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Abstract

We state a multidimensional Functional Central Limit Theorem for weakly dependent
random vectors. We apply this result to copulas. We get the weak convergence of the
empirical copula process and of its smoothed version. The fidi of smoothed copula densities
is proved. A theoretical analysis of conditional copulas is provided, with applications to
Goodness-of-Fit tests.

Keywords: Copulas; multivariate FCLT; weak dependence.

1 Introduction

This paper is aimed to consider asymptotic results relative to copulas for weakly dependent
sequences. Various notions of weak dependence have been introduced in the literature. Among
them, α-mixing and β-mixing have been studied, but these notions are not fully satisfactory,
as very simple processes like AR(1) processes with Bernoulli innovations may fail to satisfy any
mixing condition (see Doukhan, 1994). Doukhan and Louhichi (1999) introduce a definition
of weak dependence that is easier to check on various examples of stationary processes (see
Doukhan, 2002). Various other applications and developments of weak dependence are addressed
in Ango Nze, Bühlmann and Doukhan (2002) and Ango Nze and Doukhan (2002).

To fix the ideas, we recall the recent notion of weak dependence as defined in Doukhan
and Louhichi (1999). The definition of weak dependence may be seen as a way to weaken
independence. Consider two finite samples P (for past) and F (for future) of a sequence separated
by a gap r. The independence of P and F is equivalent to cov(f(F ), g(P )) = 0 for a suitable
class of measurable functions. A natural way to weaken this condition is to provide a precise
control of these covariances as the gap r becomes larger, and to fix the rate of decrease of
the control as r tends to infinity. Moreover the class of functions will be reduced to Lipschitz
functions to keep tractable the checks of the condition in practice.

More formally, let θ = (θr)r≥0 be a real positive sequence that tends to zero. Define the
Lipschitz modulus of a real function h on a space Rd as

Lip (h) = sup
x6=y

|h(x)− h(y)|
||x− y||1

,

where ||x|| = ||(x1, . . . , xd)||1 =
∑d

i=1 |xi|. Define L as the set of functions that are bounded
by 1 and have a finite Lipschitz modulus. We say that sequences of indices i1 ≤ · · · ≤ iu and
j1 ≤ · · · ≤ jv such that iu ≤ j1 are r-distant if j1 − iu = r. Let θ = (θr)r≥0 be a real positive
sequence that tends to zero. Let f and g be two functions of L defined on Ru and Rv respectively.
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Let (ψ1) be the functions defined on L2 × N2 by

ψ1(f, g, u, v) = (u+ v)(Lip (f) ∨ Lip (g)).

Definition 1. We say that the d-dimensional process (ξi)i∈Z is (θ,L, ψ1)-dependent if for any
r-distant finite sequences i = (i1, . . . , iu) and j = (j1, . . . , jv), for any functions f and g in L
defined on (Rd)u and (Rd)v respectively, we have

|cov(f(ξi1 , . . . , ξiu), g(ξj1 , . . . , ξjv))| ≤ ψ1(f, g, u, v)θr. (1.1)

Note that if ξ is (θ,L, ψ1)-dependent and if f and g are only bounded Lipschitz functions,
the previous covariance is bounded by ‖f‖∞‖g‖∞ψ1(f, g, u, v)θr.

Considering some weakly dependent vector-valued sequences (Xi)i∈Z, the main theoretical
result of the paper is to prove a functional central limit theorem. It is an extension on the
independent case, where the limit process is known to be a Brownian bridge B, i.e. a Gaussian
process with covariance function

cov(B(x), B(y)) = P (X0 ≤ x ∧ y)− P(X0 ≤ x)P(X0 ≤ y), (1.2)

for every vectors x and y in Rd. Such a FCLT is proved in appendix A. Thus, the functional
delta method applies and several applications are provided. We respectively consider empirical
and smoothed copulas in this weakly dependent framework (section ). Contrarily to the usual
empirical process, the limiting distributions are not free of the distribution’s process in this
case. This is why we also perform the special case of copulas densities. They are discussed in
a semi-parametric framework (section ). In this case, limit laws of their finite repartitions are
asymptotically gaussian and distribution-free, after a normalization. A discussion of conditional
copulas and their properties is postponed in section 4. They can be applied to test the constancy
of the dependence structure with respect to past observations.

2 Empirical copula processes

Copulas describe the dependence structure between some random vectors. They have been
introduced a long time ago (Sklar, 1959) and have been rediscovered recently, especially for
their applications in finance and biostatistics. Briefly, a d-dimensional copula is a cdf on [0, 1]d,
whose margins are uniform and that summarizes the dependence “structure” independently of
the specification of the marginal distributions.

To be specific, consider a random vector X = (X1, . . . , Xd) whose joint cdf is F and whose
marginal cdfs’ are denoted by Fj , j = 1, . . . , d. Then there exists a unique copula C defined on
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the product of the values taken by the r.v. Fj(Xj), such that

C(F1(x1), . . . , Fd(xd)) = F (x1, . . . , xd),

for any x = (x1, . . . , xd) ∈ Rd. C is called the copula associated with X. When F is continuous,
it is defined on [0, 1]d, with an obvious extension to Rd. When F is discontinuous, there are
several choices to expand C on the whole [0, 1]d (see Nelsen (1999) or Joe (1997) for a complete
theory).

Imagine we are faced with a sequence of random vectors X1, . . . ,Xn, that are the realizations
of some underlying process (Xi)i∈Z. This process is assumed stationary. Thus, the joint law of
Xi is independent of i and we denote by C its copula. We seek to estimate nonparametrically the
copula C. Note that our results can be applied to the sequence (Xi,Xi+1)i∈Z (as in Chen and
Fan, 2002), or even (Xi,Xi+1,Xi+2)i∈Z etc. In the latter case, knowing the stationary marginal
distributions, C describes fully the process (Xm)m∈Z when it is Markov.

The natural empirical counterpart of C is the so-called empirical copula, defined by

Cn(u) = Fn(F−n,1(u1), . . . , F−n,d(ud)),

for every u1, . . . , ud in [0, 1]. As usual, we denote the empirical cdf

Fn(x) = n−1
n∑

i=1

1{Xi1 ≤ x1, . . . , Xid ≤ xd}, (2.1)

and we use the usual “generalized inverse” notations, viz, for every j = 1, . . . , d, F−j (u) =
inf{t|Fj(t) ≥ u}.

Empirical copulas have been introduced by Deheuvels (1979,1981a,1981b) in an i.i.d. frame-
work. This author studied the consistency of Cn and the limiting behavior of n1/2(Cn − C)
under the strong assumption of independence between margins. Gaensler and Stute (1987) and
Fermanian et al. (2002) prove some functional CLT for this empirical copula process in a more
general framework and provide some extensions. We will first expand these results to dependent
data by applying theorem 7 in the appendix to the process (Yi)i∈Z, Y = (F1(X1), . . . , Fd(Xd)).
Note that the results of Fermanian et al. (2002) are available under the sup-norm and outer
expectations assumptions, as in Van der Vaart and Wellner (1996). Here, the natural space will
be the space of càdlàg functions D([0, 1]d) endowed with the Skorohod metric dS .

Consider a centered Gaussian process B such that, for any vectors x and y in Rd,

cov(B(x),B(y)) =
∑
i∈Z

cov (1{X0 ≤ x},1{Xi ≤ y}) . (2.2)

Note that the previous covariance structure depends not only on the copula C (via the term
associated with i = 0 e.g.), but also on the joint law between X0 and Xi, for every i. This is
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different from the i.i.d. case, where B becomes a Brownian bridge whose covariance structure
is a function of C only (equation (1.2)). Actually, the covariances of B depend here on every
successive copulas of the random vectors (X0,Xi). First, we can state :

Theorem 1. If (Yi)i∈Z is (θ,L, ψ1)-dependent, θn = O(n−a), a > 2d + 1, if C has some con-
tinuous first partial derivatives, then the process n1/2(Cn−C) tends weakly towards a Gaussian
process G in (D([0, 1]d), dS). Moreover, this process has continuous sample paths and can be
written as

G(u) = B(u)−
d∑

j=1

∂jC(u)B(uj , 0−j), (2.3)

for every u ∈ [0, 1]d.

See the proof in appendix B. The proof is based on a FCLT for multivariate weakly dependent
sequences (theorem 7, whose proof is postponed in appendix B). Note that the covariance
structure of n1/2(Cn − C) is involved, because of both (2.3) and (2.2).

Remarks. The same result applies in the case of sequences for whom a FCLT holds for the
multivariate empirical cdf. Even if we recalled previously the problems occurring with the
standard mixing conditions (see Doukhan, 1994), it seems useful that theorem 1 still holds in
such mixing situations which are more widely considered and yields various other models as
stressed in Doukhan (1994). Precisely:

• For stationary strongly mixing sequences, if αn = O (n−a) for some a > 1. To this goal,
we use Rio (2000) which states an empirical CLT for vector-valued sequences under this
condition.

• In the absolutely regular case, this assumption is written βn = O
(
n−1 log−b n

)
for some

b > 2 by using Doukhan, Massart and Rio (1995)’s result.

• Many other results yielding such FCLTs for the process Bn =
√
n(Fn − F ) are recalled in

Doukhan (2002)’s review paper.

In practice, it is often necessary to estimate smoothed copulas. From a visual point of view,
the results are nicer than those obtained for the empirical copulas themselves. Since nonpara-
metric estimation is often the first step before a parametric modelization, it is important to help
intuition conveniently. Moreover, for optimization purposes, some estimates of the derivatives
of underlying copulas are most of the time necessary : portfolio optimization in a mean-variance
framework (Markowitz, 1952)) or with respect to any other risk measure, estimation of the sen-
sitivities of Value-at-Risk or Expected Shortfall with respect to notional amounts (Gouriéroux
et al. (2000) or Scaillet (2000)). Clearly, a smooth empirical cdf is differentiable, contrary to a
usual empirical cdf. Thus, let us introduce smoothed empirical copula processes.
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Consider F̂n the d-dimensional smoothed empirical process

F̂n(x) =
∫
K((x− v)/h)Fn(dv),

associated with the usual empirical process Fn (see equation 2.1), where K is the primitive
function of a d-dimensional kernel k subject to the limit condition lim−∞K = 0, and h = hn is
a bandwidth. More precisely,

∫
k = 1, hn > 0, and hn → 0 when n → ∞. Similarly, for every

margin, say the j-th, we can estimate nonparametrically the cdf Fj by

F̂n,j(xj) =
∫
Kj((xj − vj)/h)Fn,j(dvj),

Fn,j(xj) = n−1
n∑

i=1

1{Xi,j ≤ xj},

and Kj is the primitive function of a univariate kernel kj . For simplicity, we have assumed the
bandwidth h is the same for every margin and that k(u) =

∏d
j=1 kj(uj) for every u. These

two latter assumptions can be easily removed. Then, for every u ∈ [0, 1]d, we can define the
smoothed empirical copula process by

Ĉ(1)
n (u) = F̂n

(
F̂−n,1(u1), . . . , F̂−n,d(ud)

)
,

or by smoothing directly the process Cn, viz

Ĉ(2)
n (u) =

∫
K((u− v)/h)Cn(dv).

As for the i.i.d. case, the uniform distance between empirical processes and smoothed
empirical processes is oP (n−1/2) under some regularity conditions. To prove this result, we need
some technical assumption on the kernels :

Assumption (K) : Assume k is of order p, and

• k is compactly supported, or

• there exists a sequence of positive real numbers an such that hnan tends to zero when
n→∞, and

n1/2

∫
{‖v‖>an}

|k|(v) dv −→ 0.

Moreover, we need:

Lemma 2.1. Assume (K) and
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(i) the process n1/2(Fn − F ) is stochastically equicontinuous,

(ii) ‖E[F̂n]− F‖∞ = o(n−1/2),

(iii) nh2p → 0.

Then ‖F̂n − Fn‖∞ = oP (n−1/2).

See the proof in section B. Assumption (i) is satisfied when X is compactly supported,
invoking theorem 7. We get assumption (ii) by assuming some regularity on F , e.g. F is p-
times continuously differentiable. Therefore, by mimicking exactly the proof of theorem 10 in
Fermanian et al. (2002), we get

Theorem 2. Assume (K) and

• F is p-times continuously differentiable,

• h→ 0, nh2p → 0,

• (Xi)i∈Z is (θ,L, ψ1)-dependent, θn = O(n−a), a > 2d+ 1.

Then the process n1/2(Ĉ(1)
n −C) tends weakly towards the Gaussian process G in (D([0, 1]d), dS).

This result extends for weakly dependent processes the fidi result in Fermanian and Scaillet
(2002). Moreover, we can prove lemma 2.1 replacing Fn by Cn exactly by the same ways. This
provides :

Theorem 3. Assume (K) and

• (Yi)i∈Z is (θ,L, ψ1)-dependent, θn = O(n−a), a > 2d+ 1,

• C is p times continuously differentiable, p ≥ 1,

• nh2p
n → 0.

Then ‖Ĉ(2)
n −Cn‖∞ = oP (n−1/2). Particularly, the process n1/2(Ĉ(2)

n −C) tends weakly towards
the Gaussian process G in (D([0, 1]d), dS).

Thus, the weak convergence of Ĉ(2)
n is satisfied under slightly weaker assumptions than Ĉ(1)

n .
Since formulas are nicer too, we advise to work with the former estimator rather than the latter.
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3 Weak convergence of kernel copula densities

Assume each marginal law of the random vector X, say the j-th, belongs to a parametric
family {Fj(·|θj), θj ∈ Θj}, j = 1, . . . , d. The true parameter is denoted by θ0

j and the true
density by Fj(·|θ0

j ) (or simpler Fj). Usually, marginal models are imposed by users, that like
to put their “commonly used” univariate models into multivariate ones. Thus, we assume
the parameters θ0

1, . . . , θ
0
d are consistently estimated by θ̂1, . . . , θ̂d. For convenience, denote

F̂j(·) = Fj(·|θ̂j).

The natural semiparametric copula process we consider is

Ĉ(u) =
1
n

n∑
i=1

d∏
k=1

1{Fk(Xi,k|θ̂k) ≤ uk}.

By smoothing the empirical copula process, we get an estimate of the copula density. The key
point is that the asymptotic law of this statistics is far simpler than G.

To be specific, set for each index i the d-dimensional vectors

Yi = (F1(Xi,1), . . . , Fd(Xi,d)) and Ŷi = (F̂1(Xi,1), . . . , F̂d(Xi,d)).

We will assume the law of the vectors Yi has a density τ with respect to the Lebesgue measure
on Rd. By definition, the kernel estimator of a copula density τ at point u is

τ̂(u) =
1
hd

∫
K

(
u− v
h

)
Ĉ(dv) =

1
nhd

n∑
i=1

K

(
u− Ŷi

h

)
, (3.1)

where K is a d-dimensional kernel and h = hn is a bandwidth sequence. As usual, we denote
Kh(·) = K(·/h)/hd. For convenience, we will assume

Assumption (K0). The kernel K is the product of d univariate even compactly supported
kernels Kr, r = 1, . . . , d. It is assumed pK-times continuously differentiable

As previously, these assumptions are far from minimal. Particularly, we could consider
some multivariate kernels whose support is the whole space Rd, if they tend to zero “sufficiently
quickly” when their argument tends to the infinity (for instance, at an exponential rate, like for
the Gaussian kernel). Since this speed depends on the behavior of τ , we are rather the simpler
assumption (K0).

As usual, the bandwidth sequence needs to tend to zero not too quickly.

Assumption (B0). When n tends to the infinity, nh4+d →∞.

Assumption (B0) can be weakened easily by assuming (K0) with pK > 2. Nonetheless, a
certain additional amount of regularity is required.
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Assumption (T0). Denoting by V(θ0) an open neighborhood of θ0, for every j = 1, . . . , d,
there exists a measurable function Hj s.t.

sup
θ∈V(θ0)

‖∂2
θjθj

Fj(Xj |θj)‖ < Hj(Yj) a.e., E[Hj(Yj)] <∞.

Moreover, τ and every density of (Y0,Yk) are bounded in sup-norm, uniformly with respect to
k ∈ Z.

Assumption (E). For every j = 1, . . . , d,

θ̂j − θ0
j = n−1Aj(θ0

j )
−1

n∑
i=1

Bj(θ0
j , Yi,j) + oP (rn), (3.2)

and rn tends to zero quicker than n−1/2h1−d/2 when n tends to the infinity. Here, Aj(θ0
j )

denotes a positive definite non random matrix and Bj(θ0
j , Yj) is a random vector. Moreover,

E[Bj(θ0
j , Yj)] = 0 and E[‖Bj(θ0

j , Yj)‖2] <∞.

Typically, Bj(θ, ·) is a score function. It can be proved these assumptions are satisfied
particularly for the usual maximum likelihood estimator, or more generally by M -estimators.

To invoke Doukhan and Ragache (2004), who state the result for the usual kernel density
estimates, we need the assumption:

Assumption (Y). The process (Yi)i∈Z is stationary and (θ,L, ψ1)-dependent, with θn =
O(n−a). The densities of the couples (Y0,Yk) are uniformly bounded with respect to k ≥ 0.
Moreover the window width is assumed to satisfy nhdλ

n →∞ as n→∞ and a > 2 + 1
d + λ.

Thus, we prove:

Theorem 4. Under (K0) with pK = 2, (B0), (T0), (E) and (Y), for every m and every vectors
u1, . . . ,um in ]0, 1[d such that τ(uk) > 0 for every k, we have

(nhd)1/2 ((τ̂ −Kh ∗ τ)(u1), . . . , (τ̂ −Kh ∗ τ)(um)) law−→
n→∞

N (0,Σ),

where Σ is diagonal, and its k-th diagonal term is τ2(uk)
∫
K2.

Remarks.

• Such a result can be used to prove some GOF tests, exactly as in Fermanian (2003).

• Replacing ψ1−weak dependence by its causal counterpart ψ′1−weak dependence where now
ψ′1(f, g, u, v) = vLip g, we derive the convergence

√
nhd(τ̂(x)− Eτ̂(x)) law−→

n→∞
N
(

0, τ(x)
∫
K2

)
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under the conditions θr = O(r−a) for a > 2 + 1
d and nhdλ

n →∞ as n→∞, as a corollary
of theorem 1 in Coulon-Prieur and Doukhan (2000) or Doukhan and Ragache (2004), by
a different method. The corresponding result also holds for finite dimensional repartitions
of this process (with independent limiting distributions).

4 Conditional copula processes

As previously, we consider stationary time series. Their conditional distributions with respect
to past observations are often crucial to specify some underlying models. They are most of the
time more useful than the joint or marginal unconditional distributions themselves. For instance,
for a Markov process, the law of Xi conditionally on Xi−1 defines the process itself. It can be
written explicitly and sometimes simply, contrary to the joint law of (Xi, . . . ,X0). Dependence
structures, viz copulas can be considered similarly. Patton (2001) has introduced conditional
copulas, viz copulas associated with conditional laws in a particular way. We first extend his
definition.

Let X be a d-dimensional random vector. Consider some arbitrary sub σ-algebras A1, . . . ,Ad

and B. For convenience, denote A = (A1, . . . ,Ad).

Assumption S. Let some d-vectors x and x̃. For almost every ω ∈ Ω, P (Xj ≤ xj |Aj)(ω) =
P (Xj ≤ x̃j |Aj)(ω) for every j = 1, . . . , d implies P (X ≤ x|B)(ω) = P (X ≤ x̃|B)(ω).

This technical assumption is satisfied particularly when every conditional cdfs’ of X1, . . . , Xd

are strictly increasing. It is satisfied too when A1 = . . . = Ad = B. Particularly, B could be the
σ-algebra induced by the Ai, i = 1, . . . , d, but it is not an obligation.

We introduce without proof the concept of pseudo-copula and the equivalent of Sklar’s
theorem for such functions (see Fermanian and Wegkamp (2004) for details):

Definition 2. A d-dimensional pseudo-copula is a function C : [0, 1]d −→ [0, 1] such that

• For every u ∈ [0, 1]d, C(u) = 0 when at least one coordinate of u is zero.

• C(1, . . . , 1) = 1.

• For every u and v in [0, 1]d such that u ≤ v, the C-volume of [u,v] (see Nelsen (1999),
definition 2.10.1) is positive.

Thus, a pseudo-copula is “as a copula” except that the margins are not necessarily uniform.
We get
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Theorem 5. For every random vector X, there exists a random variable function C : [0, 1]d ×
Ω −→ [0, 1] such that

P (X ≤ u|B)(ω) = C(P (X1 ≤ u1|A1)(ω), . . . , P (Xd ≤ ud|Ad)(ω), ω) (4.1)
≡ C(P (X1 ≤ u1|A1), . . . , P (Xd ≤ ud|Ad))(ω),

for every u ∈ [0, 1]d and almost every ω ∈ Ω. This function C is B([0, 1]d)⊗σ(A,B) measurable.
For almost every ω ∈ Ω, C(·, ω) is a pseudo-copula and is uniquely defined on the product of the
values taken by ui 7→ P (Xi ≤ ui|Ai)(ω), i = 1, . . . , d.

When C is unique, it will be called the conditional (A,B)-pseudo copula associated with
X. In general, it is not a copula, because of the difference between B and any Ai (in terms of
information). The pseudo-copula is denoted by C(·|A,B).

Typically, when we consider a d-dimensional process (Xn)n∈Z, the previous sigma-algebras
are indexed by n, viz they depend on the past values. For instance, Ai,n = σ(Xi,n−1, Xi,n−2, . . .)
and Bn = σ(Xn−1, . . .). Thus, conditional copulas depend on the index n and on the past
values of X, in general. Actually, we get sequences of copulas. When the process X is one-order
Markov, conditional copulas depend only on the last observed value. Note that Chen and Fan
(2002) propose to study univariate stationary Markov processes (Xn) by specifying the copula
of the vector (Xn, Xn+1). In this very particular case, A1 = A2 = B = {∅,Ω} like in an i.i.d.
case.

In this paper, we will consider two basic cases for the conditioning subsets:

(i) Ai,n = (Xi,n−1 = xi) for every i = 1, . . . , d and Bn = (Xn−1 = x),

(ii) Ai,n = (Xi,n−1 ∈ [ai, bi]), for some ai, bi ∈ R̄, i = 1, . . . , d and Bn = (Xn−1 ∈ [a,b]).

Note that it would be possible theoretically to set Ai,n = (Xi,n−1 = xi) for some components
i = 1, . . . , d only, and Bn = (Xn−1 ∈ [a,b]) for some a,b ∈ R̄d; or even Ai,n = (Xi,n−1 ∈ [ai, bi]),
for some or every i = 1, . . . , d, and Bn = (Xn−1 ∈ [x,y]), where [x,y] ⊂ [a,b]. Nonetheless, the
practical interest of these specifications is questionable. Moreover, note that our purpose does
not depend on any Markov property. Even if the process does not satisfy this property, we could
consider the previous σ-algebras Ai,n and Bn. Nonetheless, it is particularly relevant to specify
(i) and (ii) when the process (Xn) is Markov.

One key issue is often to state wether these copulas depend really on the past values,
viz to test their constancy. This assumption is made most of the time in practice (Rosenberg
(2001), Cherubini and Luciano (2000), among others). Only a few papers try to modelize time
dependent conditional copulas. For instance, to study the dependence between Yen-USD and
Deutsche mark-USD exchange rates, Patton (2001) assumes a bivariate Gaussian conditional
copula whose correlation parameter follows a GARCH-type model. Alternatively, Genest et al.
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(2003) postulate Kendall’s tau is a function of current conditional univariate variances. Now, we
will try to estimate conditional copulas to test their constancy with respect to their conditioning
subsets.

There exists a relation between copulas in the (i) and (ii) cases, denoted by C(i) and C(ii).
More precisely, with obvious notations, we have

C(ii)

(
FX1,n(x1|X1,n−1 ∈ [a1, b1]), . . . , FXd,n

(xd|Xd,n−1 ∈ [ad, bd])
)

= P (X1,n ≤ x1, . . . , Xd,n ≤ xd|Xn−1 ∈ [a,b])

=
∫

[a,b]

P (X1,n ≤ x1, . . . , Xd,n ≤ xd|Xn−1 = u) dPXn−1(u)
P (Xn−1 ∈ [a,b])

=
∫

[a,b]

C(i)

(
FX1,n(x1|X1,n−1 = u1), . . . , FXd,n

(xd|Xd,n−1 = ud)|Xn−1 = u
)
dPXn−1(u)

P (Xn−1 ∈ [a,b])
·

Clearly, when the underlying distributions are continuous and when the diameter of the box [a,b]
is “small”, FXi,n(xi|Xi,n−1 ∈ [ai, bi]) ' FXi,n(xi|Xi,n−1 = ui) for every i and every ui ∈ [ai, bi].
We deduce C(i) ' C(ii) in this case. Thus, to test the constancy of C(i)(·|Xn−1 = u) with
respect to u is almost the same thing as to test the constancy of C(ii)(·|Xn−1 ∈ [a,b]) with
respect to “small” boxes [a,b]. This intuitive argument justifies to test the zero assumption
H0 : C(ii)(·|Xn−1 ∈ [a,b]) = C0(·) for every a and b, against its opposite. Actually, a direct
test of a similar zero assumption with C(i) is far more difficult because the marginal conditional
cdfs’ need to be estimated by some nonparametric techniques like kernel smoothing, nearest
neighbors, or others. At the opposite, we do not need such tools with C(ii), because the marginal
conditioning probabilities can be easily estimated empirically.

To be specific, assume we observe a weakly dependent stationary sequence (Xi)i=0,...,n. Then,
denoting by Pn the empirical measure, we have

C(ii)(u|X0 ∈ [a,b]) '

P
(
X1,1 ≤ F−X1,1

(u1|X1,0 ∈ [a1, b1]), . . . , Xd,1 ≤ F−Xd,1
(ud|Xd,0 ∈ [ad, bd])|X0 ∈ [a,b]

)
'

Pn

(
X1,1 ≤ F̂−X1,1

(u1|X1,0 ∈ [a1, b1]), . . . , Xd,1 ≤ F̂−Xd,1
(ud|Xd,0 ∈ [ad, bd]),X0 ∈ [a,b]

)
Pn(X0 ∈ [a,b])

≡ Cn,(ii)(u|[a,b]),

where, for every i = 1, . . . , d, we set

F̂Xi,m(ui|Xi,m−1 ∈ [ai, bi]) =
Pn (Xi,m ≤ ui, Xi,m−1 ∈ [ai, bi])

Pn(Xi,m−1 ∈ [ai, bi])
·

Note that the estimators F̂Xi,m(ui|[ai, bi]) and Cn,(ii)(u|[a,b]) can be written as some regular
functionals of the empirical cdf of (Xm,Xm−1). Therefore, by applying the Functional Delta
method (as in theorem 1) and theorem 7, we get
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Theorem 6. For every d-vectors a and b, the process n1/2(Cn,(ii)( · |[a,b]) − C(ii)( · |[a,b]))
tends weakly towards a Gaussian process in D([0, 1]d, dS).

The proof is straightforward and it is left to the reader. Thus, a test of H0 can be based on
the limiting behavior of n1/2(Cn,(ii)( · |[a,b])− C0(·)). Nonetheless, the limiting process and its
covariance structure are particularly tedious. Thus, to state the critical values of such a test,
we advocate to use some Bootstrap procedures. The convergence of the bootstrapped empirical
process (see Fermanian et al., 2002) justifies the method.

A Central limit theorem for the multivariate empirical

process

We give a definition of dependence based on the covariance of some indicator functions. The
link with the weak dependence is given in Lemma A.1.

Definition 3. Let f be a function on Ru, i = (i1, . . . , iu) be a sequence of elements in Z and
s = (s1, . . . , su) be a sequence of elements in Rd. With implicit reference to a process X, we
define

Z(f, i, s) = f(1{Xi1 ≤ s1}, . . . ,1{Xiu ≤ su}).

Define the normalized process Bn =
√
n(Fn − F ). Recalling the definition of the process B

(cf equation 2.2), the main theoretical result of the paper is the following:

Theorem 7. Assume that (Xi)i∈Z is a centered process such that for any r-distant finite se-
quences i = (i1, . . . , iu) and j = (j1, . . . , jv), for any functions f and g in L, defined on Ru and
Rv:

|cov(Z(f, i, s), Z(g, j, t))| ≤ ψ1(f, g, u, v)θr. (A.1)

Assume that there exist some constants C > 0 and a > 2d + 1 such that θr ≤ Cr−a. Then Bn

tends to B in distribution in D([0, 1]d, dS).

See the proof in section B. The following lemma is useful to apply theorem 7.

Lemma A.1. If (Xi)i∈Z is (θ1,L, ψ1)-dependent, then condition (A.1) is satisfied with θr =
3(θ1

r)
1
2 .

Proof : Define ε-approximations of 1{x ≥ t} by:

hε,t(x) =
d∏

p=1

(x(p) − t(p) + ε)
ε

1{t(p) − ε < x(p) < t(p)}+ 1{x ≥ t}

13



Then hε,t(x) is 1/ε-Lipschitz, and E‖hε,t(X0)− 1{X0 ≥ t}‖1 ≤ ε.

JDF : il me semble qu’il y a un petit problème. Pour moi,

E‖hε,t(X0)− 1{X0 ≥ t}‖1

∑
k

≤ P
(
Xk0 ∈ [t(p)

k − ε, t
(p)
k ]
)

= O(ε),

si la loi de X0 est continue. Du coup, il me semble que la majoration n’est pas explicite et qu’on
devrait écrire des O(·). Par exemple, que θr ∼ (θ1

r)
1/2.

Define the analogous approximation of Z(f, i, s) by

Zε(f, i, s) = f(hε,s1(X1), . . . , hε,su(Xu)).

If X is (θ1,L, ψ1)-weak dependent, then, for any r-distant sequences i and j,

|cov(Zε(f, i, s), Zε(g, j, t))| ≤ ‖f‖∞‖g‖∞ε−1ψ1(f, g, u, v)θ1
r .

Moreover,

|E (Zε(f, i, s)Zε(g, j, t))− E (Z(f, i, s)Z(g, j, t))|
≤ E |Zε(f, i, s) (Zε(g, j, t)− Z(g, j, t))|+ E |Z(g, j, t) (Zε(f, i, s)− Z(f, i, s))|

≤ (u‖f‖∞Lip (g) + v‖g‖∞Lip (f))ε ≤ ‖f‖∞‖g‖∞ψ1(f, g, u, v)ε.

Similarly,

|E (Zε(f, i, s)) E (Zε(g, j, t))− E (Z(f, i, s)) E (Z(g, j, t))| ≤ ‖f‖∞‖g‖∞ψ1(f, g, u, v)ε. (A.2)

Choosing ε such that θ1
rε
−1 = ε, we get

|cov(Z(f, i, s), Z(g, j, t))| ≤ ψ1(f, g, u, v)3(θ1
r)

1/2.�

B Proofs

B.1 Proof of theorem 1

The proof is directly adapted from Fermanian et al. (2002). Briefly, we can assume the law
of X is compactly supported on [0, 1]d, eventually by working with Y = (F1(X1), . . . , Fd(Xd)).

14



Indeed, it can be proved the empirical copulas associated with Y and X are equal on all the
points (i1/n, . . . , id/n), i1, . . . , id in {0, . . . , n} (lemma 3 in Fermanian et al. (2002)), thus on
[0, 1]d as a whole.

Moreover, consider successively the mappings

φ1 : (D([0, 1]d), dS) → (D([0, 1]d), dS)× (D([0, 1]), dS)⊗d

F 7→ (F, F1, . . . , Fd)
φ2 : (D([0, 1]d), dS)× (D([0, 1]), dS)⊗d → (l∞([0, 1]d), ‖ · ‖∞)× (l∞([0, 1]), ‖ · ‖∞)⊗d

(F, F1, . . . , Fd) 7→ (F, F−1 , . . . , F
−
d )

φ3 : (l∞([0, 1]d), ‖ · ‖∞)× (l∞([0, 1]), ‖ · ‖∞)⊗d → (l∞([0, 1]d), ‖ · ‖∞)
(F,G1, . . . , Gd) 7→ F (G1, . . . , Gd).

Clearly, φ1 is Hadamard-differentiable because it is linear. Moreover, φ2 is Hadamard-differentiable
tangentially to the corresponding product of continuous functions by applying theorem 3.9.23 in
Van der Vaart and Wellner (1996). Note that, for any function h ∈ C([0, 1]), the convergence of
a sequence hn towards h in (D([0, 1]), dS) is equivalent to the convergence in (D([0, 1]), ‖ · ‖∞).
Thus, working with the Skorohod metric in not an hurdle here. At last, φ3 is Hadamard-
differentiable by applying theorem 3.9.27 in Van der Vaart and Wellner (1996). Thus, the chain
rule applies : φ = φ3 ◦ φ2 ◦ φ1 is Hadamard-differentiable tangentially to C([0, 1]d). The result
follows by applying theorem 3.9.4 in Van der Vaart and Wellner (1996) and our theorem 7. �

B.2 Proof of lemma 2.1

First, let us assume that k is compactly supported. Then, by some integrations by parts, we get

n1/2(F̂n − Fn)(u) = n1/2

∫
[Fn(u− hv)− Fn(u)] k(v) dv

=
∫
n1/2 [(Fn − F )(u− hv)− (Fn − F )(u)] k(v) dv + n1/2

∫
(F (u− hv)− F (u)) k(v) dv.

Since v belongs to a compact subset, hv is bounded above uniformly with respect to v and n.
Thus, the equicontinuity of the process n1/2(Fn − F ) and our assumptions provide the result.

If k is not compactly supported, we lead the same reasoning. Now, for n sufficiently large,

P

(
|n1/2

∫
[(Fn − F )(u− hv)− (Fn − F )(u)] k(v) dv| > ε

)
≤ P

(
n1/2‖k‖L1 . sup

‖t‖<ε
|(Fn − F )(u− t)− (Fn − F )(u)| > ε/2

)

+ P

(
2n1/2

∫
{‖v‖>an}

|k|(v) dv > ε/2

)
,

which tends to zero under our assumptions. �
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B.3 Proof of theorem 4

By a limited expansion, we get, for every u ∈ [0, 1]d,

τ̂(u) =
1
nhd

n∑
i=1

K

(
u−Yi

h

)
+

(−1)
nh

n∑
i=1

(dK)h(u−Yi).(Ŷi −Yi)

+
1

2nh2

n∑
i=1

(d2K)h(u−Y∗
i ).(Ŷi −Yi)(2)

= τ∗(u) +R1(u) +R2(u),

for some random vectors Ŷ∗
i satisfying ‖Ŷ∗

i −Yi‖ ≤ ‖Ŷi −Yi‖ a.e.

Note that τ∗ is the kernel density estimator studied in Doukhan, Louhichi (2001), when
applied to the weakly dependent sequence (Yi)i∈Z, which is improved in the recent paper by
Doukhan, Ragache (2004).

Thus, under our assumptions, we get fidi convergence of (nhd)1/2(τ∗ − τ).

To obtain our result, it is sufficient to prove R1(u) and R2(u) are negligible. Let us first
study R1(u). With some obvious notations,

R1(u) =
(−1)
n2h

∑
i,k

d∑
j=1

(∂jK)h(u−Yi).∂θ′j
Fj(Xi,j |θ0

j )A
−1
j (θ0

j )Bj(θ0
j , Yk,j)

+ O

 1
n2h

∑
i,k

d∑
j=1

|(∂jK)h(u−Yi)|. sup
θ∗j

‖∂2
θjθ′j

Fj(Xi,j |θ∗j )‖.‖θ̂j − θ0
j‖2

+ oP (rn/h),

where θ∗j belongs a.e. in a neighborhood of θ0
j for every j. Since the process (Yi)i∈Z is weakly

dependent, and since Bj(θ0
j , Yk,j) is centered, we get

E
[
(∂jK)h(u−Yi).∂θ′j

Fj(Xi,j |θ0
j )A

−1
j (θ0

j )Bj(θ0
j , Yk,j)

]
= O

(
θ|i−k|

h1+d

)
,

and

E[R1(u)] = O

(
1

nh2+d

)
<<

1√
nhd

·

Moreover, with obvious notations, the main term in the expansion of E[R1(u)2] is

1
n4h2

n∑
i1,i2=1

n∑
k1,k2=1

d∑
j1,j2=1

(∂j1K)h(u−Yi1).∂θ′j1
Fj1(Xi1,j1 |θ0

j1)A
−1
j1

(θ0
j1)Bj1(θ

0
j1 , Yk1,j1)

· (∂j2K)h(u−Yi2).∂θ′j2
Fj2(Xi2,j2 |θ0

j2).A
−1
j2

(θ0
j2)Bj2(θ

0
j2 , Yk2,j2)

≡ 1
n4h2

∑
j1,j2

∑
i1,i2

∑
k1,k2

Ti1,j1 T̃k1,j1Ti2,j2 T̃k2,j2 .
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To deal with the latter term, we have to consider every relative positions of the indices i1, i2, k1, k2

(j1 and j2 do not play any role). In every cases, the definition of the weak dependence allows us
to bound the expectation of Ti1,j1 T̃k1,j1Ti2,j2 T̃k2,j2 . Dealing as in Theorem 5 of Fermanian (2003),
it can be done relatively easily, under our assumptions. Therefore, E[R2

1(u)] = o((nhd)−1) and
R1(u) = oP ((nhd)−1/2).

The second term R2(u) is simpler because an upper bound is straightforward

R2(u) = OP

(
1

h2+d
· 1
n

)
<<

1√
nhd

,

under our assumptions. So the result. �

B.4 Proof of theorem 7

B.4.1 CLT for the finite dimensional distributions of Bn

Let (s1, . . . , sp) be a fixed sequence of elements in [0, 1]d. Denote Bn the vector-valued process

Bn = (Bn(s1), . . . , Bn(sp)).

Denote also

xi = (xi,1, . . . , xi,p) = (1{Xi ≤ s1} − P (Xi ≤ s1), . . . ,1{Xi ≤ sp} − P (Xi ≤ sp)), and

Sk,m =
1√
n

∑
k≤i≤m

xi.

Then Bn = S1,n. Let γi be the covariance matrix of (x0,xi) and Γm be the covariance matrix of
S1,m. Note that Γn tends to the matrix

∑∞
i=0 γi so that this series is a positive definite matrix.

Define Vk = Γk − Γk−1 and Γ0 = 0. Then

Vk =
2
n

k−1∑
j=1

Cov(xi,xk) +
1
n
V ar(xk) =

2
n

k−1∑
j=1

γi +
γ0

n
. (B.1)

For k ≥ k0, Vk is a positive definite matrix. Define a Gaussian independent vector process
yi = (yi,1, . . . , yi,p), i ∈ Z, such that the covariance matrix of yi is Vi. For k < k0, define
Tk,m =

∑
k≤i≤m yi. Let f be a C3 function on Rp, and denote Ci = ‖Dif‖∞, i = 1, 2, 3. To

obtain the fidi convergence, it is sufficient to show that E(f(S1,n)−f(Tk0,n)) tends to zero when
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n tends to the infinity. Write

E(f(S1,n)− f(Tk0,n)) = E(f(S1,n)− f(Sk0,n))

+ E

 n∑
k=k0

f(Sk0,k−1 + n−1/2xk + Tk+1,n)− f(Sk0,k−1 + yk + Tk+1,n)


= E(f(S1,n)− f(Sk0,n))

+ E

 n∑
k=k0

fn,k(Sk0,k−1 + n−1/2xk)− fn,k(Sk0,k−1 + yk)

 ,
where we have set

fn,k(z) = E(f(z + Tk+1,n)),

for every real number z. Since the random vectors x and yk are independent from Tk+1,n, the
last formula is true. First, we have

|E(f(S1,n)− f(Sk0,n))| ≤
(
E(f(S1,n)− f(Sk0,n))2

)1/2 ≤ C1(k0/n)1/2 → 0.

The second part is equal to

n∑
k=k0

fn,k(Sk0,k−1 + n−1/2xk)− fn,k(Sk0,k−1 + yk) =
n∑

k=k0

(∆1,k,n −∆2,k,n) ,

where

∆1,k,n = E

fn,k

(
Sk0,k−1 + n−1/2xk

)
− fn,k(Sk0,k−1)−

1
2

p∑
s,t=1

D2fn,k(Sk0,k−1)(s,t)Vk(s,t)

 ,
∆2,k,n = E

fn,k (Sk0,k−1 + yk))− fn,k(Sk0,k−1)−
1
2

p∑
s,t=1

D2fn,k(Sk0,k−1)(s,t)Vk(s,t)

 .

Bound of ∆1,k,n: By a Taylor expansion and with some obvious notations,

∆1,k,n = E

[
n−1/2

p∑
s=1

Dfn,k(Sk0,k−1)sxk,s

]

+
1
2
n−1

p∑
s,t=1

{
E
[
D2fn,k(Sk0,k−1)(s,t)xk,sxk,t

]
− E

[
D2fn,k(Sk0,k−1)(s,t)

]
nVk(s,t)

}
+

1
6
n−3/2

p∑
s,t,r=1

E
[
D3fn,k(Rk)(s,t,r)xk,sxk,txk,r

]
≡ T1 + T2 + T3.
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First, note that

T1 = n−1/2
∑

s=1,...p

k−1∑
j=1

E [(Dfn,k(Sk0,j)s −Dfn,k(Sk0,j−1)s)xk,s]

= n−1/2
∑

s=1,...p

k−1∑
j=1

cov ((Dfn,k(Sk0,j)s −Dfn,k(Sk0,j−1)s) , xk,s) .

Therefore, T1 is bounded above by n−1/2
∑k−1

j=1 C2θk−j = O(n−1/2k3−a).

JDF : je ne vois pas comment obtenir le resultat car

n−1/2
k−1∑
j=1

(k − j)−a > n−1/2,

et ensuite
n∑

k=k0

n−1/2 = +∞!

Idem pour le second terme. Il faudrait peut-être supposer θr ≤ ar et non θr ≤ r−a...et prendre
k0 assez grand.

Second, invoking (B.1), we get

T2 =
1
2
n−1

p∑
s,t=1

cov
[
D2fn,k(Sk0,k−1)(s,t), xk,sxk,t

]
− n−1

p∑
s,t=1

E
[
D2fn,k(Sk0,k−1)(s,t)

] k−1∑
j=1

E(xj,sxk,t)

that is bounded above by n−1
∑k−1

j=1(C2 + C3)(j + 1)θk−j = O(n−1k3−a) from (A.1).

JDF : même remarque qu’au-dessus

Third, the remainder term T3 is less than C3n
−3/2 because the xk are bounded by 1. This

gives
n∑

k=k0

|∆1,k,n| = O(n−1/2).
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Bound of ∆2,k,n: By a Taylor expansion, we get similarly

∆2,k,n =E

n−1/2
∑

s=1,...p

Dfn,k(Sk0,k−1)syk,s


+

1
2
n−1

p∑
s,t=1

E
[
D2fn,k(Sk0,k−1)(s,t)yk,syk,t

]
− E

[
D2fn,k(Sk0,k−1)(s,t)

]
nVk(s,t)

+
1
6
n−3/2

p∑
s,t,r=1

E
[
D3fn,k(Rk)(s,t,r)yk,syk,tyk,r

]
.

Using the independence between y and x, the first and second line equal zero. The last line is
less than C3n

−3/2 because the yk has finite third cross-moments. This gives

n∑
k=k0

|∆2,k,n| = O(n−1/2).

This proves that the finite distributions of Bn converge to the announced Gaussian distributions.

B.4.2 Tightness of Bn

As in [11], we prove a Rosenthal type inequality.

Proposition 1. Assume that θr = Cr−a. For l < (a+ 1)/2 and (s, t) such that |t− s| < C :

E(Bn(t)−Bn(s))2l

≤ (4l − 2)!
(2l − 1)!

32l
((

2kl(‖t− s‖1/C)1−1/a
)l

+ (2l)!kln
1−l(‖t− s‖1/C)1−(2l−1)/a

)
, (B.2)

where kl =
(
C + C2a

a−2l+1

)
.

Proof of proposition 1: Let s ≤ t be in Rd , denote xi(s, t) = 1{Xi ≤ t} − 1{Xi ≤ s}.
Because process X has uniform margins, we get

E(xi(s, t)) ≤ ‖t− s‖1. (B.3)
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JDF : Nous n’avons pas fait l’hypothèse que les marges de X sont uniformes, il me semble.
Peut-être faut-il le supposer dès le début de la démonstration. Mais le résultat de la proposition 1
ne sera vrai formellement que sous cette hypothèse.

For any multi-index k of Z denote Πk =
∏

j xkj
(s, t). For any integer q ≥ 1, set

Aq(n) =
∑

k∈{1,...,n}q

|E (Πk)| , (B.4)

then
E(Bn(s)−Bn(t))2l ≤ (2l)!n−lA2l(n). (B.5)

JDF : Je ne suis pas d’accord. Pour moi,

Bn(t)−Bn(s) = n−1/2
n∑

i=1

(xi(s, t)− E[xi(s, t)]) .

Donc on doit se trainer des espérance de Xi(s, t). Il me semble que cela change la démonstration.

For a finite sequence k = (k1, . . . , kq) of elements of Z, let (k(1), . . . , k(q)) be the same sequence
ordered from the smaller to the larger. The gap r(k) in the sequence is defined as the max of the
integers k(i+1)−k(i), j = 1, . . . , q−1. If k(j+1)−k(j) = r, define the two non-empty subsequences
k1 = (k(1), . . . , k(j)) and k2 = (k(j+1), . . . , k(q)). Define the set Gr(q, n) = {k ∈ {1, . . . , n}q ;
r(k) = r}. Sorting the sequences of indices by their gaps, we get

Aq(n) ≤
n∑

k=1

E|xi(s, t)|q +
n∑

r=1

∑
k∈Gr(q,n)

|cov (Πk1 ,Πk2)| (B.6)

+
n∑

r=1

∑
k∈Gr(q,n)

|E (Πk1) E (Πk2)| . (B.7)

JDF : je remarque juste que le dernier terme de droite de l’inégalité précédente est nul si on
travaille sur les xi(s, t) centrés. Cela peut éventuellement simplifier.

Define Vq(n) as the right hand side of (B.6). In order to prove that the expression (B.7)
is bounded by the product

∑
mAm(n)Aq−m(n) we make a first summation over the k’s with
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#k1 = m. Hence

Aq(n) ≤ Vq(n) +
q−1∑
m=1

Am(n)Aq−m(n).

To build a sequence k belonging to Gr(q, n), we first fix one of the n points of {1, . . . , n}. We
choose a second point among the two points that are at distance r from the first point. The third
point is in an interval of radius r centered on one of the preceding points, and so on. . . Thus

#Gr(q, n) ≤ n2(2r + 1) · · · (2(q − 2)r + 1) ≤ n(q!)(3r)q−2.

We use condition (A.1) and condition (B.3) to deduce:

Vq(n) ≤ n

(
‖t− s‖1 + q!

2n∑
r=1

(3r)q−2 min(θr, ‖t− s‖1)

)
.

Denote R the integer such that R < (‖t− s‖1/C)−1/a ≤ R+ 1. For any 2 ≤ q ≤ 2l:

Vq(n) ≤ 3(q−1)nq!

(
‖t− s‖1

R−1∑
r=0

rq−2 + C

∞∑
r=R

rq−2−a

)

≤ 3q−1nq!
(
‖t− s‖1

q − 1
Rq−1 +

C

a− q + 1)
Rq−1−a

)
≤ 3q−1nq!(‖t− s‖1/C)−(q−1)/a

(
‖t− s‖1

q − 1
+

Cd

a− q + 1)
R−a

)
.

But R ≥ 1, so that (‖t− s‖1/C)−1/a ≤ 2R, and

Vq(n) ≤ 3q−1nq!(‖t− s‖1/C)1−(q−1)/a

(
C +

C2a

a− 2l + 1

)
.

We find that:
Vq(n) ≤ 3qnq!kl(‖t− s‖1/C)1−(q−1)/a, (B.8)

and Vq(n) is a function of q that satisfies condition (H0) of [11]:

if 2 ≤ p ≤ q, V q−2
p (n) ≤ V p−2

q (n)V q−p
2 (n).

Then

A2l(n) ≤ (4l − 2)!
(2l)!(2l − 1)!

32l

((
2kln(‖t− s‖1/C)1−1/a

)l
+ (2l)!kln(‖t− s‖1/C)1−(2l−1)/a

)
,

and (B.2) is proved.
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Oscillation of the empirical process: We use this moment inequality and the techniques
of [14] to compute the oscillations of the process. Let m be in Nd, and (s, t) be two elements of
Rd, such that s ≤ t ≤ s +m/n. Let i be the element of Nd such that s + i/n ≤ t < s + i+/n,
where i+ = (i1 + 1, . . . , id + 1). Then

|Bn(t)−Bn(s)| ≤ |Bn(t)−Bn(s+ i/n)|+ |Bn(s)−Bn(s+ i/n)|

By invoking the fact that Bn is the difference between two monotone functions, we get

|Bn(t)−Bn(s+ i/n)| ≤
√
n|Fn(t)− Fn(s+ i/n)|+

√
n|F (t)− F (s+ i/n)|

≤
√
n|Fn(s+ i+/n)− Fn(s+ i/n)|+

√
n|F (s+ i+/n)− F (s+ i/n)|

≤ |Bn(s+ i+/n)−Bn(s+ i/n)|+ 2
√
n|F (s+ i+/n)− F (s+ i/n)|

≤ |Bn(s+ i+/n)−Bn(s)|+ |Bn(s+ i/n)−Bn(s)|+ 2d/
√
n.

JDF : il me semble qu’il faut que F soit au moins lipschitzienne pour avoir

|F (s+ i+/n)− F (s+ i/n)| = O(1/n).

Thus,

sup
s≤t<s+m/n

|Bn(t)−Bn(s)| ≤ 3 max
0≤i≤m

∣∣∣∣Bn(s)−Bn

(
s+

i

n

)∣∣∣∣+ 2d√
n
· (B.9)

For s ∈ Rd and m ∈ Nd, define the “discrete” box U = B(m, s) = {s + i/n, 0 ≤ i ≤ m}. For
such a box, p<

U = s and p>
U = s+m/n are opposite vertices of the box and we define

M(U) = max
t∈U

(∣∣Bn(p<
U )−Bn (t)

∣∣ ∧ ∣∣Bn

(
p>

U

)
−Bn (t)

∣∣) .
Then

max
0≤i≤m

∣∣∣∣Bn(s)−Bn

(
s+

i

n

)∣∣∣∣ ≤M(B(m, s)) +
∣∣∣Bn

(
s+

m

n

)
−Bn(s)

∣∣∣ . (B.10)

As in [14], we use the moment inequality (B.2) to bound the distribution tail of M(B(m, s)).
We can now prove that

P (M(B(m, s)) ≥ λ) ≤ Cp

Kp

(
‖m‖1

n

)p(1−1/a)

λ−2p, (B.11)

for some constant Cp provided by proposition 1, and whereKp =
(
2(p(1−1/a)−d)/(2p+1) − 1

)2p+1
/2.

Note that (B.11) is true for ‖m‖1 < 2 and every s, because the box B(m, s) contains at most
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two points so that M(B(m, t)) = 0. Let m be fixed, such that ‖m‖1 ≥ 2 and for every i < m
and every t, the lemma is true for M(B(i, t)). Define h = (s1 + [m1/2]/n, . . . , sd + [md/2]/n).
Using h as a vertex, one defines a partition of 2d sub-boxes of B(m, s). Let i ∈ B(m, s) and
denote U(i) the unique sub-box that contains i. Then∣∣∣Bn(p<

B(m,s))−Bn (i)
∣∣∣ ∧ ∣∣∣Bn

(
p>

B(m,s)

)
−Bn (i)

∣∣∣
≤M(U(i)) +

∣∣∣Bn

(
p>

B(m,s)

)
−Bn

(
p>

U(i)

)∣∣∣ ∨ ∣∣∣Bn

(
p<

B(m,s)

)
−Bn

(
p<

U(i)

)∣∣∣ .
Because of the moment inequality, and ‖p>

U(i) − p>
B(m,s)‖1 ≤ ‖m‖1/2n

P
(∣∣∣Bn

(
p>

B(m,s)

)
−Bn

(
p>

U(i)

)∣∣∣ ≥ λ
)
≤ Cp

‖m‖p(1−1/a)
1

(2n)p(1−1/a)λ2p
,

and the same relation for the lower vertex yields

P
(∣∣∣Bn

(
p>

B(m,s)

)
−Bn

(
p>

U(i)

)∣∣∣ ∨ ∣∣∣Bn

(
p<

B(m,s)

)
−Bn

(
p<

U(i)

)∣∣∣ ≥ λ
)

≤ 2Cp
‖m‖p(1−1/a)

1

(2n)p(1−1/a)λ2p
·

Because of the recurrence, and ‖p>
U(i) − p<

U(i)‖1 ≤ ‖m‖1/2n :

P (M(U(i)) ≥ λ) ≤ Cp

Kp

‖m‖p(1−1/a)
1

(2n)p(1−1/a)λ2p
.

Now we use the following result (see [3], p. 1661): If P(A ≥ λ) ≤ aλ−2p and P(B ≥ λ) ≤ bλ−2p

then P(A+B ≥ λ) ≤ (a1/(2p+1) + b1/(2p+1))2p+1λ−2p. We get

P
(
M(U(i)) +

∣∣∣Bn

(
p>

B(m,s)

)
−Bn

(
p>

U(i)

)∣∣∣ ∨ ∣∣∣Bn

(
p<

B(m,s)

)
−Bn

(
p<

U(i)

)∣∣∣) ≥ λ
)

≤ Cp
(21/(2p+1) +K

−1/(2p+1)
p )2p+1

2p(1−1/a)
· ‖m‖

p(1−1/a)
1

np(1−1/a)λ2p

≤ Cp2−d

Kp

‖m‖p(1−1/a)
1

np(1−1/a)λ2p
.

Now, using P(maxi=1,...k Ai ≥ λ) ≤
∑

i=1,...k P(Ai ≥ λ), we have

P (M(B(m, s)) ≥ λ) ≤ Cp

Kp

‖m‖p(1−1/a)
1

np(1−1/a)λ2p
·

so that (B.11) is proved for m.
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To prove the tightness of the sequence of processes Bn, we study the oscillations of Bn.
Let ε > 0. Let n be such that 2d/

√
n < ε/4. Let δ > 0 and assume that nδ ≥ 1. Let

m = (2[nδ] + 1, . . . , 2[nδ] + 1). Because of relation (B.9):

P

(
sup

‖s−t‖1<δ
|Bn(t)−Bn(s)| ≥ ε

)
≤ P

(
sup

s≤t<s+m/n
|Bn(t)−Bn(s)| ≥ ε

)

≤ 3P
(

max
0≤i≤m

∣∣∣∣Bn(s)−Bn

(
s+

i

n

)∣∣∣∣ ≥ ε/4
)
.

Because of relation (B.10) and proposition 1, we obtain

P
(

max
0≤i≤m

∣∣∣∣Bn(s)−Bn

(
s+

i

n

)∣∣∣∣ ≥ ε/4
)
≤ P (M(B(m, s))| ≥ ε/8)

+ P
(
|Bn(s)−Bn(s+

m

n
)| ≥ ε/8

)
≤ Cp

Kp

(
‖m‖1

n

)p(1−1/a) 82p

ε2p
+ Cp

(
‖m‖1

n

)p(1−1/a) 82p

ε2p

≤ Cp

(
1 +K−1

p

) (2dδ + 1/n)p(1−1/a)

ε2p
82p,

so that Bn satisfies the tightness criteria for the multi-dimensional case [3]: For every ε > 0

lim
δ→0

lim sup
n→∞

P

(
sup

‖s−t‖1<δ
|Bn(t)−Bn(s)| ≥ ε

)
= 0,

proving the result. �
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