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Résumé

Nous considérons une famille de variables binaires indexée par un tore discrétisé. Sous
une hypothèse de mélange, la probabilité de toute proposition logique au premier ordre des
graphes colorés converge vers 0 ou 1, lorsque la taille de la grille tend vers l'in�ni. Dans
le cas particulier d'un modèle d'Ising model avec des potentiels par couple bornés et un
potentiel de surface convergeant vers −∞, les fonctions de seuils des propositions locales
sont explicitées, avec des conditions nécessaires et su�santes pour la loi du zero-un.

Abstract

A set of binary random variables indexed by a lattice torus is considered. Under
a mixing hypothesis, the probability of any proposition belonging to the �rst order
logic of colored graphs tends to 0 or 1, as the size of the lattice tends to in�nity.
For the particular case of the Ising model with bounded pair potential and surface
potential tending to −∞, the threshold functions of local propositions are computed,
and su�cient conditions for the zero-one law are given.
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1 Introduction

Zero-one laws in logic have a long history: see Compton [1] or Winkler [18] for reviews,
and Spencer [17] on logic and random graphs. We shall use Ebbinghaus and Flum [8] as a
basic reference on �rst order logic.

The �rst zero-one law was proved independently by Glebskii et al. [12] and Fagin [9].
It applied to the �rst-order logic on a �nite universe without constraints, and uniform
probability on the set of structures. It was soon recognized that it also holds when the set
of structures is endowed with a product of Bernoulli distributions with �xed parameter p.
As an elementary example, consider the model made of a single unary predicate, applied
to the domain Vn = {0, . . . , n−1} (see [17], section 0.2). Any structure with k asserted and
n−k negated facts has probability pk(1−p)n−k. The Glebskii et al.�Fagin theorem applies,
but the expressive power of the lenguage is very poor. Let us add a binary predicate R.
The elements of Vn are interpreted as vertices of a graph, and any fact Rxy will be seen
as an existing edge between vertices x and y. The unary predicate, denoted by C, will be
interpreted as a coloring of vertices: the fact Cx means that x is a black vertex and ¬Cx
that it is white. Among all possible 2n+n2 structures (colored directed graphs), we shall
retain only those for which the graph is cyclic:

Rxy ⇐⇒ y = x+ 1 mod n .

The expressive power of the language has now increased, since it allows statements about
the geometrical arrangement of colored vertices. For instance the �rst order logic now
contains the sentence �there exist 3 black vertices in a row�. This model is essentially the
�random circular unary predicate� model of Spencer [16], section 2. One can see it as a
�xed graph structure (the n-cycle) with randomly colored vertices. The random colors are
i.i.d. random variables, Bernoulli with parameter p. The Glebskii et al.�Fagin theorem
does not apply anymore, since the set of structures has been restricted. However, it is easy
to see that the zero-one law still holds. But until now only independent random colors have
been considered. The aim of this article is to study situations under which the zero-one
law holds even though the colors of vertices are dependent random variables.

Let us generalize the previous model by considering a lattice graph in dimension d, with
periodic boundary conditions (lattice torus). The vertex set is now Vn = {0, . . . n−1}d.
The edge set, denoted by En, will be speci�ed by de�ning the set of neighbors V(x) of a
given vertex x:

V(x) = {y 6= x ∈ Vn , ‖y − x‖p ≤ ρ} , (1)

where the substraction is taken componentwise modulo n, ‖ · ‖p stands for the Lp norm in
Rd (1 ≤ p ≤ ∞), and ρ is a �xed parameter. For instance, the square lattice is obtained
for p = ρ = 1. Replacing the L1 norm by the L∞ norm adds the diagonals.

A lexical bridge between probability and logic is needed here. A binary random �eld
is a set of random variables indexed by Vn, with values in {−1,+1} (see [15] as a general
reference). Obviously the choice {−1,+1} for the values of the �eld is arbitrary: it could be
replaced by {0, 1} or {white, black}. A binary random �eld can also be viewed as a random
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mapping from Vn to {−1,+1}, which is usually called a con�guration (a spin con�guration
in the particular case of the Ising model). The set of con�gurations will be denoted by Xn.
In the logical interpretation, the graph structure (Vn, En) can be described using binary
predicates (see section 2 for details). The values of a con�guration can be viewed as a
coloring of the graph, and described by a unary predicate C. Let η be a con�guration.
The assertion η(x) = +1 will be identi�ed to the fact Cx, and η(x) = −1 to its negation
¬Cx. For convenience, we shall also retain the coloring interpretation:

η(x) = +1 ⇐⇒ Cx ⇐⇒ vertex x is black
η(x) = −1 ⇐⇒ ¬Cx ⇐⇒ vertex x is white

Thus the set of con�gurations Xn will be identi�ed to the set of those logical structures on
the domain Vn for which facts relative to binary predicates are �xed and compatible with
the chosen lattice graph. Any closed logical formula (also called sentence) A, expressed in
terms of the predicates, determines a subset An of Xn that satis�es it. Given a probability
distribution µn on Xn, the zero one law holds if µn(An) tends to 0 or 1, for each sentence A
belonging to the �rst order logic. Two hypotheses will be used. The �rst one says that the
probability of a local con�guration should remain bounded away from 0. The second one
is a classical mixing condition: the covariance between functions depending on two disjoint
subsets of vertices tends to zero as the distance between the two subsets tends to in�nity.
Under these hypotheses, Theorem 3.1 shows that the zero-one law holds. The proof is
based on Gaifman's theorem ([10] and [8] p. 31), which says that �rst-order sentences are
essentially local. The zero-one law for �rst order sentences can be reduced to computing the
probability of local patterns (see section 2 for precise de�nitions and statements). It will
be proved that any local con�guration appears with probability tending to 1, an analogue
of the �typing monkey� paradox.

Quoting Spencer [16], �To people who work on Random Graphs the cases p constant
are only a small and relatively uninteresting part of the theory�. In the circular model
above, when p = p(n) depends on the number of vertices, threshold phenomenons similar
to those of random graphs occur. For instance, the probability of having k consecutive
black vertices tends to 0 if p(n) � n−

1
k , it tends to 1 if p(n) � n−

1
k . An analogous result

holds for random colorings of a lattice graph in dimension d, the threshold functions being
p(n) = n−

d
k , k ≥ 1: see [2] for an interpretation in the context of random images. In order

to extend it to weakly dependent random �elds, one needs to choose a parametric family
of random �eld distributions. One of the simplest and most widely studied is the Ising
model (see e.g. [11, 14]).

De�nition 1.1 Let G = (V,E) be an undirected graph structure with �nite vertex set V
and edge set E. Let a and b be two reals. The Ising model with parameters a and b is the
probability measure µa,b on X = {−1,+1}V de�ned by:

∀η ∈ X , µa,b(η) =
1

Za,b
exp

a∑
x∈V

η(x) + b
∑

{x,y}∈E

η(x)η(y)

 ,

where the normalizing constant Za,b is such that
∑

η∈E µa,b(η) = 1.
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In the classical presentation of statistical physics, the elements ofX are spin con�gurations;
the de�nition of µa,b involves a temperature parameter which is not relevant here and will
be omitted. The parameters a and b are respectively the �surface� and �pair� potentials. For
a > 0 (respectively a < 0), the measure µa,b gives a higher weight to those con�gurations
with a large number of +1's (respectively −1's). For b > 0, the measure µa,b tends to favor
groups of neighboring vertices with the same spin, whereas for b < 0, a +1 will be more
likely surrounded by −1's. For b = 0, µa,0 is a product measure: the spins of all vertices
are mutually independent, +1 with probability p = ea/(ea + e−a) and −1 with probability
1− p. Observe that the model remains unchanged by swapping +1 and −1 and replacing
a by −a. In order to keep a certain coherence with random graphs, we chose to study
negative values of a (corresponding to small values of p).

Let us now consider the Ising model µa,b on the lattice graph (Vn, En) de�ned above.
The potentials a = a(n) and b = b(n) depend on the size of the lattice. The interaction
potential b(n) controls the degree of local dependence: we will assume that it remains
bounded. Theorem 4.1 expresses the threshold functions of local properties in terms of
ea(n)n

d
2k : if this quantity tends to 0 or +∞ for all k, then the zero-one law holds.

The paper is organized as follows. In section 2 the logical setting is described, and the
zero-one law for �rst order logic is reduced to the study of basic local and pattern sentences
(proposition 2.5). Weakly dependent random �elds will be introduced in section 3. It will
be proved that the probability of any pattern sentence tends to 1, which implies the zero-
one law (Theorem 3.1). Section 4 is devoted to the Ising model with varying potentials a
and b. A description of threshold functions for basic local sentences will be given, and the
zero-one law will be deduced.

2 First order logic

We follow the notations and de�nitions in chapter 0 of [8] for the syntax and semantics of
�rst order logic. The vocabulary contains one unary predicate, denoted by C, and some
binary predicates. They apply to the domain Vn = {0, . . . n−1}d. Once the domain and
the vocabulary are �xed, the structures are particular models of the predicates, applied
to variables in the domain. To any structure, a graph is naturally associated ([8] p. 26),
connecting those pairs of elements {x, y} which are such that Rxy or Ryx are satis�ed,
where R is any of the binary predicates. In each of our structures, we decide to �x the
list of facts relative to binary predicates, so that the associated graph is the lattice torus
de�ned by (1). It will be denoted by Gn = (Vn, En). As usual, the graph distance dist is
de�ned as the minimal length of a path between two vertices. The ball of center x and
radius r will be denoted by B(x, r).

B(x, r) = { y ∈ Vn ; dist(x, y) ≤ r } .

In order to avoid particular cases due to self-overlapping balls, we will always assume
that n > 2ρr. If n and n′ are both larger than 2ρr, the balls B(x, r) in Gn and Gn′ are
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isomorphic. Two properties of the balls B(x, r) will be crucial in what follows. The �rst
one is that two balls with same radius are translated of each other:

B(x+ y, r) = y +B(x, r) .

(Recall that all operations on vertices are understood modulo n.) The second one is that
for n > 2ρr, the cardinality of B(x, r) depends on r, but neither on x nor on n; it will be
denoted by β(r). Observe that whatever the choices of p and ρ in (1) the ball B(x, r) is
included in the sub-lattice [x− ρr, x+ ρr]d ∩ Vn, and thus

β(r) ≤ (2ρr + 1)d .

In our setting, two structures may di�er only by their unary facts. There is a natural
bijection between the set of structures and {−1,+1}Vn : to a structure S corresponds the
con�guration η de�ned by:

(S |= Cx) ⇐⇒ (η(x) = +1) ; (S |= ¬Cx) ⇐⇒ (η(x) = −1) .

Formulas such as Cx, Rxy. . . are called atoms. The �rst-order logic ([8] p. 5) is the
set of all formulas obtained by recursively combining �rst-order formulas, starting with
atoms.

De�nition 2.1 The set L1 of �rst-order formulas is de�ned by:

1. All atoms belong to L1.

2. If A and B are �rst-order formulas, then (¬A), (∀xAx) and (A ∧ B) also belong to
L1.

We are interested in formulas for which it can be decided if they are true or false for any
given con�guration, i.e. for which all variables are quanti�ed. They are called closed for-
mulas, or sentences. Such a sentence A de�nes a subset An of Xn: that of all con�gurations
η that satisfy A (η |= A).

An = {η ∈ Xn ; η |= A} .
If µn denotes a probability measure on Xn, then any sentence A has probability µn(An) to
be satis�ed.

µn(η |= A) = µn(An) .

Until now, we have not precised which binary predicates belong to the vocabulary. As an
example, consider the square torus lattice in dimension 2. Each vertex x = (i, j) has 4
neighbors (i± 1, j), (i, j ± 1) (additions are always taken modulo n). This graph structure
can be described by a single binary predicate N (neighbor):

Nxy ⇐⇒ y = x± (0, 1) or y = x± (1, 0) .

One can also consider 2 binary predicates R (right) and U (up).

Rxy ⇐⇒ y = x+ (1, 0) and Uxy ⇐⇒ y = x+ (0, 1) .
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The underlying graph is the same but the language is more expressive. The sentence �there
exist three neighboring black vertices� belongs to both �rst order logics, but �there exist
three horizontally adjacent black vertices� only belongs to the second one. It turns out that
the zero-one law depends only on the graph, and not on the vocabulary. This is essentially
a consequence of Gaifman's theorem ([8] p. 31), which states that every �rst-order sentence
is equivalent to a boolean combination of basic local sentences.

De�nition 2.2 A basic local sentence has the form:

∃x1 . . . ∃xm

( ∧
1≤i<j≤m

dist(xi, xj) > 2r

)
∧

( ∧
1≤i≤m

ψi(xi)

)
, (2)

where:

• m and r are �xed nonnegative integers,

• for all i = 1, . . . ,m, ψi(x) ∈ L1 is a formula for which only variable x is free (not
bound by a quanti�er), and the other variables all belong to the ball B(x, r).

For any x and a �xed radius r, consider now a complete description D(0) of the ball
B(0, r), i.e. a �rst-order sentence for which all statements concerning vertices at distance
at most r of 0 are either asserted or negated. It describes a certain local con�guration of
the vertices in B(0, r). Denote this con�guration by ζD,0. For each x ∈ Vn, denote by ζD,x
the translation of ζD,0 onto the ball B(x, r):

∀y ∈ Zd , dist(0, y) < r =⇒ ζD,x(x+ y) = ζD,0(y) .

The complete description of the ball B(x, r) that describes the local con�guration ζD,x will
be denoted by D(x).

De�nition 2.3 A single pattern sentence has the form:

∃x D(x) , (3)

where D(0) is a complete description of the ball B(0, r) for a �xed r.

Examples of single pattern sentences are:

1. �there exists a black vertex�,

2. �there exists a ball of radius 2 with a black vertex at the center, all other vertices in
the ball being white�.

De�nition 2.4 A pattern sentence has the form:

∃x1 . . . ∃xm

( ∧
1≤i<j≤m

dist(xi, xj) > 2r

)
∧

( ∧
1≤i≤m

Di(xi)

)
, (4)

where:
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• m and r are �xed nonnegative integers,

• for all i = 1, . . . ,m, Di(0) is a complete description of the ball B(0, r).

Examples of pattern sentences are:

1. �there exist 3 black vertices�,

2. �there exist 3 non overlapping white balls of radius 2, one of them with a black vertex
at the center�.

Obviously, pattern sentences are particular cases of basic local sentences. Proposition 2.5
below reduces the proof of zero-one laws for random con�gurations to pattern sentences.

Proposition 2.5 Consider the following three assertions.

(i) The probability of any pattern sentence tends to 0 or 1.

(ii) The probability of any basic local sentence tends to 0 or 1.

(iii) The probability of any �rst order sentence tends to 0 or 1.

Then (i) implies (ii) and (ii) implies (iii).

Proof: Observe �rst that if the probabilities of sentences A and B tend to 0 or 1, then
so do the probabilities of ¬A and A ∧ B. This follows from elementary properties of
probabilities. As a consequence, if the probability of A tends to 0 or 1 for any A in a given
family, this remains true for any �nite Boolean combination of sentences in that family.
Thus Gaifman's theorem yields that (ii) implies (iii). We shall prove now that every basic
local sentence is either unsatis�able or a �nite Boolean combination of pattern sentences.
Indeed, consider a formula ψ(x) for which only variable x is free, and the other variables
all belong to the ball B(x, r). Either it is not satis�able, or there exists a �nite set of local
con�gurations (at most 2β(r)) which satisfy it. To each of those con�gurations corresponds
a complete description D(x) which implies ψ(x). So ψ(x) is equivalent to the disjunction
of these D(x)'s:

ψ(x) ↔
∨

D(x)→ψ(x)

D(x) . (5)

In formula (2), one can replace each ψi(xi) by a disjunction of complete descriptions.
Rearranging terms, one gets that the basic local sentence (2) is itself a �nite disjunction
of pattern sentences. �

In the case of weakly dependent random �elds, to be treated in the next section, we will
prove that the probability of any pattern sentence tends to 1. Proposition 2.6 shows that
it is enough to examine single pattern sentences.

Proposition 2.6 If the probability of any single pattern sentence tends to 1, then the
probability of any pattern sentence tends to 1.
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Proof: Consider the pattern sentence de�ned by (4). We show that its probability tends to
1 by contructing a single pattern sentence that implies it. Consider the ball B(0, R), with
R = m(ρr+1). This ball contains m disjoint balls of radius r. Denote by x1(0), . . . , xm(0)
their centers.

The ball B(0, R) is partitioned into m+1 sets: the m balls B(x1(0), r), . . . , B(xm(0), r)
and B(0):

B(0) = B(0, R) \
⋃

1≤i≤m

B(xi(0), r) .

De�ne a complete description D̃(0) on B(0, R) as follows:

1. For i = 1, . . . ,m the restriction of D̃(0) to B(xi(0), r) is Di(xi(0)).

2. For all y ∈ B(0), D̃(0) |= Cy (all vertices outside the balls B(xi(0), r) are black).

Clearly, ∃x D̃(x) implies (4). By hypothesis, the probability of ∃x D̃(x) tends to one,
hence the result. �

3 Weakly dependent random �elds

The notations are those of the previous sections. For each positive integer n, we con-
sider a probability measure µn on the set of con�gurations Xn on the vertices of a lattice
graph Gn = (Vn, En) in dimension d. Theorem 3.1 below gives conditions under which
the probability of any single pattern sentence tends to 1, which implies the zero-one law
by Propositions 2.5 and 2.6. The �rst condition says that the probability of any local
con�guration remains bounded away from 0. The second one bounds the covariance of two
distant con�gurations. Both conditions, together with the conclusion of the theorem can
be expressed in terms of probabilities of events such as �the restriction of the (random)
con�guration to a given subset coincides with a given local con�guration�. If η is a (global)
con�guration on Vn, its restriction to a subset B of Vn will be denoted by η|B. A local
con�guration (i.e. a mapping from B to {−1,+1}) will typically be denoted by ζB. The
cardinality of B is denoted by |B|. If B and C are two vertex subsets, their distance is
de�ned as usual by:

dist(B,C) = min{ dist(x, y) , x ∈ B , y ∈ C } .

We call local event relative to B an event which depends only on the values of η(x) for
x ∈ B.

Theorem 3.1 For each positive integer n, let µn be a probability measure on Xn. Assume
that the following hypotheses hold.
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1. Let r be a �xed integer. For any local con�guration ζD,0 on the ball B(0, r), there
exists pD > 0 such that

∀n > 2ρr , ∀x ∈ Vn , µn(η|B(x,r) ≡ ζD,x) ≥ pD , (6)

where for all y ∈ B(0, r), ζD,x(x+ y) = ζD,0(y).

2. There exists a function ψ from N×N into R, and a function ε from N to R, decreasing
to 0, such that if B, C are disjoint subsets of Vn, and eB, eC local events relative to
B and C respectively:

|µn(eB ∩ eC)− µn(eB)µn(eC)| ≤ ψ(|B|, |C|) ε(dist(B,C)) . (7)

Then for any �rst order sentence A,

lim
n→∞

µn(A) = 0 or 1 .

Let us notice that the probabilities of local con�gurations in (6) need not be equal: sta-
tionarity (spatial homogeneity) is not requested. Observe also that the mixing hypothesis
(7) is implied by any strong mixing condition such as introduced in [4]. After the proof of
Theorem 3.1 several examples of random �elds satisfying its hypotheses will be given.

Proof: According to propositions 2.5 and 2.6, it enough to prove that the probability of
any pattern sentence tends to 1.

lim
n→∞

µn(∃xD(x)) = 1 ,

Where D(0) denotes a complete description of the ball B(0, r). Using the notations of the
previous section, Let ζD,0 be the unique con�guration on B(0, r) described by D(0), and
ζD,x be its translate on the ball B(x, r):

∀y , dist(0, y) ≤ r , ζD,x(x+ y) = ζD,0(y) .

We need to compute the probability that a random con�guration with distribution µn
coincides with ζD,x on B(x, r), for at least one x. We shall �rst �x a regular sub-lattice
of Vn. Let R > ρr be a given integer, to be precised later. Consider the following set of
vertices:

Tn =

{
α(2R + 1) , α = 0, . . . ,

⌊
n

2R + 1

⌋
− 1

}d
, (8)

where b · c denotes the integer part. Denote by τn the cardinality of Tn:

τn =

⌊
n

2R + 1

⌋d
.

Rename the vertices in Tn from 1 to τn: x1, . . . , xτn . Since R > ρr, the balls B(xi, r) and
B(xj, r) are disjoint for all i 6= j. Denote by ei the event �the con�guration coincides with
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ζD,xi
on B(xi, r)� and by ei = Xn \ei the opposite event. Obviously, the union from 1 to τn

of the ei's implies ∃xD(x). We will prove that the probability of the opposite event tends
to 0.

lim
n→∞

µn

( ⋂
1≤i≤τn

ei

)
= 0 .

For i = 1, . . . , τn denote by ci the following covariance.

ci = µn

(
i⋂

j=1

ej

)
− µn

(
i−1⋂
j=1

ej

)
µn (ei) .

An immediate induction leads to:

µn

(
τn⋂
i=1

ei

)
= cτn +

τn−1∑
i=1

cn−i

τn∏
l=τn−i

µn(el) +
τn∏
l=1

µn(el) .

Therefore:

µn

(
τn⋂
i=1

ei

)
≤

τn∑
i=2

|ci|+
τn∏
i=1

µn(ei) .

By the �rst hypothesis of the theorem, the product can be bounded as follows.
τn∏
l=1

µn(el) ≤ (1− pD)τn .

In order to make sure that it tends to zero, it is enough to require that τn should tend
to in�nity. Let us now turn to the sum of covariances, for which the second hypothesis
has to be used. Observe that by construction of Tn, the distance between any two balls
B(xi, r) and B(xj, r) is larger than 2(R− ρr)/ρ. Thus the second hypothesis implies that
for i = 1, . . . , τn,

τn∑
i=2

|ci| ≤
τn∑
i=2

ψ(iβ(r), β(r)) ε(2(R− ρr)/ρ) .

Let us choose a be a positive increasing real function Ψ, tending to in�nity, such that for
all m ∈ N:

m∑
i=2

ψ(iβ(r), β(r)) ≤ Ψ(m) .

Denote by Ψ−1 its reciprocal function, which is also positive, increasing, and tends to
in�nity. De�ne R = Rn as follows.

Rn =
n

2((Ψ−1(ε(
√
n)−1/2))1/d − 1)

.

One has :

τn =

⌊
n

2Rn + 1

⌋d
=

⌊
1

1
n

+ 1
Ψ−1(ε(

√
n)−1/2))1/d−1

⌋d
,
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which tends to +∞, since ε tends to zero, and Ψ−1 to +∞. Now :

Ψ(τn) ≤ Ψ

((
n

2Rn

+ 1

)d)
= Ψ(Ψ−1(ε(

√
n)−1/2)) = ε(

√
n)−1/2 .

Replacing Ψ by a larger function if necessary, one can make sure that (2Rn− ρr)/ρ ≥
√
n.

Since ε is decreasing,
ε((2Rn − ρr)/ρ) ≤ ε(

√
n) ,

hence:
Ψ(τn) ε(2(Rn − ρr)/ρ) ≤ ε(

√
n)1/2 ,

which tends to 0 as desired. �

Classical examples of random �elds are stationary (i.e. translation invariant) random
�elds, de�ned on Zd as sets of random variables {η(x) , x ∈ Zd} (see [15] or [4]). In what
follows, we shall view our measure µn as the distribution of the restriction {η(x) , x ∈ Vn}.
Observe that if the distribution of a stationary random �eld {η(x) , x ∈ Zd} satis�es the
hypotheses of Theorem 3.1, for B,C ⊂ Zd, then the same holds for B,C ∈ Vn because
distances in the torus Vn are always smaller that in Zd. Notice also, that even if {η(x) , x ∈
Zd} is stationary, its restriction to Vn is not stationary in the sense of translations on the
torus.

• Gaussian models
They are often used in practice, for instance to model the sea level. Let Y =
{Y (x) , x ∈ Zd} be a stationary Gaussian random �eld, and h : R → {−1,+1}
a discrete valued function. Let µ be the distribution of η(x) = {h(Y (x)) , x ∈ Zd}.
Assume that the spectral density fY of Y is bounded away from zero. Then in (7),
one can choose ψ ≡ 1 as a constant and ε(s) as the distance from fY to the set of
trigonometric polynomials with degree < s.

• Ising models
Another classical example of weakly dependent random �eld is the Ising model of
de�nition 1.1. In their famous article [3], Dobrushin and Shlosman proved the equiv-
alence of several mixing conditions, including the exponential decay of correlations.
Those conditions are satis�ed in the high temperature case (i.e. for |b | small enough)
or in large external �eld (i.e. for |a | su�ciently large). See also [13] for the 2 dimen-
sional case.

• Weak dependence and mixing
The following setting is decribed in [6] and we shall keep their notations. Let B be
a �nite subset of Zd. Consider the set Λ(1) of Lipschitz functions R → R such that

Lipf = sup
x,y∈{0,1}B

|f(x)− f(y)|∑
i∈B |xi − yi|

≤ 1, ‖f‖∞ ≤ 1 .
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The so-called (ε,Λ(1), φ)-weak dependence condition of [6], de�ned from a decreasing
sequence εr ↓ 0 and a function φ : N2 × R+2) → R+, holds in case

|Cov(f1((ηi)i∈B1), f2((ηi)i∈B2)| ≤ φ((|B1|, |B2|,Lipf1,Lipf2) εr (9)

if f1, f2 ∈ Λ(1) are as above with B1, B2 ⊂ Zd �nite and distant by at least r. A
random �eld satisfying relation (9) for the function φ(u, v, U, V ) = uU + vV is called
an η-weakly dependent random �eld.
In our setting, the ηt's take their values in {−1,+1}. In this case, indicators of local
con�gurations may be written as functions f((ηi)i∈B) for a bounded set B ⊂ Zd.
Indeed, such functions f : {−1, 1}B → {0, 1} are in Λ(1) and (7) holds with ψ(u, v) =
φ(u, v, 1, 1) and εr is as in equation (9).
So in the binary case the weak dependence condition of [6] implies the mixing con-
dition (7). In more general settings, [6] provides a weaker alternative to mixing
conditions.
Here are some examples of (ε,Λ(1), φ)-weakly dependent �elds.
Bernoulli shifts are de�ned through an independent and identically distributed ran-
dom �eld (ξt)t∈Zd by the relation ηn = H((ξn−t)t∈Zd). If such expressions are (a.s.)
well de�ned, they generate stationary random �elds. If

δr = E
∣∣H((ξt)t∈Zd)−H((ξt1(|t|≤r))t∈Zd)

∣∣
where | · | denotes a norm on Zd, then it is easy to prove with Doukhan and Louhichi
ideas in [6] that (9) holds with φ(u, v, U, V ) = uU + vV and ε(r) = 2δr/2. In the case
where H takes values in {−1,+1}, one has ψ(u, v) = u+ v.
Other models have similar expressions, in particular mappings ηt = h(Yt) of general
Bernoulli shifts (Yt) through functions with values in {−1,+1}. As a simple example,
consider a linear random �eld, de�ned by:

Yt =
∑
s∈Zd

asξt−s,

where δr ≤ E|ξ0|
∑

|i|≥s |ai|. More general polynomials may also be considered, they
are usually named as Chaotic Volterra expansions (see [5]).
The next example provides a way to exhibit such expansions for Rk-valued random
�elds. It comes from the �nance literature where heteroskedasdicity is a natural
feature. Let (ξt)t∈Zd be a stationary sequence of random k×m-matrices, (aj)j∈Z∗ be
a sequence of m× k matrices, and a be a vector in Rm. A vector valued ARCH(∞)
random �eld model is a solution of the recurrence equation

Xt = ξt

(
a+

∑
j 6=0

ajXt−j

)
, t ∈ Zd (10)

12



Such ARCH(∞) models include a large variety of models (see [7]). Assume that∑
j 6=0

‖aj‖‖ξ0‖∞ < 1, then a stationary solution of equation (10) in Lp is given by :

Xt = ξt

(
a+

∞∑
k=1

∑
j1,...,jk 6=0

aj1ξt−j1aj2 . . . ajkξt−j1−···−jka

) (
∈ Rk

)
. (11)

Denote now A =
∑
j 6=0

‖aj‖, A(x) =
∑

‖j‖>x
‖aj‖ and λ =

(
∞∑
j 6=0

‖aj‖

)
‖ξ0‖∞ where

‖(j1, . . . , jk)‖ = |j1|+ · · ·+ |jk|.
In what follows, we assume for simplicity that the random �eld (ξt)t∈Zd is iid.
One approximates here Xt by a random variable independent of X0. Set

X̃t = ξt

a+
∞∑
k=1

∑
‖j1‖+···+‖jk‖<t

aj1ξt−j1 · · · ajkξt−j1−···−jka


A bound for the error is given by :

E‖Xt − X̃t‖ 6 E‖ξ0‖

(
E‖ξ0‖

t−1∑
k=1

kλk−1A

(
t

k

)
+

λt

1− λ

)
‖a‖

For suitable constants K and K ′ we derive

‖Xt − X̃t‖ 6

{
K (log(t))max{b,1}

tb
if A(x) 6 Cx−b, b, C > 0

K ′(max{q, λ})
√
t if A(x) 6 Cqx

Weak dependence of the corresponding random �elds follows. The solution (11) of
equation (10) is η−weakly dependent with

εr = ‖ξ0‖∞‖a‖xr, with xt = ‖ξ0‖∞
t−1∑
k=1

kλk−1A

(
t

k

)
+

λt

1− λ
.

More precisely, for Riemanian decays of ‖aj‖, with A(x) 6 Cx−b for b, C > 0, we
have

xt 6

 E‖ξ0‖
(

2E‖ξ0‖C
( −b

lnλ

)b ( ln(t)
t

)b
+ λt

1−λ

)
‖a‖, if b > 1

E‖ξ0‖
(
3AC

( −b
lnλ

)
ln(t)
tb

+ λt

1−λ

)
‖a‖, if 0 < b < 1

For geometric decays ‖aj‖ ≤ qj,

xt 6 E‖ξ0‖

 t−1∑
k=1

E‖ξ0‖k
∞∑
p=t

Ck
p q

p +
λt

1− λ

 ‖a‖
13



In those cases, there exists some constant K > 0 and b, C > 0 such that

xt 6

{
K (log(t))max{b,1}

tb
, under Riemaniann decay A(x) 6 Cx−b

K(max{q, λ})
√
t, under geometric decay A(x) 6 Cqx

Now any function h(Xt) of such a random �eld through a mapping with values in
{−1,+1} satis�es the assumptions of Theorem 3.1.
Let us �nally mention the case of an associated random �eld, i.e. a {−1,+1}-valued
random �eld η on Vn such that for each coordinatewise non-decreasing function f, g :
RVn → R such that E(f 2(X)+ g2(X)) <∞, the covariance between f(η) and g(η) is
non negative (this is also known as the FKG condition). Such a �eld can be treated
as before with ψ(u, v) = uv and ε(s) = sup|u−v|≥sCov(Xu, Xv).

4 Ising model

Here we consider the particular case where the measure µn on the set of con�gurations Xn

is the Ising model of De�nition 1.1:

∀η ∈ Xn , µn(η) =
1

Z
exp

a(n)
∑
x∈Vn

η(x) + b(n)
∑

{x,y}∈En

η(x)η(y)

 .

Expectations relative to µn will be denoted by En. The surface potential a = a(n) and
the pair potential b = b(n) both depend on n. We will assume that a(n) is negative: we
already observed that the model remains unchanged through swapping −1 and +1 and
changing a to −a. If the pair potential b remains bounded, then conditions on a(n) can be
given for the zero-one law.

Theorem 4.1 Assume that for all n, a(n) < 0 and there exists b0 > 0 such that |b(n)| < b0.
If

∀k = 1, 2, . . . , lim
n→∞

ea(n)n
d
2k = 0 or +∞ ,

then for any �rst order sentence A

lim
n→∞

µn(An) = 0 or 1 .

As a particular case, for b(n) ≡ 0, the spins are independent, +1 with probability
p(n) = ea(n)/(ea(n) + e−a(n)) ∼ e2a(n) or −1 with probability 1 − p(n). The threshold
functions for p(n) are n− d

k , k = 1, 2 . . ., as expected. By Proposition 2.5, it would su�ce
to prove that the functions n− d

2k are the threshold functions (for ea(n)) of pattern sentences.
Actually, it is possible to characterize the threshold functions of all basic local sentences.
We begin with the particular case of single pattern sentences.
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Proposition 4.2 Assume that for all n, a(n) < 0 and there exists b0 > 0 such that
|b(n)| < b0. Let r and k be two integers such that 0 ≤ k ≤ β(r). Let D(0) be a complete
description of the ball B(0, r), with exactly k pluses.

If lim
n→∞

e2a(n)knd = 0 then lim
n→∞

µn(∃x D(x)) = 0 . (12)

If lim
n→∞

e2a(n)knd = +∞ then lim
n→∞

µn(∃x D(x)) = 1 . (13)

Proof: Let us start with some notations and de�nitions. Given η∈En = {−1,+1}Vn and
U ⊂ Vn, we denote by ηU the natural projection over {−1,+1}V . If U and V are two
disjoint subsets of Vn then ηUζV is the con�guration on U ∪ V which is equal to η on U
and ζ on V . We denote by δU the neighborhood of U (corresponding to (1)):

δU = {y ∈ Vn \ U, ∃x ∈ U, {x, y} ∈ An} ,

and by U the union of the two disjoint sets U and δU . In the case of balls, B(x, r) =
B(x, r+1). Finally, |U | represents the cardinality of U and F(U) the σ-algebra generated
by the con�gurations of {−1,+1}U .
Let us �x a complete description D(0) of the ball B(0, r), and denote by ζD,x the local
con�guration on B(x, r) de�ned by the translation of D(0) (notations of Theorem 3.1).
For any vertex x, we de�ne the indicator function IDx as follows:

∀η ∈ Xn, I
D
x (η) =

{
1, if ηB(x,r) = ζD,x ,
0, otherwise .

The random variables IDx indicate occurrences of a given local con�guration on the lattice.
Their sum counts these occurrences. It will be denoted by XD

n .

XD
n =

∑
x∈Vn

IDx

Due to periodicity, this sum bears over | Vn |= nd terms. The event XD
n > 0 is logi-

cally equivalent to the single pattern sentence ∃x D(x). So, the quantity we are actually
interested in is µn(Xn > 0).

Let us now �x a vertex x and simply denote by B the ball B(x, r). Recall that there
exists a �nite number of con�gurations on B (precisely 2β(r)). Denote by Dx

r their set. The
local energy HB(σ) of the con�guration σ ∈ {−1,+1}B on B is de�ned by:

HB(σ) = a(n)
∑
y∈B

σ(y) + b
∑

{y,z}∈An

(y∈B)∨(z∈B)

σ(y)σ(z) . (14)

Hence, for all σ ∈ {−1,+1}δB, the local energy HB(ζD,xσ) on B of the con�guration which
is equal to ζD,x on B and σ on δB, can be expressed as:

HB(ζD,xσ) = a(n)(2k − β(r)) + b

 ∑
{y,z}∈An

y,z∈B

ζD,x(y)ζD,x(z) +
∑

{y,z}∈An

y∈B,z∈δB

ζD,x(y)σ(z)

 ,

15



where k is the number of +1's of the complete description D(0). This notion of local
energy naturally appears in the expression of the conditional probability µn(IDx = 1 | σ),
σ ∈ {−1,+1}δB:

µn(I
D
x = 1 | σ) =

eH
B(ζD,xσ)∑

ζ′∈Dx
r
eHB(ζ

′
σ)
. (15)

Moreover, it is connected to the number XD
n of copies of ζD,0 in the graph since:

En[X
D
n ] = En

[
ndµn(I

D
x = 1 | F(δB))

]
.

Here, µn(IDx = 1 | F(δB)) represents a F(δB)-measurable random variable, whereas for
σ ∈ {−1,+1}δB, µn(IDx = 1 |F(δB))(σ) = µn(I

D
x = 1 |σ) is a conditional probability.

Remark that the set δB has a bounded cardinality. Thus, the pair potential b(n) being
bounded, there exist two constants m and M (which do not depend on n) such that for all
local con�guration ζ ′ ∈ Dx

r having exactly k′ pluses and for all con�guration σ ∈ Xn:

2a(n)(k
′ − k) +m ≤ HB(ζ

′
σδB)−HB(ζD,xσδB) ≤ 2a(n)(k

′ − k) +M . (16)

Statements (12) and (13) rely on the fact that the di�erence between the local energies
HB(ζ

′
σδB) and HB(ζD,xσδB) is uniformly bounded, for any con�guration on δB.

Assume that k > 0 and lim e2a(n)knd = 0. Let us denote by ζ0 the unique element of
Dx
r having no +1. Relations (15) and (16) imply that, for all σ ∈ Xn,

µn(I
D
x = 1 | σδB) ≤ eH

B(ζD,xσδB)−HB(ζ0σδB)

≤ e2a(n)k−m .

As a consequence:

En[X
D
n ] = ndEn

[
µn(I

D
x = 1 | F(δB))

]
≤ nde2a(n)k−m ,

which tends to 0 as n tends to in�nity. Finally, XD
n being an integer valued variable, its

probability of being positive is bounded by its expectation and relation (12) follows.

Assume now that lim e2a(n)knd = +∞. For all local con�gurations ζ ′ ∈ Dx
r and for all

σ ∈ Xn, (16) implies that the di�erence HB(ζ
′
σδB)−HB(ζD,xσδB) is bounded by −2a(n)k+

M (the surface potential a(n) is negative). Hence, using relation (15), there exists a positive
constant c = 2−β(r)e−M satisfying:

∀σ ∈ Xn, µn(I
D
x = 1 | σδB) ≥ ce2a(n)k . (17)

As in the proof of Theorem 3.1, let us introduce a subset Tn ov Vn de�ned by:

Tn =

{
α(ρ(2r + 1) + 1) , α = 0, . . . ,

⌊
n

ρ(2r + 1) + 1

⌋
− 1

}d
,
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Figure 1: The grey vertices represent the set Tn (in dimension d = 2, with r = 3, ρ = 1,
and p = +∞). The black vertices are elements of Tn.

Denote by τn the cardinality of Tn and Tn the union of the balls of radius r, centered
at the elements of Tn (see Figure 1). Firstly, let us remark that there exists a positive
constant c′ satisfying τn ≥ c

′
nd. Secondly, if x and x′ are two distinct elements of Tn then

no vertex of the ball B(x, r) can be neighbor with a vertex of the ball B(x
′
, r). Thus, let

us de�ne the random variable X̃D
n by:

X̃D
n =

∑
x∈Tn

IDx .

As X̃D
n ≤ XD

n , it su�ces to prove that µn(X̃D
n = 0) tends to 0 (to obtain (13)). The Gibbs

measure µn is a Markov random �eld with respect to the graph structure de�ned by (1).
This has two consequences. On the one hand, due to the de�nition of Tn, one has:

µn

(
X̃D
n = 0 | F(δTn)

)
= µn

( ∧
x∈Tn

IDx = 0 | F(δTn)

)
=

∏
x∈Tn

µn
(
IDx = 0 | F(δTn)

)
. (18)

On the other hand, for all x ∈ Tn, the random variable µn(IDx = 0 |F(δTn)) is F(δB(x, r))-
measurable:

µn
(
IDx = 0 | F(δTn)

)
= µn

(
IDx = 0 | F(δB(x, r))

)
. (19)

Let σmax be an element of Xn maximizing the conditional probability µn(IDx = 0 |σδB(x,r)).
Then, from (18) and (19), we get for any vertex x and for any σ ∈ Xn:

µn

(
X̃D
n = 0 | F(δTn)

)
≤

(
µn(I

D
x = 0 | σmaxδB(x,r))

)τn
≤ e−τnµn(ID

x =0|σmax
δB(x,r)) .

Finally, the inequality (17) implies that:

µn

(
X̃D
n = 0

)
= En

[
µn

(
X̃D
n = 0 | F(δTn)

)]
≤ e−τnµn(ID

x =0|σmax
δB(x,r))

≤ e−c c
′
nde2a(n)k

which tends to 0 as n tends to in�nity by hypothesis. �
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Proposition 4.2 shows that the appearance of a given local pattern only depends on
its number of +1's: if ea(n) is small compared to n−

d
2k , then no pattern of �xed size,

with k pluses, should appear in the con�guration. If ea(n) is large compared to n− d
2k , all

con�gurations with k pluses should appear. In other words, the threshold function for
the appearance of a given pattern is n− d

2k , where k is the number of +1's in the pattern.
Proposition 4.4 below will show that the threshold function for a basic local sentence L
is n−

d
2k(L) , where k(L) is an integer that we call the index of L. Its de�nition refers to

the decomposition (5) of a local property into a �nite disjunction of complete descriptions,
already used in the proof of proposition 2.5.

De�nition 4.3 Let L be the basic local sentence de�ned by:

∃x1 . . . ∃xm

( ∧
1≤i<j≤m

dist(xi, xj) > 2r

)
∧

( ∧
1≤i≤m

ψi(xi)

)
.

If L is not satis�able, then we shall set k(L) = +∞. If L is satis�able, for each i =
1, . . . ,m, consider the �nite set {Di,1, . . . , Di,di

} of those complete descriptions on the ball
B(xi, r) which imply ψi(xi).

ψi(xi) ↔
∨

1≤j≤di

Di,j(xi) .

Each complete description Di,j(xi) corresponds to a con�guration on B(xi, r). Denote by
ki,j its number of +1's.
The index of L, denoted by k(L) is de�ned by:

k(L) = max
1≤i≤m

min
1≤j≤di

ki,j . (20)

The intuition behind de�nition 4.3 is the following. Assume ea(n) is small compared to
n−

d
2k(L) . Then there exists i such that none of the Di,j(xi) can be satis�ed, therefore there

is no xi such that ψi(xi) is satis�ed, and L is not satis�ed. On the contrary, if ea(n) is large
compared to n−

d
2k(L) , then for all i = 1, . . . ,m, ψi(xi) should be satis�ed for at least one

vertex xi, and the probability of satisfying L should be large. In other words, n−
d

2k(L) is
the threshold function of L.

Proposition 4.4 Assume that for all n, a(n) < 0 and there exists b0 > 0 such that
|b(n)| < b0. Let L be a basic local property, and k(L) be its index. If L is satis�able and

k(L) > 0, then its threshold function for ea(n) is n−
d

2k(L) . If k(L) = 0, its probability tends
to 1.

Proof: Assume L is satis�able (otherwise its probability is null). For a(n) < 0, we need to
prove that µn(L) tends to 0 if e2a(n)k(L)nd tends to 0 (in this case, k(L) > 0), and that it
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tends to 1 if e2a(n)k(L)nd tends to +∞. The former will be proved �rst. Consider again the
decomposition of L into complete descriptions:

L↔ ∃x1 . . . ∃xm

( ∧
1≤i<j≤m

dist(xi, xj) > 2r

)
∧

( ∧
1≤i≤m

∨
1≤j≤di

Di,j(xi)

)
.

If e2a(n)k(L)nd tends to 0, there exists i such that:

∀j = 1, . . . , di , lim
n→∞

ea(n)n
d

2ki,j = 0 .

By proposition 4.2, the probability of (∃x Di,j(x)) tends to 0 for all j = 1, . . . , di. Therefore
the probability of (∃xψi(x)) tends to 0, which implies that µn(L) tends to 0.
Conversely, for each i = 1, . . . ,m, choose one of the Di,j's, such that the number of +1's
in the corresponding con�guration is minimal (among all ki,j's). Denote that particular
complete description by Di and by ki its number of +1's (hence, k(L) = max1≤i≤m ki). As
in the proof of proposition 4.2, we shall use the lattice Tn. Remember that its cardinality
τn is of order nd. The basic local sentence L is implied by the sentence L′ de�ned as follows:

L
′ ↔ ∃x1 . . . ∃xm

( ∧
1≤i≤m

xi ∈ Tn

)
∧

( ∧
1≤i<j≤m

xi 6= xj

)
∧

( ∧
1≤i≤m

Di(xi)

)
,

For i = 1, . . . ,m, let us introduce the random variable X̃Di
n :

X̃Di
n =

∑
x∈Tn

IDi
x .

Even if some of the Di's correspond to the same complete description, the event
m∧
i=1

{
X̃Di
n ≥ m

}
implies the sentence L′ (and also the basic local sentence L). As a consequence, it is enough
to prove the convergence of µn(X̃Di

n ≥ m) to 1 for any index i = 1, . . . ,m.
Fix such an index i. We have already seen in the proof of Proposition 4.2 that, for two
di�erent vertices x and x′ of Tn,

(i) µn
(
IDi
x = 1 | F(δTn)

)
= µn

(
IDi

x
′ = 1 | F(δTn)

)
;

(ii) µn

(
IDi
x = IDi

x′
= 1 | F(δTn)

)
= µn

(
IDi
x = 1 | F(δTn)

)
× µn

(
IDi

x′
= 1 | F(δTn)

)
.

These two statements mean that, conditioned on a given con�guration σ on δTn, the dis-
tribution of the random variable X̃Di

n is binomial with parameters τn and µn(IDi
x = 1 |σ).

Moreover, for any vertex x, the inequality (17) says:

∃ c′′ > 0, ∀ σ ∈ Xn, τn µn
(
IDi
x = 1 | σδTn

)
≥ c

′′
nde2a(n)ki . (21)
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Now, assume that nde2a(n)k(L) tends to in�nity. Since ki ≤ k(L) and a(n) is negative,
relation (21) involves the convergence of the product τn × µn

(
IDi
x = 1 |σδTn

)
to in�n-

ity, uniformly on σ ∈ Xn. Then, it is easy to check that the conditional probability
µn

(
X̃Di
n ≥ m |σδTn

)
tends to 1, uniformly on the con�guration σ ∈ Xn. Therefore the

probability
µn

(
X̃Di
n ≥ m

)
= En

[
µn

(
X̃Di
n ≥ m | F(δTn)

)]
tends to 1 as n tends to in�nity. �

Having characterized the threshold functions of all basic local properties, the proof of
theorem 4.1 is now clear. If ea(n)n

d
2k tends to 0 or +∞ for any positive integer k, then by

proposition 4.4 the probability of any basic local sentence tends to 0 or 1. This remains true
for any boolean combination of basic local sentences (cf. proposition 2.5). By Gaifman's
theorem, these boolean combinations cover all �rst-order sentences. Hence the zero-one
law holds for �rst-order logic.
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