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Affine Model for Credit Risk Analysis

Abstract

Continuous time affine models have been recently introduced in the theo-
retical financial literature on credit risk. They provide a coherent modelling,
rather easy to implement, but have not yet encountered the expected success
among practitioners and regulators. This is likely due to a lack of flexibility
of these models, which often implied poor fit, especially compared to more ad
hoc approaches proposed by the industry. The aim of this paper is to explain
that this lack of flexibility is mainly due to the continuous time assumption.
We develop a discrete time affine analysis of credit risk, explain how different
types of factors can be introduced to capture separately the term structure
of default correlation, of default heterogeneity, of correlation between default
and loss-given-default; we also explain, why the factor dynamics are less con-
strained in discrete time and are able for instance to reproduce complicated
cycle effects... These models are finally used to derive a CreditVaR and
various decompositions of the spreads for corporate bonds or first-to-default
basket.

Keywords : Term Structure, Credit Risk, Loss-Given-Default, Affine Model,
Stochastic Discount Factor, Affine Process, Car Process, WAR process, Through-
the-Cycle.
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1 Introduction

In the general strategy followed by the Basle Committee for monitoring the
risk included in their financial investments, the banks have to compute a
CreditVaR both for regulation and internal control [Basel Committee on
Banking Supervision (2001)]. This Value-at-Risk defines the amount of
reserve required to hedge the risk of their credit portfolios, including re-
tail credits (consumer credits, mortgages, revolving credits, over-the-counter
corporate loans),corporate bonds and credit derivatives, including mortgage
backed securities. This paper focuses on portfolios of corporate credit deriva-
tives which are traded on bond markets, and on the introduction of appro-
priate models for describing the associated risks. These models have to in-
corporate borrowers’ heterogeneity with both industry-wide and firm-specific
effects. This heterogeneity concerns the default intensity (resp. loss-given-
default) patterns at various maturities, but also the so-called default correla-
tion (resp. loss-given-default correlation), which accounts for what regulators
call concentration risk.

The first generation of credit risk simulators proposed by the industry is
already in place!. Even though these models fulfill the basic need for simple
credit risk measurement, they have obvious limitations with yet unknown
consequences. The following is a list of important empirical facts that are
not accounted for in the current practical approaches :

e Riskfree interest rates evolve stochastically, but in most industry mod-
els they are assumed independent of the default phenomenon.

e Default correlation is often taken into account in a very crude way,
implicitly assuming a similar default correlation for the different cat-
egories of firms, or for the short and long term credits, even though
defaults are likely driven by general, sector specific, and firm specific
factors, whose influences vary in time.

e The models have to use the available information, including microe-
conomic data on firms (such as size, industrial sector, financial ratios,
rating by the agencies), and market information concerning the equity,
or bond prices. It is well-known that the KMV simulator is based on

4See Crouhy, Galai and Mark (2000) for a comparative analysis of the major industry
models, proposed by KMV, J.P. Morgan (Credit Metrics), or Credit Swiss First Boston
(Credit Risk +).



Merton’s model and incorporates observed equity prices. But more in-
formation is included in the corporate bond prices and this information
is often not taken into account.

e The returns on credit portfolios are known to be heavily skewed to the
left. Indeed, the introduction of a firm in a watch-list for downgrade by
Moody’s, or Standard & Poor’s has an immediate impact on bond and
equity prices, whereas the impact of an expected upgrade is slower.

e The loss-given-default component is considered in very crude ways.
The uncertainty of loss-given-default, or the adverse links between de-
fault and recovery rates are often not taken into account, whereas they
have important impact on the Credit VaR, and are needed for an ad-
vanced approach of credit risk [Basel Committee on Banking Supervi-
sion (2005)].

e Finally, the methodology has to provide coherent specifications of the
risk-neutral dynamics, used for derivative pricing, and of the historical
dynamics, used for risk prediction and determination of the CreditVar.
It is especially important to understand the differences between the
probability and price of default, or between default correlation and
price of default dependence.

Our objective in this paper is to develop a consistent valuation model for
portfolio of corporate bonds, which addresses the issues mentioned above.
This model can be used for pricing, but also to compute a CreditVaR. In
this model, two types of factors generate default (or loss-given-default) cor-
relation. First, defaults are instantaneously correlated because all firms are
influenced by systematic economic factors. They can capture the so-called
aggregate state of the economy or some sectorial effects, if we consider a
restricted set of firms. For example, a source of default correlation can be
information about the term structure (i.e. short term yields, slope, curva-
ture, etc.), and/or equity markets. It can also be due to the natural common
dependence of same industry companies on various norms related to that
industry alone. For example, profitability, intensity of competition, entrance
of new players and introduction of new products, just to name a few, are
potential sources of default correlation for firms in the same industry. Sec-
ond, it is also necessary to link the default occurrences of a given corporate



at different ages. This can be done by introducing corporate specific fac-
tors. These idiosyncratic factors can represent the effect of the strategy of
the firm. Typically, an investment decision has an impact on many future
financial results.

Understanding and modelling such instantaneous and serial default (resp.
loss-given-default) dependencies is important, since this significantly impacts
the overall credit risk in a portfolio. Whereas some factors are easily ob-
servable, other constitute a much more elusive, difficult to measure, set of
factors. Fortunately, when such latent factors generate common default pat-
terns, their values can be recovered from the observable corporate credit
derivatives and Treasury-bond prices, something possible due to the affine
character of the model.

Besides capturing the above empirical facts, the proposed specifications
assess credit risk in a tractable manner. They also allow for pricing default-
able credit derivatives. For practical purposes, it is not necessary to get
closed-form expressions of the future default probabilities and risk deriva-
tive prices, but only to explain how to compute them by simple numerical
methods, for instance by recursive equations. Moreover, the computational
burden should not become excessive when the number of credits included
in the portfolio increases, since such portfolios may include thousands of
different loans.

The specification is a discrete time affine specification and has to be com-
pared to the continuous time affine literature, recently elaborated in [Duffie,
Filipovic, Schachermayer (2003)]. The main potential benefits of a discrete
time approach are threefold. (i) The regulator and some models (for re-
tail credit and analysis of workout loss-given-default on corporates) prefer
to work in a daily discrete time framework. (ii) A discrete time approach
can be numerically easier to implement, since it requires the solution of re-
cursive equations with a daily time unit. By comparison the continuous
time affine specifications require the solution of multidimensional differential
Riccati equations. These equations are solved numerically, often by consid-
ering approximate recursive systems at a small time unit, 5 mn, say. This
approximation implies more computations, 288 times more in the above ex-
ample, due to the smaller time unit needed to approximate continuous time.
Moreover, contrary to the initial continuous time model, the approximate
recursions are generally not compatible with no-arbitrage opportunity. (iii)
The set of continuous time affine dynamics is rather restricted, as a conse-
quence of the time coherency condition. Loosely speaking, the continuous
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time dynamics are built from Ornstein-Uhlenbeck processes, Cox-Ingersoll-
Ross processes (or their multivariate extensions called Wishart processes),
and special bifurcation processes. On the contrary, the discrete time spec-
ifications do not require time coherency for periods within the day. This
increases considerably the type of admissible dynamics, including recursive
systems, long memory, or complicated nonlinear effects. This is especially
important in the context of default, where default probability and expected
loss-given-default are procyclical.

In Section 2, we introduce the default arrival model. The survivor inten-
sity rate depends on both systematic and firm specific factors. The model
is compared with alternative specifications introduced in the literature to
capture default correlation and with models written in continuous time. By
assuming independent individual defaults, conditional on state variables, and
by employing affine dynamics for the factors, we recursively compute the
conditional joint survivor function in Section 3. The formulas are simplified
when the effect of the state factors on the default intensity rate is time in-
dependent. The aim of Section 4 is to specify the pricing model. For this
purpose we assume an exponential affine pricing kernel (stochastic discount
factor or sdf), depending on general factors affecting default. Then, the term
structure of Treasury-bonds, corporate bonds and first-to-default baskets can
be derived recursively. In particular, we discuss the decomposition and in-
terpretation of the term structure of the spread. Numerical examples are
presented in Section 5. In particular, we discuss the pattern and evolution
of the term structures through the cycle. The extension to loss-given-default
is presented in Section 6, and Section 7 concludes.

2 The default arrival model

Let us consider a cohort of n obligor firms with the same birth date fixed
by convention at ¢ = 0. The birth date can be defined in different ways ac-
cording to the problem of interest. It can correspond to the date of creation
of the firms, if we focus on new industrial sectors, or to the date of the first
rating by agencies such as Moody’s or Standard and Poor’s, if we consider
the introduction on bond markets, or even an initial date corresponding to
the period of analysis. We denote by 7,,7 = 1,...,n the failure date for
corporation ¢, that is the lifetime of this corporation. The aim of this section
is to specify a joint historical distribution of the lifetimes compatible with



various patterns of the term structure of default correlation. The distribu-
tion of the set of lifetimes is defined in two steps. First, we assume that the
lifetimes are independent conditional on the past, present and future values
of a set of systematic and corporate specific factors. Then, the future re-
alization of the factors is integrated out to derive the joint distribution of
lifetimes conditional on information available at time t and to create default
dependence.

2.1 Assumptions

Assumption A.1 : There exist general ( systematic) and corporate specific
factors®, denoted by (Z;),(Z¢),i = 1,...,n, respectively. These factors are
independent, Markovian and their transitions are such that :

Elexp(W'Zi1)|Z1] = explag(u)'Zi + by(u)],

Elexp(/Zi )\ Zi] = explac(w)Zi +be(w)i=1,....n,

where the above relations hold for all arguments u for which the expectation is
well-defined. Moreover, we assume that the marginal distributions of Z,i =
1,...,n are identical.

Thus, the factors satisfy a compound autoregressive (Car) process [see
Darolles, Gourieroux, Jasiak (2005)]. The conditional distributions are de-
fined by means of the conditional Laplace transform, or moment generating
function, restricted to real arguments u ®. Since the functions a,, by, a, b, are
not highly constrained a priori, the Car dynamics can be used to represent a
large pattern of nonlinear serial dependence, including long memory, cycles,
or default clustering under economic recession [see Jarrow, Yu (2001)] .

By Assumption A.1. the population is assumed homogenous, that is, the
distributions of the corporate specific factor processes are independent of the
firm. Thus, the cohort is both homogenous with respect to the birth date and
to individual characteristics such as the industrial sector, or the initial rating.
Finally, note that the general factor Z is defined for any date ¢, whereas the

5The model can be extended to also include sector specific factors. These additional
factors are not introduced for expository purpose.

5We assume in the sequel that the real Laplace transform characterizes the factor
distribution. This condition is satisfied for nonnegative or bounded variables [see Feller
(1971)]. In a general case, it may require power conditional moments at any order and the
possibility to get a series expansion of the Laplace transform in a neighborhood of zero.



firm specific factor Z’ can only exist until the default date 7; of the i*" firm.
This explains why the independence between idiosyncratic and systematic
factors is assumed. Otherwise, complicated effects have to be taken into
account at any firm’s failure time [see e.g. Jarrow, Yu (2001), Gagliardini,
Gourieroux (2003) for this extension in the case of two borrowers].

In this paper, instantaneous default correlation arises only because of the
common risk factors that drive individual firms’ default intensities. Equiva-
lently, given those common factors, default arrivals of different firms become
independent:

Assumption A.2 : Conditional on the realization path of the factors 7,
Z,7' i = 1,...,n, default arrival times 7;,4 = 1,...,n are independent.
Moreover, the conditional survivor intensities are such that :

Pl >t+1n>t,2,2,5=1,...,n]
= P[TZ >t+1|7'z >t,Zt+1,ZZ+1]
= exp[—(a1 + 6£+1Zt+1 + ’Y£+1Zz+1)]

= oxp(—N,), say, Vi,

where oy 1, Bii1, Vi1 are functions of the information included in the current
and lagged factor values Z;, Z/.

Since the conditional survivor probability is smaller than unity, we get :
N = ay + 817y + v, Z; > 0,Vt. These restrictions imply conditions on both
the sensitivity parameters and the factor distributions. For instance, they
are satisfied if both factors and sensitivity coefficients are nonnegative. They
can also be satisfied in a more general framework [see Gourieroux, Sufana
(2003), Gourieroux, Jasiak, Sufana (2004)]. Indeed, it has been argued re-
cently that some factors can be represented by the elements of a positive
definite symmetric matrix ¥, say : Z; = vech (X;), where vech denotes the
operator stacking the different elements of ;. In this case, a linear com-
bination of components of Z can be written as : 3,7, = Tr(B;%;), where
B; is a symmetric matrix and the trace operator Tr computes the sum of
diagonal elements. Tr(B;Y;) is nonnegative, if matrix B; is positive definite.
Moreover, it is known that the Wishart Autoregressive (WAR) process is a

"Z = (Zy,Vt), Z'=(Z},Vt), and, Zn = (Z,t < h), ﬁ = (Z},t < h).



special case of Car process, valued in the set of positive definite symmetric
matrices (see e.g. Gourieroux (2005) for a survey on WAR process).

The survivor intensity depends on time by means of factors Z; 1, Z;, , and
sensitivities a1, Bi11, Ver1. This double time dependence can be interpreted
in the following way. Let us assume for a while time-independent factors
Zyy = 2,Zy,, = 7', say, ® meaning that the general environment is stable
and the characteristics of the corporation such as its size, its financial ratios...
stay the same. Even with constant factors, the survivor rate is not the same
for a young corporation and an old one. This age effect is captured by the
age dependent sensitivities. As far, the factor Z; will capture for instance
the calendar time effect and it is able to create various term structures of
default correlation.

Assumption A.2 can easily be weakened to allow for bond dependent sen-
sitivities. In the extended framework, if Z; includes current and lagged values
of a factor Z, = (2, Z;_1), say, and, if the set of bonds is partitioned into two
subsets with sensitivities (51441, 0), (0, B2,.41), respectively, the model allows
to distinguish primary and secondary bonds [see Jarrow, Yu (2001) IV,B for
another constrained specification for this problem].

2.2 The link to continuous time.

The survival model is defined above in discrete time. However, the main
stream of the theoretical literature on credit risk considers continuous time
specifications?, and it is useful to see which approach is the more flexible in
practice.

Let us first recall the usual continuous time modelling for default arrivals
[see e.g. Lando (1994), (1998), Duffie, Singleton (1999)]. In continuous time,
the factors Z, Z* are continuous time affine processes, whereas time-to-default
can take a priori any positive real value.

8When both factors and sensitivities are age independent, we get the so-called mul-
tivariate mixed proportional hazard (MMPH) model described in Van den Berg (1997),
(2001). An exponential affine factor representation of the individual heterogeneity in the
MMPH framework is usually assumed in the applications to labour [see e.g. Flinn, Heck-
man (1982), Heckman, Walker (1990), Bonnal, Fougere, Serandon (1997)]. In the labour
framework, the model of Section 2.1 allows for both a term structure of individual hetero-
geneity, and a description of the latent dynamic effort variable underlying moral hazard.

9But the simulators for credit risk proposed by the industry follow discrete time ap-
proaches for the same practical reasons as in our paper.



i) The continuous time factor is affine, iff the conditional Laplace trans-
form is an exponential-affine function of the current value for any real horizon

Elexp(u'Z.n)|Zy) = explay(u, h)' Z; + by(u, h)],Vh € (0, 00). (2.1)

These restrictions imply the condition of Assumption A.1. Thus, any
time discretized continuous time affine process is Car, but there exist a lot of
Car processes without continuous time counterpart. This point is developed
below.

ii) The distribution of the default time conditional on the factor path is
generally defined through the (stochastic) infinitesimal default intensity :

~ . 1 i

The associated survivor probability at horizon 1 is :

. t+1 .
Pl >t+ 1|1, >t,Z, Z'] = exp [—/ /\udu].
t

If the time unit is small and the infinitesimal default intensity admits con-
tinuous path, this survivor probability can be approximated by exp(—A;11).
Thus, the discrete time specification introduced in the section above is the
counterpart of a continuous time model with affine stochastic default inten-
sity [see Lando (1994), (1998), Duffie, Singleton (1999)] :

No=dy+ 87+ 7,7
Let us now discuss the flexibility of continous time affine models and the
modelling of default distribution by means of infinitesimal default intensity.

a) Lack of flexibility of continuous time affine processes

As already mentioned, the admissible affine dynamics are very restrictive
in a continuous time framework.

i) Let us first consider the favorable case of Gaussian processes. In contin-
uous time, the affine Gaussian processes are the multidimensional Ornstein-
Uhlenbeck processes. Their time discretized versions are the Gaussian VAR (1)
processes :

Zt = (I)Zt_l +u+ e IIN(O,Q),

9



where the autoregressive matrix has an exponential representation & =
exp A. On the other hand, all Gaussian VAR(1) processes are Car processes.

The condition ® = exp(A) is restrictive. It implies that the eigenval-
ues A;,7 = 1,...,J of the autoregressive matrix are real, strictly positive,
and that the autocorrelation function of any linear combination of factors is

J
p(h) =" X'P;(h), where P;(h) are polynomials in h.
j=i

For instance, the following Gaussian processes are Car processes without
continuous time counterpart : (Gaussian white noise, Gaussian recursive sys-
0 1
0 0
process with complex eigenvalues of the autoregressive matrix, that is, with
autocorrelograms featuring amortized waves.

tem such as Z1; = Zyy 1 + €14, Loy = €9, With & = ( , Gaussian

ii) The Car processes are easily extended to account for any autoregressive
lag. For instance a Car (p) process is such that :

Elexp(u'Z1)|Zy] = explay, (u)Zy + ...+ a,_y () Zy—p—1 + by(u)],

whereas such an extension is not possible in the continuous time framework.
A Gaussian VAR(p) process, or an autoregressive gamma process ARG(p),
which extends the CIR process to several lags, are also Car processes.

It is often advocated that higher order dynamics can also be deduced from
continuous time specification, by considering a linear combination o' Z;, say
of a multivariate affine process. This is true, but :

e In the Gaussian case, the pattern of the autocorrelation function of
o' Z;, where Z; corresponds to an Ornstein-Uhlenbeck process, is highly
restricted.

e Moreover, an autoregressive gamma [ARG(p)] process has no continu-
ous time counterpart, and, in particular, its transition density is very
different from the transition density of a combination of independent
CIR processes for instance.

iii) But, it is for capturing nonlinear dynamics that the class of Car pro-
cesses offers much more possibilities than the class of time discretized con-
tinuous affine models. This is a consequence of the embeddability restriction

10



(called infinitely decomposability condition in Duffie, Filipovic, Schacher-
mayer (2003), pl0) introduced to ensure the time coherency even for small
time units. The conditions are similar to the restrictions exhibited in the
linear Gaussian framework, and are easy to understand from the example of
a Markov chain with transition matrix P. Let us denote by Z; the random
vector, whose components are the indicators of the different states of the
chain at date t. We get :

Elexp(u'Zy41)| 24

K
= exp[)_ log(Eexp(u'Zi1)|Z = 1) Zpa)-
k=1
Thus, a Markov chain is a Car process. But, this chain can be considered
as a time discretized continuous time process if, and only if, the transition
matrix has an exponential form P = exp(A).

b) Lack of flexibility of the specification by default intensity

The usual continuous time approach implicitly assumes the existence of
an infinitesimal default intensity, and, therefore, time-to-default with con-
tinuous distribution. This assumption is not compatible with available in-
dividual data. Indeed, the default times often correspond to predetermined
dates of repayment of the debt (as in Merton’s model), implying duration
distributions with a discrete component.

c¢) Artificial introduction of jump processes

Under domain assumptions, the continuous time affine models are essen-
tially built from Ornstein-Uhlenbeck and CIR diffusion processes plus jump
processes [see Duffie, Filipovic, Schachermayer (2003)]. In practice, the es-
timation of diffusion affine processes often reveals poor fit, and additional
jumps are introduced without clear interpretation. Another advantage of
discrete time processes is to avoid this distinction. In discrete time ”every
movement is a jump”.

11



2.3 Alternative approaches of default correlation

Default dependence has been introduced in the specification above by means
of time varying stochastic factors with joint influence on the underlying cor-
porate default intensities. Other modelling approaches have been considered
in the literature.

i) A first approach specifies directly a joint distribution for the set of
times-to-default 7, ..., 7,. This is usually done by introducing a copula in
order to separate the treatment of marginal distribution from the dependence
features [see e.g. Van den Berg (1997), Li (1999)]. Then, the joint cdf is given
by :

F(tl, - ,tn) = C’[G(h),G(tz), .- -7G(tn)]7

where C' denotes the copula and G the common marginal cdf. In practice,
the copula is selected in a parametric family, or depends on a functional
parameter [see e.g. Gagliardini, Gourieroux (2005)]. For instance, it is possi-
ble to use an Archimedean copula, which admits a factor interpretation in a
proportional hazard model framework [see e.g. Joe (1997)]. This modelling
strategy has several drawbacks. First, when a parametric family is selected,
the number of parameters is generally small and the family is not compatible
with various patterns of the term structure of default. Second, the copula
C provides the dependence between the durations at age 0. But, we are
mainly interested in the dependence between durations for still alive obligors
at any age h. It is difficult to study how the copulas evolve with age (i.e. the
so-called term structure of default dependence), and even if they belong to
the same family as the initial one.

ii) Another approach is based on a special interpretation of the survivor
function introduced in [Bremaud (1981)]. Indeed, we have (in continuous
time) :

t..
Plr, >t] = exp [—/ )\ZLdu]

t ..
- P[/ Nodu < B,

where E; is an exponential variate independent of the stochastic intensity.
Thus, we get the same model by defining the duration in terms of stopping

time as : 7; = inf{r: /T Ao du > B}

12



It has been proposed in the literature to consider intensities, which are
independent between individuals, and to extend the joint distribution of the
thresholds 1, ..., E, by allowing for dependence between thresholds. Then,
a copula is introduced for defining the joint distribution of E1, ..., E, [Schon-
bucher and Schubert (2001)].

The main drawback of the threshold approach is the introduction of de-
fault correlation by means of age independent factors F;,i = 1,...,n, which
does not allow to manage the term structure of default dependence. Indeed,
let us consider stochastic baseline intensities independent of the individuals
and independent of the thresholds. We get :

P[Ti>t+1|Ti>t,E1,...,En]
t+1 . t ..
— P / N du < Ej]/P] / N du < E]

where Ej(t;.) denotes the cumulative distribution function of the cumulated
baseline hazard. We get a factor representation of the survivor intensity with
time invariant factors. In some sense, the approach above is only a slight
modification of the basic mixed multivariate proportional hazard (MMPH)
model. Typically, with this strategy it is difficult to select a copula providing
high default correlation in the short run and low default correlation in the
long run. This situation arises in practice. For instance, at the beginning of
the development of the dot com sector, the default probabilities and default
correlations were both high. After some years, the remaining firms are more
specialized and the default correlation has diminished.

3 The joint duration distribution
In this section, we study the joint distribution of times-to-default and its vari-

ation in time. We first consider the case of path dependent factor sensitivities,
and then we particularize the results to the case of constant sensitivities.

13



3.1 General case

Under Assumptions A.1-A.2, it is possible to compute explicitly the joint
conditional survivor function. This function depends on the information
available at date . When this information is complete, that is, includes the
current and lagged values of the factors together with the information on
corporate default, the conditional survivor function can be defined for any
subset S of the Population at Risk, that is, the set PaR; of firms, which are
still operating at time ¢ :

= P[TZ >t—|—hi,i€S|PaRt,S§PaRt,(Tj|jEPaRt),é,ﬁ,jzl,...,n],

where PaR; = {i : 7; > t} is the Population at Risk and PaR; denotes its
complement.
The property below is proved in Appendix 2.

Proposition 1 : The conditional survivor function is given by :

h
= exp[— Y nerncury + B, MO ¢+ B) + A ¢ 4 h)' Z,
k=1

+ S Bt + b))+ ANt t+ ) Z),

€S €S

where, for any deterministic sequence'® [u] = (u;), operators A, Bl are
recursively defined by :

At +h) = aluy + AM(E 41,1 4 B)),

Bt t+h) = blugy, + A+ 1, ¢4+ h)] + BM(t + 1, 4 h),

10The [u] sequence may be infinite or not, provided that it is defined for the interval
t+ 1 to t + h, corresponding to the values included in the recursive computation.

14



for h > 0, with terminal conditions :

At 1) =0, Bt t) =0, Vt,

and where h = max;cg h;, the deterministic sequence [n] is defined by ny, =
Card {h; > k , i € S} , and the product sequence [n][A] by n;\;.

This result shows, in particular, that, given the current and past values
of the factors, the default history is not informative as a consequence of
conditional independence :

S¢(h;,i € S) = Plr; >t + h,i € S|PaR,,S C PaRy, Z,, Z!,i € PaR,]

Proposition 1 shows that the conditional survivor function is easily com-
puted numerically by means of discrete time recursive equations. This nu-
merical implementation has to be compared with the practice of continuous
time affine models. In continuous time, it is necessary to solve numerically
differential Riccati equations, also by means of discrete time recursion. But,
as mentioned in the introduction, these approximate iterations are done with
a much smaller time unit and a much larger number of iterations. Moreover,
these recursive systems are approximations, and are not compatible in general
with no-arbitrage opportunity conditions. This is not the case of a coherent
discrete-time approach.

Proposition 1 can be used to derive the distribution of a given time-to-
default. It can also be used to derive the distribution of the time-to-first-
failure in a basket of securities. These computations are needed for credit
derivatives currently traded on the market [see Sections 4.4 and 4.5]. The
credit default swaps (CDS) are options on a corporate default occurrence
during a given period, whereas other options concern the occurrence of a
default in a basket of securities (first-to- default basket security).

Let us consider a given obligor . The conditional survivor function spe-
cific to this firm is P[r; > ¢ + h|r; > t, Z;, Z!], and corresponds to the joint
survivor function with S = {i}, h; = h, and nyyy, = 1 for 1 < k < h.

Corollary 1 : We get :

15



P(Ti >t4 h|7’2 > t, Zt,Z;)

h
= exp[— Y ey + B Wt t + h) + AVt t + h)' Z,

k=1
+ B0t t +h) 4+ A0t t 4+ h)' Z7),

where functions AEJ“], Al B![]“], B are recursively defined in Proposition 1.

Let us now consider the first-to-default time for a set S of still operating
obligors, 7§ = mingcsc por,y 7i- The survivor function of 75 is defined by :

Plri > t + h|PaR;,S C PaRy, 7, Z,i € S], and is equal to the joint
survivor function evaluated at h;, = h,Vi € S. Thus, for all 1 < k < h, we
have n;,., = n = Card (95).

Corollary 2 : We get :

P[T;t >t+ hlPaRt,S g PaRhZhZLZ. S S]

h
= exp[-n Y apu + Byt 1) + A8 4+ ) Z,
k=1

+ nB 0Nt t+ h) + A7t t+ h) Y Z1),

where n[3] denotes the sequence nf; .

Even if the expressions of the survivor functions given in Proposition
1 and Corollaries 1 and 2 seem rather cumbersome, they are easily imple-
mented from recursive equations. The distribution of the first-to-default time
does not depend on the state of individual obligors since the average state
% Sics Z! is a sufficient statistic. That is, the first-to-default probability of a
security basket that contains some severely distressed corporations is identi-
cal to that of another basket where none of the corporations is distressed, but
the average state is the same. This is a direct consequence of the homogeneity
assumption.
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3.2 Constant factor sensitivities

In the general framework of Assumption A.2, the conditional survivor proba-
bility for a given obligor i (for instance) varies with ¢ because of the stochastic
evolution of the factors Z;, Z!, but also because of the deterministic aging of
sensitivity coefficients ay, 5;,7;. A special case arises when sensitivity func-
tions «, 3,y are constant. In this framework, Corollaries 1 and 2 provide
closed-form expressions for the conditional survivor probability.

Let us first consider the slope operator A" (¢,¢4h), when all the terms of
the deterministic sequence [u] are equal to a vector u. The recursive equation
of Proposition 1 becomes :

A“(t,t+h) = alu+ A*(t+1,t+ h)]

= au[A%(t+1,t+h)],h >0,
where a,(s) = a(u + s) denotes a shifted version of function a and
A"(t 4+ h,t 4+ h) = 0. We deduce that :
A"(t,t+ h) = a;(0),

where a°" denotes function a(.) compounded h times. Similarly, for a con-
stant sequence u; = u, the intercept operator B* is given by :

B“(t,t +h) = Iibu(agf(o)).

Therefore, we derive the following corollary :

Corollary 3 : When the factor sensitivities are constant :

P[Ti >t+ h|7’,‘ >t, 2y, Z}]

h—1 h—1
= exp{—ha+ Z bg,—B[(a;?fg(O)] + aZf’_@(O)'Zt + Z bC,—'y[ag,]—»y(O)] + ag,h—fy(o)lztl}v
j=0 =0

P[rt >t + h|PaR,,S C PaRy, Z;, Zi,i € S)

h—1 h—1
= exp{-nha+ Y by nsla;_,5(0)]+ay" ,5(0) Zi + 0y be,—ylal_ (0)] +al (0D Zj},
7=0 7=0 i€S
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where the shifted functions are :

ag.—np(u) = ag(u —npB),ac_(u) = a.(u—y), and so on.

The expression involving 7¢ shows the effects of the systematic and cor-
porate specific factors. The survivor probability depends on the number n of

firms in the basket, and on their average state Z Z!. An interesting point is
i€s

the way the number of corporations n appears in the shift of the a, and b,

functions.

4 Affine term structure and credit risk

The joint historical distribution of factors and default is important for pre-
diction purpose. However, for CreditVaR analysis, it has to be completed by
specifying the risk-neutral distribution, or equivalently a stochastic discount
factor (sdf). The sdf is used for pricing both future money value, that is,
future dollar, and individual defaults. Indeed, it is not realistic to study
independently the term structure of riskfree interest rates and default risk,
which are both related to business cycles. For instance, in a period of high
activity, we expect both an increase of the difference between the long and
short term riskfree rates, and an improvement of credit quality [see e.g. the
study by Duffee (1998)]. For this reason, we assume that systematic factors Z
appearing in the conditional survivor probability can also influence the sdf.
Moreover, we select a stochastic discount factor, which is an exponential-
affine function of the general factors. As a consequence, the benchmark term
structure of riskfree interest rates is affine.

4.1 Specification of the stochastic discount factor

The pricing model is completed by specifying the stochastic discount factor
M 441 for period (t,¢t + 1). The sdf is the basis for pricing any derivative
written on underlying factors and on default times. Typically, the price at ¢
of a European derivative paying g, at date t + h is :

Ct(g7 h) = Et[Mt,t+1 ce Mt+h—1,t+h9t+h]
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= Ey[Myiiingirn], say, (4.1)

where F; denotes the historical expectation, conditional on the information
including the current and lagged values of the state variables, the knowledge
of the Population-at-Risk at date ¢, and the default dates of the other firms.
Pricing formula (4.1) will be first used to determine the prices of zero-coupon
bonds and corporate zero-coupon corporate bonds with zero-recovery rate.
For Treasury-bonds, we get :

B(t, t + h) - Et(Mt,t+h)7 Vt, h (42)

For the h-year zero-coupon corporate bond with zero-recovery rate cor-
responding to corporate ¢ € PaR;, we get :

Ci(t t + h) = E[MyssnLsrinl, V1, b (4.3)

For a first-to-default basket, which pays zero in case of at least one default,
and 1$ otherwise, we get :

Cs(t,t+h) = E[Myrnlrzsiinl, Vi, b (4.4)

The case where the recovery rate is nonzero will be treated in Section 6.
To restrict the set of admissible risk corrected distributions and get closed
form pricing formulas we select a sdf, which is exponential-affine in the sys-
tematic factors.

Assumption A.3 :

Mt,t-l—l = eXp[VO + V,Zt+1]. (45)

It would have been possible to also introduce corporate specific factors in
the expression of the sdf. However, the interpretation would become more
complicated, since the set of alive corporate specific factors depends on the
date. When a corporation fails, its specific factor ceases to exist. By intro-
ducing the effect of individual factors Z;, we also introduce risk corrections
for the number and structure of corporations, which is beyond the scope of
the present paper '!.

"1 The number of corporations can have an effect on default correlation. If we consider
an industrial sector with two firms only, the default of a firm will increase the monopolistic
power of the remaining one, and likely diminish its default probability.

19



Also note that some components of v [resp. ;] can be zero. Therefore,
general factors can influence the sdf, the default intensity, or both.

4.2 Zero-coupon Treasury-bonds.

The prices of the zero-coupon Treasury-bonds are given by :
B(t, t + h) - Et[Mt,t-l—l P Mt—l—h—l,t—l—h]

= exp(Voh)E explV'Zi 1+ ...+ V' Zyy).

The closed form expression of the price follows from Appendix 1.

Property 2 : The price of a zero-coupon Treasury-bond is :
h—1

B(t,t+ h) = explvoh + Y by, (a2, (0)) + a2t (0)' Z,).
=0

In particular, the geometric yields defined by :

1
r(t,t+h) = ~% In B(t,t + h)
1 h—1 ) 1 Y
= U= LB 0) = 02, (@0
J:

generate an affine space driven by the general factors. Thus, we get an affine
term structure of riskfree interest rates [Duffie, Kan (1996)].

4.3 Zero-Coupon Corporate Bonds with Zero-Recovery
Rate

The price is given by :

Ci(t,t +h)

Ei[Migy1 ... Myyn—1 01 >e4n]

h h i
By [exp (voh + v Sy Zirs ) exp (= S [y + By Zevs + 15 2450 )|

E [QXP (Voh — Sy g+ e v = B Ziy — Xy 7£+thi+j)] :

20



By applying Lemma 1 in Appendix 1, we derive the term structure of
corporate bonds with zero-recovery rate.

Property 3 : The price of the corporate bond with zero-recovery rate is :

h
Ci(t, t+h) = exp |voh — Z arrj + BB e+ n) + AN 4 Y 2+ BZ DVt ¢+ b)) + A4t 4 1) 2
=1
. 1
The geometric yields y;(t,t+h) = ~% log Ci(t,t+h) h = 1,2, ... generate
an affine term structure, now driven by both the general and specific factors.
The spread of the corporate bond with zero-recovery rate is given by :

si(t,t+h) = yi(t,t + h) —r(t,t + h)

h
%ZQHJ——BV B¢, t+h)——[A” Bl(t,t + h) — a2, (0)]' Zt—zB Dt t + h)

i ——A Bt t + h)' Z]).

j=0

b|>—*

From (4.2), (4.3), we know that :

Ci(t,t + h)

si(t,t+h) = — Bl 1+ h)

1
A log

1
= —Z log Etf[]ln>t+h]7

where Ef denotes the forward risk-adjusted measure for term h [see Merton

(1973), Pedersen, Shiu (1994), Geman, El Karoui, Rochet (1995), for defini-

tion and use of the forward risk-adjusted measure|. Property 3 shows that

the forward risk-adjusted measure is easy to use in the affine framework.
When the sensitivities ay, (3;,7; are constant, we get :
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h—1

Ci(t,t+h) = exp {Voh —ah+> bg,,,_g[agfy_ﬂ(O)] + agfly_ﬂ(O)'Zt

=1

h—1 ‘ ‘
+ D beylald (0)] +ag . (0)Z; } ,
j=1

1 h—1 oi 1 .
vyt t+h) = —vota—3 by glag, 5(0)] - gagflu—ﬂ(o)'zt

1 h—1 j.:O 1 Y )
= 3 2 ey [0l (0)] = 5al(0) 7,
j=0

sttt 4 ) = ot 3 [ [20)] = byl 400~ b fa, 0]

1 o o 1 o )
+ E[agflu(o) - agfbufﬁ(o)]lzt - Eac,hfy(o)lzt'

4.4 Decomposition of the spread for a zero-coupon cor-

porate bond with zero-recovery rate.

In the standard actuarial approach, default is assumed independent of riskfree
rates, and is priced according to the historical probability [Fons (1994)].
Thus, the actuarial value of a corporate bond with zero-recovery rate is :

C(t,t+h) = B(t,t +h)P[r; >t +h|r; > t,Z;, Z}]. (4.7)

By considering the associated actuarial yields, we get :

yi(t,t+h) =r(t,t+h)+m(t,t+h),

1 ,
where : m(t,t+h) = ~ log P[r; > t+ h|m;, > t, Zy, Z}]

L :

= —EZlogP[Ti >t+kln>t+k—1,%, 7))

k=1
RN

=5 > N, say, (4.8)

h=1
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can be interpreted as an average forward default intensity. The forward
intensity A/, = —log P(r; > t + k|r; > t + k — 1,7, Z}) differs from the
spot intensity AL ,, = —log P[r; > t + k| >t +k — 1, Zyp1, Z}y_4], due
to the time index of factor values. However, actuarial formula (4.7), which
is frequently used by the markets to estimate the default probabilities from
the spreads s;(¢,t + h), is not valid in a general framework. The aim of this
subsection is to derive a more accurate decomposition of the spread.
From Corollary 1, the average default intensity is given by :

1 h
mi(t,t+h) = —> oy — (tt+h)—EA At t+nh) 7z,
J:

_

— —B;N (tt+h)—ﬁA Nt t+h) ZL

>

We deduce the following proposition :

Proposition 4 :

Si(t,t—i‘ h) - ﬂi(t,t—i‘ h)

_ v— - oh
= h[A Ot t+h) — ANt t+ h) — a2t (0)]'Z,

1
—E[Bg”_[ﬂ](t,t—i-h)—B[ (t,t+h)— Zbg,

The average default intensity absorbs all idiosyncratic variability in spreads.
Even if both the spread term structure s;(¢,¢+ h), as well as the term struc-
ture of average default intensity m;(¢, ¢+ h) depend on the stochastic state of
the " corporation, their difference does not, and is the same for all corpo-
rations of this industry.

The correcting term in the decomposition of the spread given in Propo-
sition 4 measures the effect of the dependence between default and sdf, due
to common factors. For instance, at short term horizon, we have :
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Si(t,t—F 1) - ﬂi(t,t—F 1) =

1 { Et[Mt,t+1 ]ln>t+1] }
Et(Mt,t—l—l Et(]ln>t+1)

COUt(Mt,tJrly ]ln>t+1) }
Et(Mt,t+1)Et(]sz‘>t+1)

The correcting term can be of any sign. This term is positive [resp. neg-
ative], if the sdf and the default indicator are negatively correlated [resp.
positively correlated]. However it is difficult to guess the sign of this depen-
dence. Indeed, this sign depends on the conditioning set and the sign of the
correlation can change (from negative to positive, or conversely), when this
information set increases.

To summarize, Proposition 4 provides the following decomposition of the
term structure of corporate bonds with zero-recovery rate :

= —log{1+

term structure of corporate bonds with zero-recovery rate
= term structure of Treasury-bonds

+ term structure of average default intensity

+ term structure of dependence between sdf and default.

The correcting term takes a simplified form when the sensitivities are
time independent.

Corollary 4 : When the sensitivities oy, 3;, v; are time independent, we get :

Si(t,t—i‘ h) - ﬂi(t,t—i‘ h)

h g,V 9,— g,V
1 h—1 ) ) '
= 5 2 Boualaf 0] = boalel] 500 - brula 0]

The correcting term is zero, whenever Z; is partitioned into two indepen-
dent subvectors Z;, Z9;, and the conformable partitionings of v and 3 are
(v1,0)" and (0, 3,)", respectively. Thus, the correcting term vanishes when
default and sdf are influenced by independent factors.
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4.5 Term structures of yield and decomposition of the
spread for a first-to-default basket

A first-to-default basket with time-to-maturity A, written on n firms provides
at t + h a payoff of 18, if no firms default before ¢ + h, and 0%, otherwise.
The price at t of this basket is :

C(t t + h) = Et[Mt,t+hIlT*>t+h]7 Vt, h,

where 7* = min;—y __, 7;.

geeesyll

Computations similar to those presented in the previous sections give the
following results.

Proposition 5 :

Ct,t+h) = exp[vh nZatﬂ + BBt t+ h) + AVt + ) Z,

+ nB;O(t, 4+ h) + ADNe t+ h)'[Z) + ..+ Z7]),

s(tt+h) = Z@tﬂ——B” B0+ ) = 3[4 gt 0)] 2
n 1 h—1 Y
_ gBEM (t,t+h) + 7 Z;) by, (a3, (0))
J:

1
— EAC_M (t,t+n)(Z +...+ 2],

h
1
rtt+h) = %Zat+j—h [(tt+h)—EAg It ¢+ h)'Z,
7j=1
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1
- %Bg[ﬂ(t, th) = A D)2+ 2,

s(t,t+h) — w(t,t+h)= [A” "Bt 4+ h) — At + h) — ad(0)]'Z,

h
! BBt + + h) — BVt ¢t + 1 h_lb o (()
- E[ g ( U+ )_ g ( U+ )_ 72:1 gyV[ag,I/( )]

We still get affine term structures for first-to-default basket. The results
are simplified if the sensitivities are constant.

Corollary 6 : If the sensitivities are constant, we get :

h-1 ‘
Ct,t+h) = explvoh —nah+ " by ns(ay,_,500) +al,_ 5(0)Z,
=0

t Y b faZ (O] + 0 (0)[Z) + ..+ 27),

1 h—1 .
s(t,t+h) = na+ - Zbg, — bgu—nplag’, n5(0)]

h 9,V 9,V
. 1 oh (O)I[Zl + Zn]
h c - t
1 h—1 ) )
n(t,t+h) = na-— 7 > [bg—nslay’_,5(0)) + nbe_,[ac’_,(0)]]
7=0

1 (0] 1 (0] n
- 5 g? 5(0)’ Zt—EachW(O)'[ZtlﬂL...Jth],
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1 oi 0
S(t7 1+ h) - ﬂ-(t7 t+ h) = E [b!)aV[ag{u(O)) + bga—nﬂ(a’g{y—nﬁ(o))

L oon h h
+ E[az,y(o) + ag,—nﬂ(o) - a;,u—nﬂ(o)]lzt'

Moreover, the term structure of survivor default intensity 7 (¢, t+h) can be
decomposed into two parts. The first component corresponds to the marginal
effect of individual default risks, obtained under the independence assump-
tion '2:

n

Tt t+h) = m(t,t+ h).

=1
The second part corresponds to the residual (¢, ¢t + h) — 7*(t, ¢t + h).
The sign of the residual term depends on the type of dependence between
corporate lifetimes. For illustration, let us consider two firms n = 2. We
get :

m(t,t+h) —7*(t,t + h)
1
= —ElogP[ﬁ >t+h, 1o >t+hlm >t >t

1 1
- ZlogP[Tl >t+h|m >t >t + ElogP[Tg >t + h|m > t,m >t

This quantity is nonnegative if and only if :

Plri >t+h,7o >t+h|m1 > t, 72 >t] < Plr1 >t+h|T1 > t, 720 > t|P[r2 >t + h|T1 > t, 72 > 1]

< Cov [17—] >t+h7172>t+h|7—1 >t > t] <0

Thus, 7(t,t+h) is larger than 7*(¢,t+h), when lifetimes 7; and 7, feature
negative dependence .

12keeping the same marginal risks.

27



To summarize, we have the following proposition.

Proposition 6 : The term structure of first-to-default basket yields can
be decomposed as :

y(t,t+h) = r(t,t+h)+7"(t,t+h)+[x(t,t+h)—7"(t,t+ h)]
+ [s(t,t+h)—7(t,t + h)] (4.9)

corresponding, respectively, to :

(1) the term structure of Treasury-bond yields,

(2) the term structure of marginal defaults,

(3) the term structure of default correlation,

(4) the term structure of dependence between stochastic discount factor
and default.

4.6 Factor observability

Up to now, we have not discussed the interpretation of the general and cor-
porate specific factors, and especially their observability. It is well-known
that the general factors included in the sdf Z* (say) can be recovered from
the observed Treasury-bond prices, due to the affine structure [see Duffie,
Kan (1996)]. Equivalently, factors Z* can be replaced by mimicking factors
with yield interpretations [see Equation (4.6)].

A similar argument apply to general factors which influence default only,
and to corporate specific factors. They can be recovered from the corporate
yields, taking into account the observability of Z*. Thus, the discussion of
factor observability is equivalent to the discussion of observability of corpo-
rate term structure of yields, that is, the number and design of the liquid
corporate bonds. More precisely, let us assume Ly systematic factors and
L, idiosyncratic factors per firm. Let us denote H [resp. H;] the number of
liquid Treasury bonds [resp.corporate bonds corresponding to firm 7] at date
t. The factor values are identifiable at date ¢t under the order condition :

HZ-ZLl,izl,...,n,
H+)Y (Hi— L) > L.

i=1
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4.7 Determination of the CreditVaR.

The results above can be directly used to compute the CreditVaR of a portfo-
lio of T-bonds and corporate bonds with zero-recovery rate. Let us consider
at date ¢ a portfolio involving a set S of firms. For corporation ¢, the port-
folio includes a quantity z;¢(h) of corporate bonds with time-to-maturity
h,h=1,...,H. The current value of the credit portfolio is :

Wt = Z i xi,t(h)C’i(t, t+ h),

1€S h=1

whereas its future value is :

H
Win= > Y wu(h)Ci(t+1,t+h),
i€SNPaRs 41 h=1

where S N PaR;. is the set of firms in S, which are still alive at ¢ + 1. The
future portfolio value is doubly stochastic : first, Population-at-Risk at date
t + 1 is not known; second, the future term structure of corporate bonds has
to be evaluated.

Due to the affine structure of the model, this future value can be written
in terms of the factor values corresponding to date t + 1 :

Wi = Z XF’: zit(h) expla(h — 1) + Bl(h ~1)Zpp +7(h - 1)Z§+l]’

1€SNPaRi+1 h=1

say, where the coefficients @, b, ¢ are deduced from the pricing formulas. The
CreditVaR is a quantile of the conditional distribution of Wy, given the
information available at time ¢, that is, Z;, Z¢,i € SN PaR; (factor values,
which are deduced from the observed term structures, see Section 4.6). This
distribution can be approximated by Monte-Carlo, as follows :

i) First, draw the future value of the factor Z},,, [resp. Z] in the
conditional distribution of Z,;; given Z; [resp. Z;,, given Z}].

ii) Second, simulate independently the default occurrence between ¢ and
t + 1 for the different firms in S N PaR; and the drawn values of the factors.
SN PaRj, , denotes the simulated set of surviving firms.
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iii) Deduce the simulated future value of the portfolio by :

H
Wea= Y. > au(h)explath — 1)+ 0 (h—1)Z}, +&(h—1)27).
i€SNPaR;, | h=1
iv) Replicate the procedure for s = 1,...,5, where § is the total number

of replications.
v) Approximate the CreditVaR by the associated empirical quantile of
the sample distribution of W ,,..., WS,,.

This procedure uses in a coherent way the historical distribution of factors
and defaults, and the risk correction by sdf for the closed-form expression of
future prices.

It requires conditional drawings of the future factor values in step 1.
What about such simulations when the conditional probability distributions
are only specified through the Laplace transform 7 There is no general an-
swer, but fortunately a large number of Car processes admit compound in-
terpretations appropriate for simulation purpose [see Darolles, Gourieroux,
Jasiak (2005)]. In such cases, it is not necessary to compute numerically the
conditional cdf by inversion of Laplace transform in order to simulate. This
compound interpretation is used to create artificial data from CIR process
in the numerical experiment of Section 5.

5 Numerical Experiments

Two numerical experiments are performed in this section. First, we illustrate
the decomposition of the spreads for a corporate bond with zero-recovery rate
and a first-to-default basket. Second, we analyze the effect of a cyclical factor
(which cannot be captured in continuous time model) on both the riskfree
term structure and default probability.

5.1 Decomposition of the spread of a corporate bond
with zero-recovery rate.

Let us consider a model with one systematic factor and one specific factor,
and let us suppose that both factors follow autoregressive gamma processes,
where functions agy, by, a., b, have the following expressions :
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Pyt

ag(u) = 1_ud‘q,,og>O,dg>0,u>1/dg,
by(u) = —A,log(l —ud,),\, >0,
ac(u) = 1f;ch,pg >0,d.>0,u < 1/d,,
be(u) = —Aclog(l —ud.), . > 0.

We assume constant sensitivities with the following values :
sensitivities : a = 0.01,8=2,v=.1;s.d.f: v, = —-.01,v =—.2;
initial factor values : Z, = .003, Z} = .3;
factor dynamics : p, = .9,d, = .1,\; = .1,p. = .9,d. = .1, A\, = .1.
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Figure 1 displays the term structures of the corporate yield, of the Treasury-
bond yield and of the spread up to A = 40. Bump shapes of the corporate
yield and of the spread, often observed on bond markets, can easily be re-
produced even with fixed sensitivities.
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FIGURE 2:0One Firm Case,Components of the Spread(solid)
Default effect(dashes),Default—Sdf correlation effect(short dashes)

Figure 2 displays the decomposition of the spread into a default effect

and a default-sdf correlation effect. In the experiment, the latter effect is
negative and rather small in absolute value .

5.2 Decomposition of the first-to-default basket spread

Let us now consider a first-to-default basket on n firms. We still assume a
general factor and univariate specific factors, following independent autore-
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gressive gamma processes. We also assume fixed sensitivities. The values of
the parameters are :

portfolio size : n = 3; sensitivities : a = .01, 3 = .05,y = .01;
s.d.f. : v, = —.15,v = .05; initial values : Zy = 1,7, =1,i = 1,2, 3;
factor dynamics : p, = .9,d, = .1,\; = 1;p. = .9,d. = .1, \. = 1.

FIGURE 3:Portfolio case
Corporate Bond Yield(solid),T Bond Yield(dashes),Spread(short dashes)

Figure 3 displays the term structures of the first-to-default yield, of the
Treasury-bond yield and of the spread. In the example, both yields are
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decreasing, whereas the spread is first decreasing, and then increasing.

FIGURE4:Portfolio Case,Components of the Spread(solid)
Marginal Default Effect(dashes),Defaults correlation effect(short dashes)
Default—Sdf correlation effect(dots and dashes))
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The decomposition of the spread is provided in Figure 4. The main com-
ponent corresponds to the marginal default effect. The default correlation
effect is negative (since the durations 71, 79, 73 feature positive quadrant de-
pendence), whereas the default sdf correlation effect is positive.
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5.3 The term structure through the cycle

In this section, we assume that the general factor follows an Autoregressive
Gamma (ARG) process of order 4. In this case, using the vector Z; =
(Zy, Zy_1,Zy_o, Z;_3)" in order to be in the one lag general setting, we have :

_ Y1 Y2 ¥3 ¥4
ag(u) = 1 —uyd, + 2, 1 —ud, + s, 1 —uyd, T+t 1 —ud,
b(u) = —Aglog(l — uidy),

where ¢; > 0,d, > 0,\, > 0,u; > 1/d,.

4
The stationarity condition is : Z p; < 1. The process Z; is positive and
i=1
admits a weak AR(4) representation, which is :

4
Zt = dg)\g + Z SOithi + Et.

=1

We adopt the following values for the parameters :
1 = 0.2,00 =93 =94 =0.1,

d, = 0.1,%, =03

The numerical values of the parameters in the sdf are vy = —0.05,; =
—0.2,(i =1,...,4). The unconditional mean of the factor processis d,\,/(1—
4

Z%‘) = 0.06. The autoregressive dynamics has been selected to contain a

z:ylcle effect of period 4, as seen from the spectral density of the process re-
ported on Figure 5. Such an AR process with complex roots has no equivalent
in continuous time.

There can exist a double effect of a cyclical factor on the term structures.
On the one hand, the cyclical component of the factor can influence the pat-
tern of the term structure. Intuitively, this effect is larger in the short run
than in the long run, since the long run rate is an average of forward short run
rates, and the cycle effect is reduced by time averaging. On the other hand,
the level and pattern of the term structure can also depend on the current
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situation, that is, if we are currently in a recession, or an expansion period.
To capture this effect we consider four environments (Zt, Zi1, Do, Zt_g) se-
lected along a periodic history of period 4 with mean 6 %. The environments
are :

HMLM = (10%, 6%, 2%, 6%), MLMH = (6%, 2%, 6%, 10 %),

LMHM = (2%, 6%, 10%, 6%), MHML = (6%, 10%, 6%, 2 %), respectively
with H = high, M = Medium, L = low.

Figure 6 provides the term structures for the successive situations, in the
cycle. The short run impacts can be in opposite directions, whereas the long
run interest rates stay identical.
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6 Loss-Given-Default

6.1 Extension of affine model for credit risk.

The affine specification for credit risk can be extended to account for recovery
rates. Let us consider a given period (¢,t+41). For a default occurring in this
period, the loss-given-default is equal to one minus the recovery rate, and
denoted by LGD;4y,. Before default, the LGD variable and the associated
recovery rate are stochastic variables with values'® between 0 and 1.

For derivative pricing, the introduction of LGD allows for distinguish-
ing between corporate bonds with different seniorities : junior subordinated,
subordinated, senior subordinated, for instance. More precisely, let us con-
sider zero-coupon corporate bonds with time-to-maturity h. The zero-coupon
corporate bonds with zero-recovery rate is the derivative with payoff 1$ at
t + h, if the corporate is still alive at this date, 0$, otherwise. Similarly, the
zero-coupon corporate bond with recovery corresponds to a payoff 13, if the
corporate is still alive at ¢ 4+ h, and to a payoff 1 — LG'Dyy 4441 received at
t+ k + 1, if default occurs between ¢t 4+ k and ¢t + k + 1, where the definition
of LGD depends on the seniority level. Thus, the prices of corporate bonds
without recovery and with recovery are, respectively'

C(t,t+h)=E {H?;& (M1 (1 — Dt+j,t+j+1)]} )
and

C*(t,t + h)

h
Z By {528 (Mg, 04j4+1(1 = Doy 1)) Myg k1,048 Degno1,e40[l = LDGyg 1
k=1
k—1
+ B {25 [Mesjarj+1(1 = Dijeriv)l}

where M, 11 denotes the sdf and D, the default indicator for period (¢, ¢+

).

As above a factor representation can be introduced. This representa-
tion assumes that the sdf depends on factor values only, and that default

13In practice, observed LGD can be negative, or larger than one, as a consequence of
penalties and recovery costs. Following a suggestion of the Basle Committee, they are
truncated to (0,1) for regulatory purpose.

14We have chosen specifications in which the recovery is paid at default time, and not
at the contractual maturity (see e.g. Duffie, Singleton (1994)-(2003), Baho, Bernasconi
(2003), for other specifications).
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and loss-given-default are independent given the factor value [but generally
dependent, when the factor is integrated out]. Thus, this approach can be
considered as an extension of the approach of Brennan, Schwartz (1980), Duf-
fee (1998), in which the creditor receives an endogenous random fraction of
face value immediately upon-default. This approach allows for a symmetric
treatment of probability of default and loss-given-default. It avoids addi-
tional assumptions, such as the so-called ”recovery of market value” [Duffie,
Singleton (1999)], in which ”the expected risk-neutral recovery rate is a pre-
determined fraction of the risk-neutral expected survival market value”. In
fact, such an hypothesis can easily be tested in our framework.

The derivative prices can be rewritten in terms of survivor intensity and
expected loss-given-default, computed conditional on factor values. We get :

Clt,t+h) = E{IUZ) [Myyjisjn(1— PDigjisjn)l}

— h—1
= B 02 (Miyjarsa o)
and

h

Z By {523 [Mij,64j41(1 = PDotjejr1) Moy k1,045 PDek—1,e45(1 — ELGDy g 1,01
k=1

C*(t,t+h)

k-1
+ B {1520 [Megj a1 (L = PDeyjenjen)] }
h
= Z By {528 (Mg ojramt,erjsr) Megn—1,e4n(1 = ®eqh—1,e0) (1 — ELGDy g1 04) }
h=1

k—1
+ By [0 (Metjer1mejeri+n)] »

where PD and ELGD denote the default probability and the expected loss-
given-default, respectively.

The model is completed by introducing exponential affine specifications,
and factors with Car dynamics in order to use the closed form expres-
sions of the conditional Laplace transform of the factors. At this step, the
exponential-affine specification can be written either for the expected loss-
given-default, or for the expected recovery rate. In this model the ”risk-
neutral” expected loss-given default and the risk-neutral expected survival
market value are both exponential affine functions of the current values of the
factors. The price of corporate bonds with recovery are available in a quasi-
explicit form, using straightforward generalization of the recursive methods
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presented above [see Baho, Bernasconi (2003) for details]. Moreover, the
recovery at market value assumption is easily tested in this framework by
checking if the coefficients of the factors are the same and just the intercepts
differ.

Finally, more detailed spread decomposition can be derived for corporate
bonds to highlight the term structure of loss-given-default, the term structure
of dependence between default probability and expected loss-given-default,
and so on.

6.2 Correlations

Any joint modelling of default and loss-given-default must reproduce the
adverse correlations observed on historical data [Altman et al. (2003), Basel
Committee on Banking Supervision (2005)]. The recovery rates are in average
lower and the default probabilities higher in recessions explaining the positive
[resp. negative] correlations observed between default and loss-given-default
[resp. default and recovery rates|. Therefore, any exponential affine intensity
model has to allow for this dependence feature. Let us discuss this point on
the example of a 3-factor model, where :

PD = exp(ag+ a1 Z; + asZs + a3Zs),

ELGD = exp(Bo+ BiZ1 + PoZo + B573), say.

Standard affine dynamics are as follows :

i) a Gaussian VAR(1) (Ornstein-Uhlenbeck) process of (7, Zs, Zs);
ii) independent autoregressive gamma (CIR) processes;

iii) a WAR process for the stochastic matrix 21 2 .
Zy Zs

The choice of a Gaussian factor process does not ensure PD and ELGD
between 0 and 1. The choice of independent CIR process ensures PD and
ELGD in (0,1) if, and, only if, ag = By, a1 < 0,0 < 0,03 < 0,51 < 0, By <
0,83 < 0. Thus, a shock on a factor, Z;, say, the other types of factors
being fixed has the same type of effect on PD and ELGD. Automatically, we
get conditional and unconditional positive links between the two exponential
affine functions of the CIR factors.
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We will now discuss positive and negative dependence for models with
Wishart factors. Since Wishart processes concern stochastic volatility ma-
trices, we introduce matrix notations :

PD = exp|-Tr(AZ)], ELGD = exp|-Tr(BZ)],

Z1n 2 air Q12 bi1 b1z
where A= ,B = ,
( Zhg Za a1z Q22 bz bao
are symmetric positive definite matrices. The stochastic matrix factor Z

follows marginally '* a standard Wishart distribution with K degrees of
freedom and Laplace transform :

Eexp|-Tr(UZ)] = det (Id + 2U)~%/2,

where U is a symmetric matrix.

Since A and B are symmetric positive definite matrices, PD and ELGD
are between 0 and 1. Let us now consider their explicit expressions :

PD = exp[—(a11 211 + anZa + 2a12715)],

ELGD = exp[—(anH + 622222 + 2[)12212].

The sensitivity factor coefficients are constrained by :

2 2
aip > O, 11029 — QY > O, bn > O, 611622 — b12 > 0.

These constraints are compatible with opposite sign for a1, and by5. Then,
a shock on the stochastic volatility Z15 (or equivalently on the stochastic cor-
relation), given the stochastic volatilities Z;1, Zo, implies opposite effects on
exp|—Tr(AZ)] and exp[—Tr(BZ)]. Thus, we get a negative correlation for
given volatilities. Let us now show that, historically, the effects of shocks on
stochastic covolatility cannot dominate the effects due to shocks on volatili-
ties ZH and ZQQ.

More precisely, the negative dependence given stochastic volatilities is
compatible with a positive unconditional dependence. Let us consider :

15The standard Wishart distribution is the marginal (invariant) distribution of a Wishart
autoregressive process.
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Cov|DP, LGD]
= Cov(exp[—Tr(AZ)],exp(=Tr(BZ)])
= Eexp{—]{r(A +B)Z) — Eeﬁp[—Tr(AZ)]f)exp[—Tr(BZ)]

" det(Id+2(A+ B)]  det(Id + 2A) det(Id + 2B)

The covariance is positive if, and only if,
A = det(Id + 2A) det(Id + 2B) — det(Id + 2(A + B)] > 0.

Without loss of generality, we can assume a5 = 0. We get :
A =8(bi1by — b3y) (a1 + a1z + 2a;11as2)
+4[a11b11 + agbas + 2a11a90(b1y + b)) > 0,

by the positiveness condition on matrices A and B.

6.3 Marginal distribution of LGD.

Finally, it is interesting to mention that in the exponential- affine specification
with ARG or Wishart factors, the marginal and conditional distributions of
LGD can admit a variety of patterns similar to the standard pattern of
the beta distribution. More precisely, this distribution corresponds to the
distribution of Y = exp(—bZ7), where Z follows a gamma distribution with
v degree of freedom. The associated density function is :

1 1

fly) = Wb—y(— logy)"'yM* o) ().

These densities are either bell-shaped (if v < 1,b < 1), or monotonic with
a mode on one of the boundary (if v < 1,b > 1, or v > 1,b < 1), or admit

U-pattern with infinite values on both 0 and 1 (if » > 1 and b > 1). Thus,
this family is able to provide good fit to the observed LGD distributions.

7. Concluding remarks

We have described in this paper the affine specification for the analysis of
credit risk in a discrete time framework. This framework assumes stochastic
discount factor, survivor intensities and loss-given-default (or recovery rates),
which are exponential-affine functions of affine factor processes. The affine
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framework offers a coherent description of the Treasury-bond, corporate bond
prices with or without recovery, and first-to-default basket, and tractable
methods for predicting the risk included in a portfolio of corporate bonds,
while taking into account any possible dependence between default and loss-
given-default.

The discrete time affine specification is more flexible than the continuous
time affine specification.

i) By considering a much larger set of affine dynamics, it provides better
data fit, can take into account the procyclical effect existing in default prob-
abilities, loss-given-default, and riskfree rates, or allow for lagged causality
and recursive effects.

ii) From a numerical point of view, the discrete time affine specification is
easy to implement and avoids the numerical approximation of the standard
Riccati equations. This allows a diminution of the number of iterations
needed to derive the credit derivative prices, while being still compatible
with no- arbitrage opportunity.

iii) It seems more appropriate for estimation purpose, since the data on
failure are available in discrete time (monthly), and for simulation purpose,
since the Credit VaR has to be evaluated in discrete time too.

The discrete time affine model can also be used to analyse other events,
such as the up-or downgrades by rating agencies. Such an analysis has to be
done before using the basic migration models.

After having surveyed practitioners and academic research, the LGD
working group of the Basel Committee pointed out the three following find-
ings (Basel Committee on Banking Supervision (2005)] :

First, ”the potential for recovery rates to be lower than average during
times of high default rates”,

Second, ”"data limitation posing an important challenge”,

Third, "the little consensus for incorporating downturn conditions in
LGD”.

As seen in the paper, the affine model in discrete time is sufficiently
flexible to get the expected sign of conditional dependency between LGD and
default (point 1), or to incorporate and predict downturns by the introduction
of unobservable factors with cyclical dynamics (point 3).

Nethertheless, data limitation is still a challenge. If databases on rating
migrations are sufficient to estimate nonlinear dynamic factor models, and
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get reliable results on default [see e.g. Gagliardini, Gourieroux (2005)], the
lack of a sufficient number of detailed data on LGD is clearly a problem.
Currently, available microeconomic data on LGD can mainly be used to
get unconditional information on the link between LGD and default, or on
the type of unconditional LGD distribution, but not to get reliable results
after conditioning on observable, or unobservable factors. To circumvent this
difficulty, it has been proposed to use market data on corporate bonds. But, a
new technical difficulty arises. The credit derivative returns are submitted to
parametric domain restrictions, which may have to be taken into account to
avoid inconsistent, or inefficient calibration procedures [Gourieroux, Monfort
(2005)]. This question is clearly beyond the scope of the present paper.
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Appendix 1

Conditional multivariate Laplace transform for a Car process

Let us consider a multivariate Car process, which satisfies :
Elexp(u'Z41)| 7] = expla(u)' Z; + b(u)].

For any deterministic sequence [u] of vectors {us, s = 1,...}, let us define the
transformation:

Elexp(upy Zip1 + - -« + Uy Zen) | Z2],

which provides the conditional joint Laplace transform of Z;,..., Z;1p.
The following lemma holds:

Lemma 1 : For any deterministic sequence [u] of vectors {us, s = 1,...},
we have :

Elexp(upy Ziv1 + - .+ iy Ziyn) | Z1]

= explAlM(t, t + h)Z, + BY(¢, t + h)],

where the operators A" and B depend on functions a(.), b(.) as well as on
sequence [u], and satisfy the backward recursion :

At +h) = aluy + AM(E 41,1+ B)),

BM(t,t+h) = blug + A+ 1t +h)] + BU(t +1,¢+ h),

for h > 0, with terminal conditions :

At 1) =0, BM(t,t) =0,V t.
Proof : We have :
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Elexp(upy 1 Ze41 + -+ Uy Zirn)| Zi)
= B (Blexp(uf1Ze1 + -+ Uy Zin)| Ze41]1 Ze)
= E(exp[ujq Ziv1 + At + 1, + h)' Zyyr + BU(E+ 1,t + h)]| Z)
= E(exp([uss1 + AM(t 4+ 1,t + )] Zi11)|Zs) exp(BM (t 4 1, + h))
= exp{afug1 + AM(E+ 1,6+ h))Z, + B (t 4+ 1,t 4+ h) + blugyr + At +1,t + h)]}.

The recursion follows by identification.
Moreover, the terminal conditions are satisfied, since :

At 4+ 1) = alugey), Bt t 4+ 1) = blugyy),

are deduced from the recursive equations applied with AM(¢ +1,¢ 4+ 1) =
0,BM(t +1,t+1) =0.

QED

Appendix 2

Conditional survivor functions

i) Let us first compute the survivor function of one firm i, given Z and Z*.
We deduce from Assumption A.2 that :

Pl > h|Z, Z] = H?:l exp{—(ou + 6,2, + ’YQZti)}a
where Z = (Z;,Vt > 0) , Z' = (Z!,Vt > 0).
In particular, P(r; > h|Z,Z') = P(r; > h|Z,, Z%),
where Z, = (Z,t < h), Z; = (Z},t < h). We also deduce that :
Plr; < hlZ,Z%) = Plri < h|Zy, Z24],
Plr; = h|Z,Z") = Plr; = hi|Z,,, Z%,).
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ii) Then, the joint survivor function given the entire realization of the factor
path is :

P[Ti > h’l:Z € S|Z7£7] = 17"'7”]
= P[Ti>hi,i€5’|z,£,j€5]
= esPlni > hi|Z, 2]

= Hiesngizl exp{—(aj + 6;23 + ’}/;Z;)}
iii) We deduce that :
Plri >t + h;,i € S|PaRy, S C PaRy,7j,j € PaR, Z,, 27,5 =1,...,n]

P[TZ’ > t+hl,l € S,Tk >t,]€ S PCLRt—S|Zt,Z_jt,j < PaRt]
P[TZ > t,Z E PaRt|Zt7th7j E PaRt]

E [Wies T exp (—(ay + 82, + 1) |2, 21,5 € ]
iesTli_y exp[—(ay + B;Z; + 7 Z]]

= FE [HieSH?izl exp (—(Oétﬂ + By Ziss + 7£+ng+j)) 2, 2, € 5]
= BiesIL, expl=0],, Zeyk — cigs]| Zi]

Mics B[}, exp(—7i 1 Ziy g )| Zi], from Assumption A.1,
= E[Hlfzzl exp(—nerk By, Ze+k)| Zi]

Mies BT, exp[—774 2] 44]| 2]

Ih_ exp[—ny koiik], (A1)

where : h = max;cs h; and n;,), denotes the number of firms in set S with
h; > k. Therefore, the conditional survivor function can be deduced from
the conditional Laplace transform of Car process Z (see Appendix 1, Lemma

).
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