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A Classification of Two Factor Affine Diffusion Term Structure Models
Abstract

Dai, Singleton (2000) introduced a typology of affine diffusion models when the idoaia
admissible values of the factors is an intersection of half planes and umiher additional con-
straints on the parameters. This condition on the domain and the additionailesufionstraints
are restrictive and can considerably diminish the practical intefesffine models. In this paper
we successfully address the research agenda sketched by DuffieyiEjlchachermayer (2003),
Section 12.2, p. 50. A systematic investigation is performed and our paper @avicEmplete

typology in the two factor case, without prior restrictions on the domain artde@parameters.

Keywords: Affine Term Structure Model, Parabolic Dynamics, Wishart Pro@@ssain Re-

strictions.

JEL: G13, G17



Une classification des modéles affines de structure par terme a deeurfact
Résumé

Dai et Singleton (2000) ont introduit une typologie des modeles de diffusion affineguir
'ensemble des valeurs possibles des facteurs est une intersection dplalesniet sous quelques
contraintes complémentaires sur les parametres. La condition sur lendoatdes contraintes
suffisantes sur les parameétres sont restrictives et diminuent cordéréeant I'intérét des modéles
affines. Il reste done a effectuer une analyse plus systematique [iilifi@yvic, Schachermayer
(2003), p. 50]. Dans ce papier nous présentons une typologie complete des modélea d#fines

facteurs sans restriction a priori sur le domaine et les parametres.

Mots clés: Modéle affine de structure par terme, dynamique parabolique, guscksWishart,

restrictions de support.



1 Introduction

In a diffusion setting an affine term structure model assumes [sggeDKan (1996), Duffie,

Filipovic, Schachermayer (2003), Dai, Singleton (2003)]:

Al. The discount function is exponential affine i latent factors, which are the components of

the (K, 1) vector X;:

T
D(t,T) = E© {exp—/ rsds]&}
t

= exp— [A(T —t) X, + B(T —1)],

wherer, denotes the short term interest ragethe risk-neutral probability)X; the filtration
generated by the factors, functighis (K, 1) and B is a scalar function.
A2. The factor process satisfiesi&dimensional stochastic differential system with linear drift

and volatility:

K 1/2
dX, = (aX, + B) dt + (HO +>° Hkat) AW,
k=1

wheref is a( K, 1) vector,« is a( K, K) matrix, Hy, k = 0,1, ..., K, are(K, K) symmetric
matrices, andi;) is a K-dimensional Brownian motion under the risk-neutral distribution
Q.

Then, functions4 and B satisfy the following ordinary Riccati differential equations:

PO~y + o/ A(t) — S[A@E) HHA®@),...,A®) HRA(1)]

B0 — B+ BA(t) — A (t) HoA (1),

with initial conditionsA (0) = 0, B (0) = 0, corresponding td (¢, ¢) = 1. In particular, the short

- A
term rate isr; = oy X; + 5,5, Whereay = dTgo), By = dfflgO)_

The parameters of the factor dynamics cannot be chosen arbitrarily, sinfactbevolatility

matrix has to satisfy: i) the positive semidefiniteness condition:

K
Hy + Z Hy Xy >0,
k=1

for any valuesX; in the factor domairD (H > 0 means that{ is positive semidefinite), and
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i) the rejection condition that ensures theleetion of the volatility matrix towards a positive
definite matrix when it becomes singular.
A limited number of parametric specifications satisfying both the positauity rejection con-

ditions have been derived in the literature.

1) A well-known specification corresponds to the Duffie-Kan model [Duffien K4996)] in
which the volatility matrix is:
« ay Xy + ¢ 0
Ho+ Y HuyXy =Q Q'
k=1
0 a Xy + ck

and the factor domain is the intersection of half-planes:
D={a;X;+c, >0 k=1,...,K},

whereay, k =1,..., K, are (K, 1) vectorsc,, k = 1,..., K, are scalars, an@ is a (K, K)
invertible matrix. Thus, up to a deterministic invertible tranefation, the volatility matrix is
diagonal and an affine function of the factors. For this specification,Sagleton (2000) de-
rive sufficient, but not necessary, parameter restrictions for whielpositivity and rejection
conditions are satisfied.

i) Another specification has been recently introduced by Gourieroux and &(@803) to ex-
tend the standard Cox-Ingersoll-Ross process [Cox, Ingersoll, Ross (10&bhaltivariate
framework. They consider factors corresponding to the different elements totlaastic
symmetric positive semidefinite matrkt with dimension(n, n): X; = vech (Y;), where the
matrix Y; follows a Wishart autoregressive (WAR) process (and more generaltig afinsfor-
mations of such factor processes). The number of Wishart facto(sis 1) /2, and they vary
in a nonlinear domain, which is not an intersection of half-planes. For instaime domain
restrictions in a three-factor Wishart model corresponding te 2 are: X;; = Yj;, > 0,
Xgp = Yoo >0, X1, X3¢ — X3, = Y114V, — Y73, > 0; they involve quadratic restrictions

due to the determinant condition.



The Wishart process shows that there exist important affine diffusion pesdisat are not
members of the set of "standard" affine processes considered by Duffiel 8@6) (and classified
by Dai, Singleton (2000). These nonstandard affine processes have a nonlinear state space and
lead to more general specifications of the factor volatility matrix.

The general aim of this paper is to extend the classification of stanéfard diffusion pro-
cesses proposed by Dai, Singleton (2000) to the set of all possible affineahusVhereas Dai,
Singleton (2000) assume a priori that the state space is an intersectialf pfalmnes and consider
only sufficient parameter restrictions to ensure the positivity and refeconditions (as noted in
Dai, Singleton (2000), p. 1949), we characterize all admissible statesspatd give necessary
and sufficient parameter restrictions. To highlight the problems andt&eithe comparison with
the literature, we focus on the bidimensional caSe- 2.

The contribution of this paper is the proof that in the bivariate case tlyadmissible nonlinear
state spaces are parabolic domains. In particular, we prove that irnviireabe case the state space
cannot be a hyperbolic or elliptic domain. A special example of affine diffusion psoweéh
parabolic domain is provided by Duffie, Filipovic, Schachermayer (2003) iBet2.2, p. 50),
who conjecture that this type of bivariate affine process is the only one with aneanlstate
space, but leave the systematic investigation for future researgsts. paper proves that this is
indeed the case K = 2, but the existence of Wishart processes indicates that there are additional
affine processes with nonlinear domain when the number of factors is largetvibdn Also,
we completely characterize all bivariate affine diffusion proessgith nonlinear state space, and
show that some of the parameter restrictions obtained by Dai, Singleton (@0@tandard affine
diffusions are not necessary.

In Section 2, we present the general principle for deriving the pattern oftéte space, and

L The set of standard affine processes does not include all possible affaesges due to the restrictive additional
assumption on the state space introduced in Appendix 1 of Duffie, Kag)199398.
2 Thus, the conjecture of Duffie, Filipovic, Schachermayer (2003) kgadiiffusion processes with parabolic domain

are also the only nonstandard multifactor affine processes is ndt vali
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the necessary and sufficieparametric restrictions which ensure that the process will stagin it
state space. In Section 3 we present a classification of bidimensitinal grocesses. The affine

processes with parabolic state space are studied in more detail iarS&c8ection 5 concludes.

2 Principle for deriving the state space and the parametric regic-
tions

A two-factor affine process with componerts, y;) satisfies a diffusion system:

(i) = [ e G+ (5]
( an®e + by + cin am + by + ci2 )1/2 AW, 2.1)
a12%¢ + b1aYs + c12 a2t + boays + 2o ’
with affine drift i (x;, y:) = a(xy, y)' + B, and volatility matrix> (x4, y;) = Az, + By, + C.

Let us assume an initial date= 0 and an initial valugz, 3,)’, such that the volatility matrix
at(zo, yo)' is positive semidefinite. Whenever the volatility matrix stays posiesmidefinite, the
standard sufficient conditions for the existence and uniqueness of a solutiatisfied, since the
drift and the volatility matrix are affine [see Ikeda, Watanabe (198@prems 2.4, 3.1, p. 177-
178]. The positive semidefiniteness of the volatility matrix is endgufehe process is rejected
towards the interior of the domain when it reaches its boundary, followingttrelard argument
used for the Cox-Ingersoll-Ross process [see Ikeda, Watanabe (1989), example86], Thus,
these rejection conditions are sufficient for the existence and uniquendss pfdcess. They
are also necessary and sufficient conditions if any point on the boundary oft thiesyenmetric
positive semidefinite matrices is reached with a strictly pasiirobability. It is beyond the scope
of this paper to derive the conditions on the drift and volatility parametéisiwensure that the
assumption above is satisfied [see e.g. Kunita (1978), (1980), or Ikeda, Wata88Bg Chapter
Vi3

3 By analogy with the standard Cox-Ingersoll-Ross process [see |keatandbe (1989), p. 237, and theorems
VI1.3.1, V1.3.2], the rejection from the boundary has to be sufficierhak.
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The analysis involves several steps.

Step 1. Write the positivity conditions @iz, y;), that are:

an®; + by + c1n >0, (2.2)
227 + baoys + c22 > 0, (2.3)
F (.Tft, yt) =detX (.Tft, yt) Z 0. (24)

Let us introduce the bilinear form on symmetric matrices defingdihy3) = % (a11b9a + agebir)—
ajbi2. We get(A, A) = det A, and the third inequality constraint (2.4) involves the quadratic
function:

F (2, 90) = (24, y) A ( Z ) +2(4,C) 2+ 2(B,C)y + (C,C), (2.5)

where:

[l Ga ]

Step 2. Derive necessary and sufficient conditions on the volatilitynpeteasA, B, C to
ensure that the inequality restrictions (2.2), (2.3) and (2.4) define a nonempty dmmtie
pair (x,y).

Step 3. Discuss the form of the domahand of its boundaryD. The boundary is reached

Whenan.ft + buyt +c11 = 0 or A29T¢ + bggyt + Co9 = 0,orF (.It, yt) = 0.

Since the positivity conditions involve two affine functions and a quadratic fomci the fac-
tors, the admissible domains will be deduced from elliptic, parabolic, hyperbminains (accord-
ing to the eigenvalues of the matry, or intersections of the previous domains with half planes,

or even intersections of half planes in degenerate cases.

Step 4. Write the conditions for rejection towards the interior of the dor®dior any (z, y) on



the boundany.

These rejection conditions can be written in a general framework. Lessusree that the bound-

ary is reached for a paitr, y) such thatF' (x;,4:) = 0. Then we have to consider the drift on

82_1;“ O:F
( ggF %g%y )E(xtuyt)] . (2-6)

oxdy  Oy>

F (:L’t, yt), Wh|Ch |S

. 1
Drift F' (z4, ;) = ( %—5 %—Z ),u(xt,yt) + §T7‘

From the expression (2.5), it is immediately seen that:

oF
% = 2(A7A)xt+2(A>B)yt+2(Aac)7
oF
a_y = 2(A7B)xt+2(B>B)yt+2(Bac)a
O*F O*F 0*F
Z = 92(A.A). —/— =92(B.B =2(A,B
81'2 ( ) )7 8y2 ( ) )7 axay ( ) )
Thus, the drift is a quadratic function of andy;,:
. % Tt [ Tt
Drift F(l’t,yt) = (xt, yt)A < n ) + A ( n ) +)\0, Say, (27)

whereA*, A and ), are given in Appendix 1.
The rejection conditions require a zero volatility and a strictly pesidirift of F' (x;, y;) on the
boundary:

oF OF oF OF '
A (%t, yt) = <% (%;?Jt) ) 8_y (%, yt)) D ($t>yt) <_ (xuyt) y A ($ta yt)) =0,

ox dy
and
Drift F' (z¢,y:) > 0,
for any (z, y;) such that? (z;, y;) = 0.
Similar conditions can be written when the boundary is reachedifor,( such thatu;;z; +

bi1ys + 11 = 0:
(@11, b11) 2 (x4, yt) (11, 511), =0, and Drift (a2 + b11y: + ¢11) > 0,

for any (z;,y;) on the lineay 1z, + b11y; + ¢11 = 0. If the boundary is reached far y;) such that



a99x; + boolyy + coo = 0, the conditions are:
(&22, bgg) Y (.It, yt) (agg, bgg), = 0, and Drift (azg.ft + bggyt + 022) > 0,

for any (z, y¢) on the lineagsx; + bagy: + coo = 0.

3 Classification of bidimensional affine processes

The volatility matrix is singular when the determinaht(z,y) = det X (z, y) = 0. SinceF (x,y)

is a polynomial of degree less than or equal to 2, different cases can bwudished. In the
nondegenerate cases, the conditfofr, y) = 0 corresponds to a hyperbola, parabola, or ellipse.
The degenerate cases are obtained when either the polynomial is of degree 0 threlserond
degree polynomial corresponds to a product of affine functions. In all these deagesigrations,
the domain is an intersection of hyperplanes, as studied in Duffie, Kan (189&)n the main
sections of Duffie, Filipovic, Schachermayer (2003).

The nondegenerate and degenerate cases are presented below.

3.1 Nondegenerate cases

Up to an affine invertible transformation, the conditiéi{x,y) = 0 corresponds to a hyperbola
(zy = 1, say), a parabolay(= z2, say), or an ellipsesf + y? = 1, say). The property below is
proved in Appendix 2.

Proposition 1 To get a diffusion which is locally deterministic éh(z, y) = 0, the boundary of

the domairD cannot be a hyperbola or an ellipse. It can be the parahpta 22, when

1 2z
E(x,y)(2 ) )
T 4y

The counterexample provided by Duffie, Filipovic, Schachermayer (2003)i¢8d&.2, p. 50)

corresponds to this parabolic case. But their constraint on the drift impliessatbing boundary.

4 To simplify notation, the time subscripts ofandy are omitted.
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Finally, the drift can be fixed to ensure the rejection property on the boymmdahe domain

(see Appendix 3).

Proposition 2 The only nondegenerate bidimensional affine processes (up to invertible affine

transformations) are such that:

X (w,y) = L  pn(zy) = et :
2 4y Q1T + Q2 + [y
where
Qop > 2011, (a1 — 251)2 < 4(ag —2a11) (B, — 1),
or

Qg9 — 20011 = O7 Qg1 = 251, 52 > 1.

3.2 Degenerate cases

In the degenerate case, it is known from Duffie, Kan (1996) that the volaihitrix can be written

as:

0 A2 + baoly + C2o
up to an invertible affine transformation. Its determinant is:

anx + by +c¢ 0
E(x,y):( 11 11Y 11 )’

F(z,y) = (a117 + b11y + c11) (agex + bagy + c22) .
Let us now study what arises when the boundary of the domain is reached. We raust ha
V(andz + bidy + c11) = [ai; (@12 + buy + c11) + b3y (agex + bosy + c22)] dt
= U2, (anx + bogy + co2) dt = 0,
if a1z + by + ¢ =0, and
V (agodx + byody + c20) = [a3, (a112 + by + c11) + b3, (Aot + bosy + c22)] dt
= a3 (anx 4+ byy +cyy)dt =0,

if asex + baoy + c22 = 0. Then two cases have to be distinguished:

Type 2: Both conditiong 1z + b11y + ¢11 = 0 andagex + baoy + coo = 0 are jointly needed

11



to define the boundary of the domain. When the boundary of the domain is reached, weean hav
eithera;1z + b11y + c11 = 0, Or agx + byy + 2o = 0. In this situation, the volatility conditions
above have to be jointly satisfied. This implies that eithgr + byoy + coo IS proportional to
a11@ + bi1y + ci1, Or by = ag = 0.

Type 3: The boundary of the domain is given by only one of the sgts+ b1,y + ¢11 = 0,
Or asex + baoy + coo = 0, but not by both of them. This situation arises when the two diagonal

elements of (x, y) are proportional up to an additive constant.

Let us first assumg;; = ay; = 0. The volatility matrix reduces to

. a11T + c11 0
Y(z,y) = < 0 b2y + C22 )

Different types of dynamics can be distinguished according to the presentte affine terms in

the diagonal elements.

Type 2a If by; = ase = a11 = by = 0, we get a constant diagonal volatility matrix, which
can always be chosen as the identity matrix by an invertible affineftnanation. Moreover, the

constant tern® of the drift can be set to zero by an appropriate translation of the variable3

dr \ [ onz+ apy
( dy ) - < Q21T + Qg2y ) dt + dW,
and is a bivariate Ornstein-Uhlenbeck process. This is the migde) in the classification of Dai,

Singleton (2000)

The process satisfies:

Type 2b: One diagonal term is constant, whereas the other one is affine. Up to an affine

z 0
0 1

isD = {z : « > 0}. The condition on the drift is: Driftz|,_, = a1y + 5, > 0, for anyy. This

invertible transformation, the volatility matrix s (z,y) = < ) and the expected domain

5 Whenever the matrix is invertible.
6 The conditionr; = 0 or aip; = 0 in Dai, Singleton (2000) can be obtained by applying an appropriate orthbgon

transformation tdz, y).
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implies3; > 0, a2 = 0. The process satisfies:
de \ apx + B4 N
(dy)_(a21x+a22y+52 i+ 0 1 W,
where, > 0. The first component is a Cox-Ingersoll-Ross process. This situation is mlspec

case of the modell; (2) (with ay; = 0) in the classification of Dai, Singleton (2000) without sign

restrictions onvy; andas; (see Appendix 4).

Type 2c When both diagonal terms admit affine components, the volatility matrixbean

‘g 2 ) and the expected domain® = {(z,y) : « > 0, y > 0}. The

conditions on the drifts are:

chosen asX (z,y) = (

Drift z|,_, = apy+p; >0, foranyy >0,
Drift y|y:0 = agx+ [y >0, foranyz > 0.
They implyais > 0, a9 > 0, 5, > 0, 5, > 0. We get:
dx 11T + QoY + ﬁl \/E 0
= dt aw,
( dy ) ( Q21X + QoY + 52 + 0 \/g b
whereajs > 0, as; > 0, 5 > 0, B, > 0. In the special case;; = a9, = 0, we get two
independent Cox-Ingersoll-Ross processes. This case corresponds to thelpidgil the clas-

sification of Dai, Singleton (2000), but without the sign restrictions on treponents ofv '3
(see Appendix 4).

Type 2d: Let us now consider the situation where the diagonal elements are pooadrti

o ax + blly +cn 0
Z('Twy) - ( 0 )\(&11$+blly+cll) 7

where\ > 0, and at least one of the coefficients, b1, is different from zero. For instance, let

us assume;; # 0. Up to an affine invertible transformation anit is possible to choose:

o .I—i‘bny 0

By applying the affine transformation:

1 1

X=— " (z+bny), Y=
1+ M0, (24 biry) A2 (1 + AB2,)

(—bu)\l’ + y) s

13



we get the equivalent form:

E(x,y)=<€ 2,)

Let us now consider the drift art Drift x|,_, = a2y + 3,. The positivity condition for any

and the domaiD = {z : © > 0}.

impliesay, = 0, B, > 0. Thus we obtain the following bidimensional affine process:
dx o 12y + ﬁl \/.% 0
( dy ) B ( 91T + Q9221 + 52 at T 0 \/E th’
where; > 0. This case does not appear explicitly in the classification of Dai, Sing(€@®D),

but can be considered as a limiting case.

Type 3. This case occurs when the two affine forms are proportional up to an additigtant
that is, when:
Ao + bagy + o0 = A (@11 + b1y + c11) + p, say.
Without loss of generality, we assume that the domaif? is- {(x,y) : a11x + b1y + ¢11 > 0},
and that the second affine form is strictly positive on the domain. Thisé@spl> 0, ¢ > 0.

The condition of zero local volatility on the boundary of the domain is:
Vv [d (allx + blly + 611)] = [a%l (allx + b11y + 011) + b%l (GQQ.T + bggy + 022)} dt
= b3, dt (on the boundary)
= 0.

This impliesb;; = 0. Therefore, the volatility matrix is necessarily of the form:

. a11x + €11 0
Z(ac,y)—( 0 )\(&11$+011)+M)7

where) > 0, u > 0.

The affine transformation:
1 1
X = -5 (&111’ + 011) s Y = —Y,

any VH
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provides the equivalent form:
x(z,y) = <g 1£px )’

with p = Xa?,/p > 0, and the domai® = {z : x > 0}.

The condition on the drift is: Drifte| _, = a2y + 5, > 0, for anyy, which impliesj3, > 0,
a2 = 0. Thus, the process satisfies:

(i) = Cons st )+ (0 g ) v

wheres; > 0 andp > 0. This situation represents the modgl(2) in the classification of Dai,
Singleton (2000). However, their set of sufficient conditions include the indgtpsadiz; > 0,
aq1 < 0, which are not necessary.

The classification is summarized in Table 1 below, where eachisldsfined up to an invertible

affine transformation.
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Table 1. Classification of bidimensional affine processes (state spdiceamempty interior).

D-S denotes the classification of Dai, Singleton (2000).

Type | Domain Equation Restrictions D-S
1 | D={y>a?}, Y (z,y) = < ;x ig ) , See Proposition 2 Missing
. . . a11x + ﬁ]_
interior of a parabolg p (z,y) = ( o1 + oy + By )
2a | D =R? X (.I’, y) = [d, a0 = 0, or A0(2)
[ anx+ agy _
p(z,y) = < O + Oty ) gy =0
2 | D={x>0) s =(5 1) 8> 0 42)
_ anz + [,
/‘L(*ray)_ <Og21x+a22y+52 )
2c | D={z>0,y=>0} E(a@y)z(% 2), a1z >0, a1 >0, | Ax(2)
[ oz +apy+ 5
M(x’y)_<oz21x+a22y+ﬁ2) B1>0,8; >0
2d | D={z=0} E(x,y)=<g 2) B, >0 Limiting
_ 12y + 61
p(z,y) = < (1 + may + By ) case
T 0
3 |D={s20) e =5 1) 550520 | A2
a1 +
p(r,y) = < ue oy )

a1 T + agy + By

16




4 The parabolic dynamics

In this section, we focus on affine models with parabolic domain (type 1)t, Miesdiscuss the
positivity of the rates and the form of the term structure. Second, we applstraye of variable to
provide another interpretation of the parabolic dynamics. Then, we studyrhimg degenerate

case in which the state space is the parabolic curve.

4.1 Positivity of the rates

In affine term structure models the rates are affine functions of the fagorsnstance, the short

term rate is:

_ dA;(0) dAs (0) dB (0)

o TTTa YT

(see the introduction). The conditions for positive rates are easily deovelde different classes

Tt

described in Table 1.

Table 2. Conditions for positivity of the rates.

Type Conditions
2
dA3(0) dA,(0) dA3(0) dB(0)
1 d2t >0’( c}t )_4 d2t dt <0
2a dA0) _ o d420) _ ) dBO)

dt dt dt

2b,2d,3| 40, 220 — o, 80

dA1(0) dA2(0) dB(0)
2c ——>0,—2=>0,—45~>0

For types 2b, 2c, 2d, 3, the rate is an affine function of the nonnegative faciois/ ory, with
nonnegative coefficients (see Dai, Singleton (2000), Levendorskii (2004) foestandition). For

type 2a we get a degenerdtat term structure. Type 1 is much more interesting since the factor

17



is not necessarily positive and its sensitivity coefficient can betlgtnegative.
In the parabolic case, the Riccati equation followedAdyt) = [A; (t), A, (t)]', useful to

determine the term structure, becomes:
dA,(t)  dA;(0)

+ CY11A1 (t) + CYQ]_AQ (t) — 2141 (t) A2 (t) s

dt - dt
dAy (t dA, (0
jt( ) - ;lt( : +an Ay (t) — 24 (t)°,

with initial conditions: A; (0) = 0, A2 (0) = 0. The second equation is a one-dimensional Riccati
equation similar to the Riccati equation corresponding to the Cox-Indgigresk process. There-
fore, this equation admits a closed form solution. Substitution of this solimtiorthe first equation
leads to a linear differential equation i, which provides a closed form solution fdr.

The solutionA, of the Riccati equation is:

Qo +7 Y 1
As (1) = — = ,
2 (1) 4 21—t exp()

wherey = /8aps + a2, andagy = dA;t(O) > 0. The solutionA; is derived in Appendix 5 and is

given by:

B d2 1 d1 _ d2 _ dl dg 1_
A = d0(6+%)+1+d0exp(7t) 0—3 do(6+3) (5—%+5+%)exp<<2 5>t>]’

o2

where
o = %_alh
dy = _0422—77
Qoo + Y
dy = CY01+CY21OQ24_7,
+
d2 = do (@01+C¥21a224 ’y)‘
Note thaty > 0, > 0, dy > 0, and:
dy
lim A (t) = —————.
Y G
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In the standard two-factor affine framework, the term structuredeunieed from two indepen-
dent Cox-Ingersoll-Ross processes (a special case of type 2c¢). Then, the congfdherterm
structure sensitive to the factors corresponds to functions similds.td@ he parabolic framework
involves another type of term structure pattern associated with funetjonWhereas function
A, corresponding to the Cox-Ingersoll-Ross term structure has a monotonicsimgygrattern,

function A; can feature humps, as shown in Figure 1.

Figure 1. Plot of functiom; forv =0.1,dy = 2,d, = 5,d, = 1, andy = 0, 0.1, 0.2, 0.3, 0.4,
0.5.

0 20 40 60 80 100

4.2 Change of variable

Let us consider the affine dynamics derived in Proposition 2 and introduce thgecb&variable

2 =y — z%. The bivariate process;, z) is a diffusion process with volatility matrix:
S* (2, 2) = 1 0 1 2z 1 =22\ (1 0 (1 0
R G P | 2c Ay 0 1 )7\04@wy—2? )" \o0 42 )"
The drift onz is:
Drift = = 4 (—20&111’2 — 261$ + a1 T + a2y + 62 — 1)
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= 4oz +4 [(0422 —2011) 2 + (21 — 2B1) T + By — 1} .

We observe that in general the procéssz) admits an affine volatility matrix and a quadratic
drift. However, the drift is still affine itvos = 241, which impliesas; = 23, from Proposition 2.
Therefore, in this special case, another affine process can be reta¥eea nonlinear quadratic

transformation of the factors.

Proposition 3 Let us consider the affine process:

1/2
dx o T+ 1 2z
- uz+ by dt + AW,
dy 20,2 + 2a11y + B, 2z 4y
with state spac® = {(z,y) : y > 2?}. Then the procesg, z = y — z?), is still affine:
1/2
dx o + 1 0
- us+ dt + AW,
dz 8a1z +4(8y — 1) 0 4z

with state spac®* = {(x, z) : z > 0}. Thus the componenisand z are independent; follows

an Ornstein-Uhlenbeck process, wheredsllows a Cox-Ingersoll-Ross process.

The construction of this process is similar to the construction of th@&iprocess for dimen-

sionn (n + 1) /2, wheren is an integer [see Gourieroux, Sufana (2003)]

4.3 Degenerate parabolic dynamics

The characterizations of the state spaces of affine processes has beenguktioder the assump-
tion of a state space with nonempty interior. There exists also nonlataetr spaces with empty
interior such asD = {(z,y) : y = 2?}. A simple example is derived as follows.

Let us consider an Ornstein-Uhlenbeck process:

dzx = (ax + B) dt + cdW4,

7 Note that a Wishart process cannot be defined in the bidimensionakoase2 cannot be written ag (n + 1) /2.
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and the joint proces&r, y = 22). This is a bivariate diffusion process such that:
{ dx = (ax + B) dt + cdW4,

dy = 2z (ax + B) + ] dt + 2cxdWs,
or, equivalently,

dy = (2ay + 20z + ) dt + 2cxdW,.
This is a bidimensional affine process with state space {(x,y) : y = 2}. This type of trans-

{ dr = (ax + B) dt + cdW4,

formation has been used to construct the so-called quadratic term strowdels (see e.g. Leip-

pold, Wu (2002)).

5 Concluding remarks

This paper extends the classification of standard affine diffusion precesbai, Singleton (2000)
in the bidimensional case by considering all nonlinear state spaces, and limgmecessary and
sufficient parameter restrictions that ensure the positivity and rejectinditions. We prove that
in the bivariate case the only admissible nonlinear state spaces areljgadalboains. Thus the
conjecture of Duffie, Filipovic, Schachermayer (2003) that this type of bivaaiitee process is
the only one with a nonlinear state space is valid in the two-factor casee\o, their conjecture
is not valid in a framework with more than two factors, since Wishaocesses are additional
examples of affine processes with nonlinear domain. Also, we complétahacterize all bivari-
ate affine diffusion processes with nonlinear state space, and showsotina of the parameter

restrictions obtained by Dai, Singleton (2000) for standard affine diffusi@sat necessary.

Appendix 1. Drift of F' (xzy, v;)

The drift of F' (x4, y,) IS:

Drift F' (z¢, y) = (x4, y¢) A” ( Ty ) + N ( Z;t ) + Ao,
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where
A* = 2A8,
N =2[(A,C),(B,C)] B+ 2dA+[Tr(AA), Tr (AB)],
Mo =2[(4,C),(B,C)a+Tr(AC).

Appendix 2. Conditions for a locally deterministic system on he

boundary

In this appendix, we focus on nondegenerate cases. Up to an affine invediidéotmation, the
conditionF’ (x,y) = det X (z,y) = 0 can correspond to:

1) a hyperbola xy = 1 (say)

i) aparabola y = 22 (say)

iii) an ellipse :22 + 12 = 1 (say).

In each case, we consider the restrictions implied on the volatilitynpeters by the equality:

2= (G o ) 2 (S ). G ) =0

which has to be satisfied for the pairs y) such that* (z,y) = 0.

1. Hyperbolic case

WhenF (z,y) = k(zy — 1), k # 0, we get: 5 (z,y) = ky, § (x,y) = kz. The condition

A (z,y) = 0 is equivalent to:
(an1z + b1y + c11) ¥* + (a2 + basy + c22) % + 2 (a1 + bray + c12) 7y = 0,
or, sincery = 1:
b +ena 2+ (a1 + 2b12) 271+ 2e10 + (bag + 2a12)  + Cp02® + agea® = 0,
for anyz in an open set. We deduce the necessary conditions:
bii =ci1 = ci2 = Cp = a2 = 0, ai +2b12 =0, by +2a12 =0.
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In particular,C' = 0 and this condition is not compatible witl¥: (0,0) = det C' = —k # 0. Thus,

the boundary cannot correspond to a hyperbola.
2. Parabolic case

Let us now assumet’ (z,y) = k (y —2?), k # 0. We get: §; (z,y) = —2kz, G (z,y) = k.

The conditionA (x,y) = 0 becomes:
4 (an® + by + c11) 2% + (a2 + basy + ¢22) — 4 (a122 + biay + c12) . = 0,
or, sincey = 2:
(4b11) 2* + (dayy — 4b1o) 2 + (deyy + bog — dags) 2% 4 (age — 4c12) T + cop = 0,
for anyx in an open set. We deduce:
bir =0, an = bia, 4c11 + by —4ap =0, az = 4c12, c2 =0,

and the volatility matrix can be written as:

S (2,y) = a11% + c11 a12% + a11Y + C12
’ 12T + a1y + C12 46121’ + (4&12 — 4611) Yy ’

Let us now write the conditions to ensure tdat > (z,y) = k (y — 2?). We get:
det X (z,y) = (apix+ 1) [dcror + (dags — 4enn) y] — (arex + any + 012)2
= _a?ﬂf + 2 (—aﬁ + 46L11€12) + 2y [—2a11012 + ay; (4a1a — 4enn)]
4+ (—2a19¢12 + 4cyic1g) + y [—2ar1c10 + ¢y (darg — depr)] — 2y
We deduce:
a% =0, — Q?Q +4ayc10 = —k, —2a11a12 + 11 (4a12 — 4eqq) = 0,

12 (—2a12 + 4e11) =0, = 2ay1012 + cn1 (darp — deny) =k, iy = 0.

The system is equivalent to:
a;; =0, ¢12 =0, a%z =k, cin (4&12 - 4011) = a%g.
The last equality is equivalent t@,, — 2611)2 = 0 & a1p = 2¢q;. Finally the form of the
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volatility matrix is:

c 2c11x
2(fff,y)=< S e )

2cnw 4eny
wherec;; > 0. Note thatcy; can be taken equal to 1 by considering the linear transformation:

zlel’ =z, y/en — y.
3. Elliptic case

In this casef" (z,y) = k (¢ +y* — 1), k # 0. We get: 3 (x,y) = 2kz, § (2,y) = 2ky. The

conditionA (z,y) = 0 becomes:
(a112 + by + c11) 22 + (agx + bogy + c22) ¥* — 2 (@102 + broy + c12) Yy = 0,
or, sincey? = 1 — 22
(a11 — G + 2b1) 234(bry — bao — 2a12) 2 y+(c11 — €22) T —2c100y+(age — 2b12) T+bogy+car = 0.

Let us consider the change of variables:

) 2t
r = sinf = ,
1+ ¢2
1—¢t?
= 0:—
Y o8 1+t

wheret = tan 4, —m < 6 < 7. This leads to:
(Cop — bo2) % + [derg + 2 (age — 2b12)] #° + [—4 (b11 — bay — 2a12) + 4 (11 — €22) — bag + 3cgp] t
+[8 (a11 — agz + 2b12) + 4 (agz — 2b12)] t* + [4 (b11 — baa — 2a12) + 4 (€11 — C22) + baa + 3ca0] 2
+[—4c12 + 2 (age — 2b1a)| t + bog + 29
= 0,
for anyt in an open set. We deduce:
byy = Co2 = 0, c11 =0, c12 = ag — 2b12 = 0.

In particular,C' = 0, and this condition is not compatible witf: (0,0) = det C' = —k # 0. Thus,

the boundary cannot correspond to an ellipse.
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Appendix 3. Conditions for rejection on the boundary for the

parabolic case

In the parabolic cask (z,y) = ( 213: ig ) We get:F (z,y) = 4 (y — %), which is positive if,
and only if,y > z%. The first and second order derivatives of the determinant are:
OF _ g, OF _, OF _ o OF_OF
or oy ox2 T Oy Oxdy

Fory = 22 the drift on the determinant is:
Drift F' (zy,y;) = —8z(anz+ apy+ 51) + 4 (agx + any + 55) —4
= 4 [—20[12373 + (arge — 2a11) 22 + (g1 — 23,) . + By — 1} )
The drift is positive for any: if, and only if, one of the following sets of conditions is satisfied:
ajp =0, agy > 2011, (0421 - 251)2 <4 (Oézz - 2Oén) (52 - 1) )

or

app =0, agp —2a11 =0, ay =28, B;>1

Appendix 4. Dai-Singleton classification

In this appendix, we particularize the classification derived by Oagl8ton (2000) [with restric-
tions (11) - (19), p.1948 - 194910 the one and two factor frameworks. They consider a model

satisfying the Duffie-Kan condition on the volatility matrix:

dx, _ Q11 Q2 Ty 4 B1 dt
dyy Qo1 Qg Ye By
L +buys + cn 0 V2 AW
0 a2 + baolyy + Ca2 v
Different families of models are defined according to the numberf linearly independent com-

binations of state variables involved in the volatility matrix. Therfisigint restrictions are intro-

duced on the parameters to ensure the positive definiteness of the voladility.m

8  Note that their conditions (17), p. 1949, differ from the condition C4giin Appendix B.
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i) One factor framework
Family Ay(1) corresponding tom =0

Up to an invertible affine transformation, the model can be written as:
dl’t = Tt dt + th,

with no restriction onv. This is an Ornstein-Uhlenbeck process with zero mean and unitarylvolati

ity.
Family A, (1) corresponding tom = 1

Up to an invertible affine transformation, the model can be written as:
dry = a (0 — x;) dt + [z, dW,,

where the parameters are constrainechBy> 0 andf > 0. This is a special case of the Cox-
Ingersoll-Ross process, but the conditibn> 0 is not necessary. In fact since the inequalities
af > 0 andd > 0 are equivalent ta? > 0 anda > 0, Dai and Singleton implicitly imposed an

additional stationarity condition.

i) Two factor framework

Family Ay(2) corresponding tom =0

Up to an invertible affine transformation, the model can be written as:

()= (oo ) e

where the parameters are constrained by either= 0, or as; = 0.

Family A,(2) corresponding tom = 1

Up to an invertible affine transformation, the model can be written as:

1/2
( gi:?j: ) - ( Q21 &1t1£xé)_+92422yt ) i+ ( ggt 1 +222£Ut ) W,
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where the parameters are constrained by:

0>0, ant <0, ag; >0, axp > 0.

Family A,(2) corresponding tom = 2

Up to an invertible affine transformation, the model can be written as:
1/2
dxy an T + Y + 54 r 0
= dt + dw,
( dyt ) < 1%t + o2yt + By 0w !
where the parameters are constrained by:

az >0, a;p >0, B, >0, B, >0,

1
and the componentS(é‘ G i ) ( by ) are negative.

Qo1 (g By
Appendix 5. Closed-form solution for the parabolic case

In this appendix, we derive the closed-form solution for functibnin the parabolic case. The

linear differential equation satisfied by functiah is of the type:

dA, (1)
dt

with initial condition A; (0) = 0, wheref [exp (vt)] = a1 + @214 (t) andg [exp (vt)] = aq1 —
24, (t).

= flexp (7t)] + Ay (t) g [exp (71)], (A5.1)

Let us introduce the functiod; such that4, (t) = A% (z), wherez = exp (yt). This function

satisfies the linear differential equation:

dAjz(Z) -] 7(5) + A5 (2) 2 (j) , (A5.2)

with initial condition A} (1) = 0. The solution of equation (A.5.2) is:

Al (z) = fy(:j) exp (/gv(:j)dv> du exp (/ gv(:j)dv) :

In our framework, we have:

Qo2 + 7y Y
g(Z):a]_]__ 2 +1_(X22_{Z7
a2+
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Q22—
g9(2) — l |:l <&11 _ 0422—}-’}/) _i_l} + - aze+y

a2—"7 )
vz 2L 2 sty
2 1 _Ezzﬁ)_H
9(v) Al
exp /—dv = — , (A.5.3)
T 1- aiiﬂz
sincel — 22— 2 > (. Since
22+
f (Z) _ Qo1 + Qo1 OQZ—H/ _ % 1
vz vz 2 (1_oanxa,),
a22+7y
we get:
I(z) = /f(u)exp /g()d du
YU YU
Qo1 +a21a21+7 cm) Z—%(all— 22+7) 1
a g 2 —% (0111 - —Cmgﬂ) —1
Qg — 7y Qo1 + 0421022T+7 2_%(6““_&22;7) (A.5.4)
Qg + 7Y 8 —% (an — 22257)’ o
and
z
AT (2) = [T (2) = T (1)] exp / 9 g, | (A5.5)
YU

Substituting results (A.5.3) and (A.5.4) into equation'(A.5.5), we obtain the solfdgidanction

. dg 1 dl _ d2 _ d1 d2 1_
Al(t)_d0(5+g-)+1+d0exp(w) [5—1 do (5+7) <5—%+5+%)exp((2 5)t>]’

92
60 = = —q«

9 11,

a —_—
dy = — 22 — 7

Qoo + 7Y

Qgg — 7Y
dy = ap+ o 1
9o +

d2 = do (0601+0421 224 ’Y)
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