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Wishart Autoregressive Model for Stochastic Risk
Abstract

Risks are usually represented and measured by volatility-covolatility ma-
trices. Wishart processes are models for a dynamic analysis of multivariate
risk, that describe the evolution of stochastic volatility-covolatility matrices,
constrained to be symmetric positive definite. The autoregressive Wishart
process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR)
process introduced for scalar stochastic volatility. As the CIR process it al-
lows for closed form solutions for a number of financial problems, such as term
structure of T -bonds and corporate bonds, derivative pricing in multivariate
stochastic volatility model and structural model for credit risk. Moreover
the Wishart dynamics are very flexible and are serious competitors for less
structural multivariate ARCH models.

Keywords : Wishart Process, Stochastic Volatility, Factor, Quadratic
Term Structure, Credit Risk.

JEL Number :G12, G13.

Le modèle Wishart autorégressif pour risque stochastique
Résumé

Les risques sont habituellement représentés et mesurés par des matri-
ces de volatilité. Les processus Wishart sont des modèles permettant une
analyse dynamique des risques multivariés; ils décrivent l’évolution de matri-
ces de volatilité stochastique, matrices symétriques positives. Le processus
de Wishart autorégressif (WAR) est l’extension multivariée du processus de
Cox, Ingersoll, Ross (CIR) introduit pour une volatilité scalaire. Comme le
processus CIR, il conduit à des solutions explicites pour un grand nombre de
problèmes financiers, tels les structures par terme des obligations d’état et
d’entreprises, la valorisation des produits dérivés dans les modèles multivariés
à volatilité stochastique et les modèles structurels de risque de crédit. De
plus la dynamique Wishart est très flexible et apparâıt comme un concurrent
sérieux des modèles ARCH multivariés moins structurels.

Mots Clés : Processus Wishart, volatilité stochastique, facteur, struc-
ture par terme quadratique, risque de crédit.
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1 INTRODUCTION

Risks are usually represented and measured by volatility-covolatility matri-
ces. Wishart processes are models for a dynamic analysis of multivariate
risk, that describe the evolution of stochastic volatility-covolatility matri-
ces, constrained to be symmetric positive definite. The Wishart process is
the direct multivariate extension of the Cox-Ingersoll-Ross (CIR) process in-
troduced for a scalar volatility. Its importance is easily understood if we
remind the advantages and limitations of the CIR process. Loosely speaking
the CIR process allows for closed form solutions for a number of financial
problems. These problems concern the term structure of riskfree interest
rate [Cox-Ingersoll-Ross model, Cox-Ingersoll-Ross (1985)], the analysis of
default risk [the so-called stochastic default intensity model considered by
Lando (1998)], the derivative pricing in stochastic volatility model [the so-
called Heston’s model considered in Heston (1993) and Ball, Roma (1994)],
the analysis of intertrade durations [Gourieroux, Jasiak (2005)] and the as-
sociated models of time deformation. The counterpart of a search for closed
form solutions is generally a lack of flexibility of the model and possible
misspecification. This limitation exists for the CIR based financial models
and is well-documented, especially for applications to term structure. By
increasing the dimensionality of the risk, that is by replacing a scalar volatil-
ity by a volatility-covolatility matrix, Wishart models increase significantly
the flexibility of the associated models while keeping the advantage of closed
form solutions. Moreover the structural interpretations of the Wishart based
models make them direct competitors of flexible descriptive approaches such
as multinomial trees [e.g. Ho, Lee (2004)], or dynamic conditional correlation
GARCH models [Engle, Sheppard (2001)].

In Section 2 we first consider the CIR process and its main financial
applications to term structure and derivative pricing. The aim of Section 3
is to introduce the Wishart process as the multivariate extension of the CIR
process and explain why it allows to extend the financial models based on the
CIR process to a multiasset framework, while keeping closed form solutions.
In Section 4 we discuss the flexibility of the Wishart process for representing
various dynamics of volatilities-covolatilities. We also explain how to reduce
the number of parameters appearing in the unconstrained Wishart process by
looking for factor representations and we discuss statistical inference. Section
5 concludes. The proofs are gathered in appendices.
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2 The Cox-Ingersoll-Ross Process

The Cox-Ingersoll-Ross model specifies a dynamics for a positive scalar pro-
cess. This process, denoted by (yt) in this section, can represent a return
volatility, an interest rate, a stochastic discount factor, the difference between
ask and bid prices, or a latent risk factor. We first describe the dynamics
and the distributional properties of the process. In a second subsection we
discuss the links with the Ornstein-Uhlenbeck process. Finally we present
the applications of the Cox-Ingersoll-Ross process to the term structure of
interest rates and to derivative pricing in a stochastic volatility framework.

2.1 Definition and Distributional Properties.

2.1.1 Definition

Definition 1 : The Cox-Ingersoll-Ross process satisfies the diffusion equa-
tion :

dyt = −k(yt − θ)dt+ (η2yt)
1/2dWt,

where (Wt) is a univariate Brownian motion and the parameters satisfy :
η > 0, kθ > 0.

This process is also called square root process due to the expression
(η2yt)

1/2 of the process volatility. The condition η > 0 can be always imposed
since only the square η2 matters. The inequality restriction kθ > 0 ensures
the positivity of the process (if the initial value yo > 0). Indeed at a date t
where the process vanishes yt = 0, the process becomes locally deterministic
since η2yt = 0, whereas the drift is equal to kθdt > 0. The positivity of
the drift implies a rejection towards positivity and explains why the process
satisfies the expected positivity restriction.

Finally note that the drift Etdyt = −k(yt − θ)dt, and the volatility
Vt(dyt) = η2ytdt are both affine functions of the current process value yt.
Thus the Cox-Ingersoll-Ross process is an example of so-called affine pro-
cess [Duffie, Kan (1996)]. This explains the possibility to get closed form
expressions for the process distribution by means of the conditional Laplace
transform.
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2.1.2 Conditional Laplace Transform

In Definition 1 the dynamics is described by the recursive equation, which
explains how to generate yt+dt given yt. More generally it is useful to analyze
the transitions at any horizon h, that is to consider the conditional distribu-
tion of yt+h given yt. This can be done in various ways. First we will consider
the (conditional) Laplace transform (or moment generating function) defined
by :

ψt,h(u) = E (exp[−uyt+h]|yt) , u ≥ 0,

which gives the conditional moment of any decreasing exponential transform
of yt+h. Since (yt) is a positive process, the conditional Laplace transform
characterizes the transition between dates t and t + h [Feller (1971) ]. Al-
ternatively we can look for the conditional density of yt+h given yt, or for a
practical way to simulate yt+h for given yt. In this subsection we first focus
on the Laplace transform and consider the other approaches in the following
subsections.

Proposition 1 : The (conditional) Laplace transform of the CIR process
is :

ψt,h(u) = Et[exp(−uyt+h)]

= exp−[a(h, u)yt + b(h, u)],

where functions a, b satisfy the differential equations:

∂a(h, u)

∂h
= −ka(h, u)− η2

2
a(h, u)2, h ≥ 0,

∂b(h, u)

∂h
= kθa(h, u), h ≥ 0,

with initial conditions : a(0, u) = u, b(0, u) = 0.
The solutions of the above differential system are :
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a(h, u) =
u exp(−kh)

1 +
η2u

2k
[1− exp(−kh)]

,

b(h, u) =
2kθ

η2
log

[
1 + u

η2

2k
(1− exp(−kh))

]
.

Proof : See Appendix 1.1 and Appendix 2.1.

The conditional Laplace transform is an exponential affine function of the
current value yt, which is another characterization of affine diffusion models
[see Duffie, Filipovic, Schachermayer (2003)]. Note also that limh→∞ a(h, u) =
0, if and only if parameter k is strictly positive. The condition : k > 0, is a
stationarity condition of the CIR process. Under this stationarity condition
the transition at horizon h tends to the stationary distribution (or marginal
distribution) of the process in the long run (h → ∞). This marginal distri-
bution admits the Laplace transform :

E exp(−uyt) = lim
h→∞

exp[−b(h, u)]

= exp

{
−2kθ

η2
log

[
1 + u

η2

2k

]}
,

or : E exp(−uyt) =

(
1 + u

η2

2k

)−2kθ

η2

. (2.1)

2.1.3 The Transition Distribution

The transition distribution of yt+h given yt has been characterized in the pre-
vious subsection in terms of its conditional Laplace transform. The proposi-
tion below provides the interpretation of the transition in terms of standard
families of distributions and gives the expression of the conditional density.

Proposition 2 :
i) The conditional distribution of yt+h given yt is a noncentered gamma distri-

bution up to a scale factor. This distribution denoted by γ[ν,
ρ(h)

λ(h)
yt, λ(h)] is

such that : yt+h/λ(h) follows a centered gamma distribution γ(ν+Zt+h), with
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a stochastic degree of freedom such that Zt+h follows the Poisson distribution

P
[
ρ(h)

λ(h)
yt

]
.

ii) The parameters are :

ν =
2kθ

η2
, ρ(h) = exp(−kh), λ(h) =

η2

2k
[1− exp(−kh)].

iii) The conditional pdf is given by :

f(yt+h|yt) = exp [− (yt+h − ρ(h)yt) /λ(h)]
yν−1

t+h

λ(h)ν

∞∑
z=0

[
1

z!Γ(ν + z)

[
yt+hρ(h)yt

λ(h)2

]z}
.

iv) When k > 0 and h tends to infinity, we get the marginal distribution,
which is a centered gamma distribution up to a scale factor :

γ(ν, 0, η2/2k).

Proof : See Appendix 3.

The first part of Proposition 2 provides a simple approach for simulating
discrete time paths y1, y2, . . . , yt, yt+1 . . . , say, of a Cox-Ingersoll-Ross process.
Once ys

t has been drawn , the intermediate stochastic degree of freedom Zs
t+1

is drawn in the appropriate Poisson distribution, and then ys
t+1 is drawn in

the appropriate centered gamma distribution λ(ν + Zs
t+1), up to the scale

factor λ(1).
The conditional p.d.f. involves a series expansion, whose terms tend

quickly to zero when z increases. Thus this pdf can be approximated by
its truncated version with a finite number of terms only.

2.1.4 Integrated Process

In financial applications, we are often interested in the integrated process,
that is in quantities such as : ∫ t+h

t
yτdτ.
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The conditional distribution of the integrated process is also easily derived
by means of its conditional Laplace transform.

Proposition 3 :

i) The conditional Laplace transform of the integrated CIR process (for u =
1) :

ψ∗t,h(1) = Et

[
exp(−

∫ t+h

t
yτdτ)

]
can be written as :

ψ∗t,h(1) = exp (−a∗(h)yt − b∗(h)) ,

where functions a∗, b∗ satisfy the partial differential system :

∂a∗(h)

∂h
= 1− ka∗(h)− η2

2
(a∗(h))2,

∂b∗(h)

∂h
= kθa∗(h),

with initial conditions : a∗(0) = 0, b∗(0) = 0.

The solutions of this system are :

a∗(h) =
2

γ + k
− 4γ

γ + k

1

(γ + k) exp(γh) + γ − k
,

b∗(h) = −kθ(γ + k)

η2
h+

2kθ

η2
log[(γ + k) exp(γh) + γ − k]

− 2kθ

η2
log(2γ),

where : γ =
√
k2 + 2η2.

Proof : See Appendix 1.2 and Appendix 2.1.
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The general expression of the conditional Laplace transform of the inte-
grated CIR process is easily deduced from Proposition 3. Indeed this Laplace
transform is :

ψ∗t,h(u) = Et exp(−u
∫ t+h

t
yτdτ)

= Et[exp−
∫ t+h

t
(uyτ )dτ ].

This is the Laplace transform of the process y∗t = uyt, which is still a
Cox-Ingersoll-Ross process, since :

d(y∗t ) = −uk(yt − θ)dt+ (u2η2yt)
1/2dWt

= −k(y∗t − uθ)dt+ (η∗2y∗t )
1/2dWt,

with : k∗ = k, θ∗ = uθ, η∗2 = uη2.

Therefore : ψ∗t,h(u) = Et [−a∗(h, u)yt − b∗(h, u)]

where : a∗(h, u) =
2u

γ(u) + k
− 4uγ(u)

γ(u) + k

1

(γ(u) + k) exp[γ(u)h] + γ(u)− k
,

b∗(h, u) = −kθ
η2

[γ(u) + k]h+
2kθ

η2
log[(γ(u) + k) exp[γ(u)h] + γ(u)− k]

−2kθ

η2
log(2γ(u)),

where : γ(u) =
√
k2 + 2uη2.

2.1.5 Link with the Ornstein-Uhlenbeck Process.

Let us consider an Ornstein-Uhlenbeck process defined by :

dxt = axtdt+ wdWt, say.

By applying Ito’s formula, the dynamics followed by the square of this process
yt = x2

t is :
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d(x2
t ) = 2xt(axtdt+ wdWt) + w2dt,

or : dyt = (2ayt + w2)dt+ 2wy
1/2
t dWt.

More generally let us consider J independent Ornstein-Uhlenbeck pro-
cesses with identical parameters :

dxjt = axjtdt+ wdWjt, j = 1, . . . , J,

where the Brownian motions (Wjt), j = 1, . . . , J are independent.

The process yt = x2
1t + . . .+ x2

Jt is such that :

dyt =
J∑

j=1

d(x2
jt) =

J∑
j=1

(2ax2
jt + w2)dt+

J∑
j=1

2wxjtdWjt,

or equivalently by aggregating the Brownian motions :

dyt = (2ayt + Jw2)dt+ 2wy
1/2
t dWt.

Proposition 4 :
The sum of squares of J independent Ornstein-Uhlenbeck processes with

identical parameters a, w2 is a Cox-Ingersoll-Ross process with :

k = −2a, η = 2w, kθ = Jw2.

In this way we generate all CIR processes such that : 4kθ/η2 is integer.

2.2 Financial Applications

Two equivalent alternative approaches can be followed for asset pricing based
on no arbitrage arguments. On the one hand we can consider the risk-neutral
world and define the asset price as the risk neutral expectation of the sum
of future discounted payoffs. On the second hand we can implement the
computations in the historical (real) world and introduce the dynamic risk
correction by means of a stochastic discount factor. In the first subsection
both approaches are applied to the analysis of the term structure of interest
rates. In the second subsection we consider derivative pricing in the frame-
work of stochastic volatility models.
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2.2.1 Term Structure of Interest Rates.

Let us denote by B(t, t + h) = exp[−hr(t, t + h)] the price at t of a zero-
coupon bond with time to maturity h and by r(t, t + h) the interest rate
(geometric yield) at time t for term h. The infinitesimal riskfree rate at time
t is : rt = limh→0 r(t, t+ h).

i) Risk-Neutral Approach

In the risk-neutral approach the price of the zero-coupon bond is given
by :

B(t, t+ h) =
Q

Et [exp(−
∫ t+h

t
rτdτ)],

where
Q

Et denotes the conditional expectation computed with the risk-neutral
probability. Let us assume that, under the risk-neutral probability Q, the
process of infinitesimal rate satisfies the Cox-Ingersoll-Ross process :

drt = −k̃[rt − θ̃]dt+ (η̃2rt)
1/2dW̃t,

where ∼ is introduced for risk-neutral parameters. The formula for the zero-
coupon bond price is directly deduced from Proposition 3. We get :

B(t, t+ h) = exp[−ã∗(h)rt − b̃∗(h)],

where : ã∗(h) =
2

γ̃ + k̃
− 4γ̃

γ̃ + k̃

1

(γ̃ + k̃) exp(γ̃h) + γ̃ − k̃
,

b̃∗(h) = − k̃θ̃(γ̃ + k̃)h

η̃2
+

2k̃θ̃

η̃2
log[(γ̃ + k̃) exp(γ̃h) + γ̃ − k̃]

− 2k̃θ̃

η̃2
log(2γ̃),

where : γ̃ =
√
k̃2 + 2η̃2.

This is the well-known Cox-Ingersoll-Ross model [Cox-Ingersoll-Ross (1985)]
and an example of affine term structure model (ATSM), where all rates
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r(t, t + h) are affine functions of rt, with sensitivity coefficients depending
on time to maturity.

We know that :

rt = lim
h→0

r(t, t+ h) =
∂ã∗(0)

∂h
rt +

∂b̃∗(0)

∂h
.

It is easily checked that the limiting conditions
∂ã∗(0)

∂h
= 1,

∂b̃∗(0)

∂h
= 0

are satisfied by the solution above for any choice of risk-neutral parameters.

ii) Historical Approach

In this approach the price of the zero-coupon bond is :

B(t, t+ h) =
P

Et [exp−(
∫ t+h

t
mτdτ)],

where
P

Et denotes the conditional expectation computed with the historical
probability and mt denotes the stochastic discount factor (sdf). Let us as-
sume that, under the historical probability P , the sdf (mt) satisfies the CIR
process :

dmt = −k(mt − θ)dt+ (η2mt)
1/2dWt.

The formula for the zero-coupon prices becomes :

B(t, t+ h) = exp[−a∗(h)mt − b∗(h)],

where a∗(h) and b∗(h) are given in Proposition 3. The different rates r(t, t+h)
are now affine functions of mt. In particular the short term rate rt is also an
affine function of mt :
rt = αo + α1mt, say. Thus the zero-coupon prices can also be written as :

B(t, t+ h) = exp
[
−a∗(h)rt − αo

α1

− b∗(h)
]
,

and are exponential affine functions of rt. We deduce that both historical
and risk-neutral approaches with CIR processes provide identical results,
whenever the historical and risk-neutral parameters are chosen appropriately.

11



2.2.2 Derivative Pricing in Stochastic Volatility Model

Let us consider a standard Black-Scholes model with stochastic drift and
volatility independent of (Wt) for the dynamics of the asset price :

d logSt = µtdt+ σtdWt, (say). (2.2)

Conditional on drift and volatility trajectories, the distribution of logSt+h

given logSt is Gaussian with mean logSt+
∫ t+h

t
µτdτ , and variance :

∫ t+h

t
σ2

τdτ.

In particular the conditional Laplace transform of logSt+h is :

E[exp(u logSt+h)|St, (µt), (σ
2
t )]

= exp[u logSt + u
∫ t+h

t
µτdτ +

u2

2

∫ t+h

t
σ2

τdτ ].

Let us now assume that the drift includes a risk premium which is an
affine function of the volatility :

µt = αo + α1σ
2
t . (2.3)

Then the conditional Laplace transform becomes an exponential affine
function of the integrated volatility.

E[exp(u logSt+h)|St, (µt), (σ
2
t )]

= exp[u logSt + uαoh+ (uα1 +
u2

2
)
∫ t+h

t
σ2

τdτ ].

The Laplace transform above is computed taking into account the future
paths of drift and volatility. Usually it is assumed that the (investor’s) avail-
able information includes only the current and lagged values of S and σ2.
Thus the Laplace transform conditional on this restricted information set is :

Φt,h(u) = E[exp(u logSt+h)|St, µt, σ
2
t ]

= E[exp[u logSt + uαoh+ (uα1 +
u2

2
)
∫ t+h

t
σ2

τdτ ]|St, σ
2
t ]

= exp(u logSt + uαoh)ψ
∗
t,h(−uα1 −

u2

2
),
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if (σ2
t ) follows a CIR process.

If the riskfree rate is set equal to zero and the dynamics above are under
the risk neutral probability, Φt,h(u) is simply the price at t of a derivative
paying exp(u logSt+h) at t + h. The prices are defined for any value of u,
including possibly complex values, and admits closed form expression. Then
the price of a more standard derivative such as for instance a European
call written on St+h is easily deduced by inverting appropriately the Fourier
transform (that is the Laplace transform with pure imaginary argument u),
which admits a closed-form expression. These closed form expressions of
derivative prices in CIR stochastic volatility models have been first derived
in Heston (1993), Ball, Roma (1994) [see also Pearson, Sun (1994) for the
introduction of a risk premium in the drift of the price equation and Duffie,
Pan, Singleton (2000) for a general presentation of transform analysis].

Financial applications to term structure and to derivative pricing in stochas-
tic volatility model show that the expressions of the prices are directly related
to the Laplace transform of an integrated latent factor, which corresponds to
either the short term interest rate, the sdf, or the latent stochastic volatility.
The existence of a closed form expression of the conditional Laplace trans-
form of the integrated CIR process explains the closed form expressions of
the prices derived in the CIR framework.

3 The Wishart Process

The Wishart process is the multivariate extension of the Cox-Ingersoll-Ross
process. Like the CIR it can be defined in various ways. In Section 3.1, we
first use the interpretation of the Wishart process as sum of matrix squares
of Ornstein- Uhlenbeck processes to derive the expression of the conditional
Laplace transform of this process and of its conditional pdf. Then we write
a matrix diffusion system satisfied by the Wishart process. Finally we de-
rive the closed form expression of the conditional Laplace transform of the
integrated Wishart process. The financial applications are presented in Sec-
tion 3.2. We first explain why some linear combinations of the elements of a
Wishart process can be scalar positive processes. Then we discuss Wishart
quadratic term structure (QTSM) models, derivative pricing in multivariate
stochastic volatility model and structural models for credit risk.
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3.1 Construction of the Wishart Process

The simplest way to derive the distribution of a Wishart process is to start
from multivariate Ornstein-Uhlenbeck processes. By considering the sum of
matrix squares of independent Ornstein-Uhlenbeck processes with identical
dynamics, we derive the conditional Laplace transform of the (multivariate)
Wishart process with integer degree of freedom. Then this process is ex-
tended to fractional degree of freedom.

Let us introduce K independent n-dimensional Ornstein-Uhlenbeck pro-
cesses :

dxk,t = Axk,tdt+QdWk,t, k = 1, . . . , K,

where A,Q are (n, n) matrices with Q invertible, and let us consider the
matrix process :

Yt =
K∑

k=1

xk,tx
′
k,t.

By construction this process is such that Yt is a (n,n) (stochastic) symmet-
ric positive semi-definite matrix. Moreover the matrix Yt is positive definite
whenever K ≥ n.

Then it is useful to define the conditional Laplace transform of the ele-
ments of Yt+h given the elements of Yt under a form appropriate for matrix
processes. For this purpose let us remark that for any symmetric matrix Γ
we get :

Tr(ΓY ) =
n∑

i=1

(ΓY )ii =
n∑

i=1

n∑
j=1

γijYji

=
n∑

i=1

γiiYii + 2
∑
i<j

γijYij.

Thus any linear combination of the elements of a symmetric matrix Y can
be written as Tr(ΓY ), and the conditional Laplace transform can be defined
as :

ψt,h(Γ) = E[expTr(ΓYt+h)|Yt],

where Γ is a symmetric matrix. The closed form expression of this function
is given below.
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Proposition 4 : The process (Yt) is a Markov process of order 1, with
conditional Laplace transform :

ψt,h(Γ) =
expTr[M(h)′Γ(Id− 2Σ(h)Γ)−1M(h)Yt]

(det[Id− 2Σ(h)Γ])K/2
,

where : M(h) = exp(Ah),

Σ(h) =
∫ h

0
exp(As)QQ′[exp(As)]′ds.

Proof : See Appendix 3.3.

The matrices M(h),Σ(h) are easily interpreted in terms of Ornstein-
Uhlenbeck processes. Indeed the time discretized Ornstein-Uhlenbeck pro-
cess is simply a Gaussian Vector autoregressive process of order 1 [VAR (1)].
At horizon h its conditional mean is : E(xk,t+h|xk,t) = M(h)xk,t and its
conditional variance is : V (xk,t+h|xk,t) = Σ(h).

3.2 Distribution of the Wishart Process

The conditional Laplace transform of Proposition 4 can be recognized as
the Laplace transform of a noncentered Wishart distribution. It is known
that this distribution exists also for noninteger degree of freedom K [see e.g.
Muirhead (1982)].

Definition 1 : An autoregressive Wishart process (WAR) is a Markov pro-
cess of (n, n) stochastic symmetric positive definite matrices with conditional
Laplace transform :

ψt,h(Γ) =
expTr[M(h)′Γ(Id− 2Σ(h)Γ)−1M(h)Yt]

[det(Id− 2Σ(h)Γ)]K/2
,

where : M(h) = exp(Ah),Σ(h) =
∫ h

0
exp(As)QQ′[exp(As)]′ds and K > 0.

Its conditional distribution is a noncentered Wishart distribution.

In particular the transition pdf at horizon h admits a closed form ex-
pression which involves a series expansion [see Anderson, Girshick (1944),
Muirhead (1982), p442].
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f(Yt+h|Yt) =
1

2Kn/2

1

Γn(K/2)
(det Σ(h))−K/2

(det Yt+h)
(K−n−1)/2 exp{−1

2
Tr[Σ(h)−1(Yt+h +M(h)YtM(h)′)]}

oF1(K/2,
1

4
M(h)YtM(h)′Yt+h),

where : Γn(K/2) =
∫

A>>0
exp[Tr(−A)](detA)(K−n−1)/2

is the multidimensional gamma function and oF1 is the hypergeometric func-
tion of matrix arguments. The hypergeometric function admits a series ex-
pansion which involves the so-called zonal polynomials. These polynomials
have no closed form expressions, but can be computed recursively [James
(1968), Muirhead (1982), Chapter 7.2].

The noncentered Wishart transition for the volatility process differs from
Wishart specifications usually introduced in a Bayesian analysis of multivari-
ate volatility. In this literature the stochastic volatility is assumed to follow
an inverse Wishart distribution with a scale parameter function of lagged
volatility [see Philipov, Glickman (2004) for a comparison of such an ap-
proach with the DCC model]. This specification is appropriate for Bayesian
updating, but does not provide an affine process and simple prediction for-
mulas for integrated volatility process.

3.3 Diffusion Representation of the Wishart Process

The link between the Wishart and Ornstein-Uhlenbeck processes can also
be used to guess the diffusion representation of a Wishart process. Let us
consider the caseK = 1, where : Yt = x1,tx

′
1,t, with : dx1,t = Ax1,tdt+QdW1,t.

We get :
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dYt = Yt+dt − Yt

= x1,t+dtx
′
1,t+dt − x1,tx

′
1,t

' (x1,t + Ax1,tdt+QdW1,t)(x1,t + Ax1,tdt+QdW1,t)
′ − x1,tx

′
1,t

' x1,tx
′
1,tA

′dt+ Ax1,tx
′
1,tdt+QE(dW1,tdW

′
1,t)Q

′

+ x1,tdW
′
1,tQ

′ +QdW1,tx
′
1,t

= [x1,tx
′
1,tA

′ + Ax1,tx
′
1,t +QQ′]dt

+ x1,tdW
′
1,tQ

′ +QdW1,tx
′
1,t,

by keeping only the relevant terms of the expansion (this is the well-known
Ito’s formula). However this expression is difficult to use, especially since the
process (Yt) does not clearly appear in the stochastic part of the right hand
side. A better representation involves a matrix Brownian motion (Wt), that
is a (n, n) stochastic matrix whose elements are independent standard scalar
Brownian motions.

Proposition 5 : The Wishart process satisfies the (matrix) diffusion sys-
tem :

dYt = (KQQ′ + YtA
′ + AYt)dt

+ Y
1/2
t dWtQ+Q′dWtY

1/2
t ,

where (Wt) is a (n, n) standard Brownian motion.

Proof : It can be checked that the drift and volatility of the process satisfy-
ing the diffusion system above are identical to the drift and volatility deduced
from the conditional Laplace transform of Definition 1 (see Gourieroux, Su-
fana (2004)).

QED
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This diffusion representation is easy to use, for instance to compute the
first and second order moments of the stochastic process. The drift is :

EtdYt = (KQQ′ + YtA
′ + AYt)dt,

and is an affine function of Yt.
Of course it is more difficult to represent the volatility matrix of dYt (or

of the vector obtained by stacking the different elements of dYt), which has

generally a large dimension

(
n(n+ 1)

2
,
n(n+ 1)

2

)
. Fortunately it is equiva-

lent to know dYt or to know the square of the norm 2 associated with dYt :
α→ α′dYtα. We get :

Covt(α
′dYtα, β

′dYtβ)

= Covt(α
′Y

1/2
t dWtQα + α′Q′dW ′

tY
1/2
t α, β′Y

1/2
t dWtQβ + β′Q′dW ′

tY
1/2
t β)

= Et[(α
′Y

1/2
t dWtQα + α′Q′dW ′

tY
1/2
t α)(β′Q′dW ′

tY
1/2
t β + β′Y

1/2
t dWtQβ).

By noting that for any n-dimensional vectors u, v :

Et(dWtuv
′dW ′

t) = Et(dW
′
tuv

′dWt) = v′u Id dt,

Et[dWtuv
′dWt] = Et(dW

′
tuv

′dW ′
t ] = vu′dt,

we deduce that :

Covt(α
′dYtα, β

′dYtβ)

= [4α′Ytβ α
′Q′Qβ]dt,

for any n-dimensional vectors α, β. Thus all volatilities-covolatilities between
elements of dYt are also affine functions of Yt.

Since the drift and volatility are both affine functions of Yt [or equivalently
the conditional Laplace transform is an exponential affine function of Yt],
the Wishart process is an affine process. However it is not a member of the

2For any pair of vectors α, β we get : α′dYtβ =
1
2
[(α+β)′dYt(α+β)−α′dYtα−β′dYtβ].

Therefore it is equivalent to know the inner product, or the norm associated with dYt.
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standard class of affine processes introduced by Duffie, Kan (1996) and later
studied in details by Dai, Singleton (2000).

Remark 1 : The Wishart dynamics can be extended by considering the
processes which satisfy the differential system :

dYt = (ΩΩ′ + YtA
′ + AYt)dt

+ Y
1/2
t dWtQ+Q′dW ′

tY
1/2
t ,

in which Ω is a (n, n) invertible matrix and the constraint ΩΩ′ = KQQ′

is not imposed. Indeed the right hand side of the equation is a symmetric
matrix. Moreover we know that :

Et(α
′Ytα) = (α′ΩΩ′α+ α′YtA

′α+ α′AYtα)dt,

Vt(α
′Ytα) = (4α′Ytα α

′Q′Qα)dt.

It the matrix (Yt) reaches the boundary of the set of symmetric positive
semi-definite matrices, there exists a vector α such that α′Ytα = 0 ⇐⇒ Ytα =
0 (since Yt is positive semi-definite). At this date the process α′Ytα becomes
locally deterministic, since Vt(α

′Ytα) = 0, with a positive drift Et(α
′Ytα) =

α′ΩΩ′αdt > 0. Thus the process is rejected towards positivity. This ensures
that the solution of the extended Wishart equation corresponds to a process
of symmetric positive matrices.

3.4 Integrated Wishart Process

In the Cox-Ingersoll-Ross framework, the most important result for financial
applications is the closed-form expression of the conditional Laplace trans-
form of the integrated process. A similar result can be derived in the Wishart
framework.

Proposition 6 : The conditional Laplace transform of the integrated Wishart
process can be written as :
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ψ∗t,h(Γ) = Et(expTr[Γ
∫ t+h

t
Yτdτ ])

= exp[Tr[A∗(h,Γ)Yt] + b∗(h,Γ)],

where :
∂A∗

∂h
(h,Γ) = Γ + A(h,Γ)A+ A′A(h,Γ) + 2A(h,Γ)Q′QA(h,Γ),

∂b∗

∂h
(h,Γ) = KTr[A(h,Γ)QQ′],

with initial conditions : A∗(0,Γ) = 0, b∗(0,Γ) = 0. The solution of this
(matrix) Riccati differential systems is :

A∗(h,Γ) = A∗(Γ) + exp[(A+ 2Q′QA∗(Γ))h]′

{−(A∗(Γ))−1 + 2
∫ h

0
exp[A+ 2Q′QA∗(h,Γ)u]Q′Q exp[A+ 2Q′QA∗(h,Γ)u]′du}

exp[[A+ 2Q′QA∗(Γ)]h],

where A∗(Γ) satisfies :

A′A∗(Γ) + A∗(Γ)A+ 2A∗(Γ)Q′QA∗(Γ) + Γ = 0.

Proof : See Appendix 1.3 and Appendix 2.2.
In general the Riccati differential systems do not admit closed form so-

lution. In the Wishart framework these equations can be solved partly [see
Grasselli, Tebaldi (2004) for a discussion of solvable ATSM].

3.5 Financial Applications

We have seen in Section 2.2 that closed form solutions for term structure
and derivative pricing were easily obtained in models with a single factor
following a Cox-Ingersoll-Ross process. The aim of this section is to extend
these results to a multifactor Wishart framework. These extensions provide :

i) a general presentation of the so-called Wishart quadratic term structure
models (WQTSM);
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ii) the generalization of Heston’s stochastic volatility model to the multi-
asset framework;

iii) a structural model of credit risk which can be applied to stochastic
assets and liabilities, and to any number of corporations.

3.5.1 Positive Affine Transformations of the Wishart Process.

We have already noted that any linear combination of the elements of a
Wishart process (Yt) can be written as Tr(CYt), where C is a symmetric
matrix. The property below is the keypoint for financial applications.

Lemma 1 : If (Yt) is a Wishart process and C is a symmetric positive
definite matrix, the scalar process Tr(CYt) is positive.

Proof : Indeed the matrix C admits a spectral decomposition C =
n∑

i=1

λiuiu
′
i,

where λi, i = 1, . . . , n, are the positive eigenvalues and ui, i = 1, . . . , n, are
the associated eigenvectors. Then we get :

Tr(CYt) = Tr[
n∑

i=1

λiuiu
′
iYt]

=
n∑

i=1

λiTr(uiu
′
iYt)

=
n∑

i=1

λiu
′
iYtui (since we can commute within the trace)

> 0,

since (Yt) is a symmetric positive definite matrix. QED.

Therefore the Wishart process can be used to define affine factor models
for positive variables. Typically if zjt, j = 1, . . . , J are nonnegative processes,
a joint affine factor representation of these processes is.

zjt = cj + Tr(CjYt), j = 1, . . . , J,
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where cj are nonnegative scalars and Cj are symmetric positive semi-definite
matrices. This representation is used below for different types of nonnegative
processes such as interest rates, default intensities, volatilities, volatility-in-
mean effects and risk premia.

3.5.2 Joint Analysis of Term Structures for T -bonds and Corpo-
rate Bonds.

The term structure model of Section 2.2.1 is easily extended to consider
jointly T -bond and corporate bonds. In the basic model with zero recovery
rate in case of default, the prices of T -bonds and corporate bonds can be
written as :

B(t, t+ h) =
Q

Et [exp(−
∫ t+h

t
rτdτ)],

Bi(t, t+ h) =
Q

Et [exp[−
∫ t+h

t
rτdτ −

∫ t+h

t
λi,τdτ ]), i = 1, . . . , I,

where i is the firm index, rt the infinitesimal riskfree rate, λi,t the infinitesimal
default intensity for firm i, and the conditional expectations are computed
under the risk-neutral distribution.

Let us now assume that :

rt = c+ Tr(CYt), λi,t = di + Tr(DiYt), i = 1, . . . , I,

where matrices C,Di, i = 1, . . . , n are symmetric positive semi-definite, the
scalars c, di, i = 1, . . . , n are nonnegative and (Yt) is a Wishart process under
the risk-neutral distribution. Then we get :

B(t, t+ h) = exp(−hc)
Q

Et (exp−Tr[C
∫ t+h

t
Yτdτ ]),

Bi(t, t+ h) = exp(−h(c+ di))
Q

Et [exp−Tr((C +Di)
∫ t+h

t
Yτdτ)], i = 1, . . . , I.

As in the one factor case considered in Section 2.2.1, the prices of T -
bonds and corporate bonds depend on the conditional Laplace transform
of the integrated volatility of the Wishart process, and admit closed form
expression.
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The model above is rather flexible to represent various term structure
patterns, since :

i) it allows for a large number of factors, equal to n(n+ 1)/2.

ii) Some factors can be specific of a given firm, common to several firms, or
can appear in both infinitesimal riskfree rate and default intensities, accord-
ing to the zero elements of the matrices of sensitivity coefficients C,Di, i =
1, . . . , I (more precisely of their ranks and null spaces).

iii) It allows for a large variety of patterns for the term structures, which
increases with the number of factors, that is with n.

The model includes as special cases the quadratic term structure models
introduced in the literature for riskfree bonds [Constantinides (1992), Leip-
pold, Wu (2002), Ahn, Dittmar, Gallant (2002), Gourieroux, Sufana (2003)],
and the so-called reduced form model for credit risk, in which rt and λi,t

are linear combinations of independent CIR processes [Lando (1998), Duffie,
Singleton (1999)].

3.5.3 Derivative Pricing in Multivariate Stochastic Volatility Model.

The closed form expression of derivative prices obtained in the CIR stochastic
volatility model can be extended to the multiasset framework in a similar way.
Let us assume a zero riskfree rate and consider two risky assets with prices
Si,t, i = 1, 2 such that : d log S1,t

d log S2,t

 =

 c1 + Tr(C1Yt)

c2 + Tr(C2Yt)

 dt+ Y
1/2
t dWt,

where the stochastic volatility matrix Yt follows a (2,2) Wishart process in-
dependent of the bivariate Brownian motion (Wt) (under the risk-neutral
probability). The stochastic differential system above can be integrated con-
ditional on S1,t, S2,t and on the volatility-covolatility path.

The conditional distribution of logS1,t+h, logS2,t+h given S1,t, S2,t, (Yt) is
a Gaussian distribution with mean :
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 logS1,t

logS2,t

+

 c1

c2

h+


Tr(C1

∫ t+h

t
Yτdτ)

Tr(C2

∫ t+h

t
Yτdτ)

 ,
and variance-covariance matrix :∫ t+h

t
Yτdτ.

Therefore the conditional Laplace transform of logS1,t+h, logS2,t+h, given
S1,t, S2,t and the volatility path is :

E[exp(u1 logS1,t+h + u2 logS2,t+h)|S1,t, S2,t, (Yt)]

= exp {(u1 logS1,t + u2 logS2,t + h(u1c1 + u2c2)

+ Tr

[[
u1C1 + u2C2 +

1

2

(
u1

u2

)
(u1, u2)

] ∫ t+h

t
Yτdτ

]}
.

The conditional Laplace transform of logS1,t+h, logS2,t+h given S1,t, S2,t

and the current factor value only is directly deduced from the conditional
Laplace transform of the integrated Wishart process [see Proposition 6]. We
get :

E[exp(u1 logS1,t+h + u2 logS2,t+h)|S1,t, S2,t, Yt]

= exp[u1 logS1,t + u2 logS2,t + h(u1c1 + u2c2)]

ψ∗t,h

[
u1C1 + u2C2 +

1

2

(
u1

u2

)
(u1, u2)

]
.

3.5.4 Structural Credit Risk Model

The extension of Heston’s model to the multiasset framework can be used
to extend the structural model of credit risk initially proposed by Merton
(1974). In the structural model, default occurs when the asset value of the
firm is below its total liability. The basic Merton’s model assumes :
i) a predetermined time to default;
ii) an asset value following a geometric Brownian motion;

24



iii) a predetermined evolution of the debt which can be assumed constant [Le-
land, Toft (1992)], or calibrated to some market or firm specific observables
as in the KMV approach.

The use of Wishart process allows for a stochastic debt and stochastic
volatility models, while keeping closed form solutions for derivative prices.
Moreover the analysis can be performed in a similar way for any number of
firms [see Gourieroux, Sufana (2004)]. The model for one firm is : d logAt

d logLt

 =

 µA + Tr(CAYt)

µL + Tr(CLYt)

 dt+ Y
1/2
t dWt,

and the derivative pricing formula derived for the multiasset framework can
be applied directly.

In this specification the terms Tr(CAYt) and Tr(CLYt) included in the
drift don’t admit interpretation as risk premia since the firm’s asset value
and liability are not directly traded on a market. However such effects can
be expected for the following reason. Let us for a while consider Merton’s
model with a constant debt level, but stochastic volatility. Default can occur
at least for two very different reasons :
i) the asset value has a decreasing trend, and reaches the liability level.
ii) the asset value has a constant mean, but there is a large volatility increase,
which implies a crossing of the liability level .
In the first situation the decreasing trend is likely due to an economic fun-
damental of the firm. But in the second situation, the fundamental is stable,
whereas asset value will pass below debt level during a transitory period
only. In the second situation the medium term rating of the firm allows it
to increase its debt in order to increase its investments and jointly the asset
value. This explains why correlated evolutions of asset value and liability are
observed when risk increases. This is exactly what is assumed in the joint
specification above of asset value and liability. Finally note that this model
is a solution to one of the unresolved issues in modelling credit risk listed by
Turnbull (2004).

4 From General to Specific

We have seen in Section 3 the importance and flexibility of the Wishart pro-
cess for structural financial applications such as derivative pricing or term

25



structure analysis. It is also necessary to check if the model is appropri-
ate for modelling the dynamics of latent or observable volatility-covolatility
matrices. For this purpose it has clearly to be compared to the competing
multivariate ARCH models proposed in the literature3, especially to the Dy-
namic Conditional Correlation (DCC) model introduced by Engle, Sheppard
(2001), Engle (2002)a. Note that this comparison concerns the dynamics of
volatility-covolatility matrices, not the dynamics of asset returns. For the as-
set return dynamics, it has been seen in Section 3.5.3 that in the multivariate
stochastic volatility model the volatility is not assumed to be a deterministic
function of past return innovations (as in ARCH approach), but has its own
dynamics.

First we have to consider the unconstrained Wishart process, where pa-
rameters K,M,Σ are not constrained a priori (except the symmetry and
positivity of Σ and the positivity of K), and to discuss the dynamics of
volatilities-covolatilities that can be reproduced. In this respect the Wishart
process appears very flexible. However this flexibility could be due to the
large number of parameters, which are involved. In a second step we explain
how to solve for the curse of dimensionality, while keeping the flexibility re-
quired by the data. This will be done by means of factor representations.
Finally we discuss statistical inference for observed or latent, constrained or
unconstrained Wishart processes.

4.1 Dynamic Properties of the Wishart Process.

We list below some dynamic properties which can be reproduced with a
Wishart process and refer to Gourieroux, Jasiak, Sufana (2004) for more
details. In each case, we give examples of other dynamic models, which
cannot reproduce these features. Before discussing these features, it has to
be mentioned that :

i) A Wishart process can be defined in discrete time.

The discrete time Wishart process is a Markov process with conditional
Laplace transform :

3To facilitate the comparison, the main stochastic volatility models proposed in the
literature are reviewed in Appendix 4.
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ψt,1(Γ) =
expTr[Γ(Id− 2ΣΓ)−1MYtM

′]

[det(Id− 2ΣΓ)]K/2
.

The dynamics of this process is characterized by parameters K,M,Σ,
where K > 0, and Σ is symmetric positive semi-definite. The ”latent” au-
toregressive matrix is not constrained.

ii) Any time discretized Wishart diffusion process is a discrete time Wishart.

The time discretized Wishart diffusion processes are obtained when the
”latent” autoregressive matrix can be written as : M = expA. This is a
rather restrictive constraint, which for instance implies that M is invertible
and does not allow for recursive systems or factor representations [see Section
4.2]. To summarize there exist many more discrete time Wishart processes
than continuous time Wishart processes.

iii) In discrete time, Wishart processes can be defined with any autoregressive
order.

For instance a Wishart process of autoregressive order p (denoted WAR(p))
admits a conditional Laplace transform :

ψt,1(Γ) =

expTr[Γ(Id− 2ΣΓ)−1
p−1∑
j=0

MjYt−jM
′
j]

[det (Id− 2ΣΓ)]K/2
.

Thus the assumption of Markov process of order one can be weakened
and will not be discussed later on.

Some dynamic properties of the Wishart process are the following ones :

i) A Wishart process is not necessarily time reversible, that is its dynamic
properties can differ in the usual and reverse times. This possibility is not
surprising since the continuous time Wishart process [resp. discrete time] can
be constructed from multivariate Ornstein-Uhlenbeck processes [resp. Gaus-
sian VAR(1)], which are not reversible in general. The multivariate ARCH
models are also generally not reversible. However the specifications which
involve linear combinations of independent one-dimensional CIR processes
(as the Duffie-Kan model [Duffie, Kan (1996)]) imply the time reversibility.
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ii) The Wishart process allows for negative dynamic dependence between
volatilities. As above this feature cannot be reproduced by the basic Duffie-
Kan model, but can be by several multivariate ARCH models.

iii) The Wishart process is compatible with dynamic conditional corre-
lations and these dynamic correlations can evoluate ”independently” of the
basic volatilities. The need for this feature justified the introduction of DCC
model in the multivariate ARCH literature and explained why the other mul-
tivariate ARCH models are less interesting than the DCC. For instance the
CCC model of Bollerslev (1987), (1990) is simple to estimate, but assumes
unrealistic constant correlations [Tse (2000), Engle, Sheppard (2001)].

iv) In financial analysis it is important to consider the spectral decom-
position of a volatility-covolatility matrix. Loosely speaking the eigenvector
corresponding to the largest eigenvalue provides the portfolio allocation with
the largest risk. Symmetrically the eigenvector corresponding to the smallest
eigenvalue provides the portfolio allocation with the smallest risk. In par-
ticular if the smallest eigenvalue is close to zero, we get an almost riskfree
portfolio. This portfolio is the key tool for the so-called arbitragists.

The Wishart process allows for both stochastic eigenvectors and stochas-
tic eigenvalues, and the evolutions of eigenvectors and eigenvalues can be
weakly dependent. Typically it is easy to reproduce situations in which the
largest eigenvalue is very high whereas the smallest one is close to zero (This
requires more than one factor, that is n ≥ 2 ) [see Gourieroux, Jasiak, Sufana
(2004)]. In such a case two very different types of risk have to be hedged,
that are the increasing risk due to the largest eigenvalue and the risk created
by the arbitragist strategies trying to profit of the quasi-arbitrage.

Note that the Duffie-Kan model assumes eigenvectors constant in time,
and that the standard ARCH factor models or stochastic volatility factor
models [Jacquier, Marcus (2001)] suppose a restrictive singular value decom-
position of the volatility matrix.

v) The Wishart process allows for simple nonlinear prediction formulas at
any horizon. This is the direct consequence of the closed form of the condi-
tional Laplace transform of the Wishart. Usually the ARCH type models are
presented as semi-parametric models with simple linear prediction formulas.
It is easy to compute multistep ahead forecast E(Yt+h|Yt), and sometimes
the second order conditional moments. However linear prediction formulas
are not so useful for financial applications. First the existence of derivative
assets with nonlinear payoffs require nonlinear prediction formulas. Second
for risk management the regulator ask for the computation of conditional
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quantiles. The distributional assumption is generally introduced in ARCH
models by means of the conditionally standardized error term, but nonlinear
prediction requires simulations of the future volatility path.

vi) In a Wishart process representing the asset return volatilities and
covolatilities, the volatility of asset 1 can depend on the lagged volatility
of asset 2. This is clearly not the case in the DCC models, which consid-
ers separately the volatilities per asset, before considering the dynamics of
correlations, which can involve several assets. Loosely speaking the DCC ap-
proach uses different information sets for the volatility analysis and for the
correlation analysis.

vii) The Wishart process ensures symmetric positive definite matrices. If
the symmetry constraint is satisfied by the major part of multivariate ARCH
models, the positivity is realized by a limited number of them.

4.2 Factor Representation of the Wishart Process

The factor representations of linear dynamic models are well-defined and
frequently used in both applied and academic literature [see e.g. Chapter 9
in Gourieroux, Jasiak (2001) and the references therein ]. More precisely let
us consider a n-dimensional Gaussian vector autoregressive process :

Xt+1 = MXt + Σ1/2εt+1,

where (εt) is a standard Gaussian white noise.
Let us assume that the rank of the autoregressive matrix M is strictly less

than n, for instance equal to L = 2 < n. Then matrix M can be decomposed
as :

M = β1α
′
1 + β2α

′
2,

where α1, α2, β1, β2 are n-dimensional vectors such that β1 and β2 [resp. α1

and α2] are linearly independent.

Then the linear autoregressive model can be written as :

Xt+1 = β1α
′
1Xt + β2α

′
2Xt + Σ1/2εt+1

= β1F1,t + β2F2,t + Σ1/2εt+1,

where : Fj,t = α′jXt, j = 1, 2.
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All past information is represented by a small number of summary statistics,
that are the two factor values : Fj,t = α′jXt, j = 1, 2. Moreover for any vector
γ orthogonal to β1 and β2, we get :

γ′Xt+1 = γ′(β1F1,t + β2F2,t) + γ′Σ1/2εt+1

= γ′Σ1/2εt+1.

Any linear combination γ′Xt+1 is a white noise.Thus in general the dynamic
linear model can be rewriten into a simplified form. More precisely, let us
assume that α1 and α2 are not orthogonal to β1 and β2. Then we can consider
the transformed process :

X̃t+1 =



α′1
α′2
γ′1
...

γ′n−2

Xt+1,

where γ1, . . . γn−2 are linearly independent vectors orthogonal to β1 and β2.
The transformed process satisfies the linear dynamic model :

X̃t+1 =

 M̃11 0

0 0

 X̃t + Σ̃1/2εt+1,

say, where M̃11 is a (2,2) matrix. Thus, by considering the spectral de-
composition (rank, null space and range) of matrix M , we can separate the
directions independent of the past and the directions summarizing all past
information. Such an analysis is the basis for all factor representations intro-
duced in the literature, including the so-called factor ARCH representation
[see Appendix 4]. It can also be noted that a model with ”reduced rank”
of the autoregressive matrix involves a much smaller number of parameters
than the unconstrained linear dynamic model.

At this step it is important to mention that such a vector representa-
tion cannot be defined in continuous time, where the multivariate Ornstein-
Uhlenbeck process is the analogue of the Gaussian VAR(1). Indeed for a
time discretized Ornstein-Uhlenbeck process the autoregressive matrix is :
M = M(1) = expA and cannot admit zero eigenvalues. Equivalently the
notion of white noise process does not exist in continuous time. Thus in this
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section we focus on discrete time Wishart processes for which the autoregres-
sive matrix is not necessarily constrained.

Let us now consider a discrete time multivariate Wishart process and
assume that the rank of M is equal to L. Then matrix M can be written as :

M = βα′,

where β and α are (n, L) matrices with rank L. Let us also introduce a
matrix γ with dimension (n, n − L) such that γ′β = 0. In general (α, γ)
is an invertible matrix and it is equivalent to consider the initial volatility-
covolatility matrix Yt, or the transformed matrix :

Ỹt = (α, γ)′Yt(α, γ) =

 α′Ytα α′Ytγ

γ′Ytα γ′Ytγ

 .
When Yt is the return volatility matrix of n financial assets, Ỹt is nothing

else than the return volatility matrix of the n asset portfolios with allocations
defined by the columns of matrix (α, γ).

By considering the expression of the conditional Laplace transform :

ψt,1(Γ) =
expTr[(Id− 2ΣΓ)−1βα′Ytαβ

′]

[det (Id− 2ΣΓ)]K/2
,

the following results are easily deduced [Gourieroux, Jasiak, Sufana (2004)].

i) The past information is summarized by the subvolatility matrix α′Ytα.
In nonlinear dynamic models, such sufficient summaries are called factors.
Thus we get L(L+ 1)/2 factors when the rank of M is L.

ii) The process (α′Ytα) is also a Wishart process with reduced dimension
L.

iii) The process (γ′Ytγ) is a white noise process.

The minimal expected number of factors depends on the application.
When we analyse stock returns, the basic equilibrium model [CAPM] says

that the volatility of the market portfolio drives the volatilities and covolatil-
ities of the different stocks. This is a one factor model (L = 1). However in
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practice other volatility factors can appear, in particular to account for the
different economic sectors represented in stock markets.

For applications to term structure, at least 3 factors have generally to be
introduced to get flexible term structure patterns. They drive intuitively the
dynamics of the level, slope and curvature of the term structure. A three
factor model corresponds to L = 2.

These rather small expected numbers of factors are important since the
expression of the transition density of the Wishart process is greatly simpli-
fied for L = 1 or L = 2 [see e.g. Anderson, Girshick (1944), Glejser (1976)].

4.3 Statistical Inference

4.3.1 Observable Processes

Before discussing estimation methods and testing procedures, it is necessary
to define the observable processes. In this respect, three types of problems
have to be distinguished.

i) Discrete time observations of a Wishart process are available

A typical example is the analysis of daily intraday realized volatility-
covolatility matrices. For instance Gourieroux, Jasiak, Sufana (2004) con-
sider a series of historical volatility matrices at horizon 5mn. More precisely,
they consider the asset returns at 5mn inverval, rt,n, say, where t denotes the
day and n the index of the 5mn period within the day. For each day t, they
compute the historical volatility at 5mn :

Yt =
1

N

N∑
n=1

(rt,n −
1

N

N∑
n=1

rt,n)(rt,n −
1

N

N∑
n=1

rt,n)′,

where N = 72 is the number of 5mn spells within a trading day. A discrete
time Wishart process is assumed and fitted for this time series.

ii) Discrete time observations of a Wishart process are available up
to some parameters.

This situation arises in stochastic risk models when derivative prices are
observed. Let us consider the example of T -bonds. Note that all coupon
bonds can be seen as derivatives written on the short term interest rate. We
have seen in Section 3.5.2 that the Wishart Quadratic Term Structure model
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is a special case of affine model. Therefore let us assume for instance L = 2
and, at any discrete date t, three observable yields r(t, t + hj), j = 1, 2, 3,
say. Since the model is affine, there exists an affine relationship between the
yields and the factors Y1,1,t, Y1,2,t, Y2,2,t : r(t, t+ h1)

r(t, t+ h2)
r(t, t+ h3)

 = α(θ) + β(θ)

 Y1,1,t

Y1,2,t

Y2,2,t

 , say,
where θ denotes the parameter. Thus : Y1,1,t

Y1,2,t

Y2,2,t

 = β(θ)−1


 r(t, t+ h1)
r(t, t+ h2)
r(t, t+ h3)

− α(θ)

 ,
are observed up to some parametrized transformation.

In this situation of partial observability it is important to check for the
identifiable parameters.

iii) The Wishart process is partially observed through a measure-
ment equation.

The situation arises in multivariate stochastic volatility model [see Section
3.5.3], when the returns of the underlying assets ∆ logS1,t,∆ logS2,t, say, are
observed, but the underlying stochastic volatilities or the derivative prices
are not observed.

4.3.2 Estimation Methods

All situations described in the section above correspond to different types
of dynamic factor models for which standard estimation methods can be
applied, at least from a theoretical point of view. Such methods are the
maximum likelihood method, simulation based methods as indirect inference
and the generalized method of moment. From a practical point of view,
these methods are more or less easy to implement and more or less efficient
in finite samples. It is important to mention that, since the introduction of
the CIR process in pricing models, the methods of moment appear as the
most appropriate.

i) Maximum likelihood approach.
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In the situation where the Wishart process is observed possibly up to
some parameterized transformations the expression of the likelihood function
can be derived. However it involves the series expansion in terms of the
zonal polynomials and some parameter can be involved in the support of the
distribution in case of a parameterized transformation [Gourieroux, Monfort
(2005)]. Practically it can be implemented when the rank of M is equal
to 1, or 2, that is for models with at most 2 dynamic factors. But the
standard asymptotic theory, that are the rates of convergence and the type
of asymptotic distributions, are modified when the support is parameterized.

ii) Simulation Based Methods

Due to their interpretations as sum of squares of Gaussian VAR(1) pro-
cesses, the discrete time WAR processes with integer degree of freedom are
easy to simulate. However the simulation methods are much more difficult to
implement for fractional degree of freedom whenever the rank of L is larger
than two [see for a survey on simulation methods for noncentered Wishart
distributions].

iii) Generalized Method of Moment

Let us first consider discrete time observations y1, . . . , yT of a Cox-Ingersoll-
Ross process. Different conditional moments admit closed form expressions.

a) The moment of real exponential transformations of yt :

Et [exp(−γyt+1)] , γ ∈ IR+.

b) The moment of imaginary exponential transformation of yt+1 :

Et exp(iγyt+1), γ ∈ IR,
that are the sine and cosine transformations of γyt+1.

c) The moment of the Laguerre polynomials [see Gourieroux, Jasiak (2005)] :

EtPn(yt+1), n ∈ 1N∗.

Each set above defines an infinite number of moments conditions. More-
over each set of functions, that are {exp(−γy), γ ∈ IR+}, (exp(iγy), γ ∈
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IR), (Pn(y), n ∈ 1N∗), can be used to approximate as closely as possible the
score function. Thus, from a theoretical point of view, the optimal use of
any of this set allows reaching the asymptotic efficiency [see Carrasco, Florens
(2000)] (except when the support is parameterized).

However in practice, the moment estimation is based on only a finite
number of conditional moments of the set, 5-7, say. The set of moment con-
ditions providing the smallest loss of efficiency with this limited number of
well-chosen moments will be prefered. In the applications to CIR process
the approach by the empirical characteristic function (set b) has been priv-
ilegiated [see Singleton (2001), Bates (2002) for applications to CIR process
and Feuerverger, Mc Dunnough (1981), Feuerverger (1990) for the first intro-
duction of this approach]. It is not clear that the choice of set b) is the most
appropriate. Firstly the Laguerre polynomials are the keystone in the non-
linear canonical decomposition of the transition pdf of the CIR process. By
this decomposition it is possible to know exactly and then to control the loss
of efficiency, when we use only the first N polynomials [see Kessler, Sorensen
(1999) for an application of this methodology]. Second the sine and cosine
transformations have no appealing financial interpretation. This is not the
case of the real exponential transformations, which were systematically in-
volved in all financial computations to derivative pricing and term structure,
and are likely closer to the parameters of interest. Typically it is easier to
approximate the transition pdf in the tail (that are the extreme risks) by a
small number of decreasing exponential functions than by a small number of
sine and cosine functions.

For an observable Wishart process, it is difficult to use the approach
based on zonal polynomials appearing in the expression of the transition
pdf, since their closed form is not well-known and requires time consuming
recursive computations (except for small rank of autoregressive matrix M).
The arguments for the choices between sets a) and b) are the same in the
multivariate Wishart framework than for the CIR process.

Finally we have already mentioned that the conditional Laplace trans-
forms of the observable processes still have closed form expressions, when
(Yt) is not directly observable. For instance, when the Wishart process is
known up to a parameterized transformation, as in the example of WQTSM,
the conditional expectation :
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Et exp

(γ1, γ2, γ3)β(θ)−1


 r(t, t+ h1)
r(t, t+ h2)
r(t, t+ h3)

− α(θ


 ,

has a closed form expression in terms of observables rates.
When the Wishart process is known through a measurement equation

as in the multivariate stochastic volatility model, we have already derived
the conditional Laplace transform of the yield process [see Section 3.5.3].
Along the same lines it is possible to get the closed form expression of

a joint marginal Laplace transform of the type E exp(
H−1∑
h=0

u1,h logS1,t+h +

u2,h logS2,t+h). This form can be the basis of a moment method based on
the observations of asset prices only.

Finally it has been proposed to invert recursively the associated joint
Fourier transform in order to apply maximum likelihood [Bates (2002)]. This
approach, which extends the standard Kalman filter, can be followed if the
number of assets in rather small and the support does not depend on param-
eters.

5 Concluding Remarks

The Wishart process is the multivariate extension of the Cox, Ingersoll, Ross
process. It has been shown that the Wishart process is appropriate for mod-
elling multivariate risk in various financial problems and provides closed form
derivative prices. Moreover it is sufficiently flexible to compete with multi-
variate ARCH models.

The field of applications of Wishart process seems quite large. For in-
stance it can be used :

i) to define joint dynamics of interest rates, exchange rates, market re-
turns, and to study international volatility transmission [Gourieroux, Mon-
fort, Sufana (2005)];

ii) to construct a new class of stochastic intensity models for duration.
This class can be used to extend the Archimedean family of copulas, or to
propose joint modelling of trading times and prices for high frequency data.

iii) to develop a multivariate mean-variance causality analysis.
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Appendix 1
Derivation of the Riccati Equations

1.1 Transition of the CIR process.
Let us consider the (conditional) Laplace transform of the CIR process

and assume an exponential affine form in the current value :

ψt,h(u) = Et[exp(−uYt+h)] = exp[−a(h, u)yt − b(h, u)], say.

By iterated expectations theorem we get :

ψt,h(u) = EtEt+dt exp−(uYt+h)

= Et[ψt+dt,h−dt(u)]

= Et exp[−a(h− dt, u)yt+dt − b(h− dt, u)]

∼ Et exp[−a(h− dt, u)[yt − k(yt − θ)dt+ (η2yt)
1/2dWt]

−b(h− dt, u)]

= exp[−a(h− dt, u)yt + a(h− dt, u)k(yt − θ)dt− b(h− dt, u)]
Et exp[−a(h− dt, u)(η2yt)

1/2dWt]

∼ exp{−a(h− dt, u)yt + a(h, u)k(yt − θ)dt− b(h− dt, u)

+
1

2
a2(h, u)η2ytdt].

By identifying with the assumed expression of ψt,h(u), we get :
a(h, u) ∼ a(h− dt, u)− ka(h, u)dt− 1

2
η2a2(h, u)dt,

b(h, u) ∼ b(h− dt, u) + kθa(h, u)dt.

By taking dt close to zero, we get the two functions as solutions of :

∂a(h, u)

∂h
= −ka(h, u)− 1

2
η2a2(h, u),

∂b(h, u)

dh
= kθa(h, u).

(a.1)
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Moreover, since Et exp(−uYt) = exp(−uyt) , the functions satisfy the
initial restrictions :

a(0, u) = u, b(0, u) = 0.

1.2 The Integrated CIR Process

Let us assume that :

ψ∗t,h(u) = Et

[
exp

(
−u

∫ t+h

t
Yτdτ

)]
= exp [−a∗(h, u)yt − b∗(h, u)] .

By iterated expectation, we get :

ψ∗t,h(u) = EtEt+dt

[
exp

(
−u

∫ t+h

t
Yτdτ

)]

= Et

{
exp

(
−u

∫ t+dt

t
Yτdτ

)
Et+dt

[
exp

(
−u

∫ t+h

t+dt
Yτdτ

)]}

' Et

[
exp(−uytdt)ψ

∗
t+dt,h−dt(u)

]
= Et exp

{
−uytdt− a∗(h− dt, u)[yt − k(yt − θ)dt+ (η2yt)

1/2dWt

−b∗(h− dt, u)}

' exp [−uytdt− a∗(h− dt, u)yt + a∗(h, u)k(yt − θ)

+
a∗(h, u)2

2
η2ytdt− b∗(h− dt, u)

]
.

By identification both expressions of the Laplace transform, we get for dt
tending to zero.


∂a∗(h, u)

∂h
= u− ka∗(h, u)− η2

2
[a∗(h, u)]2,

∂b∗(h, u)

∂h
= kθa∗(h, u).

(a.2)
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The initial conditions are : a∗(0, u) = 0, b∗(0, u) = 0, since :

ψ∗t,0(u) = Et exp[−u
∫ t

t
Yτdτ ] = 1.

1.3 The Integrated Wishart Process

We have :

ψ∗t,h+dt(Γ) = Et{exp[Tr(
∫ t+dt

t
ΓYτdτ)]ψ

∗
t+dt,h(Γ)}

' exp{Tr(ΓYt)dt+ b∗(h,Γ)}Et expTr(A∗(h,Γ)Yt+dt)

' exp{Tr(ΓYt)dt+ b∗(h,Γ) + EtTr(A
∗(h,Γ)Yt+dt)

+
1

2
VtTr(A

∗(h,Γ)Yt+dt)}

= exp{Tr(ΓYt)dt+ b∗(h,Γ) + Tr[A∗(h,Γ)Yt + (KQQ′ + YtA
′ + AYt)dt)}

+ 2Tr[A∗(h,Γ)YtA
∗(h,Γ)Q′Q]dt].

The result follows by identifying both expressions of the Laplace trans-
form and let t tend to zero.
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Appendix 2
Closed Form Solutions of Riccati Equations

2.1 One Dimensional Riccati Equation.

Let us consider a univariate Riccati equation :

da(h)

dh
= b[a(h)− co][a(h)− c1].

This equation can also be written as :

da(h)

[
1

a(h)− co
− 1

a(h)− c1

]
= b(co − c1)dh.

It can be integrated as :

a(h)− co
a(h)− c1

=
a(0)− co
a(0)− c1

exp[b(co − c1)h],

or equivalently, as :

a(h) = c1 +
[a(0)− c1](co − c1)

a(0)− c1 − [a(0)− co] exp[b(co − c1)h]
(a.3)

i) Application to the transition of the CIR process

From Appendix 1.1 equation (a.1) the function a(h, u) satisfies a Riccati

equation with : b =
−η2

2
, c1 = 0, co = −2k

η2
and initial condition a(0, u) = u.

By applying formula (a.3), we deduce that :

a(h, u) =
−2k

η2
u

u− [u+
2k

η2
] exp(kh)

=
u exp(−kh)

1 +
η2u

2k
[1− exp(−kh)]]

.

Finally function b(h, u) can be derived by integrating the second part of
system (a.1). We get :
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∂b(h, u)

∂h
= kθa(h, u) =

kuθ exp(−kh)

1 +
η2

2k
u[1− exp(−kh)]

=
2kθ

η2

η2

2k
uk exp(−kh)

1 +
η2

2k
u[1− exp(−kh)]

,

and deduce :

b(h, u) =
2kθ

η2
log

{
1 +

η2

2k
u[1− exp(−kh)]

}
.

ii) Application to the integrated CIR process

The right hand side of the multidimensional Riccati equation satisfied by
a∗(h, u) can be written as :

1− ka∗(h)− η2

2
(a∗(h))2 = b(a∗(h)− co)(a

∗(h)− c1),

where b = −η2/2, co = −k/η2 − γ/η2, c1 = −k/η2 + γ/η2,

γ =
√
k2 + 2η2.

By applying the general formula (.) providing the solution of a Riccati
equation, we get :

a∗(h) =
γ − k

η2
+

2(γ − k)γ/η2

k − γ − (k + γ) exp(γh)

=
2

γ + k
− 4γ

γ + k

1

γ − k + (γ + k) exp(γh)
,

since : γ2 − k2 = 2η2.

2.2 Multidimensional Riccati Equation

Generally multidimensional Riccati equations have no closed form solu-
tions. However the multidimensional Riccati equations involved in Wishart
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processes have a special form. This explains why their solution can be easily
derived [see Grasselli, Tebaldi (2004) for a discussion of Riccati equations
with closed form solution].

Let us consider a (matricial) Riccati differential system :

dA(h)

dh
= B′A(h) + A(h)B + 2A(h) ∧ A(h) + C, (a.4)

where A(h),∧, C are symmetric (n, n) matrices and B is a square (n, n) ma-
trix. The solution of the multidimensional equation (a.4) is [see Gourieroux,
Sufana (2004)] :

A(h) = A∗ + exp[(B + 2 ∧ A∗)h]′

{(A(0)− A∗)−1 + 2
∫ h

0
exp[(B + 2 ∧ A∗)u] ∧ exp[(B + 2 ∧ A∗)u]′du}.

exp[(B + 2 ∧ A∗)h],

where A∗ satisfies :

B′A∗ + A∗B + 2A∗BA∗ + C = 0.

This result can be directly applied to the multidimensional partial Riccati
equation of Proposition 6 to get the closed form solution.
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Appendix 3
The Noncentered Gamma and Wishart Distributions

3.1 Laplace transform of the noncentered gamma distribution

Let us assume that Y follows γ(ν, β, λ), say. Then Y/λ follows γ(ν +Z),
where Z follows P(β).We get :

E[exp(−uY )]

= EE {exp[−uλ(Y/λ)]|Z}

= E

[
1

(1 + uλ)ν+Z

]

=
∞∑

z=0

[
exp(−β)

βz

z!

1

(1 + uλ)ν+z

]

=
1

(1 + uλ)ν
exp(−β) exp

(
β

1 + uλ

)

= exp[−βuλ/(1 + uλ)] exp[−ν log(1 + uλ)]. (a.??)

Application to the CIR process.

By comparing this expression with the (conditional) Laplace transform
of the CIR process at horizon h, we deduce Proposition 2, with :

λ(h) =
η2

2k
[1− exp(−kh)], β(h) =

exp(−kh)
λ(h)

Yt, ν =
2kθ

η2
.

3.2 Density function of the noncentered gamma distribution

The density function of the γ(ν, β, λ) distribution is :

f(y) =
∞∑

z=0

[
exp(−y/λ)

yν+z−1

λν+zΓ(ν + z)
exp(−β)

βz

z!

]
.

We deduce the formula given in Proposition 2 iii).
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3.3 Conditional Laplace transform of the square of a Gaussian VAR
process

The proof is based on the following lemma :
Lemma : For any symmetric positive semi-definite matrix Ω and any vector
µ ∈ IRn, we get :

∫
Rn

exp(−x′Ωx+ µ′x)dx =
πn/2

(detΩ)1/2
exp(

1

4
µ′Ω−1µ).

Let us now consider an Ornstein-Uhlenbeck process :

dxt = Axtdt+QdWt.

The conditional distribution of xt+1 given xt is Gaussian, with mean
M(h)xt and variance-covariance matrix Σ(h). For Yt+h = xt+hx

′
t+h, we get :

Et expTr(ΓYt+h)

= Et exp(x′t+hΓxt+h)

=
∫

Rn
exp{x′[Γ− Σ(h)−1

2
]x+ x′Σ(h)−1M(h)xt}dx

1

(2π)n/2

1

(detΣ(h))1/2
exp[−1

2
x′tM(h)′Σ(h)−1M(h)xt].

By applying the lemma we get :

Et[expTr(ΓYt+h)]

=
1

det(Id− 2Σ(h)Γ)1/2

exp{−1

2
x′tM(h)′Σ(h)−1M(h)xt +

1

2
x′tM(h)′Σ(h)−1(Σ(h)−1 − 2Γ)−1Σ(h)−1M(h)xt

=
expTr[Γ(Id− 2Σ(h)Γ)−1M(h)YtM(h)′]

det(Id− 2Σ(h)Γ)1/2
.

This is the result of Proposition 4 for K = 1. The general case is imme-
diately deduced.
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Appendix 4
Competing Multivariate Dynamic Volatility Models

In this appendix we review the structure of the main multivariate mod-
els proposed for stochastic volatility-covolatility matrices. For expository
purpose we assume n = 2 and a small number of lags.

1. Duffie-Kan model [Duffie, Kan (1996), Dai, Singleton (2000)]

This model is usually written in continuous time. A typical example is :

Yt = Q

 a1,1f1,t + a1,2f2,t + c1 0

0 a2,1f1,t + a2,2f2,t + c2

Q′,
where aij ≥ 0, cj ≥ 0, (f1,t) and (f2,t) are independent CIR processes.

2. The Constant Conditional Correlation Model (CCC) [Bollerslev
(1987)]

A typical example is :

y1,1,t = c1 + a1y1,1,t−1 + b1r
2
1,t,

y2,2,t = c2 + a2y2,2,t−1 + b2r
2
2,t,

y1,2,1 = ρ(y1,1,t)
1/2(y2,2,t)

1/2,

where rt = (r1,t, r2,t)
′ = Y

1/2
t εt and εt = (ε1,t, ε2,t)

′ is a Gaussian white noise.

3. The Factor ARCH Model [Diebold, Nerlove (1989), Engle, Ng, Roth-
schild (1990), King, Sentana, Whadwani (1994)].

This model is generally written on asset returns. In the one factor case,
the model is defined by :

r1,t = β1ft + ε1,t,

r2,t = β2ft + ε2,t,
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where (ε1,t, ε2,t) is a Gaussian white noise, independent of the factor pro-
cess, and the factor process is ARCH. The structure of the return volatility-
covolatility matrix is :

Vt−1

(
r1,t

r2,t

)
= V ε+

(
β1

β2

)
(β1, β2)Vt−1ft

= Ω + ηt−1

(
β1

β2

)
(β1, β2), say.

4. Baba, Engle , Kraft, Kroner Model (BEKK) [Baba, Engle, Kraft,
Kroner (1987), Engle, Kroner (1995)]

A typical example is :

Yt = C +
J∑

j=1

λjA
′
jrt−1r

′
t−1Aj,

where (rt) denotes the vector of asset returns, Aj are (2, 2) matrices, λj

positive scalars, and C >> 0. This specification ensures symmetric positive
semi-definite matrices Yt.

5. The Dynamic Conditional Correlation Model (DCC) [Engle, Shep-
pard (2001), Engle (2002)].

This model distinguishes the dynamics of asset volatilities and asset con-
ditional correlations. Typically a one-dimensional GARCH specification is
introduced for each volatility :

y1,1,t = c1 + a1y1,1,t−1 + b1r
2
1,t,

y2,2,t = c2 + a2y2,2,t−1 + b2r
2
1,t,

y1,2,t√
y1,1,t

√
y2,2,t

=
q1,2,t√

q1,1,t
√
q2,2,t

,

where : qi,j,t = (1− α− β)qi,j + α
ri,t−1√
yi,i,t

rj,t−1√
yj,j,t

+ βqi,j,t−1.

The CCC model corresponds to the special case α = β = 0.
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