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Résumé

Nous montrons un théoréeme de limite central pour des fonctionnelles générales de séries temporelles.
Notre énoncé valide pour de nombreuses classes de séries temporelles vaut en particulier pour des modeles
ARCH(00), bilinéaires, linéaires non causaux ou and ARCH(c0).

Abstract

We prove a general functional central limit theorem for weak dependent time series. Those proba-
bilistic results are for a large variety of models. For instance, ARCH(co) and bilinear processes, and
two sided linear, bilinear and ARCH(co) processes.
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1 Introduction

In this paper, we consider the following empirical mean,

1 & 1 &
Sn = %;h@k) = ﬁkzzzlyk (1)

where h : R — R is a function and (x,,),cz with values in R? is a stationary zero mean sequence that
satisfying certain conditions. We study the case (see the conditions below) where S;, converges in law to a
Gaussian distribution. More precisely, the aim of the following subsections will be to specify conditions to
obtain a decay rate to 0 of |An‘ with

Ap =E((5) — ¢(N)), (2)
for ¢ a C*(R) function with bounded derivatives up to order 3, N ~ N(0,0%) with

0% =" Cov (h(xo), h(z)).
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Let us precise now the different assumptions for the times series and functions considered in (1).
First, we have chosen to work in the frame of n-weakly dependent processes. This very general class of
dependent processes was introduced in the seminal paper of Doukhan and Louhichi (1999) to generalize
and avoid certain difficulties linked of strong mixing property. Indeed, this frame of dependence includes
a lot of models like causal or non causal linear, bilinear, strong mixing processes or also dynamical
systems. Secondly, this property of dependence is independent of the marginal distribution of the time
series, that can be as well a discrete one, Lebesgue measurable one or else. Thirdly, non causal processes
can be as well studied as causal ones with this property of dependence, in contrary of strong mixing
processes or martingales. Finally, these definitions of dependence can be more easily proved and used in
a lot of statistic contexts, in particular in the case of functions of the time series, than the strong mixing one.

The definition of such n-weak dependent property is the following. A process X = (X, )nez with
values in R? is a so-called n—weakly dependent process when it exists a sequence (71, ),en converging to 0
satisfying:

’COV (gl(Xiu e aXiu>7g2(Xj17 s 7X]U))’ S (U ‘ (Llpgl) : ||92||00 +v- (Llng) : Hgl||<>0) M (3)

o (u,v) € N* x N*;
o (i1,...,0y) €Z" and (J1,...,Jp) € ZY with iy < -+ <y < iy +7 < 1 < -0 < s
e functions g; : R*Y — R and ¢, : R’ — R satisfying
191]loc < 00, [|g2]loc < 00, Lipgi < 0o and Lip go < oo.

for all

A lot of usual time series are n-weakly dependent. Different examples of such time series will be
studied in the following section: strong mixing processes (see Doukhan and Louhichi, 1999), GARCH(p, q)
or ARCH(00) processes (see Doukhan et al., 2004), causal or non causal linear processes (see Doukhan and
Lang, 2002), causal or non causal bilinear processes (see Doukhan et al., 2005) and causal or non causal
Volterra processes (see Doukhan, 2003). Now, we can specify the different assumptions used in the general
functional central limit theorem:

Assumptions A on the sequence (z,,),:
(in the sequel, the norm is |(uy, ..., uq)| = max{|usl,...,|uq|} for (ui,...,uq) € R?)
1. there exists m—th order moments for (z,,), with m > 2;
2. (2p)nez is a n—weakly dependent process (defined from the inequality (3)) with values in R?, and the
sequence 1 = (1, )ren satisfies:

0<n=0(r) forallr €N with o> 0. (4)

Assumptions H on the function h:
1. E(h(zp)) = 0;
2. There exists a > 1 and A = A(d) > 1 such that for all u,v € RY,

{ |h(u)] < A(ful* v 1);
|h(u) —h(v)] < A ((|u|“_1 + |v|“_1) \% 1) |lu — vl

Using a Bernstein’s blocks technique, we prove here the following theorem:

Theorem 1 Let h and (x,)nez satisfy respectively assumptions H and A, with m > 2a. Then, if
2m — 1 -

a > max (3; L2>, then o? = Z Cov (h(zo), h(zk)) < 0o, and for any Z ~ N(0,1) random variable,
m — 2a

k=—o00

for any ¢ € C3(R) with bounded derivatives, there exists ¢ > 0 such that:

’E(qﬁ(Sn) — (o Z))’ e with A= 2mz2)Z2mAl (5)

2(m4+a—14+a-m)



Even if our results may be not optimal in term of the conditions linking the moment assumption with the
decay rate of weak dependence of the time series, they however concern a lot of models and open new
perspectives of treatments for non causal processes. Moreover, if @« — oo and m — oo are large enough,

then A\ — % In such an asymptotic case, the rate of convergence n~> is close to the rate of sequence of

ii.d. random variables (that is 1/y/n).

The paper is organized as follows. The following Section 2 is devoted to statistical applications for
different examples of n-weakly time series. Section 3 contains the main proof of the general functional
central limit theorem.

2 Applications of the functional central limit theorem

2.1 Time series satisfying the assumptions

Causal GARCH and ARCH(o0) processes

The famous and from now on classical GARCH(¢',q) model was introduced by Engle (1982) and
Bollerslev (1986) and is given by relations

’

q q
Xk =pr- & with pj =ao+ Z%‘X/ffj + chpifj, (6)

j=1 j=1

where (¢/,q) € N?, ag > 0, a; > 0 and ¢; > 0 for j € N and (&)xez are i.i.d. random variables with zero
mean (for an excellent survey about ARCH modelling, see Giraitis et al., 2005). Under some additional
conditions, the GARCH model can be written as a particular case of ARCH(oco) model (introduced in
Robinson, 1991) that satisfied:

Xk = Pk * fk with pz = b(] + ijX]%,j, (7)
Jj=1

with a sequence (b;); depending on the family (a;) and (c¢;) in the case of GARCH(¢', ¢) process. Then,
Proposition 1 [See Doukhan et al, 2005] Let h satisfies assumption H. Let X be a stationary ARCH(o>o)
time series following equation (7), such that it exists m > 2a satisfying E(|§o|™) < oo, with the condition
of stationarity,

<( 168 = Adllm /o

+1) A |&l3,) - bi| <1. Then, if:
oAt A el ;m

— it exists C > 0 and p €]0,1[ such that Vj € N, 0 < b; < C-pu7, then X is a n-weakly dependent
process with 1, = O(e=°VT) and ¢ > 0 (this is the case of GARCH(q',q) processes) and (5) is satisfied.
3m —2a—1
%) such that Vj e N, 0 < b; < C-j7Y, then X is a
n-weakly dependent process with 6, = (’)(rﬂﬂ) and (5) is satisfied.

— it exists C > 0 and v > max (4 ;

Causal Bilinear processes

Assume that X = (Xj)rez is a bilinear process (see the seminal paper of Giraitis and Surgailis,
2002) satisfying the equation:

infk(a0+zank_j) +60+ZCJ'X]€_]~ for k € Z, (8)

j=1 j=1



where (§;)kez are i.i.d. random variables with zero mean and such that |||, < +oo with p > 1, and a;,
¢, j € N are real coefficients. Assume ¢y = 0 and define the generating functions:

A(z) = 302, a%7 , C(z) =272 67 .
G(2) =(1-0C(2) " =372, 9% H(z) = A(2)G(z) = > o2 hjz?.

Jj=1

Proposition 2 [See Doukhan et al., 2004] Let h satisfies assumption H. Let X be a stationary bilinear time
series satisfying equation (8) with co = 0, E(|§|™) < oo with m > 2a and such that ||&o|lm (Z;)il laj| +

> |cj|) < 1. Then, if:
B 3J € N such that Vj > J, a; = c¢; =0, or,
I €]0,1] such that 3, lejlu™ <1 andVj €N, 0<a; <l
process with 1, = O(e=°V") and ¢ > 0 and (5) is satisfied.
~Vj €N, ¢ >0, and 3v1 >2 and vy > 0 such that a; = O(F™) and 3, cjjit? < oo,

, then X 1is a m-weakly dependent

. (m —4)
2
—1)o — —4)log2

with (m )(157 ml \c\) 8 (m—4) then X is a n-weakly dependent process with

5:10g(1+7?1]) >log2 —=

> cigttre (m—1)
_of() _ 1) b

grio((logr) ) anddfmax( (= 1); (5—&—1/2-10g2)'

Non-causal (two-sided) linear processes

Proposition 3 [See Doukhan and Lang, 2002, p. 3] Let h satisfies assumption H. Let X be a stationary
bilinear time series satisfying equation

o0

X, = Z ajgk,j for ke, (9)

j=—oc0

with (ar)rez € RZ and (£x)rez a sequence of zero mean i.i.d. random variables such that E(|&|™) < oo for
7 bdm—2a—2
m > 2a. Assume that ay, = O(|k|™") with ;> max (5 ; %)- Then X is a n-weakly dependent

and (5) is satisfied.

1
process with n, = O(m)
r

Remark 1 Despite the quite simplicity of this model, it exists very few results concerning the dependence
of the two-sided linear processes. The main reason of this is difficulty to use martingale or mixing properties
for a non-causal process. However, in Rosenblatt (2000, p. 52) a non-efficient strong mizing property
for two-sided linear processes was given, but under restrictive conditions and with . The case of strongly
dependent two-sided linear processes was also treated by Giraitis and Surgailis (1990) or Horvath and Shao
(1999) but only with ar, = O(|k|~*) for a fized —1 < a < 0.

Non-causal Volterra processes

Let X = (Xi)iez be the zero mean non causal (two-sided) and nonlinear time series, so called a
non-causal Volterra process, such that for ¢t € Z:

oo
Xp=>_ v, with Y = > Wi veojp&himin  Ek—j» (10)
p=1 J1 <Jj2 <. <ip
TR ip €L
where (aj,,...;,) € R for p € N* and (ji,...,jp) € ZP, and ({i)kez a sequence of zero mean i.i.d. random

variables such that E(£2) = 02 < oo and E(||™) < co with m > 0. Such a Volterra process is a natural
extension of the previous case of non-causal linear process.



Proposition 4 [See Doukhan, 2003] Let h satisfies assumption H. Let X be a stationary non-causal Volterra
process, satisfying equation (10) with E(|£|™) < oo and

o0
m
> > |aj,... ™ 1€0lB, < oo

p=0 j1 <j2 < - <ip
J1s-..,dp €L
Assume that the process is in some finite order chaos (i.e. aj .. ; = 0 for p > po) and
m+2a—1
Wy ooy = O(%l%xp{‘jir#}) with p > max (2 ; ﬁ). Then X is a n-weakly dependent process

1
with n, = O(m) and (5) is satisfied.

Non-causal (two-sided) bilinear

As a natural generalization of causal bilinear process, Doukhan et al. (2005), Lemma 2.1, define
X = (X}i)tez a zero mean nonlinear time series, so called a non-causal (two-sided) bilinear process. They
proved the stationarity in L* (for any k €]0,00]) of such a bilinear process X = (Xy)rez satisfying the
equation:

X = fk . (ao =+ Z ank,j), for k£ € 7, (11)
JEZ*

where (£;)rez are i.i.d. random bounded variables and (ay)rez is a sequence of real numbers such that A =
[€olloc = 22500 lajl < 1.

Proposition 5 [See Doukhan et al., 2005] Let h satisfies assumption H. If X is a stationary non causal
bilinear process, i.e. a solution of (11), such that ||€ollec D ;40 laj| < 1. Moreover, assume that the sequence
3m —2a—1

(ak)kez s such that: ap = O(|k|™*) with p > max (4 ;
m — 2a

). Then X is a n-weakly dependent

process with 1, = (9(

) and (5) is satisfied.

re—1

Non-causal linear processes with dependent innovations

Let X = (X,)nen be a zero mean stationary non causal (two-sided) linear time series satisfying
equation (9) with a dependent innovation process. Following the results of Doukhan and Wintenberger
(2005), if (&,)nez is a p-weakly dependent process, then X is an n-weakly dependent process:

Proposition 6 Let h satisfies assumption H. Let X be a linear time series satisfying (9) with (a)rez €
R% and (&x)rez a 1€ -weakly dependent process with zero mean, such that E(|&|™) < oo and m > 2a.

Moreover, assume that ap, = O(|k|™*) and ' = O(r="). Then X is a n-weakly dependent process with

. w=2)(m=2) ) , L (p=2)(m—2) 2m —1
= (p=1)(m—1) —_—t v > ; .
Ny (’)(T ) and (5) is satisfied if = Dm=1) v > max (3, m—2a)

2.2 Applications of the functional central limit theorem

1. The general functional theorem (1), which concerns the estimate of Dudley, i.e. ’E(d)(Sn) —¢(c-N ))‘7

allows an interesting application: the majoration of a measure of the distance between Sy and its
Gaussian approximation. Indeed:

Corollary 1 Under the assumptions of Theorem 1, there exists some ¢’ > 0 such that:

sup [P(S, <t)— Plo- N <t)| < -n M4 forneN.
teR

Proof of Corollary 1. Arguing as in Doukhan (1994) we consider, in expression (2), a smooth approx-
imation ¢, of the indicator function ¢, (t) =1Wj;<,}; this is possible to assume that ¢, < dex < Ppre
and qu?; |co < Ce™7 for some constant C' and for j = 1,2 or 3. Then the result may be specified and
the bound may also be written with a constant ¢ = C-(||¢/[|oc+[|¢" || oo +]/¢"" || ) for some C which does




not depend on ¢. Expression is thus bounded A, (¢ .| < Ce 3n~? for some constant (still denoted)
C > 0 and each z € R, € €]0,1], and n > 0. Using the relation sup, g P(c - N € [u,u+ e)

above mentioned expression is then bounded above for a suitable constant ¢ by c( 3n )‘ ) the

choice € = n=*/4 thus yields the result. i

Remark 2 Unfortunately, this rate is far from being optimal as stressed by Rio (2000) which obtains
rate n=" for some p < 1/3 in the case of strongly mizing sequences. Here, in the best cases (A — 1/2
when o — o0, that is for instance the case of GARCH(p, q)), we obtain the rate n=7 for some T < 1/8.

. As a second direct and general application, the majoration (5) provides uniform central limit theorems
for functions of times series. Indeed,

JE SUIS D’AVIS DE NE PAS S’TAVENTURER LA DEDANS? ON VA SE FAIRE PLANTER!!!!

This result can be compared with those proved in Dudley (1999).

. The general functional theorem (1) could be applied for providing central limit theorems for sample
moments or cumulants. Here, we consider a real valued time series (X,,)nez satisfying assumption A
(with parameters a and m that will be specified above). Indeed, for k£ € N*, denote p = (p1,...,pr) €

N* |p| = p1 + --- + pr and assuming that E(le) < 00, define:

m® = E(Xplsz - X7*),  the moment of order p
nP = = X:X’“XPrl - XPF._q, the sample moment of order p

Then:
Corollary 2 1. Set k € N* and p = (p1,...,px) € N¥, |p| = p1 +- —|—pk Let Xn)nez be a real

valued time series satisfying assumption A with m > 2|p| and a > max ( 2l |> Then:

V() = m@) 2 N(0,0%(p)),

n—oo

with 0*(p) = > (E(XPXE? - XPEXPL - XP%,) — (m)?).

LEL
2. More generally, let I € N*, (ky,...,k;) € (N*), and fori = 1,...,I, p¥) = (pgl)v"' ,p,(;))-
Let (X)) nez be a real valued time series satisfying assumption A with m > 2max(|p1],..., |pr]) and
2m —1
« > max (3; m ) Then:
m — 2max(|p1],. .., |pr|)
S(0i) _ 0y (Pi) D
\/ﬁ(m" m )1<'<I njC:o NI(O,E(pl""’pI))’ (12)

with S(py, ..., pr) = (Z (E(Xfi)Xgé). X X)X —m(m)m(m))>
LEL 1<i,j<I
Proof. 1. Let x; = (X, ..., Xjyp_1) and hP) : (z1,...,2) € RF i 211202 ceezpt — m(P) that satisfies
Assumption H with a = |p| (indeed, |h(u)| < 2(m® V |u|Pl and |h(u) — h(v)| <). Then, theorem 1
can be applied.
2. Let k = max(ky, ..., kr) and 2, = (Xi,..., Xisg_1). Let (Ar,..., A7) € Rl and h = Y01, Ay - h(®o),
It is clear that h satisfies Assumption H with a = max(|py],...,|ps|) (indeed, if each h(P?) satisfies
Assumption H with coefficient a; = |p;|, then a linear combination of h(P:) satisfies Assumption H
with coefficient @ = max(|a1],...,as)). Then Theorem 1 implies that E 1A - satisfies a central
limit theorem. It implies the multidimensional central limit theorem. [ |

A natural and intersecting example that generalizes usual central limit theorem under strong mixing
conditions is the following:



Example 1 Let (X,)nez be a real valued time series satisfying assumption A. For all m € N*,

~ 1 &
by <+ <y €N, define R(t) = E(XoXy,) and Bn(t;) = — > X;Xjye,. Then
j=1

x/ﬁ(f%n(&) - R(&)) 2 NW(0,%(01,. .. 0y)),  if o> max (3; M)

1<i<m n—oo m—4

with (01, ... ) = (Z (E(XoXeiXka-;-fj) - R(&)M&))) .
1<i,j<m

kEZ
Moreover, the sample skewness and sample Kurtosis satisfy central limit theorem from the Delta-
method applied to multidimensional theorem (12).

More generally, another consequence of such a result is the central limit theorems satisfied by
the estimation of the k-th cumulant of X (obtained from the Taylor development of the characteristic
function logarithm), defined by:

k) = Cumulant (X1, Xi,, ..., X, ), for p={1,ia,...,49,} C{1,...,k}.

From Leonov and Shyraev (1959), there is a relation between cumulants and moments, that is:

k

r) — Z(—l)“*l(u —-1) Z Hm(w)’

u=1 (15 i) J=1

where (p1,. .., 1y) (in the sum) describe all possible partitions of u subsets of the subset p. Then:
Corollary 3 Set k € N*, u = {1,ia,...,4,} C{l,...,k}. Let (Xp)nez be a real valued time series

2m — 1
m ) Then:

satisfying assumption A with m > 2|u| and o > max (3; 72||
m— 2|

V(R = k00) 2 N(0,93(w),

n—oo

with

(1) Y(u —1) Z ngluj), and

;E\

=

I
-

u=1 (H15eees ) I=1
2(p) = E(XPrXP2 ... XPRXPL o XPE ) ( (p))2
T ( 142 E 41 e+k) m .
(€T,

3 Proof of Theorem 1

From now on, ¢ > 0 denotes a constant which may vary from one line to the other.

First, define a truncation in order to be able to use the previous dependence condition and make
Lindeberg technique work. For T" > 0, define fr(xz) = (e AT)V (=T) for x € R. Then Lip fr = 1,
| frlloo = T. For (u1,...,uq) € R we denote

FT(Ul, .. .,ud) = (fT(U1)7 ey fT(de))

and Y: = h(xy), Yi(T) = h(Fr(z;)) — ]E[h(FT(g;Z))]7 Ez'(T) -y, — Yi(T) (13)
Lemma 1 Let h and (zy)nez satisfy respectively assumptions H and A, with m > 2a. Then,

a) E[|E7|] <c-A-T™ and E[(ESD)?] < ¢- A2 T2~ ;

b) foralli€Z, ‘COU(YO(T),EZ-(T)N < E(|YO(T)|’ |E2(T)D <c-A%.T%m,



c) forallieZ, \COU(YO(T),Yi(T))\ <c-A?2.T? 7y,
Proof of Lemma 1. First note that for v > 1 such that ay < m, from assumptions on h,

i

A7 [[(lzol*= + Fr(w0)|*~1) - |20 — Fr(zo)|

(24)7 - E [|o]|™ Wfjaq 211 ]
(2A)7 - - T747™  (Markov inequality).

E [|h@o) = h(Fr(zo)| ]

ININ IA

a) The assumptions on h lead to

E[E"]] E [|A(Pr(z0)) — h(zo)[] + E [|A(Fr(wo))]]

<

< 2E [|h(Fr(wo0)) — h(zo)]]-

Now the relation (14) with v = 1 leads to E [|h(Fr(zo)) — h(zo)|] <2A - p-T*"™. Then,
E[[Yrol] <4A-p-T*™.

By the same arguments,

E[(E")?) 4E [(h(Fr(20)) — h(x0))?]

<
< 16A%. - T?*™™ (relation (14) with y = 2).

b) Analogously, relation (14) with Holder inequality yields

m—a

HYO(T) ||m/a ) (E [|E((JT)|’"7E“D " (Holder inequality)

2 (E (|h(x0) — h(Pr(wo))|727)) ™

2A-H‘x0|a\/1”m/a.2A.u . (T m(l— % a)) —
- A2 . T2a—m

Cov (Y7, E{T)|

IN

IN

2|[n(Fr(x0))]|

m/a ’

IN

IN

(assumptions on h)

c) Let h™M (u) = h(Fr(u)) — E [h(Fr(zo))] for u € R From assumptions on h, it can be shown that

ATl oo <2A-T* and Liph(™) < 24T, Then the weak dependence inequality (3) implies:

|Cov (Yg ", v |Cov (hT) (o), AT (2))]

<
§8A T2a177.

Lemma 2 Let h and (x,)nez satisfy respectively assumptions H and A, with m > 2a and

m—2a

m—
> hich L "t < oo
a>——-  whic implies Zzlnl 00
Then:
o0 o
a) The series 0 = Z Cov (h(zg)), h(x;)) = Z Cov(Yy,Y;) converges;
- =
b) With 012, = Var (Z YZ> , there is a constant ¢ > 0 such that
i=1

2
o2 <¢. (logmp(l—“a:fa))).
p

Proof of Lemma 2. a) With T; > 0 for i € Z, we write

Cov (Yp,Y;) = COV( )E(T)—l—Cov( T)E(T)+C0v( T)E(T))—I—COV(Y(T)

( i)).

(16)



From the previous lemma, |Cov (Yy, ;)| < ¢+ A% - (T2*™™ 4 T2 1. nji)- Now, set R Nil»
__1
then T; = nmm’l > 0 and

m—2a

|Cov(Y07 D <ec-ommT. (17)

© m—2a
As a consequence, Cov (Y, Ys)| <e- n, "~ and o2 exists thanks to the assumption (15).
K3

i=—00 1=—00

2
o,

b) Decompose 02 — —£ = Dy + Dy with D; =5 .. Cov(Yy,Y;) and Dy = 15 i|-Cov (Yp, Y;). From
P li|>p p ~lil<p

assumption (15), we conclude as above with inequality (17), because:

% (1_a(7n 2a)>
_ ’Dll SC'me <c-p m—1 and
12p
-1 1
meza if o Zg.h, then|D2\§c~O§p
‘D2| < = Z | | n‘ | NOW7 i m—1 m—1 (1_a('m:2a)) . l
lil<p i <a<2-————, then |Dy| <c-p m—1
m — 2a m — 2a

Lemma 3 Let h and (x,,)nez satisfy respectively assumptions H and A, with m > 2a. For p € N*, define:

P
Wy, = ZYi' Then, if a > 3, for all 0 < § < mn , there exists a constant ¢ > 0 such that:

i=1
2446 —2a—a-6
EW,[20 <c-pr with 0 <p=2y5-T"07%0 94y
2 m—1
Proof of Lemma 3. Let A = 2+ 6 and m = a(2 4 ¢). With inequality (14) and W(T) - YZ-(T)7 we
obtain:

IWalla < IWlla +plYo = Ydlla < WS la +eop- 7075,
The Holder inequality provides:

1-6/2 5/2
Ew O < (B E) T (BwO))

o0
Now from c) of Lemma 1, we obtain IE\WZET)F <c-p-T* ! Z 7;. Setting
i=0

Cov (HY(T) H Y(T>|

1=u+1

Crr = max sup
u=1,2,3 Su41—Syu=T

where this supremum is set over s; < s9 < s3 < s4, we obtain as in [7],

-1 oo 2
EWSD |t <c PPZ(k +1)*Crr + <p -T2t Zm)
k=0 i=0
We quote that Cj 1 < T4~ 1p, to derive
EWDP < e(p- T4 + (p-T271))
Thus, from previous inequalities and with m = (2 + ()a,

1-56/2 5/2
c <pA pad-m 4 (p.T2a—1) % (p A1y g2 .T4a—2) )

A/2
c <pATa(6C) i (p ) T2a71) tp- TaAl) '

E[W, |2

IA

IN



We now minimize this last inequality in p by setting 7" = p® with b > 0. With the condition § < al, we
first show that it is necessary to have b < 1 and the optimal b is obtained by balancing of p2T*(—%) and
p - T*~1. This value of b is:

146
S om -1’
a(¢c=)
that satisfies b < 1. We thus obtain IE|WP|A < c¢-p*t~ =T | that implies the result of the lemma. [ ]
. m-—2a—a-§ _ 1 . . S
Remark Notice that r =249 — — 1 > > contrarily to the classical Marcinkiewicz-Zygmund
m—

inequalities.

Proof of Theorem 1. We use a Bernstein blocks method for this proof. Consider three sequences of
positive integers p = (p(n))nen, ¢ = (¢(n))nen and k& = (k(n))nen such that:

R ) R .
n—oo N n— o0 (n
n
° k(n) = thus lim k(n) = o0).
()= || (et i i) = o0)
These sequences are chosen as
p(n) =[],  qn)=[n"],  with0o<y<fg<1,
the exponents 8 and « will be chosen below. We form the blocks Iy, ..., I and define the random variables
Ui, ...,Ug such that:
L= {0 = Dm) +am)+ 1., G = D) +am) +pm) ] for j=1,....k(n)
Uj = Y.V, forj=1,.. k).
icl;

Then expression (2) is decomposed as:

3
An = Z Al,nu
(=1

where we set, for a standard Gaussian N ~ A (0, 1),

1 k
Ay = Ef¢o(Sy)—¢ \/ﬁj:1Uj ;
A —Eq&iij —¢ NJ\/E
2n \/ﬁj:1 7 P n )
Ngp = E(as(zvop\/f)—wam).

Term A, ,. Using assumption (15) and a Taylor expansion up to order 2:

k() - a(n) + p(0)\ 16" o0 = (s (mr)
Arn] < ( " 3= i
< o (Pt 4P, (18)

Term Az ,. Now, Taylor formula implies:

k k k
¢ (Nap\/;> = ¢(0) + NJP\/;qb'(O) + %Nzaf,ﬁd’(vl);

6 (No) = 9(0) + Noo!(0) + L N?0%¢" (Vy),

10



with Vi and V5 two random variables. Then, with Lemma 2,

k(n
Dol = 1670 M 02—
S ||¢,/Hoo . p(n) ) k(TL) ’0_2 . 1 0_2’ + n—p(n) ) k(n)O_Q
n p(n) P n
_ _ a(m=2a) q(’rL
< ¢ (log(p(n))-p~t(n) + p(n)t= " m=1 —|—>
(1o8(ot) 5710 + 260 2
and therefore ’Agm‘ < c- (n‘ﬁ . logn—i—nﬁ_aﬁ;xﬁ%) —i—n'y_ﬁ) . (19)

Term Aj . Let (Ng)i<i<pn) be independent /\f(O7 0'12)> —Gaussian random variables, independent of the

process (2;);ez (such variables classically exist if the underlying probability space is rich enough). We
define ¢,(t) = E d)(— t+ — Z N) for j =1,...,k(n). In the sequel, for simplicity, empty

z 7+1
sums are set equal to 0. Then:

dan = B{ o753 0) -o(veny 5

k(n) 1 1 k(n)

= S E(o(—=SUi+r— S N Ui+ N,
3 O D o R COXAE Do)
k(n)

= IEl/j,na
j=1

with vy, = ¢, (Z; +Uj) = 6; (Z; + Nj) and Z; = Y17} U
Moreover, ||¢;£)Hoo <720 for £ = 0,1,2,3. Making two distinct Taylor expansions (up to

order 2 and 3 respectively) we obtain the two following expressions with some random variables L,
for 7 =1,2,3,4:

vin = [$(Z)(U; = Ny) + 564207 = ND)] (657 (L)U} = 6§ (L2)NY)
[(6(Ls) = & (2)U7
~(¢f/(La) = 6 (2)))N}]

/ 1 /i U‘2 U 3 N‘2 N‘3
= (31200 - N + 3203 - w2)]| < e (DA G0 IR\ I

N ==

n n3/2 n n3/2

|U |2+6 + ‘N |2+5)

< 1+5/2(

because the sequence (IV;); is independent of the sequence (ch );j» and thus independent of the sequence
(Uj);, and with the two relations EU; = 07 = EN; and s? A s3 < s*9 with § € [0,1] (that is valid

for all s > 0). Now with the inequality E|N; |2+5 (IEUQ)HMQE\N(O 1)\2+‘S < c-E|U;|**° we derive

2+6
a7 “EIU|

|Evjn| < |Cov (65(Z;),U;)| + 5 -|Cov (¢7(2;),U7)| +
1
Thus, using Lemma 3, with C; = |Cov (¢/(Z;),U;)| and Cf = 3 |Cov (¢(2;),U7)] .,

k(n)
‘A2,n’ < (Cj + CJ’, te- n_1—5/2p7")

—~

<.
Il
N

k(n)
¢ n T2t 1N (05 + ¢, (20)
j

j=1

IN
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Now, we can write the random variables U;, U?, ¢/(Z;), ¢7(Z;) as functions G : (R*)* — R of

Ziy,...,T;,. The important characteristics of such G are driven by the following respective orders:
Random variable Order w IGloo LipG
U;“ p(n) O (A-p(n)T?) O (A-p(m)T*")
(UjT))z p(n) 1) (AQ ,p(n)sza) o) (A2 .p(n)2T2a71)
¢5(Z;) <n < 2)|¢ |loo O(A-T* 'n 1)
¢9/(Zj) <n < n—1||¢//||oo O(A_Ta—ln—3/2)

In order to use the weak dependence device for these two random variables C; and C} we have to use

truncation U;T) obtained by replacing Y;’s by Yl-(T) and then,

G = CJ(T)+C-||¢’IIOO-Z)(\/%>~EIEST) with OV = |Cov (¢(2,), U]

2
OJ/ < C;'(T)+C'||¢H||oo'p n)

—~

) 1
RN - () with ¢ = 2 |Cov (6(2,), 0172

From the previous bounds, we obtain:

O < e A% (pn) T2 ¢ e p(n)? T 0 Y2) g,

G < e A (pn)? - T 0 oo - p ()T 0 ) g,

For this, one should mention that if s € N*, the function Ggf) defined on R as Ggf)(ul, ceyUg) =
H;Zl (h(FT(uj)) - E[h(FT(xO))]) satisfies HGgf)Hoo < T** and Lip Ggf) <c-As.TseL
Thus,
2
pn) a—m a— p=(n a—
Cj < C'A3'<( )T + p(n)~T2 1+\/(E)T 1>77q(n)>;

NG

2 2 3
5 (P°(0) L oa—m p*(n) sac1 , P°(R) oam
CJI' < ¢4 (n'T +(\/ﬁ'T +T'T “Tg(n) | >

from relation (17), and because with inequalities (13),
EIYS — (Y| < BB + 2B (Y| | BVl < e 7
Now, those bounds have to be minimized in n by choosing T' as a function of n. We assume § < 1/2

ay—1/2
and hence C; and C} are minimized by selecting 7" = noatmoT , that implies:

/2= (ar=1/2) (smes).

)

Cj S C'A3~

o < C.A3.n2ﬁ—1—(av—1/2)(rﬁ”+}2fl)
J - )

1 1
under the conditions %0 <y<p< 3 Finally, from (20), we obtain the following bound:
e

1/2—(ay—1/2)| -m—2_ —(ay—1/2 '"*2“)
|A2,n’ < - A3 (nﬁ<r71)75/2+n f2ten=t/ )(7"'”71) Jrnﬁ (e =1/ )(m“*l ) (22)
. . L1 1 )
Therefore, inequalities (18), (19), (22) and condition 20 <7< B8 < 3 provide:

po= (10 n)

p2 = v—0
|An| < c- A3 . pmax(P1,p2,p3,P4:P5)  with ps = 0 (1 +6— (%)) — 5/2 ) (23)
poo= 172 (e - 1/2) (355

ps = B (o —1/2) ()

12



We have the possibility to make varying 4, 8, v (with certain conditions) for:
1. obtaining conditions on « and m, such that it exists d, 3, v satisfying max(p1, p2, p3, P4, p5) < 0;
2. minimizing max(p1, p2, ps, P4, Ps) with an optimal choice of §, 3, v under the previous conditions.

-2
To solve 1., the condition ps < 0 implies § < % with the optimal choice § = m/a — 2. Moreover,
m-—a
.- o 1 (2m—1 . .
condition py < 0, implies v > % . As a consequence, max(p1, p2, P3, P4, p5) < 0 is satisfied when:
a\m-—a

1 /2m—1 m — 2a 2m —1
— <Y< —F—— - > . 24
2a<m—a) v<h 2(m —a) R—;S (24)

To solve 2., fist we show that only coefficients ps, ps and ps have to be considered for the minimization
(under conditions (24), coefficients p; and ps are smaller than po, ps and py). Then, the optimal choice for
~ and ¢ is provided by the resolution of the system: ps = p3 and ps = py4, that implies to:

m+2a — 1+ a(m — 2a) 3m +2a — 2
and 9= )
2(m+a—14+a-m) 2(m+a—14a-m)

o =

and therefore, we obtain the optimal rate:

a(m—2a)—2m+1

A, < e A% 0 ith \= .
| ’ = ¢ " W 2(m4+a—14+a-m)
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