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Abstract

We consider the stochastic volatility model

dYt = σt dBt,

with B a Brownian motion and σ of the form

σt = Φ
(∫ t

0
a(u)dWH

u

)
,

where WH is a fractional Brownian motion, independent of the driving Brownian
motion B, with Hurst parameter H ≥ 1/2. This model allows for persistence in the
volatility σ. The parameter of interest is H and the functions Φ and a are treated as
nuisance parameters. For a fixed objective time T, we construct from discrete data
Yi/n, i = 0, . . . , nT, a wavelet based estimator of H, inspired by adaptive estimation
of quadratic functionals. We show that the accuracy of our estimator is n−1/(4H+2)

and that this rate is optimal in a minimax sense.

Résumé

On considère le modèle à volatilité stochastique défini par les équations précédentes,
où B est un mouvement brownien et WH un mouvement brownien fractionnaire,
indépendant de B, de paramètre de Hurst H ≥ 1/2. Ce modèle permet de reproduire
des propriétés de persistance dans la volatilité σ. Le paramètre d’intérêt est H et
les fonctions Φ et a sont traitées comme des paramètres de nuisance. Pour un temps
objectif fixé T , on construit à partir des données discrètes Yi/n, i = 0, . . . , nT, un
estimateur par ondelettes de H, inspiré de l’estimation adaptative des fonctionnelles
quadratiques. On montre que la précision de notre estimateur est n−1/(4H+2) et que
celle-ci est optimale au sens minimax.
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1 Introduction

1.1 Stochastic volatility and volatility persistence

Since the celebrated model of Black and Scholes, the behaviour of financial
assets is modeled by processes of type

dSt = µt dt+ σt dBt,

where S is the price of the asset, B a Brownian motion and µ a drift process.
The volatility coefficient σ represents the fluctuations of S and plays a crucial
role in trading, option pricing and hedging. It is well known that stochastic
volatility models, where the volatility is a random process, are a way to deal
with the endemic time-varying volatility and to reproduce various stylised
facts observed on the markets, see Shephard [30], Barndorff-Nielsen, Nico-
lato and Shephard [3]. Among these stylised facts, there are many arguings
about volatility persistence. This presence of memory in the volatility has in
particular consequences for option pricing, see Taylor [31], Comte, Coutin and
Renault [8]. Hence continuous time dynamics have been introduced to capture
this phenomenon, see Comte and Renault [9], Comte, Coutin and Renault [8]
or Barndorff-Nielsen and Shephard [4]. Paradoxically, in statistical finance,
the question of volatility persistence has been mostly treated with discrete
time models, see among others Breidt, Crato and De Lima [6], Harvey [16],
Andersen and Bollerslev [1], Robinson [29], Hurvich and Soulier [20], Teyssière
[33]. Concurrently, statistical methods to detect this volatility persistence have
been specifically developed for these models, see Hurvich, Moulines and Soulier
[18], Deo, Hurvich and Lu [12], Hurvich and Ray [19], Lee [23], Jensen [22]. In
this paper, our objective is to build for continuous time models a statistical
program allowing to recover information about volatility persistence.

1.2 A diffusion model with fractional stochastic volatility

We consider a class of diffusion models whose volatility is a non-linear trans-
formation of a stochastic integral with respect to fractional Brownian motion.
Recall that a fractional Brownian motion (WH

t , t ≥ 0), with Hurst parameter
H ∈ [0, 1] is a self-similar centered Gaussian process with covariance function

E[WH
t W

H
s ] =

1

2
(|s|2H + |t|2H − |t− s|2H).

As soon as H > 1/2, the use of fractional Brownian motion (fbm for short) is
a way to allow for persistence. Indeed, its increments are positively correlated
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and the value of the Hurst parameter quantifies the presence of so-called long-
memory in the dynamic, see Mandelbrot and Van Ness [25], Taqqu [13]. We
define on a rich enough probability space (Ω,A,P) a Brownian motion B and
a fractional Brownian motion WH , independent of B, with unknown Hurst
parameter H ∈ (1/2, 1). We fix an objective time T > 0 and we consider the
1-dimensional stochastic process Y defined by

Yt = y0 +
∫ t

0
σs dBs, y0 ∈ R, t ∈ [0, T ], (1)

where σ is another 1-dimensional stochastic process of the form

σt = Φ
( ∫ t

0
a(u)dWH

u

)
. (2)

The functions Φ and a are deterministic and unknown. The stochastic integral
with respect to fractional Brownian motion is defined as the limit in L2(P) of
the associated Riemann sums (for details and properties, we refer to Lin [24]).

This framework is an extension of the model introduced in mathematical
finance by Comte and Renault [9]. Remark also that for H = 1/2, under
smoothness assumptions on Φ, letting

a = 1, f = (Φ2)′ ◦ Φ−1 and g = (Φ2)′′ ◦ Φ−1,

we equivalently have

dσ2
t = g(σ2

t )dt+ f(σ2
t )dWt.

Thus, we (partially) retrieve the standard stochastic volatility diffusion frame-
work, see for example Hull and White [17], Melino and Turnbull [26] or Musiela
and Rutkowski [27] for a more exhaustive study.

Finally, the assumptions on a and Φ in the model (1)-(2) are the following:

Assumption A.

(i) t→ a(t) is continuously differentiable,
(ii) There exist 0 ≤ α < β ≤ T such that inft∈[α,β] a

2(t) > 0.

Assumption B. Let I denote the indicator function,

(i) x→ Φ(x) is twice continuously differentiable,
(ii) For some c1 > 0, c2 > 0 and γ ≥ 0, |(Φ2)′(x)| ≥ c1|x|γI|x|∈[0,1] + c2I|x|>1,
(iii) For some c3 > 0 and m ≥ 0, |(Φ2)′′(x)| ≤ c3(1 + |x|m).
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1.3 Statistical model and results

We consider the preceding model. For technical reasons (see section 2.1.2), we
take T ≥ 3. We observe the diffusion at the sampling frequency n, that means
we observe

Y n = {Yi/n, i = 0, . . . , nT}.

For simplicity, we assume throughout the paper n = 2N . We study the prob-
lem of the inference of H based on Y n .

A rate vn → 0 is said to be achievable over H ⊂ (1/2, 1) if there exists an
estimator Ĥn = Ĥn(Y n) such that the normalized error

{v−1
n (Ĥn −H)}n≥1 (3)

is bounded in probability, uniformly over H. The rate vn is moreover a lower
rate of convergence on H if there exists C > 0 such that

lim inf
n→∞

inf
F

sup
H∈H

P[v−1
n |F −H| ≥ C] > 0, (4)

where the infimum is taken over all estimators F = F (Y n). We prove in this
paper that the rate vn(H) = n−1/(4H+2) is optimal in a minimax sense. This
means that (3) and (4) agree with vn = vn(H). We also exhibit an optimal
estimator based on the behaviour of the wavelet coefficients of the process σ2.

Theorem 1 Grant assumptions A and B. The rate vn(H) = n−1/(4H+2) is
achievable over every compact set H ⊂ (1/2, 1). Moreover, the estimator Ĥn

explicitly constructed in section 2.2 achieves the rate vn(H).

Our next result shows that, under an additional restriction on the non-degeneracy
of the model, this result is indeed optimal.

Assumption C.
For some c4 > 0, c5 > 0, c4 6= c5 and c6 > 0, we have c4 ≤ |Φ(x)| ≤ c5 and
|Φ′(x)| ≤ c6.

Theorem 2 Grant assumptions A, B and C. The rate vn(H) = n−1/(4H+2) is
a lower rate over every compact set H ⊂ (1/2, 1) with non empty interior.
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1.4 Discussion

• Contrary to other works, we do not consider intrinsically discrete data, but
discretly observed data from a continuous underlying dynamic. Thus, as the
objective time T is fixed, the dynamic between two data depends on the sam-
pling frequency. This approach largely differs from those based on ergodic
properties: in our context, the available information quantity does not in-
crease because of longer observation period but because of higher sampling
frequency. The estimation rates are naturally different according to the ap-
proaches. Compare our accuracy with the rate n−(2/5−ε) obtained by Hurvich,
Moulines and Soulier in an ergodic context, see [18].

• Through this model, we aim at showing that we can recover the smoothness
of the volatility from historical data. The following proposition, whose proof
is given in appendix, shows that the Hurst parameter can be interpreted as a
regularity parameter thanks to Besov smoothness spaces (see appendix).

Proposition 1 (Smoothness of the volatility process). Under assumptions A
and B,

(i) Almost surely, the trajectory of t → σ2
t belongs to the Besov space BH

2,∞
but, for all q <∞, a.s. it does not belong to BH

2,q.

(ii) For all s < H, almost surely, the trajectory of t→ σ2
t belongs to the Besov

space Bs
∞,∞ but, if moreover there exists c > 0 such that |(Φ2)′(x)| > c,

then, a.s. it does not belong to BH
∞,∞.

• The accuracy vn(H) is slower by a polynomial order than the usual n−1/2 of
regular parametric models. This rate of convergence seems to be characteristic
of high frequency parametric inference from noisy data in presence of fractional
Brownian motion. Indeed, this rate is also found by Gloter and Hoffmann [14]
in the high frequency inference of the finite dimensional parameter θ in the
model

dYt = σt dBt, σt = Φ(θ,WH
t ).

Gloter and Hoffmann [15] also obtain this rate in the high frequency estimation
of the Hurst parameter in the following model:

Y n
i = σWH

i/n + a(WH
i/n)ξn

i , (5)

where a is an unknown variance function and ξn
i a centered white noise.
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1.5 Organisation of the paper

In section 2, we present our estimation method for the volatility Hurst para-
meter. Section 3 states the main propositions which lead to theorems 1 and 2.
We prove in sections 4, 5 and 6 the results stated in section 3 concerning the
upper bound whereas theorem 1 is proved in section 7. We end with the proof
of theorem 2 in section 8. The proof of proposition 1 is given in appendix.

2 Estimation strategy

2.1 Estimation of the Hurst parameter: preliminaries

2.1.1 Estimation of H from direct observation of a fractional Brownian mo-
tion

Imagine we observe high frequency data at sampling rate n−1 of the trajectory
of a fractional Brownian motion on the interval [0, 1]. Then, we can recover
the Hurst parameter at the parametric accuracy n−1/2. Indeed, we can use as
follows local properties of the trajectory of the fractional Brownian motion, see
Istas and Lang [21], see also Berzin and Leon [5]. Let s = (s0, . . . , sp) ∈ Rp+1

be such that for some positive integer m(s):

for k = 0, . . . ,m(s)− 1 :
p∑

i=0

si i
k = 0 and

p∑
i=0

si i
m(s) 6= 0.

We define, for some sequence s and i = 0, . . . , N − p − 1, the generalized
difference

∆i,nf =
m(s)∑
j=0

sjf
(
i+ j

n

)
.

The integer m(s) is called the order of the difference. For instance, the usual
difference s = (−1, 1) is of order 1 and s = (1,−2, 1) is of order 2. Consider

Vn(H) =
n∑

i=1

(∆i,nW
H)2.

Istas and Lang [21] show that for m(s) > 1, there exists a constant L > 0
such that 1

n2H−1Vn(H) = L+
1√
n
ξn,

1 The condition m(s) > 1 is necessary for H > 3
4 , if H ≤ 3

4 , the result holds with
m(s) = 1.
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with ξn bounded in probability. Then, an estimator achieving the rate n−1/2

is for example

Ĥ =
1

2

(
1 + log2

Vbn/2c(H)

Vn(H)

)
.

2.1.2 Estimation of H from noisy observation of a fractional Brownian mo-
tion

Trying to recover the Hurst parameter from noisy data is more difficult. In-
deed, Gloter and Hoffmann [15] show that the statistical structure of model
(5) is significantly modified by the noise. They prove that the rate n−1/(4H+2)

is optimal to estimate H in the minimax sense of (3) and (4). Their estima-
tion strategy is based on the behaviour of the energy levels of the fractional
Brownian motion that reflects the Besov properties of the trajectories. We
adapt this strategy in this paper.

Pick a mother wavelet ψ with 2 vanishing moments. Hence, the wavelet sup-
port has a minimal length of 3, see Daubechies [10]. For j and k positive
integers, let

ψjk(x) = 2j/2ψ(2jx− k), djk =
∫
ψjkW

H
s ds and Qj =

∑
k

d2
jk.

The sequence of energy levels (Qj, j ≥ 0) has the following scaling property 2 :

Qj+1

Qj

= 2−2H + o(1) as j → +∞. (6)

Gloter and Hoffmann [15] construct estimators d̂2
jk of the d2

jk up to a maximal
resolution level Jn = b1

2
log2(n)c. Setting

Q̂j =
∑
k

d̂2
jk,

one obtain a sequence of estimators:

Ĥj,n = −1

2
log2

Q̂j+1,n

Q̂j,n

, j = 1, . . . , Jn. (7)

Eventually, the estimator is ĤJ∗n,n where the optimal resolution level J∗n is
defined following the rules of adaptive estimation of quadratic functionals:

J∗n = max
{
j = 1, . . . , Jn, Q̂j,n ≥

2j

n

}
. (8)

2 For the moment, we do not specify the meaning of o(·).
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2.2 Construction of an estimator

2.2.1 An Euler scheme-type transformation

By an Euler scheme-type transformation, we boil down the problem to a re-
gression model. Indeed, we have

zn
i = n(Y(i+1)/n − Yi/n)2 = σ2

i/n + ξn
i , (9)

with

σ2
i/n = Φ2

( ∫ i
n

0
a(u)dWH

u

)
,

and

ξn
i = n

[ ∫ i+1
n

i
n

(σ2
t − σ2

i/n)dt+
( ∫ i+1

n

i
n

σt dBt

)2

−
∫ i+1

n

i
n

σ2
t dt

]
.

Conditional on the fbm WH and up to negligible terms, the ξn
i are martingale

increments with variance of order 1.

2.2.2 Estimation of the energy levels

Let ψ be a mother wavelet with 2 vanishing moments and support [0, T ]. Let

djk =
∫ k+T

2j

k

2j

σ2
tψjk(t)dt and Qj =

∑
k

d2
jk.

By proving a scaling-type property on the energy levels analogous to (6), we
can follow the strategy of section 2.1.2. The main difficulty lies here in the
non-linearity introduced by the function Φ2.

We now present the estimation of the energy levels. To get rid of boundary
effects, without any loss of generality in our asymptotic framework, we do not
take into account the wavelets ψjk whose support is not totally included in
[0, T ]. We have

djk =
T2N−j−1∑

l=0

∫ k

2j + l+1

2N

k

2j + l

2N

σ2
tψjk(t)dt.

A first natural estimator of djk is

d̃jk =
T2N−j−1∑

l=0

zn
k2N−j+l

∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt.

Let

Mk,l,t =
( ∫ t

k

2j + l

2N

σudBu

)2

−
∫ t

k

2j + l

2N

σ2
udu.
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From (9), we have the following decomposition:

d̃jk − djk = bjk + ejk + fjk,

with

bjk =
T2N−j−1∑

l=0

∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)(σ
2
k2−j+l2−N − σ2

t )dt,

ejk =n
T2N−j−1∑

l=0

∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt Mk,l, k

2j + l+1

2N
,

fjk =n
T2N−j−1∑

l=0

∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
∫ k

2j + l+1

2N

k

2j + l

2N

(σ2
t − σ2

k2−j+l2−N )dt.

In order to precisely estimate d2
jk, we can not use d̃jk

2
because of the remaining

term e2jk that we have to compensate. The other terms are negligible.

Conditional on WH , (Mk,l,t, t ≥ 0) is a continuous local martingale. Let
Ẽ = E[ |WH ] denote the expectation conditional on WH . Then, by the
independence of the Brownian increments,

Ẽ[e2jk] = n2
T2N−j−1∑

l=0

( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2

Ẽ[M2
k,l, k

2j + l+1

2N
].

Let

Nk,l,t =
∫ t

k

2j + l

2N

σudBu.

By Ito’s formula,

Mk,l,t = 2
∫ t

0
σuNuI{u≥ k

2j + l

2N }dBu.

Let

a2
j,k,l = Ẽ[M2

k,l, k

2j + l+1

2N
] = 2

(
Ẽ
[
(Yk2−j+(l+1)2−N − Yk2−j+l2−N )2

])2

.

We need to compensate a2
j,k,l, so we estimate a2

j,k,l by

â2
j,k,l =

 √
2

h(n)

h(n)∑
p=1

(Yk2−j+(l+1+p)2−N − Yk2−j+(l+p)2−N )2

2

,

where h(n) = bn1/2c. Let

νjk = n2
T2N−j−1∑

l=0

( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2

a2
j,k,l,
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ν̄jk = n2
T2N−j−1∑

l=0

( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2

â2
j,k,l.

Finally we define

d̂2
jk = d̃jk

2
− ν̄jk and Q̂j =

∑
k

d̂2
jk.

We thus obtain our estimator ĤJ∗n,n of H with the same specifications as in
(7) and (8).

3 The behaviour of the energy levels

We present here the steps that enable us to prove theorems 1 and 2.

3.1 Upper bound

Recall that

σ2
t = Φ2

( ∫ t

0
a(u)dWH

u

)
, t ∈ [0, T ].

Let
djk =

∫
σ2

tψjk(t)dt and Qj =
∑
k

d2
jk.

We write c for a constant depending on Φ, a, H, ψ and continuous in its
arguments.

Proposition 2 (Limit of the energy levels). Under assumptions A and B,
there exists c(ψ) > 0 depending on ψ and H, continuous in its arguments and
c > 0, such that

E
[ ∣∣∣∣22jHQj − c(ψ)

∫ T

0
a2(u)

{(
Φ2
)′( ∫ u

0
a(v)dWH

v

)}2

du
∣∣∣∣ ] ≤ c2−j/2.

More precisely, proposition 2 enables us to obtain the following result:

Proposition 3 (Scaling property). Under assumptions A and B, we have

(i) For all ε > 0, there exist j0 and r > 0 such that for all j ≥ j0,

P
[
22jHQj ≥ r

]
≥ 1− ε,

(ii) For all ε > 0, there exist j0 and M > 0 such that for all j ≥ j0,

P
[
2j/2 sup

l≥j

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣ ≥M
]
≤ ε.
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Finally, we have the following result for the estimator:

Proposition 4 (Deviation of the estimator).

Let jn(H) =
⌊
(2H+1)−1 log2(n)

⌋
and H be a compact set included in (1/2, 1).

Under assumptions A and B, for all H ∈ H, Jn ≥ jn(H) and for any L > 0,
the sequence {

n2jn(H)/2 sup
Jn≥j≥jn(H)−L

2−j

∣∣∣∣Q̂j,n −Qj

∣∣∣∣}
is bounded in probability, uniformly over H.

We then prove that propositions 3 and 4 together imply theorem 1.

3.2 Lower bound

Let Pn
f denote the law of the data Y n = {Yi/n, i = 0, . . . , nT} conditional on

WH = f . The key point of the lower bound is the following:

Proposition 5 (Distance in total variation). Under assumptions A, B and
C, there exists c > 0 such that

‖Pn
f − Pn

g‖2
TV ≤ cn‖f − g‖2

2,

where ‖ · ‖TV denotes the distance in total variation and ‖ · ‖2 the usual L2

norm of functions on [0, T ] with respect to the Lebesgue measure.

4 Proof of proposition 2

4.1 Notation

In all the proofs, assumptions A and B are in force and we repeatedly use
the notation c and c̃ for constants depending on Φ, a, H, ψ, continuous in
their arguments and that may vary from line to line. Finally, for a function f ,
‖f‖∞ = supt |f(t)|.

4.2 Technical lemmas

We establish here several useful lemmas. We apply here ideas of Gloter and
Hoffmann, see [14], initially developed for generalized differences.

10



Lemma 1 Let f and g be two continuous deterministic bounded functions
such that |f | ≤ g. We have

E
[( ∫ T

0
f(u)dWH

u

)2 ]
≤ E

[( ∫ T

0
|f(u)|dWH

u

)2 ]
≤ E

[( ∫ T

0
g(u)dWH

u

)2 ]
.

Proof. Recall that (see Lin [24])

E
[( ∫ T

0
f(u)dWH

u

)2 ]
≤ ‖f‖∞T 2H .

Thus, the expectation of the square of the partial sums converges to the ex-
pectation of the square of the stochastic integral. We have∫ T

0
f(u)dWH

u = lim
n→+∞

n∑
p=1

f({p− 1}Tn−1)[WH
pTn−1 −WH

{p−1}Tn−1 ],

where the limit is taken in L2(P). The results hold by stationarity arguments
and because we easily check that

E
[
(WH

(p−{q−1})Tn−1 −WH
(p−q)Tn−1)WH

Tn−1

]
≥ 0. 2

We now prove 2 lemmas on the expectation and covariance of the wavelet
coefficients for the stochastic integral.

Lemma 2 Let σ̃t =
∫ t

0
a(u)dWH

u , βjk =
∫ T

0
σ̃tψjk(t)dt and F (t) =

∫ t

0
ψ(u)du.

For all positive integers j, k, there exists a bounded (independently from j and
k) variable Z such that,

E[β2
jk] = 2−j(1+2H)(c(ψ)a(k2−j)2 + 2−jZ),

where c(ψ) is positive and such that

c(ψ) = E
[( ∫ T

0
F (t)dWH

t

)2 ]
.

Proof. The coefficient βjk is equal to

2−j/2
∫ L

0
ψ(v)

(∫ 2−j(k+v)

0
a(u)dWH

u

)
dv.

By linearity and Fubini’s theorem, βjk is equal to

2−j/2
∫ 2−jk

0

∫ T

0
ψ(v)a(u)dvdWH

u + 2−j/2
∫ 2−j(k+T )

2−jk

∫ T

2ju−k
ψ(v)a(u)dvdWH

u .
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Because F (0) = F (T ) = 0, we have

βjk = −2−j/2
∫ 2−j(k+T )

2−jk
F (2ju− k)a(u)dWH

u .

We can already remark that βjk is a Gaussian random variable. Let

Fp = F (2j(2−jk + {p− 1}2−jTn−1)− k) = F ({p− 1}Tn−1),

ap = a(2−jk + {p− 1}2−jTn−1).

By stationarity of the increments of the fbm, 2jE[β2
jk] is the limit as n tends

to infinity of the sum of the following two terms:

En
1 =

n∑
p=1

F 2
p ap(2

−jTn−1)4H ,

En
2 = 2

∑
1≤p<q≤n

FpFqapaqE
[
(WH

(p−{q−1})2−jTn−1 −WH
(p−q)2−jTn−1)WH

2−jTn−1

]
.

By self-similarity property, we get

2jE[β2
jk] = lim

n→+∞
2−j2HE

[( n∑
p=1

Fpap[W
H
pTn−1 −WH

{p−1}Tn−1 ]
)2 ]

= 2−j2HE
[( ∫ T

0
F (t)

(
a(k2−j) + t2−ja′(θk,j)

)
dWH

t

)2 ]
,

with k2−j ≤ θk,j ≤ (k + T )2−j, by Taylor’s formula. By lemma 1 and because
a and a′ are bounded, we get the result for E[β2

jk]. The positivity of c(ψ) comes
remarking that, by Ito’s formula,∫ T

0
F (t)dWH

t = −
∫ T

0
ψ(t)WH

t dt.

This quantity is a non degenerate Gaussian variable, see Tewfik and Kim [32]
or Delbeke and Abry [11]. The positivity of c(ψ) follows. 2

Lemma 3 (Decorrelation of the wavelet coefficients).
Let σ̃t and βjk be as in lemma 2. There exists c such that, for all j, k, k′,

|Cov(βjkβjk′)| ≤ 2−j(1+2H)c(1 + |k − k′|)2(H−2) + c2−j(2+2H).

Proof. We write θ for the value where the last term of a Taylor expansion is
taken. Let

djk =
∫ T

0
ψjk(t)W

H
t dt.

Let
Fp = F ({p− 1}Tn−1

)
, ap,k = a(2−jk + {p− 1}2−jTn−1),
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Vj,p,k = WH
2−jk+p2−jTn−1 −WH

2−jk+{p−1}2−jTn−1 , rj,p,q,k,k′ = E[Vj,p,kVj,q,k′ ].

Let k ≥ k
′
. We have

E[βjkβjk′ ] = lim
n→+∞

2−j
n∑

p,q=1

FpFqap,kaq,k′rj,p,q,k,k′ .

So, E[βjkβjk′ ] is the limit of the sum of the four following terms:

T1 = a(k2−j)a(k′2−j)E[djkdjk′ ],

T2 = 2−2ja(k2−j)
n∑

p,q=1

FpFq({q − 1}Tn−1)a′(θ)rj,p,q,k,k′ ,

T3 = 2−2ja(k′2−j)
n∑

p,q=1

FpFq({p− 1}Tn−1)a′(θ)rj,p,q,k,k′ ,

T4 = 2−3j
n∑

p,q=1

FpFq({p− 1}Tn−1)({q − 1}Tn−1)a′(θ)a′(θ)rj,p,q,k,k′ .

Using that
rj,p,q,k,k′ = 2−j2Hr0,p,q,k−k′,0

and Cauchy-Schwarz inequality, we easily prove that T2, T3 and T4 are less than
c2−2j2−2jH . Then, we use results on the decorrelation of the wavelet coefficients
of the fbm which are easily obtained by fourth order Taylor expansions, see
for example Tewfik and Kim [32] or Delbeke and Abry [11]. 2

Lemma 4 Let σ̃t, βjk and c(ψ) be as in lemma 2. Let ξ : [0, T ] → R be a
deterministic bounded function. Define

Σj(ξ) = 2j
T (2j−1)∑

k=0

{2j2Hβ2
jk − c(ψ)2−ja2(k2−j)}ξk2−j . (10)

Then,
E[Σj(ξ)

2] ≤ c‖ξ‖2
∞2j.

Proof. We have

Σj(ξ) = 2j
T (2j−1)∑

k=0

{2j2Hβ2
jk − 2j2HE[β2

jk] + 2−2jZ}ξk2−j ,

with Z a bounded variable, by lemma 2. Hence E[Σj(ξ)
2] is less than

22jE
[ T (2j−1)∑

k,k′=0

2j4H{β2
jk − E[β2

jk]}{β2
jk′ − E[β2

jk′ ]}ξk2−jξk′2−j

]
+ c‖ξ‖2

∞

13



≤ 22j2j4H
T (2j−1)∑
k,k′=0

E[YkYk′ ]E[β2
jk]E[β2

jk′ ]ξk2−jξk′2−j + c‖ξ‖2
∞,

with Yk = β2
jk/E[β2

jk]−1. We apply Mehler’s formula and we get that E[Σj(ξ)
2]

is less than

22j2j4H‖ξ‖2
∞2

T (2j−1)∑
k,k′=0

Cov(βjk, βjk′)
2 + c‖ξ‖2

∞

≤ 22j2j4H‖ξ‖2
∞c̃
( T (2j−1)∑

k,k′=0

2−2j(1+2H)(1 + |k − k′|)4(H−2)

+ 2−j2−2j(1+2H)(1 + |k − k′|)2(H−2) + 2−2j2−2j(1+2H)
)

+ c‖ξ‖2
∞, by lemma 3,

≤ c̃‖ξ‖2
∞

( T (2j−1)∑
k=0

+∞∑
i=0

(1 + i)4(H−2) + 2−j
T (2j−1)∑

k=0

+∞∑
i=0

(1 + i)2(H−2) + 1
)

≤ c̃‖ξ‖2
∞2j, because of the convergence of the infinite series for H ∈ (1/2, 1). 2

Lemma 5 Assume that ξ : [0, T ] → R is bounded and vanishes outside the
interval [k2−j0 , k′2−j0 ] ⊂ [0, T ] for some k, k′, j0 ≥ 1, k 6= k′. Then, there
exists c > 0 such that for j ≥ j0, we have

E[Σj(ξ)
2] ≤ c‖ξ‖2

∞|k′ − k|2j−j0 .

Proof. We have

E[Σj(ξ)
2] ≤ c̃

( T (2j−1)∑
z,z′

|ξz2−j ||ξz′2−j |(1 + |z − z′|)4(H−2)

+ 2−j|ξz2−j ||ξz′2−j |(1 + |z − z′|)2(H−2) + 2−2j|ξz2−j ||ξz′2−j |
)

+ c‖ξ‖2
∞.

By similar computations on the series as in proof of lemma 4, we get

E[Σj(ξ)
2] ≤ c̃‖ξ‖∞

∑
z

|ξz2−j |+ c‖ξ‖2
∞.

As ξz2−j is different from zero only if k2−j0 ≤ z2−j ≤ k′2−j0 , there are less
than |k − k′|2j−j0 + 1 admissible values for z and so,

E[Σj(ξ)
2] ≤ c̃‖ξ‖2

∞|k′ − k|2j−j0 . 2

We now decompose the function t→ ((Φ2)′)2(
∫ t
0 a(u)dW

H
u ) in a wavelet basis

with support [0, T ]. Thus, we use the same wavelet as before but in another
context.
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Lemma 6 (Decomposition in a wavelet basis). Let h = ((Φ2)′)2. Let φ be the
scaling function associated to ψ. We write φ0k(t) = φ(t− k),

ck =
∫
h
( ∫ t

0
a(u)dWH

u

)
φ0k(t)dt and cjk =

∫
h
( ∫ t

0
a(u)dWH

u

)
ψjk(t)dt.

Then,

h
( ∫ t

0
a(u)dWH

u

)
=

r∑
k=0

ckφ0k(t) +
+∞∑
j=0

T (2j−1)∑
k=0

cjkψjk(t),

where r is a constant value depending on T and with

E[c0 + · · ·+ cr] ≤ c̃, E[c2jk] ≤ c2−j(1+2H).

Proof. From now on, we write J(s, t) for
∫ t

s
a(v)dWH

v . Since the first moment

of ψ vanishes, we have

cjk =
∫
ψjk(t)h[J(0, t)]dt = 2−j/2

∫ T

0
ψ(u)h[J(0, (k + u)2−j)]du

= 2−j/2
∫ T

0
ψ(u){J(0, (k + u)2−j)− J(0, k2−j)}h′(η)du.

Here, η is a value between J(0, k2−j) and J(0, (k + u)2−j). By the continuity
of the sample path of the stochastic integral, we know there exists a random
point θ between k2−j and (k + u)2−j such that η = J(0, θ). Thus, we have

c2jk ≤ c2−j
∫ T

0
ψ2(u){J(k2−j, (k + u)2−j)}2(h′[J(0, θ)])2du.

By lemma 1 and because J(k2−j, (k + u)2−j) is a Gaussian variable,

E[J(k2−j, (k + u)2−j)
4
] ≤ c‖a‖4

∞2−j4H .

By assumption B 3 , {h′[J(0, θ)]}2 ≤ c(1 + |J(0, θ)|m)2. To control E|J(0, θ)|,
since J(0, t) is a Gaussian process starting from 0 with continuous trajectories,
we can use Dudley’s entropy bound: there exists a universal constant c such
that

E[ sup
t∈[0,T ]

|J(0, t)| ] ≤ c
∫ d(0,T )

0

√
logN(T, d, ε)dε,

where d2(s, t) = E[ |J(0, t) − J(0, s)|2] and N(T, d, ε) is the minimal number
of balls of radius ε needed to recover [0, T ]. Since

E[ |J(0, t)− J(0, s)|2] ≤ c|t− s|2H ,

3 Remark that Assumption B implies there exist c and m positive such that
|(Φ2)′(x)| ≤ c(1 + |x|m) and consequently there exist c and m such that
|(((Φ2)′)2)′(x)| ≤ c(1 + |x|m).
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we easily get that N(T, d, ε) is less than cTε−1/H . Using that H belongs to
(1/2, 1), we easily bound E|J(0, θ)| by a constant c. Then, since J(0, t) is a
Gaussian process, we also get E[{h′[J(0, θ)]}4] ≤ c. Hence by Cauchy-Schwarz,
E[c2jk] ≤ c2−j(1+2H). By Taylor expansion of the coefficients, we also get E[c0 +
· · ·+ cr] ≤ c̃. 2

Lemma 7 Let h be as in lemma 6. We have

E
[ ∣∣∣∣2j(1+2H)

∑
k

{β2
jk − c(ψ)2−ja2(k2−j)}h

( ∫ t

0
a(u)dWH

u

)∣∣∣∣ ] ≤ c2
j
2

Proof. We know from lemma 6

h
( ∫ t

0
a(u)dWH

u

)
=

r∑
k=0

ckφ0k(t) +
+∞∑
j=0

T (2j−1)∑
k=0

cjkψjk(t).

Let Sj(h) = 2j(1+2H)
∑
k

{β2
jk − c(ψ)2−ja2(k2−j)}h

( ∫ t

0
a(u)dWH

u

)
. We can

rewrite Sj(h) =
r∑

k=0

ckΣj(φ0k) +
+∞∑
j1=0

Sj,j1 , with

Sj,j1 =
T (2j−1)∑

k=0

cj1kΣj(ψj1k).

For i = 0 to k, E
[
|ciΣj(φ0i)|

]
≤ c2j/2, by lemma 4. Now we prove that

E
[ +∞∑

j1=0

|Sj,j1|
]
≤ c2j/2.

If j1 ≤ j, by lemma 5,

E
[
|Sj,j1|

]
≤ c

T (2j1−1)∑
k=0

2−j1(1+2H)/2
(
E[Σj(ψj1k)

2]
)1/2

≤ c2(1/2−H)j12j/2.

Because H > 1/2,
j∑

j1=0

E
[
|Sj,j1|

]
≤ c̃2j/2.

If j < j1, ψj1k has support [k2−j1 , (k + T )2−j1 ], so Σj(ψj1k) = 0 unless there
exists i ∈ [0, T (2j − 1)] such that i2−j ∈ [k2−j1 , (k + T )2−j1 ], that is:

k2j−j1 ≤ i ≤ (k + T )2j−j1 .

Thus, there are less than c2j possible values for i and moreover, for such i, the
sum defining Σj(ψj1k) is reduced to one single term, so, combining this result
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with lemma 2, we get

E[Σj(ψj1k)
2] ≤ c‖ψj1k‖2

∞ ≤ c2j1 ,

and
E
[
|Sj,j1|

]
≤ c

∑
1≤k≤T (2j1−1)

2−j1(1+2H)/22j1/2 ≤ c2j2−j1H .

Finally

+∞∑
j1=0

E
[
|Sj,j1|

]
=

j∑
j1=0

E
[
|Sj,j1|

]
+

+∞∑
j1=j+1

E
[
|Sj,j1|

]
≤ c2j/2. 2

Lemma 8 (Riemann’s approximation).

Let h = ((Φ2)′)2 and H(x, y, z) = a2(x)h
( ∫ z

y
a(u)dWH

u

)
. Then,

E
[ ∣∣∣∣ 1n

nT∑
k=1

H(k/n, 0, k/n)−
∫ T

0
H(t, 0, t)dt

∣∣∣∣ ] ≤ cn−1/2.

Proof. Let θ denote the value where the last term of a Taylor expansion is
taken. Let

H ′
1(x, y, z) = a2(x)h′

( ∫ z

y
a(u)dWH

u

)
,

H ′
2(x, y, z) = (a2)′(x)h′

( ∫ z

y
a(u)dWH

u

)
.

We have that E
[ ∣∣∣∣ 1n

nT∑
k=1

H(k/n, 0, k/n)−
∫ T

0
H(t, 0, t)dt

∣∣∣∣ ] is less than

nT∑
k=1

∫ k/n

k−1
n

E
[
|(k/n− t)H ′

2(θ, 0, k/n)− J(k/n, t)H ′
1(t, 0, θ)|

]
dt.

By assumption B, it is less than

c
nT∑
k=1

∫ k/n

k−1
n

E
[
(k/n− t)‖(a2)′‖∞(|h(0)|+ |J(0, k/n)||h′(θ)|)

+ ‖a2‖∞|J(k/n, t)|{1 + |J(0, θ)|m}
]
dt,

which is less than

c
nT∑
k=1

∫ k/n

k−1
n

E
[
(k/n− t)(1 + |J(0, k/n)|{1 + |J(0, θ)|m})

+ |J(k/n, t)|{1 + |J(0, θ)|m}
]
dt.

Finally, since E
[
|J(k/n, t)|

]
≤ cn−H and E

[
|J(0, θ)|m

]
+ E

[
|J(0, θ)|

]
≤ c,

we obtained the desired bound. 2
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4.3 Proof of proposition 2

Proof. Recall that J(s, t) =
∫ t

s
a(v)dWH

v . Let θ denote the value where the

last term of a Taylor expansion is taken. Let

β̃jk =
∫
ψjk(t)Φ

2
( ∫ t

0
a(u)dWH

u

)
dt,

which is equal to

2−
j
2 (Φ2)′[J(0, k2−j)]

∫ T

0
ψ(u)J(k2−j, (k + u)2−j)du

+2−
j
2

∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′(θ)du.

This can be rewritten as

(Φ2)′[J(0, k2−j)]βjk + 2−
j
2

∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′′(θ)du.

So, β̃2
jk is equal to

h[J(0, k2−j)]β2
jk + 2−j

( ∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′′(θ)du

)2

+2(Φ2)′[J(0, k2−j)]βjk2
− j

2

∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′′(θ)du.

Hence

∑
k

{
2j2H β̃2

jk − c(ψ)2−ja2(k2−j)h
( ∫ k

2j

0
a(u)dWH

u

)}
= T1 + T2 + T3,

with T1 =
∑
k

{2j2H β̃2
jk − c(ψ)2−ja2(k2−j)}h[J(0, k2−j)],

T2 = 2j2H
∑
k

2−j
{ ∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′′(θ)du

}2

,

T3 = 2j2H
∑
k

T32(k)T32(k),

and T31(k) = 2(Φ2)′[J(0, k2−j)]βjk,

T32(k) = 2−
j
2

∫ T

0
ψ(u)[J(k2−j, (k + u)2−j)]2(Φ2)′′(θ)du.

Clearly, E
[
|T2|

]
≤ c2−j2H and E

[
|T3|

]
≤ c2−jH . By lemma 7, we have

E
[
|T1|

]
≤ c2−j/2 and we finally get the result by lemma 8. 2
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5 Proof of proposition 3

Proof. We begin by the proof of (i). With the notation of assumption A,
there exists η > 0 such that

c(ψ)
∫ T

0
a2(u){(Φ2)′[J(0, u)]}2du ≥ η

∫ β

α
{(Φ2)′[J(0, u)]}2du.

Let

Z = η
∫ β

α
{(Φ2)′[J(0, u)]}2du.

Suppose there exists ε > 0 such that for all r > 0, P[Z ≤ r] ≥ ε. Since
Z ≥ 0, P[Z = 0] ≥ ε. By assumption B, this implies J(0, u) = 0 on (α, β) with
positive probability which is absurd by assumption A and because J(0, u) is
a continuous Gaussian process. Then, for ε > 0, there exists r > 0 such that

P
[
Z ≥ 2r

]
≥ 1− ε.

By Markov’s inequality, we have

P
[
22jHQj /∈ [Z − r, Z + r]

]
= P

[
|22jHQj − Z| > r

]
≤ c

2−j/2

r
,

thus, ∑
j≥0

sup
H

P
[
22jHQj /∈ [Z − r, Z + r]

]
< +∞.

Then, by Borel Cantelli’s lemma, for large enough j a.s.

22jHQj ≥ Z − r.

We now prove (ii). Let ε > 0, r and j0 associated by proposition 3 (i) and
j ≥ j0. We have

P
[
2j/2 sup

l≥j

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣ ≥M
]

= P[sup
l≥j

|Ql+1 − 2−2HQl| ≥MQl2
−j/2]

≤ ε+ P
[
sup
l≥j

|Ql+1 − 2−2HQl| ≥M2−j/22−2lHr
]

≤ ε+
∑

l≥j≥j0

E
[
|Ql+1 − 2−2HQl|

]
22lH2j/2{Mr}−1.

But, E
[
|Ql+1 − 2−2HQl|

]
is equal to

E
[
|Ql+1 − 2−2(l+1)HZ + 2−2(l+1)HZ − 2−2HQl|

]
≤ c2−l(2H+1/2),
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thus,

P
[
2j/2 sup

l≥j

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣ ≥M
]
≤ ε+ c

∑
l≥j≥j0

2−l/22j/2{Mr}−1.

For large enough M, this can be made arbitrarily small. 2

6 Proof of proposition 4

Proof. With the notation of section 2.2.2, we have

Q̂j −Qj =
∑
k

b2jk +
∑
k

f 2
jk +

∑
k

bjkfjk +
∑
k

djkbjk +
∑
k

djkfjk

+
∑
k

(e2jk − ν̄jk) +
∑
k

ejkfjk +
∑
k

bjkejk +
∑
k

djkejk +
∑
k

νjk − ν̄jk.

Following Gloter and Hoffmann [15], it is enough to prove

sup
Jn≥j≥jn(H)−L

sup
H∈[H−,H+]

2−j/2E
[
|Q̂j,n −Qj|

]
≤ cn−1.

Now we bound the 10 terms one by one.

• Term 1: let Vtl = σ2
t − σ2

k2−j+l2−N . We have

E[b2jk] =
T (2N−j−1)∑

l=0

T (2N−j−1)∑
l′=0

∫ k

2j + l+1

2N

k

2j + l

2N

∫ k

2j + l′+1

2N

k

2j + l′
2N

ψjk(t)ψjk(t
′)E[VtlVtl′ ]dtdt

′

≤ c2j
∑

l

∑
l′

∫ k

2j + l+1

2N

k

2j + l

2N

∫ k

2j + l′+1

2N

k

2j + l′
2N

(
E[V 2

tl ]E[V 2
tl′ ]
)1/2

dtdt′.

Moreover,

Vtl = (Φ2)′
( ∫ t− k

2j + l

2N

0
a(u)dWH

u

) ∫ k

2j + l+v

2N

k

2j + l

2N

a(u)dWH
u , with v ∈ [0, 1].

By assumption B and the same arguments as previously, E[V 2
tl ] ≤ c2−2NH .

Hence E[b2jk] ≤ c2−jn−1.

• Term 2 and term 3 follow easily with the same order.
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• Term 4: we easily prove as in lemma 6 that E[d2
jk] ≤ c2−j(1+2H) and then,

because j ≥ 1
2H+1

log2(n), E
[
|djkbjk|

]
≤ c2−j/2n−1.

• Term 5 follows as term 4 with the same order.

• Term 6: we argue first conditional on WH . We write Ẽ for the expectation
conditional on WH . Because of the independence of the Brownian increments
and because the variables are centered, we have

Ẽ
[(∑

k

e2jk − νjk

)2 ]
=
∑
k

Ẽ
[
(e2jk − νjk)

2
]
,

Ẽ
[
(e2jk − νjk)

2
]

= Var[e2jk] ≤ Ẽ[e4jk + ν2
jk].

Let

Ml =
( ∫ k

2j + l+1

2N

k

2j + l

2N

σt dBt

)2

−
∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt.

Because the variables Ml, l = 0, . . . , T (2N−j − 1) are centered and indepen-
dent, we get that Ẽ[e4jk] is equal to

T (2N−j−1)∑
l=0

T (2N−j−1)∑
l′=0

n4
( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
∫ k

2j + l′+1

2N

k

2j + l′
2N

ψjk(t)dt
)2

Ẽ[M2
l M

2
l′ ].

Indeed the product of terms of power 3 with terms of power 1 are equal to
zero. But, we have the following equality in law

M2
l

L
=
( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt

)2

(Z2 − 1)2,

with Z a standard Gaussian variable. Hence,

Ẽ[M4
l ] = c

( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt

)4

.

Now, we have

E
[( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt

)4 ]
≤
∫∫∫∫ (

E[σ8
t1
]E[σ8

t2
]E[σ8

t3
]E[σ8

t4
]
)1/4

dt1dt2dt3dt4.

Moreover, there exists θ ∈ [0, T ] such that,

σ2
t = Φ2

( ∫ t

0
a(u)dWH

u

)
= Φ2(0) + Φ2′

( ∫ θ

0
a(u)dWH

u

) ∫ t

0
a(u)dWH

u .
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Since the stochastic integral is a Gaussian variable with finite moments, to-
gether with assumption B, we get E[σ8

t ] ≤ c. Hence E[e4jk] ≤ cn−2. We have

E[ν2
jk] = 4n4

T (2N−j−1)∑
l=0

T (2N−j−1)∑
l4=0

( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
∫ k

2j + l′+1

2N

k

2j + l′
2N

ψjk(t)dt
)2

E
[( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt

)2( ∫ k

2j + l′+1

2N

k

2j + l′
2N

σ2
t dt

)2 ]
.

In the same way as for E[e4jk], we get E[ν2
jk] ≤ cn−2.

• Term 7: in the preceding proof, we have shown E[e2jk] ≤ cn−1 and so we

obtain E
[
|fjkejk|

]
≤ c2−j/2n−1.

• Term 8 follows exactly as term 7.

• Term 9: we argue first conditional on WH . Because of the independence of
the Brownian increments and because the variables are centered, we have

Ẽ
[(∑

k

ejkdjk

)2 ]
=
∑
k

d2
jkẼ[e2jk].

Again because of the independence of the Brownian increments and because
the variables are centered, we have

d2
jkẼ[e2jk] = c

∑
l1

∑
l2

∫ k

2j +
l1+1

2N

k

2j +
l1
2N

ψjk(t1)σ
2
t1
dt1

∫ k

2j +
l2+1

2N

k

2j +
l2
2N

ψjk(t2)σ
2
t2
dt2

∑
l3

n2
( ∫ k

2j +
l3+1

2N

k

2j +
l3
2N

ψjk(t3)dt3

)2( ∫ k

2j +
l3+1

2N

k

2j +
l3
2N

σ2
t3
dt3

)2

.

So, we get

E[d2
jke

2
jk] = n2

∑
l3

( ∫ k

2j +
l3+1

2N

k

2j +
l3
2N

ψjk(t3)dt3

)2 ∫ k

2j +
l3+1

2N

k

2j +
l3
2N

∫ k

2j +
l3+1

2N

k

2j +
l3
2N

E
[ ∫ k+T

2j

k

2j

ψjk(t1)σ
2
t1
dt1

∫ k+T

2j

k

2j

ψjk(t2)σ
2
t2
σ2

t3
σ2

t4
dt2

]
dt3dt4.

Because of the vanishing moments of the wavelet, we have
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E
[ ∫ k+T

2j

k

2j

ψjk(t1)σ
2
t1
dt1

∫ k+T

2j

k

2j

ψjk(t2)σ
2
t2
σ2

t3
σ2

t4
dt2

]

= E
[ ∫ k+T

2j

k

2j

ψjk(t1)
∫ k+T

2j

k

2j

ψjk(t2)Vt10Vt20σ
2
t3
σ2

t4
dt2dt1

]
≤ c2j2−2j

(
E[V 4

t10]E[V 4
t20]
)1/4

≤ c2−j2−j2H .

Consequently, E[d2
jke

2
jk] ≤ cn−12−3j, but, as j ≥ log2 n

3
, E[d2

jke
2
jk] ≤ cn−2.

• Term 10: let X =
( ∫ k

2j + l+1

2N

k

2j + l

2N

σt dBt

)2

and Xi =
( ∫ k

2j + l+i+1

2N

k

2j + l+i

2N

σt dBt

)2

. Then,

νjk = 2
2N−j−1∑

l=0

n2
( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu

)2

,

ν̄jk = 2
2N−j−1∑

l=0

n2
( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2(1

h

h∑
i=0

Xi

)2

,

where h = h(n) = bn1/2c. The term νjk − ν̄jk is equal to

2
2N−j−1∑

l=0

n2
( ∫ k

2j + l+1

2N

k

2j + l

2N

ψjk(t)dt
)2( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu+

1

h

h∑
i=0

Xi

)
( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu−

1

h

h∑
i=0

Xi

)
.

We argue first conditional on WH . We have

Ẽ
[( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu−

1

h

h∑
i=0

Xi

)2 ]

≤ cẼ
[(

1

h

h∑
i=0

{Xi − Ẽ[Xi]}
)2 ]

+ cẼ
[(

1

h

h∑
i=0

Ẽ[Xi]− Ẽ[X]
)2 ]

,

with the following equality in law

Xi − Ẽ[Xi]
L
=
( ∫ k

2j + l+i+1

2N

k

2j + l+i

2N

σ2
t dt

)
(Z2 − 1),

with Z a standard Gaussian variable. Now,

E
[( ∫ k

2j + l+i+1

2N

k

2j + l+i

2N

σ2
t dt

)2 ]
≤ c2−2N .
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Then, by independence of the Brownian increments and because the variables
are centered,

Ẽ
[(

1

h

h∑
i=0

{Xi − Ẽ[Xi]}
)2 ]

=
1

h2

h∑
i=0

Ẽ
[
(Xi − ẼXi)

2
]
≤ c

h
2−2N .

For the other term, we have

E
[(

1

h

h∑
i=0

ẼXi − ẼX
)2 ]

= E
[(

1

h

h∑
i=0

∫ k

2j + l+i+1

2N

k

2j + l+i

2N

σ2
t dt−

∫ k

2j + l+1

2N

k

2j + l

2N

σ2
t dt

)2 ]

=
1

h2

h∑
i=0

h∑
g=0

∫ k

2j + l+1

2N

k

2j + l

2N

∫ k

2j + l+1

2N

k

2j + l

2N

E
[
(σ2

u+i2−N − σ2
u)(σ

2
v+g2−N − σ2

v)
]
dudv

≤ c

h2

h∑
i=0

h∑
g=0

∫ k

2j + l+1

2N

k

2j + l

2N

∫ k

2j + l+1

2N

k

2j + l

2N

(ig)H2−2NHdudv ≤ c2−2Nn−1h2.

Eventually,

E
[( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu−

1

h

h∑
i=0

Xi

)2 ]
≤ c

n−2

√
n
.

We easily check that the term

E
[( ∫ k

2j + l+1

2N

k

2j + l

2N

σ2
udu+

1

h

h∑
i=0

Xi

)2 ]

is less than cn−2 and finally E
[
|νjk−ν̄jk|

]
≤ cn−12−j/2, because j ≤ log2 n

n
. 2

7 Proof of theorem 1

We now prove that proposition 3 and 4 together imply theorem 1.

Proof. Following lemma 1 of Gloter and Hoffmann [15], we easily obtain that
for all ε positive, there exist n0 and M > 0, such that for all n ≥ n0,

P[n1/(4H+2)|Ĥn −H| ≥M ] ≤ ε. (11)

With no loss of generality, we may demand Ĥ ≤ C, with C > 1 a constant
value, by considering H̃ = ĤI|Ĥ|≤C

. Let ε > 0, n0, M associated by (11). For

n ≥ n0, if (C − 1)n1/(4H+2) > M , we have

P[Ĥn ≥ C] ≤ P[n1/(4H+2)|Ĥn −H| ≥ (C − 1)n1/(4H+2)] ≤ ε.

24



Let n∗0 ≥ n0 such that (C − 1)n∗0 ≥M . For all n ≤ n∗0,

n1/(4H+2)|H̃n −H| ≤ (C + 1)(n∗0)
1/(4H+2).

Let M1 = max{M, (C + 1)(n∗0)
1/(4H+2)}. For all n,

P[n1/(4H+2)|H̃n −H| ≥M1] ≤ ε. 2

8 Proof of theorem 2

8.1 Proof of proposition 5

Proof. We observe{
Yi/n = y0 +

∫ i/n

0
Φ
( ∫ s

0
a(u)dWH

u

)
dBs, i = 1, . . . , nT

}
.

Consider the equivalent sample{
Zi/n = Yi/n − Y(i−1)/n, i = 1, . . . , nT

}
.

Conditional on WH = f , Zi/n is a centered Gaussian variable with variance
σi where

σi =
∫ i/n

(i−1)/n
Φ2
( ∫ s

0
a(u)dfu

)
ds.

Moreover, conditional on WH , the observations are independent. We define
by K(µ, ν) =

∫
(log dµ

dν
)dµ ≤ +∞ the Kullback-Leibler divergence between

two probability measures µ and ν. We recall the classical Pinsker’s inequality
‖µ − ν‖TV ≤

√
2K(µ, ν)1/2. Let Pn

f be the law of the sample conditional on
WH = f , let

βi =
∫ i/n

(i−1)/n
Φ2
( ∫ s

0
a(u)dgu

)
ds.

We have
‖Pn

f − Pn
g‖TV ≤

√
2K(Pn

f ,Pn
g )1/2.

By classical computations, we get

K(Pn
f ,Pn

g ) =
1

2

nT∑
i=1

(
− log

σi

βi

− 1 +
σi

βi

)
.

By assumption C, we have (c4/c5)
2 ≤ σi/βi ≤ (c5/c4)

2. Let a = (c4/c5)
2,

b = (c5/c4)
2 and c ≥ 1/2. Consider

z(x) = log x− 1 + 1/x− c(x− 1)2, x ∈ [a, b].
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We have z(a) = log a − 1 + 1/a − c(a − 1)2, so, if c ≥ log a−1+1/a
(a−1)2

, we have

z(a) ≤ 0. Take

c = c∗ = max
(

1

2
,
log a− 1 + 1/a

(a− 1)2

)
.

Hence z is negative on [a, b], consequently, K(Pn
f ,Pn

g ) is less than

√
2

2
c∗

nT∑
i=1

(
βi

σi

− 1
)2

≤ c̃n2
nT∑
i=1

( ∫ i/n

(i−1)/n

∣∣∣∣Φ( ∫ s

0
a(u)dfu

)
− Φ

( ∫ s

0
a(u)dgu

)∣∣∣∣ds)2

≤ c̃n
∫ T

0

∣∣∣∣ ∫ s

0
a(u)dfu −

∫ s

0
a(u)dgu

∣∣∣∣2ds
≤ c̃n

∫ T

0

∣∣∣∣a(s)(f(s)− g(s)) +
∫ s

0
a′(u)(g(u)− f(u))du

∣∣∣∣2ds
≤ c̃n‖f − g‖2

2. 2

8.2 Proof of theorem 2

Proposition 5 together with proposition 5 of Gloter and Hoffmann [15] imply
the lower bound.

9 Appendix: proof of proposition 1

The link between Besov spaces and Gaussian processes has been largely stud-
ied, see in particular Ciesielski, Kerkyacharian and Roynette [7]. Nualart and
Ouknine [28] study in particular the case of the stochastic integral driven by
a fractional Brownian motion. We give here some simple proofs for our case.
Let (φ, ψ) be a wavelet basis,

α0k =
∫
f(x)φ0k(x)dx, βjk =

∫
f(x)ψjk(x)dx.

Recall that in term of wavelets coefficients, the Besov spaces Bs
p,q, with s ∈

[0, 1], 1 ≤ p, q <∞ are Banach spaces on [0, T ] equipped with the norm

‖f‖Bs
p,q

= ‖α0.‖lp +

∑
j

(
2j(s−1/p+1/2)‖βj.‖lp

)q
1/q

,
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where

‖βj.‖lp =
(∑

k

|βjk|p
)1/p

.

If p or q is equal to ∞, then the corresponding norm in p or q is replaced by
the sup norm. For details, we refer to Ciesielski, Kerkyacharian and Roynette
[7].

First, we show that the trajectory of t→ σ2
t belongs a.s. to BH

2,∞. It is enough
to prove that supj 22jHQj <∞. We know that for all positive ε, there exist j0
and M > 0 such that

P
[
2j/2 sup

l≥j≥j0

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣ ≥M
]
≥ ε.

This implies that

P
[
∃j0,∃M, 2j/2 sup

l≥j≥j0

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣ ≤M
]

= 1.

Let uj = 22jHQj. For such j0, for all j ≥ j0, |uj+1/uj| ≤ 1 + M̃2−j/2. Thus,
log uj+1 − log uj ≤ log(1 + M̃2−j/2) ≤ M̃2−j/2 and log un ≤ c. Hence the
trajectory belongs a.s. to BH

2,∞. Nevertheless, it does not belong to BH
2,q, q <∞,

as a matter of fact, for all ε positive, there exist j0 and r > 0 such that for all
j ≥ j0, P[22jHQj ≥ r] ≥ 1− ε. So, almost surely,

+∞∑
j=0

(22jHQj)
q = +∞.

The fact that for s < H, the trajectory belongs almost surely to Bs
∞,∞ is clear

by Kolmogorov’s criterion and preceding calculations on the expectations. We
now prove that it does not belong to BH

∞,∞. We take [s, t] on which a is positive.
Suppose that almost surely, there exists c̃ such that for all (s, t),∣∣∣∣Φ2

( ∫ t

0
a(u)dWH

u

)
− Φ2

( ∫ s

0
a(u)dWH

u

)∣∣∣∣ ≤ c̃|t− s|H .

Because there exists c > 0 such that for all x, |(Φ2)′(x)| > c, this implies∣∣∣∣ ∫ t

s
a(u)dWH

u

∣∣∣∣ ≤ c|t− s|H .

Ito’s formula gives:
∣∣∣∣WH

t a(t)−WH
s a(s)

(t− s)H
− (t− s)1−H

∫ t
s a

′(u)WH
u du

(t− s)

∣∣∣∣ ≤ c. If s

tends to t,

∫ t
s a

′(u)WH
u du

t− s
tends to a′(t)WH

t and so for fixed ε > 0, for |t− s|
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small enough, ∣∣∣∣(t− s)1−H
∫ t
s a

′(u)WH
u du

t− s

∣∣∣∣ ≤ ε

and consequently,∣∣∣∣(WH
t −WH

s )a(t)

(t− s)H
− WH

s (a(s)− a(t))

(t− s)H

∣∣∣∣ ≤ c+ ε.

Eventually, because a is positive, we get for |t− s| small enough:

∣∣∣∣WH
t −WH

s

(t− s)H

∣∣∣∣ ≤ c+ 2ε

minx a(x)
,

which is absurd because the fbm is H Hölderian on no interval (this is a
consequence of a law of the iterated logarithm shown by Arcones, see [2]).
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fonctionnels associés à des processus gaussiens. Studia Mathematica 107, 172-
204.

28



[8] Comte, F., Coutin, L., and Renault, E. (2003). Affine fractional stochastic
volatility models with application to option pricing. Preprint, university of
Montreal.

[9] Comte, F. and Renault, E. (1998). Long-memory in continuous-time stochastic
volatility models. Math. Finance, 8, 291–323.

[10] Daubechies, I. (1988) Orthonormal bases of compactly supported wavelets.
Comm. Pure and Appl. Math, 41, 909-996.

[11] Delbeke, L. and Abry, P. (2000) Stochastic integral representation and properties
of the wavelet coefficients of linear fractional stable process. Stoch. Proc. and
Appl., 86, 177-182.

[12] Deo, R., Hurvich, C. and Lu, Y. (2004) On the log-periodogram regression
estimator of the memory parameter in long memory stochastic volatility model.
Econometric Theory, 17(4), 686-710.

[13] Doukhan, P., Oppenheim, G. and Taqqu, M. (eds) (2003) Long-range
dependence: theory and applications. Birkhäuser, Boston.

[14] Gloter, A. and Hoffmann, M. (2004) Stochastic volatility and fractional
Brownian motion. Stoch. Proc. and Appl. 113, 143-172.

[15] Gloter, A. and Hoffmann, M. (2005) Estimation of the Hurst parameter from
discrete noisy data. Preprint.

[16] Harvey, A.C. (1998) Long-memory in stochastic volatility. In J.Knight
and S.Satchell, Forecasting volatility in financial markets, 307-320, Oxford,
Butterworth-Heineman.

[17] Hull, J. and White, A. (1988) An analysis of the bias in option pricing caused
by a stochastic volatility. Adv. Futures Options. Res. 3, 29-61.

[18] Hurvich, C., Moulines, E. and Soulier, P. (2005) Estimating long-memory in
stochastic volatility. Econometrica. 73(4), 1283-1328.

[19] Hurvich, C. and Ray, K. (2003) The local whittle estimator of long-memory
stochastic volatility. Journal of Financial Econometrics, 1(3), 445-470.

[20] Hurvich, C. and Soulier, P. (2002) Testing for long-memory in volatility.
Econometric Theory, 18(6), 1291-1308.

[21] Istas J. and Lang G. (1997) Quadratic variations and estimation of the local
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