M

1>j

= Plsup|Qu1 - 271 Q) > MQ277/
)

<e+ Y E[|Qua —272Q |22 My}

1>j>jo

But, E[ |Qr1 — 2_2HQ1|} is equal to

E[ Q111 — 92+ D)H 7 | o=2(1+1)H ;7 _ 2—2HQZ|} < Q7 MRHH1/2)

19



thus,

Qra

IP’PJ'/2 sup
Qi

lZ]

—2° 2H’ > M] <etc Y 27MRRMPY

1>7>j0

For large enough M, this can be made arbitrarily small. O

6 Proof of proposition 4

Proof. With the notation of section 2.2.2, we have

Qj = Z ikt Z + Z bjkfik + Z djkbjk + Z djk fik
k

+ > (e5s = Ti) + D eiufin + D biwegn + D djveje + D vik — Uk,
k k k k k

Following Gloter and Hoffmann [15], it is enough to prove

sup sup 2_j/2]E[ ]@j,n — Qj” <en b
252 jn(H)~L HE[H_,H,]

Now we bound the 10 terms one by one.

o Term 1: let Vy = 0} — 07y—j -~ We have

T2N-7-1)T(2N-7-1) LS kU4

B X X [0 LT eVl dea

k
1=0 = wteN Joitom

i#“ kgl i 1/2
< ZZ / o T (EVZEVZ) dedr
J 2N
Moreover,
t—E 4ty 2+
Vy = (qﬁ’( / alu )dWH> 7T )W, with v e [0, 1.
0 =k

27 ' 2N

By assumption B and the same arguments as previously, E[V3Z] < c272NH,
Hence E[b%] < c27/n~".

e Term 2 and term 3 follow easily with the same order.
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e Term 4: we easily prove as in lemma 6 that E[d3,] < 2770420 and then,
because j > 5 logy(n), E{ \djkbjk” < 27971

e Term 5 follows as term 4 with the same order.

e Term 6: we argue first conditional on W#. We write E for the expectation
conditional on W . Because of the independence of the Brownian increments
and because the variables are centered, we have

E[(;eik—ujk) | = SB[~ v,

E{(G?k - ij)Q] = Var[e},] < Elej, + v3.

Let
BN ke
Ml = ( :J O¢ dBt> — : 12 O'tht
2 TN wtaw
Because the variables M;, [ =0,...,T(2¥77 — 1) are centered and indepen-

dent, we get that E[e?k] is equal to

T(N-7-1)T(2N-i-1) 1

S ([ o [T o) Bpa)

27 ' 2NV 21 2N

Indeed the product of terms of power 3 with terms of power 1 are equal to
zero. But, we have the following equality in law

ko 41

4+ 2
MlQé (/;J lzN O'?dt) (22_1)27

27 ' 2N
with Z a standard Gaussian variable. Hence,

41
N

. x4 4
E[Ml4]:c(/2 2 afdt) .
B L
2 ' 2N

Now, we have

([ 5 ota)') < [fff (o eirtiot eiok) “anvar,

Moreover, there exists 6 € [0, 7] such that,

_ @2</Ota(u)dwf) — 32(0) + <I>2’</09a(u)dwf) /Ota(u)dwf.
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Since the stochastic integral is a Gaussian variable with finite moments, to-
gether with assumption B, we get E[o}] < c. Hence Ele};] < cn™. We have

TEN-I-1)T2N-7-1) I+1

E[v2] = 4n’ Z 3 (/k+ijk nat [ %k() )2

1*=0 27

E o U+1

% o 2 TN 2
Bl( /7, fdf) (/w i) |

27 " oN

In the same way as for E[e};], we get E[v%] < cn ™2

1

e Term 7: in the preceding proof, we have shown ]E[e?k] < en™ and so we

obtain ]E[ ]fjkejk\} < 2792p71
e Term 8 follows exactly as term 7.

e Term 9: we argue first conditional on W#. Because of the independence of
the Brownian increments and because the variables are centered, we have

E[(zkjejkdjkﬂ = S BBl

Again because of the independence of the Brownian increments and because
the variables are centered, we have

+1 k_ Ip+1

j N
_CZZ/ w]k(tl)a—tldtl/ 2 @Z)jk(tg)atidtg
Lol Yt N 2J+2N
B 2 &3l 2
ZTL < ’Qb]k(tg)dtg) (/ZJ 132 0',523dt3) .
21 2N ?JFQTV
So, we get
lsj 2 7+13+1 Joy I3t
27 27 ' 2N
E[djyj] _"22(/ s %k(t?:)dt?») /k s . s
2ok wtaNv  JartaN
k+T kJrT
E[ w]k(tl)o'tldtl T/ij(tg)0t220'330'7524dt2:|dtgdt4.
23 27

Because of the vanishing moments of the wavelet, we have
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k+T

k+T
@D]k(tl O‘tldtl / ¢Jk<t2)gt20t3gt4dt2}

2J

]E [
k+T k+T

= E[ ¢]k(t1) ?/Jgk(tz)W10W200t30t4dt2dt1]

2J 2J

<2 W (EVLENL) " < 22,

log, n

Consequently, E[dje},] < cn™'27%, but, as j > , E[dje] <en™®

U S 2 kg 2
e Term 10: let X = ( . oy dBt> and X; = (/23 oo dBt> . Then,
AN RS
27 T3N 27 TaN
2N-7 1 7+LN 2 LJFILN 2
vig=2 Y. 712(/ Yix(t)d ) </kj f 2du) ;
1=0 RS 27+TN
2N -i—1 Lyl 2 h
1=0 TR =0
where h = h(n) = |[n'/?]. The term v;;, — U is equal to
oN-i_1 LR E= | 2 LA E ]
2 ) n2</j” = wjk(t)dt> ( 2 e2du+ ZX)
1=0 27 3N 2t

27—"_l241—\’1 2
(/k+l du—ZX)

27 ' 2NV

We argue first conditional on W#. We have

with the following equality in law

ko l4itl

Xi—IE[Xi]é( 2N

IS

afdt> (72— 1),

with Z a standard Gaussian variable. Now,

k 441

k4 2
E[( 2o afdt) ]§022N.

ko l+i
R
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Then, by independence of the Brownian increments and because the variables
are centered,

E[( é{xi - E[Xi]})z] - i@[(x,. EX)] < S

For the other term, we have

1 h _ 2 1 h %+l+¢+1 %—i—il 9
E[(hZEXZ_]EX) :E[(hZ/ l+2N th_/ lzN U?dt) :|
1=0 =0 ]+ 7 J+7N
1 h h L+Z+7N1 ﬁ_i,_lJFiNl 2 2 2
:h?zz;)/mrl /k+l E{(Uiﬂaw - Ui)(Unggng — Uﬁ)}dudv
1=0 g= 27 27

(ig)"27 2N dudv < 27*Nn~th%

IA
Tl e
M=
M=
»\%
+
=
Rl=
+ o
(V)
ZL

I
o
Q
I
o
9
+
()
4
)
+
[ )
2~

Eventually,

k41 —2

E[( :JJF 2 2du— ZX) }Scib/ﬁ.

27 2N

We easily check that the term

ko4 141

E[( 7 N o2qu 4 - ZX)Z]

27 2N

. 1
is less than en =2 and finally E{ |Vj—Djk] } < en™1279/2 because j < 08

7 Proof of theorem 1

We now prove that proposition 3 and 4 together imply theorem 1.

Proof. Following lemma 1 of Gloter and Hoffmann [15], we easily obtain that
for all € positive, there exist ng and M > 0, such that for all n > ng,

P[n"/@H+2\H, — H| > M] < e. (11)

With no loss of generality, we may demand H < C, with C > 1 a constant
value, by considering H = HI\H|<C Let € > 0, ng, M associated by (11). For

n > ng, if (C — 1)nY/@H+2) > M we have

P[H, > C] < P[pY/@HD | — | > (C — 1)n!/@H+D] < ¢,
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Let ng > ng such that (C'— 1)ng > M. For all n < nj,
nl/(4H+2)|ﬁn — H| < (C+ 1)(n8)1/(4H+2)'
Let My = max{M, (C + 1)(n3)"“#+2}  For all n,

Pln/UHD|H, — H| > M) <e. O

8 Proof of theorem 2
8.1 Proof of proposition 5

Proof. We observe

i/n s
{K-/n =y0+/ <I>(/ a(u)de)st, i = 1,...,nT}.
0 0

Consider the equivalent sample
{Zz‘/n =Yim —Yi-vym, 1=1,... ,nT}.

Conditional on W = f, Z; /n 18 a centered Gaussian variable with variance

o; where

P = (192< ’ d u)d )
7 (i-1)/n /o a(w)dfu )ds

Moreover, conditional on W the observations are independent. We define
by K(u,v) = [(log j—’lj)d,u < +oo the Kullback-Leibler divergence between
two probability measures 1 and v. We recall the classical Pinsker’s inequality
I = vllrv < V2K (u,v)"/2. Let P} be the law of the sample conditional on

WH = f, let
i/n s
B; :/ 6132(/ a(u)dgu>ds.
(i-1)/n 0

1B} — By < VK (B, B2

By classical computations, we get

We have

1nT

ag; ag;
K(P2, P = 22<—logﬁ ~1+ ﬂ).
=1 ? ?

By assumption C, we have (cy/c5)® < 0;/8i < (cs/cs)®. Let a = (ca/cs)?,
b= (cs/cs)* and ¢ > 1/2. Consider

z2(x) =logr — 14+ 1/x — c(x — 1)%, x € [a,b].
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We have z(a) = loga — 1+ 1/a — c¢(a — 1)?, so, if ¢ > %, we have
z(a) < 0. Take

1 loga—1+ 1/a>
2" (a—1)?2

Hence z is negative on [a, b], consequently, K (P, IP)) is less than

c=c" —max<

Ela]

<o ([ Jo( [ atan) o [ atwas,)fas)
<én / /Oa dfu—/ a(u)dgy “ds

<en [ falo)((5) — (s)) + [ a'(@)(o(w) ~ 7)) ds
<én[lf — 9”2 O

8.2 Proof of theorem 2

Proposition 5 together with proposition 5 of Gloter and Hoffmann [15] imply
the lower bound.

9 Appendix: proof of proposition 1

The link between Besov spaces and Gaussian processes has been largely stud-
ied, see in particular Ciesielski, Kerkyacharian and Roynette [7]. Nualart and
Ouknine [28] study in particular the case of the stochastic integral driven by
a fractional Brownian motion. We give here some simple proofs for our case.
Let (¢,1) be a wavelet basis,

ok, = /f(x)%k(x)d% Bjr = /f(@%‘k(@dx

Recall that in term of wavelets coefficients, the Besov spaces B, , with s €

[0,1], 1 < p,q < oo are Banach spaces on [0, T] equipped with the norm

1/q
. q
Hf’ Bs, = HaO.Hlp + (Z (23(51/%1/2)”5].'”117) ) ’

J
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where
1/p
1830, = (S 18al7)
k

If p or ¢ is equal to oo, then the corresponding norm in p or g is replaced by
the sup norm. For details, we refer to Ciesielski, Kerkyacharian and Roynette
[7].

First, we show that the trajectory of ¢ — o2 belongs a.s. to Bfoo. It is enough
to prove that sup; 22Q; < co. We know that for all positive €, there exist jg
and M > 0 such that

This implies that

P[ajo, IM. 272 sup

1>5>jo

Let u; = 2%7Q;. For such jo, for all j > jo, |uj1/uj| < 1+ M279/2 Thus,
loguji; — logu; < log(l + M279/2) < M27/% and logu, < c. Hence the
trajectory belongs a.s. to Bfoo. Nevertheless, it does not belong to ng, q < 00,
as a matter of fact, for all € positive, there exist jo and r > 0 such that for all
J > Jo, P2%HQ; > r] > 1 — . So, almost surely,

Jio(Q?jHQj)q = +o0.

J=0

The fact that for s < H, the trajectory belongs almost surely to 5, , is clear
by Kolmogorov’s criterion and preceding calculations on the expectations. We
now prove that it does not belong to Bg,oo. We take [s, t] on which a is positive.
Suppose that almost surely, there exists ¢ such that for all (s, 1),

t s
o [Catwaw") - o [aaw)| < aje - s
0 0
Because there exists ¢ > 0 such that for all z, [(®?)'(z)| > ¢, this implies

¢
/ a(u)dWH| < ¢t — s|™.

Wia(t) — Wia(s) (= s/ [la@Wiida| _
(t— ) ) sl

tends to a’(t)WH and so for fixed ¢ > 0, for |t — s|

Ito’s formula gives:

Jra' (w)WHdu

— S

tends to t,
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small enough,

’(t — )1 L a' (W)W du

<
t—s

and consequently,

(Wi —Wha(t) Wi (a(s) — a(t))
| (s (s |seve

Eventually, because a is positive, we get for |t — s| small enough:

c+2e
~ ming a(zr)’

‘WtH - wh
(t—s)H

which is absurd because the fbm is H Holderian on no interval (this is a
consequence of a law of the iterated logarithm shown by Arcones, see [2]).
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