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Ap. 47197 Los Chaguaramos, Caracas 1041-A VENEZUELA

jleon@euler.ciens.ucv.ve

Résumé

Nous montrons un théorème de limite central pour des fonctionnelles générales de séries temporelles.

Notre énoncé valide pour de nombreuses classes de séries temporelles vaut en particulier pour des modèles

ARCH(∞), bilinéaires, linéaires non causaux ou and ARCH(∞).

Abstract

We prove a general functional central limit theorem for weak dependent time series. Those proba-
bilistic results are for a large variety of models. For instance, ARCH(∞) and bilinear processes, and
two sided linear, bilinear and ARCH(∞) processes.
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1 Introduction

In this paper, we consider the following empirical mean,

Sn =
1√
n

n∑
k=1

h(xk) =
1√
n

n∑
k=1

Yk (1)

where h : Rd → R is a function and (xn)n∈Z with values in Rd is a stationary zero mean sequence that
satisfying certain conditions. We study the case (see the conditions below) where Sn converges in law to a
Gaussian distribution. More precisely, the aim of the following subsections will be to specify conditions to
obtain a decay rate to 0 of

∣∣∆n

∣∣ with

∆n = E (φ(Sn)− φ(N)) , (2)

for φ a C3(R) function with bounded derivatives up to order 3, N ∼ N (0, σ2) with
σ2 =

∑
k∈Z

Cov (h(x0), h(xk)).

∗This author aknowledges the program ECOS-NORD of Fonacit, Venezuela, for its support.
†Author for correspondence.
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Let us precise now the different assumptions for the times series and functions considered in (1).
First, we have chosen to work in the frame of η-weakly dependent processes. This very general class of
dependent processes was introduced in the seminal paper of Doukhan and Louhichi (1999) to generalize
and avoid certain difficulties linked of strong mixing property. Indeed, this frame of dependence includes
a lot of models like causal or non causal linear, bilinear, strong mixing processes or also dynamical
systems. Secondly, this property of dependence is independent of the marginal distribution of the time
series, that can be as well a discrete one, Lebesgue measurable one or else. Thirdly, non causal processes
can be as well studied as causal ones with this property of dependence, in contrary of strong mixing
processes or martingales. Finally, these definitions of dependence can be more easily proved and used in
a lot of statistic contexts, in particular in the case of functions of the time series, than the strong mixing one.

The definition of such η-weak dependent property is the following. A process X = (Xn)n∈Z with
values in Rd is a so-called η−weakly dependent process when it exists a sequence (ηr)r∈N converging to 0
satisfying:∣∣∣Cov

(
g1(Xi1 , . . . , Xiu

), g2(Xj1 , . . . , Xjv
)
)∣∣∣ ≤ (u · (Lip g1) · ‖g2‖∞ + v · (Lip g2) · ‖g1‖∞

)
· ηr (3)

for all


• (u, v) ∈ N∗ × N∗;
• (i1, . . . , iu) ∈ Zu and (j1, . . . , jv) ∈ Zv with i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv;
• functions g1 : Rud → R and g2 : Rvd → R satisfying

‖g1‖∞ ≤ ∞, ‖g2‖∞ ≤ ∞, Lip g1 < ∞ and Lip g2 < ∞.

A lot of usual time series are η-weakly dependent. Different examples of such time series will be
studied in the following section: strong mixing processes (see Doukhan and Louhichi, 1999), GARCH(p, q)
or ARCH(∞) processes (see Doukhan et al., 2004), causal or non causal linear processes (see Doukhan and
Lang, 2002), causal or non causal bilinear processes (see Doukhan et al., 2005) and causal or non causal
Volterra processes (see Doukhan, 2003). Now, we can specify the different assumptions used in the general
functional central limit theorem:

Assumptions A on the sequence (xn)n:
(in the sequel, the norm is |(u1, . . . , ud)| = max{|u1|, . . . , |ud|} for (u1, . . . , ud) ∈ Rd)

1. there exists m−th order moments for (xn)n with m > 2;
2. (xn)n∈Z is a η−weakly dependent process (defined from the inequality (3)) with values in Rd, and the

sequence η = (ηr)r∈N satisfies:

0 < ηr = O
(
r−α

)
for all r ∈ N with α > 0. (4)

Assumptions H on the function h:
1. E(h(x0)) = 0;
2. There exists a ≥ 1 and A = A(d) ≥ 1 such that for all u, v ∈ Rd,{

|h(u)| ≤ A(|u|a ∨ 1);
|h(u)− h(v)| ≤ A

((
|u|a−1 + |v|a−1

)
∨ 1
)
|u− v|.

Using a Bernstein’s blocks technique, we prove here the following theorem:
Theorem 1 Let h and (xn)n∈Z satisfy respectively assumptions H and A, with m > 2a. Then, if

α > max
(
3 ;

2m− 1
m− 2a

)
, then σ2 =

∞∑
k=−∞

Cov (h(x0), h(xk)) < ∞, and for any Z ∼ N (0, 1) random variable,

for any φ ∈ C3(R) with bounded derivatives, there exists c > 0 such that:∣∣∣E(φ(Sn)− φ(σ · Z))
∣∣∣ ≤ c · n−λ with λ =

α(m− 2a)− 2m + 1
2(m + a− 1 + α ·m)

. (5)
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Even if our results may be not optimal in term of the conditions linking the moment assumption with the
decay rate of weak dependence of the time series, they however concern a lot of models and open new
perspectives of treatments for non causal processes. Moreover, if α → ∞ and m → ∞ are large enough,
then λ → 1

2 . In such an asymptotic case, the rate of convergence n−λ is close to the rate of sequence of
i.i.d. random variables (that is 1/

√
n).

The paper is organized as follows. The following Section 2 is devoted to statistical applications for
different examples of η-weakly time series. Section 3 contains the main proof of the general functional
central limit theorem.

2 Applications of the functional central limit theorem

2.1 Time series satisfying the assumptions

Causal GARCH and ARCH(∞) processes

The famous and from now on classical GARCH(q′, q) model was introduced by Engle (1982) and
Bollerslev (1986) and is given by relations

Xk = ρk · ξk with ρ2
k = a0 +

q∑
j=1

ajX
2
k−j +

q′∑
j=1

cjρ
2
k−j , (6)

where (q′, q) ∈ N2, a0 > 0, aj ≥ 0 and cj ≥ 0 for j ∈ N and (ξk)k∈Z are i.i.d. random variables with zero
mean (for an excellent survey about ARCH modelling, see Giraitis et al., 2005). Under some additional
conditions, the GARCH model can be written as a particular case of ARCH(∞) model (introduced in
Robinson, 1991) that satisfied:

Xk = ρk · ξk with ρ2
k = b0 +

∞∑
j=1

bjX
2
k−j , (7)

with a sequence (bj)j depending on the family (aj) and (cj) in the case of GARCH(q′, q) process. Then,
Proposition 1 [See Doukhan et al, 2005] Let h satisfies assumption H. Let X be a stationary ARCH(∞)
time series following equation (7), such that it exists m > 2a satisfying E(|ξ0|m) < ∞, with the condition
of stationarity, ((‖ξ2

0 − λ1‖m/2

‖ξ2
0 − λ1‖2

+ 1
)
∧ ‖ξ0‖2m

)
·
∞∑

j=1

|bj | < 1. Then, if:

– it exists C > 0 and µ ∈]0, 1[ such that ∀j ∈ N, 0 ≤ bj ≤ C · µ−j, then X is a η-weakly dependent
process with ηr = O(e−c

√
r) and c > 0 (this is the case of GARCH(q′, q) processes) and (5) is satisfied.

– it exists C > 0 and ν > max
(
4 ;

3m− 2a− 1
m− 2a

)
such that ∀j ∈ N, 0 ≤ bj ≤ C · j−ν , then X is a

η-weakly dependent process with θr = O
(
r−ν+1

)
and (5) is satisfied.

Causal Bilinear processes

Assume that X = (Xk)k∈Z is a bilinear process (see the seminal paper of Giraitis and Surgailis,
2002) satisfying the equation:

Xk = ξk

(
a0 +

∞∑
j=1

ajXk−j

)
+ c0 +

∞∑
j=1

cjXk−j for k ∈ Z, (8)
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where (ξk)k∈Z are i.i.d. random variables with zero mean and such that ‖ξ0‖p < +∞ with p ≥ 1, and aj ,
cj , j ∈ N are real coefficients. Assume c0 = 0 and define the generating functions:

A(z) =
∑∞

j=1 ajz
j C(z) =

∑∞
j=1 cjz

j

G(z) = (1− C(z))−1 =
∑∞

j=0 gjz
j H(z) = A(z)G(z) =

∑∞
j=1 hjz

j .

Proposition 2 [See Doukhan et al., 2004] Let h satisfies assumption H. Let X be a stationary bilinear time
series satisfying equation (8) with c0 = 0, E(|ξ0|m) < ∞ with m > 2a and such that ‖ξ0‖m ·

(∑∞
j=1 |aj |+∑∞

j=1 |cj |
)

< 1. Then, if:

–
{
∃J ∈ N such that ∀j > J , aj = cj = 0, or,
∃µ ∈]0, 1[ such that

∑
j |cj |µ−j ≤ 1 and ∀j ∈ N, 0 ≤ aj ≤ µj , then X is a η-weakly dependent

process with ηr = O(e−c
√

r) and c > 0 and (5) is satisfied.
– ∀j ∈ N, cj ≥ 0, and ∃ν1 > 2 and ∃ν2 > 0 such that aj = O(j−ν1) and

∑
j cjj

1+ν2 < ∞,

with


ν2 >

(m− 4)δ
(m− 1)δ − (m− 4) log 2

δ = log
(
1 +

1−
∑

j |cj |∑
j cjj1+ν2

)
> log 2

(m− 4)
(m− 1)

, then X is a η-weakly dependent process with

θr = O
(( r

log r

)d) and d = max
(
− (ν1 − 1) ; − ν2 · δ

δ + ν2 · log 2

)
.

Non-causal (two-sided) linear processes

Proposition 3 [See Doukhan and Lang, 2002, p. 3] Let h satisfies assumption H. Let X be a stationary
bilinear time series satisfying equation

Xk =
∞∑

j=−∞
ajξk−j for k ∈ Z, (9)

with (ak)k∈Z ∈ RZ and (ξk)k∈Z a sequence of zero mean i.i.d. random variables such that E(|ξ0|m) < ∞ for

m > 2a. Assume that ak = O(|k|−µ) with µ > max
(7

2
;

5m− 2a− 2
2(m− 2a)

)
. Then X is a η-weakly dependent

process with ηr = O
( 1
rµ−1/2

)
and (5) is satisfied.

Remark 1 Despite the quite simplicity of this model, it exists very few results concerning the dependence
of the two-sided linear processes. The main reason of this is difficulty to use martingale or mixing properties
for a non-causal process. However, in Rosenblatt (2000, p. 52) a non-efficient strong mixing property
for two-sided linear processes was given, but under restrictive conditions and with . The case of strongly
dependent two-sided linear processes was also treated by Giraitis and Surgailis (1990) or Horvath and Shao
(1999) but only with ak = O(|k|−a) for a fixed −1 < a < 0.

Non-causal Volterra processes

Let X = (Xt)t∈Z be the zero mean non causal (two-sided) and nonlinear time series, so called a
non-causal Volterra process, such that for t ∈ Z:

Xk =
∞∑

p=1

Y
(p)
k , with Y

(p)
k =

∑
j1 < j2 < · · · < jp

j1, . . . , jp ∈ Z

aj1,...,jp
ξk−j1 · · · ξk−jp

, (10)

where (aj1,...,jp) ∈ R for p ∈ N∗ and (j1, . . . , jp) ∈ Zp, and (ξk)k∈Z a sequence of zero mean i.i.d. random
variables such that E(ξ2

0) = σ2 < ∞ and E(|ξ0|m) < ∞ with m > 0. Such a Volterra process is a natural
extension of the previous case of non-causal linear process.
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Proposition 4 [See Doukhan, 2003] Let h satisfies assumption H. Let X be a stationary non-causal Volterra
process, satisfying equation (10) with E(|ξ0|m) < ∞ and

∞∑
p=0

∑
j1 < j2 < · · · < jp

j1, . . . , jp ∈ Z

∣∣aj1,...,jp

∣∣m ‖ξ0‖p
m < ∞.

Assume that the process is in some finite order chaos (i.e. aj1,...,jp
= 0 for p > p0) and

aj1,...,jp = O
(

max
1≤i≤p

{|ji|−µ}
)

with µ > max
(
2 ;

m + 2a− 1
m− 2a

)
. Then X is a η-weakly dependent process

with ηr = O
( 1
rµ+1

)
and (5) is satisfied.

Non-causal (two-sided) bilinear

As a natural generalization of causal bilinear process, Doukhan et al. (2005), Lemma 2.1, define
X = (Xt)t∈Z a zero mean nonlinear time series, so called a non-causal (two-sided) bilinear process. They
proved the stationarity in Lk (for any k ∈]0,∞]) of such a bilinear process X = (Xk)k∈Z satisfying the
equation:

Xk = ξk ·
(
a0 +

∑
j∈Z∗

ajXk−j

)
, for k ∈ Z, (11)

where (ξk)k∈Z are i.i.d. random bounded variables and (ak)k∈Z is a sequence of real numbers such that λ =
‖ξ0‖∞ ·

∑
j 6=0 |aj | < 1.

Proposition 5 [See Doukhan et al., 2005] Let h satisfies assumption H. If X is a stationary non causal
bilinear process, i.e. a solution of (11), such that ‖ξ0‖∞ ·

∑
j 6=0 |aj | < 1. Moreover, assume that the sequence

(ak)k∈Z is such that: ak = O(|k|−µ) with µ > max
(
4 ;

3m− 2a− 1
m− 2a

)
. Then X is a η-weakly dependent

process with ηr = O
( 1
rµ−1

)
and (5) is satisfied.

Non-causal linear processes with dependent innovations

Let X = (Xn)n∈N be a zero mean stationary non causal (two-sided) linear time series satisfying
equation (9) with a dependent innovation process. Following the results of Doukhan and Wintenberger
(2005), if (ξn)n∈Z is a η-weakly dependent process, then X is an η-weakly dependent process:
Proposition 6 Let h satisfies assumption H. Let X be a linear time series satisfying (9) with (ak)k∈Z ∈
RZ and (ξk)k∈Z a η(ξ)-weakly dependent process with zero mean, such that E(|ξ0|m) < ∞ and m > 2a.
Moreover, assume that ak = O(|k|−µ) and η

(ξ)
r = O(r−ν). Then X is a η-weakly dependent process with

ηr = O
(
r−ν· (µ−2)(m−2)

(µ−1)(m−1)

)
and (5) is satisfied if

(µ− 2)(m− 2)
(µ− 1)(m− 1)

· ν ≥ max
(
3 ;

2m− 1
m− 2a

)
.

2.2 Applications of the functional central limit theorem

1. The general functional theorem (1), which concerns the estimate of Dudley, i.e.
∣∣∣E(φ(Sn)−φ(σ ·N))

∣∣∣,
allows an interesting application: the majoration of a measure of the distance between SN and its
Gaussian approximation. Indeed:
Corollary 1 Under the assumptions of Theorem 1, there exists some c′ > 0 such that:

sup
t∈R

|P(Sn ≤ t)− P (σ ·N ≤ t)| ≤ c′ · n−λ/4, for n ∈ N.

Proof of Corollary 1. Arguing as in Doukhan (1994) we consider, in expression (2), a smooth approx-
imation φε,x of the indicator function φx(t) = I1{t≤x}; this is possible to assume that φx ≤ φε,x ≤ φx+ε

and ‖φ(j)
ε,x‖∞ ≤ Cε−j for some constant C and for j = 1, 2 or 3. Then the result may be specified and

the bound may also be written with a constant c = C ·
(
‖φ′‖∞+‖φ′′‖∞+‖φ′′′‖∞

)
for some C which does
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not depend on φ. Expression is thus bounded ∆n(φε,x| ≤ Cε−3n−λ for some constant (still denoted)
C > 0 and each x ∈ R, ε ∈]0, 1], and n > 0. Using the relation supu∈R P(σ ·N ∈ [u, u + ε) ≤ ε

σ
√

2π
, the

above mentioned expression is then bounded above for a suitable constant c by c
(
ε−3n−λ + ε

)
; the

choice ε = n−λ/4 thus yields the result.
Remark 2 Unfortunately, this rate is far from being optimal as stressed by Rio (2000) which obtains
rate n−ρ for some ρ < 1/3 in the case of strongly mixing sequences. Here, in the best cases (λ → 1/2
when α →∞, that is for instance the case of GARCH(p, q)), we obtain the rate n−τ for some τ < 1/8.

2. As a second direct and general application, the majoration (5) provides uniform central limit theorems
for functions of times series. Indeed,

JE SUIS D’AVIS DE NE PAS S’AVENTURER LA DEDANS? ON VA SE FAIRE PLANTER!!!!

This result can be compared with those proved in Dudley (1999).
3. The general functional theorem (1) could be applied for providing central limit theorems for sample

moments or cumulants. Here, we consider a real valued time series (Xn)n∈Z satisfying assumption A
(with parameters a and m that will be specified above). Indeed, for k ∈ N∗, denote p = (p1, . . . , pk) ∈
Nk, |p| = p1 + · · ·+ pk and assuming that E(X |p|

1 ) < ∞, define:

m(p) = E(Xp1
1 Xp2

2 · · ·Xpk

k ), the moment of order p

m̂(p)
n =

1
n

n∑
i=1

Xp1
i Xp2

i+1 · · ·X
pk

i+k−1, the sample moment of order p

Then:
Corollary 2 1. Set k ∈ N∗ and p = (p1, . . . , pk) ∈ Nk, |p| = p1 + · · · + pk. Let (Xn)n∈Z be a real

valued time series satisfying assumption A with m > 2|p| and α > max
(
3 ;

2m− 1
m− 2|p|

)
. Then:

√
n
(
m̂(p)

n −m(p)
)

D−→
n→∞

N (0, σ2(p)),

with σ2(p) =
∑
`∈Z

(
E
(
Xp1

1 Xp2
2 · · ·Xpk

k Xp1
`+1 · · ·X

pk

`+k

)
− (m(p))2

)
.

2. More generally, let I ∈ N∗, (k1, . . . , kI) ∈ (N∗)I , and for i = 1, . . . , I, p(i) = (p(i)
1 , · · · , p

(i)
ki

).
Let (Xn)n∈Z be a real valued time series satisfying assumption A with m > 2 max(|p1|, . . . , |pI |) and

α > max
(
3 ;

2m− 1
m− 2 max(|p1|, . . . , |pI |)

)
. Then:

√
n
(
m̂(pi)

n −m(pi)
)

1≤i≤I

D−→
n→∞

NI(0,Σ(p1, . . . , pI)), (12)

with Σ(p1, . . . , pI) =

(∑
`∈Z

(
E
(
X

p
(i)
1

1 X
p
(i)
2

2 · · ·Xp
(i)
k

k X
p
(j)
1

`+1 · · ·X
p
(j)
k

`+k

)
−m(pi)m(pj)

))
1≤i,j≤I

.

Proof. 1. Let xi = (Xi, . . . , Xi+k−1) and h(p) : (z1, . . . , zk) ∈ Rk 7→ zp1
1 zp2

2 · · · zpk

k −m(p) that satisfies
Assumption H with a = |p| (indeed, |h(u)| ≤ 2(m(p) ∨ |u||p| and |h(u) − h(v)| ≤). Then, theorem 1
can be applied.
2. Let k = max(k1, . . . , kI) and xi = (Xi, . . . , Xi+k−1). Let (λ1, . . . , λI) ∈ RI and h =

∑I
i=1 λi · h(pi).

It is clear that h satisfies Assumption H with a = max(|p1|, . . . , |pI |) (indeed, if each h(pi) satisfies
Assumption H with coefficient ai = |pi|, then a linear combination of h(pi) satisfies Assumption H
with coefficient a = max(|a1|, . . . , aI)). Then Theorem 1 implies that

∑I
i=1 λi ·m̂(pi)

n satisfies a central
limit theorem. It implies the multidimensional central limit theorem.

A natural and intersecting example that generalizes usual central limit theorem under strong mixing
conditions is the following:
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Example 1 Let (Xn)n∈Z be a real valued time series satisfying assumption A. For all m ∈ N∗,

`1 < · · · < `m ∈ Nm, define R(`i) = E(X0X`i
) and R̂n(`i) =

1
n

n∑
j=1

XjXj+`i
. Then

√
n
(
R̂n(`i)−R(`i)

)
1≤i≤m

D−→
n→∞

Nk(0,Σ(`1, . . . , `m)), if α > max
(
3 ;

2m− 1
m− 4

)

with Σ(`1, . . . , `m) =

(∑
k∈Z

(
E(X0X`i

XkXk+`j
)−R(`i)R(`j)

))
1≤i,j≤m

.

Moreover, the sample skewness and sample Kurtosis satisfy central limit theorem from the Delta-
method applied to multidimensional theorem (12).

More generally, another consequence of such a result is the central limit theorems satisfied by
the estimation of the k-th cumulant of X (obtained from the Taylor development of the characteristic
function logarithm), defined by:

κ(µ) = Cumulant(X1, Xi2 , . . . , Xik
), for µ = {1, i2, . . . , i|µ|} ⊂ {1, . . . , k}.

From Leonov and Shyraev (1959), there is a relation between cumulants and moments, that is:

κ(µ) =
k∑

u=1

(−1)u−1(u− 1)
∑

(µ1,...,µu)

u∏
j=1

m(µj),

where (µ1, . . . , µu) (in the sum) describe all possible partitions of u subsets of the subset µ. Then:
Corollary 3 Set k ∈ N∗, µ = {1, i2, . . . , i|µ|} ⊂ {1, . . . , k}. Let (Xn)n∈Z be a real valued time series

satisfying assumption A with m > 2|µ| and α > max
(
3 ;

2m− 1
m− 2|µ|

)
. Then:

√
n
(
κ(µ)

n − κ(µ)
)

D−→
n→∞

N (0, γ2(µ)),

with

κ(µ)
n =

k∑
u=1

(−1)u−1(u− 1)
∑

(µ1,...,µu)

u∏
j=1

m(µj)
n , and

γ2(µ) =
∑
`∈Z

(
E
(
Xp1

1 Xp2
2 · · ·Xpk

k Xp1
`+1 · · ·X

pk

`+k

)
− (m(p))2

)
.

3 Proof of Theorem 1

From now on, c > 0 denotes a constant which may vary from one line to the other.

First, define a truncation in order to be able to use the previous dependence condition and make
Lindeberg technique work. For T > 0, define fT (x) = (x ∧ T ) ∨ (−T ) for x ∈ R. Then Lip fT = 1,
‖fT ‖∞ = T . For (u1, . . . , ud) ∈ Rd, we denote

FT (u1, . . . , ud) = (fT (u1), . . . , fT (ud))

and
Yi = h(xi), Y

(T )
i = h(FT (xi))− E

[
h(FT (xi))

]
, E

(T )
i = Yi − Y

(T )
i (13)

Lemma 1 Let h and (xn)n∈Z satisfy respectively assumptions H and A, with m > 2a. Then,

a) E
[
|E(T )

0 |
]
≤ c ·A · T a−m and E

[
(E(T )

0 )2
]
≤ c ·A2 · T 2a−m ;

b) for all i ∈ Z, |Cov (Y (T )
0 , E

(T )
i )| ≤ E (|Y (T )

0 |, |E(T )
i |) ≤ c ·A2 · T 2a−m;

7



c) for all i ∈ Z, |Cov (Y (T )
0 , Y

(T )
i )| ≤ c ·A2 · T 2a−1 · ηi.

Proof of Lemma 1. First note that for γ ≥ 1 such that aγ ≤ m, from assumptions on h,

E
[∣∣∣h(x0)− h(FT (x0))

∣∣∣γ] ≤ Aγ · E
[∣∣∣(|x0|a−1 + |FT (x0)|a−1) · |x0 − FT (x0)|

∣∣∣γ]
≤ (2A)γ · E

[
|x0|aγ · I1{|x0|≥T}

]
≤ (2A)γ · µ · T γa−m (Markov inequality). (14)

a) The assumptions on h lead to

E
[
|E(T )

0 |
]

≤ E
[
|h(FT (x0))− h(x0)|

]
+ E

[
|h(FT (x0))|

]
≤ 2E

[
|h(FT (x0))− h(x0)|

]
.

Now the relation (14) with γ = 1 leads to E
[
|h(FT (x0))− h(x0)|

]
≤ 2A · µ · T a−m. Then,

E
[
|YT,0|

]
≤ 4A · µ · T a−m.

By the same arguments,

E
[
(E(T )

0 )2
]

≤ 4E
[
(h(FT (x0))− h(x0))2

]
≤ 16A2 · µ · T 2a−m (relation (14) with γ = 2).

b) Analogously, relation (14) with Hölder inequality yields

|Cov (Y (T )
0 , E

(T )
i )| ≤

∥∥Y (T )
0

∥∥
m/a

·
(
E
[∣∣E(T )

0

∣∣ m
m−a

])m−a
m

(Hölder inequality)

≤ 2
∥∥h(FT (x0))

∥∥
m/a

· 2
(
E
(
|h(x0)− h(FT (x0))|

m
m−a

))m−a
m

≤ 2A ·
∥∥|x0|a ∨ 1

∥∥
m/a

· 2A · µ
m−a

m ·
(
T−m(1− a

m−a )
)m−a

m (assumptions on h)

≤ c ·A2 · T 2a−m.

c) Let h(T )(u) = h(FT (u)) − E
[
h(FT (x0))

]
for u ∈ Rd. From assumptions on h, it can be shown that

‖h(T )‖∞ ≤ 2A · T a and Liph(T ) ≤ 2A · T a−1. Then the weak dependence inequality (3) implies:

|Cov (Y (T )
0 , Y

(T )
i )| ≤ |Cov (h(T )(x0), h(T )(xi))|

≤ 8A2 · T 2a−1 · ηi.

Lemma 2 Let h and (xn)n∈Z satisfy respectively assumptions H and A, with m > 2a and

α >
m− 1
m− 2a

which implies
∞∑

i=1

η
m−2a
m−1

i < ∞. (15)

Then:

a) The series σ2 =
∞∑

i=−∞
Cov (h(x0)), h(xi)) =

∞∑
i=−∞

Cov (Y0, Yi) converges;

b) With σ2
p = Var

(
p∑

i=1

Yi

)
, there is a constant c > 0 such that

∣∣∣∣∣σ2 −
σ2

p

p

∣∣∣∣∣ ≤ c ·
(

log p

p
+ p

(
1−α(m−2a)

m−1

))
. (16)

Proof of Lemma 2. a) With Ti > 0 for i ∈ Z, we write

Cov (Y0, Yi) = Cov (E(Ti)
0 , E

(Ti)
i ) + Cov (Y (Ti)

0 , E
(Ti)
i ) + Cov (Y (Ti)

i , E
(Ti)
0 ) + Cov (Y (Ti)

0 , Y
(Ti)
i ).

8



From the previous lemma, |Cov (Y0, Yi)| ≤ c · A2 · (T 2a−m
i + T 2a−1

i · η|i|). Now, set T 2a−m
i = T 2a−1

i · η|i|,

then Ti = η
− 1

m−1

|i| > 0 and

|Cov (Y0, Yi)| ≤ c · η
m−2a
m−1

i . (17)

As a consequence,
∞∑

i=−∞
|Cov (Y0, Yi)| ≤ c ·

∞∑
i=−∞

η
m−2a
m−1

i and σ2 exists thanks to the assumption (15).

b) Decompose σ2 −
σ2

p

p
= D1 + D2 with D1 =

∑
|i|≥p Cov (Y0, Yi) and D2 = 1

p

∑
|i|<p |i| ·Cov (Y0, Yi). From

assumption (15), we conclude as above with inequality (17), because:

–
∣∣D1

∣∣ ≤ c ·
∑
i≥p

η
m−2a
m−1

i ≤ c · p
(
1−α(m−2a)

m−1

)
, and

– |D2| ≤
c

p
·
∑
|i|<p

|i| · η
m−2a
m−1

|i| . Now,


if α ≥ 2 · m− 1

m− 2a
, then |D2| ≤ c · log p

p

if
m− 1
m− 2a

< α < 2 · m− 1
m− 2a

, then |D2| ≤ c · p
(
1−α(m−2a)

m−1

) .

Lemma 3 Let h and (xn)n∈Z satisfy respectively assumptions H and A, with m > 2a. For p ∈ N∗, define:

Wp =
p∑

i=1

Yi. Then, if α > 3, for all 0 < δ <
m− 2a

a
, there exists a constant c > 0 such that:

E|Wp|2+δ ≤ c · pr with
2 + δ

2
≤ r = 2 + δ − m− 2a− a · δ

m− 1
< 2 + δ.

Proof of Lemma 3. Let ∆ = 2 + δ and m = a(2 + ζ). With inequality (14) and W
(T )
p =

∑p
i=1 Y

(T )
i , we

obtain:
‖Wp‖∆ ≤ ‖W (T )

p ‖∆ + p‖Y0 − Y
(T )
0 ‖∆ ≤ ‖W (T )

p ‖∆ + c · p · T a−m
∆ .

The Hölder inequality provides:

E|W (T )
p |∆ ≤

(
E|W (T )

p |2
)1−δ/2 (

E|W (T )
p |4

)δ/2

Now from c) of Lemma 1, we obtain E|W (T )
p |2 ≤ c · p · T 2a−1

∞∑
i=0

ηi. Setting

Cr,T = max
u=1,2,3

sup
su+1−su=r

∣∣∣∣∣Cov

(
u∏

i=1

Y (T )
si

,
4∏

i=u+1

Y (T )
si

)∣∣∣∣∣
where this supremum is set over s1 ≤ s2 ≤ s3 ≤ s4, we obtain as in [7],

E|W (T )
p |4 ≤ c

p

p−1∑
k=0

(k + 1)2Ck,T +

(
p · T 2a−1

∞∑
i=0

ηi

)2
 .

We quote that Ck,T ≤ T 4a−1ηk to derive

E|W (T )
p |4 ≤ c

(
p · T 4a−1 +

(
p · T 2a−1

)2)
.

Thus, from previous inequalities and with m = (2 + ζ)a,

E|Wp|∆ ≤ c

(
p∆ · T a∆−m +

(
p · T 2a−1

)1−δ/2

×
(
p · T 4a−1 + p2 · T 4a−2

)δ/2
)

≤ c

(
p∆T a(δ−ζ) +

(
p · T 2a−1

)∆/2

+ p · T a∆−1

)
.

9



We now minimize this last inequality in p by setting T = pb with b > 0. With the condition δ < aζ, we
first show that it is necessary to have b < 1 and the optimal b is obtained by balancing of p∆T a(δ−ζ) and
p · T a∆−1. This value of b is:

b =
1 + δ

m− 1
,

that satisfies b < 1. We thus obtain E|Wp|∆ ≤ c · p2+δ− a(ζ−δ)
m−1 , that implies the result of the lemma.

Remark Notice that r = 2 + δ − m− 2a− a · δ
m− 1

>
1
2
, contrarily to the classical Marcinkiewicz-Zygmund

inequalities.

Proof of Theorem 1. We use a Bernstein blocks method for this proof. Consider three sequences of
positive integers p = (p(n))n∈N, q = (q(n))n∈N and k = (k(n))n∈N such that:

• lim
n→∞

p(n)
n

= lim
n→∞

q(n)
p(n)

= 0;

• k(n) =
[

n

p(n) + q(n)

]
(thus lim

n→∞
k(n) = ∞).

These sequences are chosen as

p(n) = [nβ ], q(n) = [nγ ], with 0 < γ < β < 1,

the exponents β and γ will be chosen below. We form the blocks I1, . . . , Ik and define the random variables
U1, . . . , Uk such that:

Ij =
{

(j − 1)(p(n) + q(n)) + 1, . . . , (j − 1)(p(n) + q(n)) + p(n)
}

for j = 1, . . . , k(n);

Uj =
∑
i∈Ij

Yi, for j = 1, . . . , k(n).

Then expression (2) is decomposed as:

∆n =
3∑

`=1

∆`,n,

where we set, for a standard Gaussian N ∼ N (0, 1),

∆1,n = E

φ(Sn)− φ

 1√
n

k∑
j=1

Uj

 ,

∆2,n = E

φ

 1√
n

k∑
j=1

Uj

− φ

(
Nσp

√
k

n

) ,

∆3,n = E

(
φ
(
Nσp

√
k

n

)
− φ(σN)

)
.

Term ∆1,n. Using assumption (15) and a Taylor expansion up to order 2:

|∆1,n| ≤ c ·
(

k(n) · q(n) + p(n)
n

)
‖φ′′‖∞

2

∞∑
i=0

η
(m−2a)/(m−1)
i

≤ c ·
(
nβ−1 + nγ−β

)
. (18)

Term ∆3,n. Now, Taylor formula implies:
φ

(
Nσp

√
k

n

)
= φ(0) + Nσp

√
k

n
φ′(0) +

1
2
N2σ2

p

k

n
φ′′(V1);

φ (Nσ) = φ(0) + Nσφ′(0) +
1
2
N2σ2φ′′(V2),
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with V1 and V2 two random variables. Then, with Lemma 2,∣∣∆3,n

∣∣ ≤ ‖φ′′‖∞ ·
∣∣∣∣k(n)

n
σ2

p − σ2

∣∣∣∣
≤ ‖φ′′‖∞ ·

(
p(n) · k(n)

n

∣∣∣σ2 − 1
p(n)

σ2
p

∣∣∣+ n− p(n) · k(n)
n

σ2

)
≤ c ·

(
log(p(n)) · p−1(n) + p(n)1−

α(m−2a)
m−1 +

q(n)
p(n)

)
and therefore

∣∣∆3,n

∣∣ ≤ c ·
(
n−β · log n + nβ−α·β·(m−2a)

m−1 + nγ−β
)

. (19)

Term ∆2,n. Let (Ni)1≤i≤k(n) be independent N
(
0, σ2

p

)
−Gaussian random variables, independent of the

process (xi)i∈Z (such variables classically exist if the underlying probability space is rich enough). We

define φj(t) = E

φ
( 1√

n
t +

1√
n

k(n)∑
i=j+1

Ni

) for j = 1, . . . , k(n). In the sequel, for simplicity, empty

sums are set equal to 0. Then:

∆2,n = E

φ
( 1√

n

k(n)∑
j=1

Uj

)
− φ

(
Nσp

√
k(n)
n

)
=

k(n)∑
j=1

E

φ
( 1√

n

j∑
i=1

Ui +
1√
n

k(n)∑
i=j+1

Ni

)
− φ

( 1√
n

j−1∑
i=1

Ui +
1√
n

k(n)∑
i=j

Ni

)
=

k(n)∑
j=1

Eνj,n,

with νj,n = φj (Zj + Uj)− φj (Zj + Nj) and Zj =
∑j−1

i=1 Ui.
Moreover, ‖φ(`)

j ‖∞ ≤ n−`/2‖φ(`)‖∞ for ` = 0, 1, 2, 3. Making two distinct Taylor expansions (up to
order 2 and 3 respectively) we obtain the two following expressions with some random variables Lj

for j = 1, 2, 3, 4:

νj,n −
[
φ′j(Zj)(Uj −Nj) +

1
2
φ′′j (Zj)(U2

j −N2
j )
)]

=
1
6
(
φ

(3)
j (L1)U3

j − φ
(3)
j (L2)N3

j

)
=

1
2
[
(φ′′j (L3)− φ′′j (Zj))U2

j

−(φ′′j (L4)− φ′′j (Zj))N2
j

]∣∣∣∣νj,n −
[
φ′j(Zj)(Uj −Nj) +

1
2
φ′′j (Zj)(U2

j −N2
j )
)]∣∣∣∣ ≤ c

(
|Uj |2

n
∧ |Uj |3

n3/2
+
|Nj |2

n
∧ |Nj |3

n3/2

)
≤ c

n1+δ/2
(|Uj |2+δ + |Nj |2+δ)

because the sequence (Nj)j is independent of the sequence (xj)j , and thus independent of the sequence
(Uj)j , and with the two relations EU2

j = σ2
p = EN2

j and s2 ∧ s3 ≤ s2+δ with δ ∈ [0, 1] (that is valid

for all s ≥ 0). Now with the inequality E|Nj |2+δ =
(
EU2

j

)1+δ/2E|N (0, 1)|2+δ ≤ c · E|Uj |2+δ we derive

|Eνj,n| ≤ |Cov (φ′j(Zj), Uj)|+
1
2
· |Cov (φ′′j (Zj), U2

j )|+ c

n1+δ/2
· E|Uj |2+δ.

Thus, using Lemma 3, with Cj =
∣∣Cov (φ′j(Zj), Uj)

∣∣ and C ′
j =

1
2

∣∣Cov (φ′′j (Zj), U2
j )
∣∣ .,

∣∣∆2,n

∣∣ ≤
k(n)∑
j=1

(
Cj + C ′

j + c · n−1−δ/2pr
)

≤ c · n−δ/2pr−1 +
k(n)∑
j=1

(Cj + C ′
j), (20)
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Now, we can write the random variables Uj , U2
j , φ′j(Zj), φ′′j (Zj) as functions G : (Rd)u → R of

xi1 , . . . , xiu
. The important characteristics of such G are driven by the following respective orders:

Random variable Order w ‖G‖∞ LipG

U
(T )
j p(n) O (A · p(n)T a) O

(
A · p(n)T a−1

)
(U (T )

j )2 p(n) O
(
A2 · p(n)2T 2a

)
O
(
A2 · p(n)2T 2a−1

)
φ′j(Zj) ≤ n ≤ n−1/2‖φ′‖∞ O

(
A · T a−1n−1

)
φ′′j (Zj) ≤ n ≤ n−1‖φ′′‖∞ O

(
A · T a−1n−3/2

)
In order to use the weak dependence device for these two random variables Cj and C ′

j , we have to use

truncation U
(T )
j obtained by replacing Yi’s by Y

(T )
i and then,

Cj ≤ C
(T )
j + c · ‖φ′‖∞ · p(n)√

n
· E|E(T )

0 | with C
(T )
j =

∣∣∣Cov (φ′j(Zj), U
(T )
j )

∣∣∣ ;
C ′

j ≤ C
′(T )
j + c · ‖φ′′‖∞ · p2(n)

n
· E |Y 2

0 − (Y (T )
0 )2| with C

′(T )
j =

1
2

∣∣∣Cov (φ′′j (Zj), (U
(T )
j )2)

∣∣∣ .
From the previous bounds, we obtain:

C
(T )
j ≤ c ·A2 ·

(
p(n) · T 2a−1 + ‖φ′‖∞ · p(n)2 · T a−1 · n−1/2

)
· ηq(n),

C
′(T )
j ≤ c ·A3 ·

(
p(n)2 · T 3a−1 · n−1/2 + ‖φ′′‖∞ · p(n)3 · T 2a−1 · n−1

)
· ηq(n),

For this, one should mention that if s ∈ N∗, the function G
(s)
T defined on Rds as G

(s)
T (u1, . . . , us) =∏s

j=1

(
h(FT (uj))− E

[
h(FT (x0))

])
satisfies ‖G(s)

T ‖∞ ≤ T sa and LipG
(s)
T ≤ c ·As · T sa−1.

Thus, 
Cj ≤ c ·A3 ·

(
p(n)·√

n
T a−m +

(
p(n) · T 2a−1 +

p2(n)√
n

T a−1

)
ηq(n)

)
;

C ′
j ≤ c · ·A3

(
p2(n)

n
· T 2a−m +

(
p2(n)√

n
· T 3a−1 +

p3(n)
n

· T 2a−1

)
· ηq(n)

)
,

(21)

from relation (17), and because with inequalities (13),

E |Y 2
0 − (Y (T )

0 )2| ≤ E |E(T )
0 |2 + 2E (|Y (T )

0 | · |E(T )
0 |) ≤ c · T 2a−m.

Now, those bounds have to be minimized in n by choosing T as a function of n. We assume β < 1/2
and hence Cj and C ′

j are minimized by selecting T = n
αγ−1/2
a+m−1 , that implies: Cj ≤ c ·A3 · n

β−1/2−(αγ−1/2)

(
m−a

m+a−1

)
;

C ′
j ≤ c ·A3 · n

2β−1−(αγ−1/2)

(
m−2a

m+a−1

)
,

under the conditions
1
2α

< γ < β <
1
2
. Finally, from (20), we obtain the following bound:

∣∣∆2,n

∣∣ ≤ c ·A3 ·
(
nβ(r−1)−δ/2 + n

1/2−(αγ−1/2)

(
m−a

m+a−1

)
+ n

β−(αγ−1/2)

(
m−2a

m+a−1

))
. (22)

Therefore, inequalities (18), (19), (22) and condition
1
2α

< γ < β <
1
2

provide:

∣∣∆n

∣∣ ≤ c ·A3 · nmax(p1,p2,p3,p4,p5) with



p1 = β
(
1− α · m−2a

m−1

)
p2 = γ − β

p3 = β
(
1 + δ −

(
m−2a−aδ

m−1

))
− δ/2

p4 = 1/2− (αγ − 1/2)
(

m−a
m+a−1

)
p5 = β − (αγ − 1/2)

(
m−2a

m+a−1

)
. (23)
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We have the possibility to make varying δ, β, γ (with certain conditions) for:
1. obtaining conditions on α and m, such that it exists δ, β, γ satisfying max(p1, p2, p3, p4, p5) < 0;
2. minimizing max(p1, p2, p3, p4, p5) with an optimal choice of δ, β, γ under the previous conditions.

To solve 1., the condition p3 < 0 implies β <
m− 2a

2(m− a)
with the optimal choice δ = m/a − 2. Moreover,

condition p4 < 0, implies γ >
1
2α

(
2m− 1
m− a

)
. As a consequence, max(p1, p2, p3, p4, p5) < 0 is satisfied when:

1
2α

(
2m− 1
m− a

)
< γ < β <

m− 2a

2(m− a)
=⇒ α >

2m− 1
m− 2a

. (24)

To solve 2., fist we show that only coefficients p2, p3 and p4 have to be considered for the minimization
(under conditions (24), coefficients p1 and p5 are smaller than p2, p3 and p4). Then, the optimal choice for
γ and δ is provided by the resolution of the system: p2 = p3 and p2 = p4, that implies to:

β0 =
m + 2a− 1 + α(m− 2a)

2(m + a− 1 + α ·m)
and γ0 =

3m + 2a− 2
2(m + a− 1 + α ·m)

,

and therefore, we obtain the optimal rate:∣∣∆n

∣∣ ≤ c ·A3 · n−λ with λ =
α(m− 2a)− 2m + 1
2(m + a− 1 + α ·m)

.
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