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A Classification of Two Factor Affine Diffusion Term Structure Models

Abstract

Dai, Singleton (2000) introduced a typology of affine diffusion models when the domain of

admissible values of the factors is an intersection of half planes and under some additional con-

straints on the parameters. This condition on the domain and the additional sufficient constraints

are restrictive and can considerably diminish the practical interestof affine models. In this paper

we successfully address the research agenda sketched by Duffie, Filipovic, Schachermayer (2003),

Section 12.2, p. 50. A systematic investigation is performed and our paper provides a complete

typology in the two factor case, without prior restrictions on the domain and onthe parameters.

Keywords: Affine Term Structure Model, Parabolic Dynamics, Wishart Process, Domain Re-

strictions.

JEL: G13, G17
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Une classification des modèles affines de structure par terme à deux facteurs

Résumé

Dai et Singleton (2000) ont introduit une typologie des modèles de diffusion affines, lorsque

l’ensemble des valeurs possibles des facteurs est une intersection de demi-plans, et sous quelques

contraintes complémentaires sur les paramètres. La condition sur le domaine et les contraintes

suffisantes sur les paramètres sont restrictives et diminuent considérablement l’intérêt des modèles

affines. Il reste done à effectuer une analyse plus systematique [Duffie,Filipovic, Schachermayer

(2003), p. 50]. Dans ce papier nous présentons une typologie complete des modèles affinesà deux

facteurs sans restriction a priori sur le domaine et les paramètres.

Mots clés: Modèle affine de structure par terme, dynamique parabolique, processus de Wishart,

restrictions de support.
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1 Introduction

In a diffusion setting an affine term structure model assumes [see Duffie, Kan (1996), Duffie,

Filipovic, Schachermayer (2003), Dai, Singleton (2003)]:

A1. The discount function is exponential affine inK latent factors, which are the components of

the (K, 1) vectorXt:

D (t, T ) = EQ
[
exp−

∫ T

t

rsds|Xt

]

= exp−
[
A (T − t)′Xt +B (T − t)

]
,

wherers denotes the short term interest rate,Q the risk-neutral probability,Xt the filtration

generated by the factors, functionA is (K, 1) andB is a scalar function.

A2. The factor process satisfies aK-dimensional stochastic differential system with linear drift

and volatility:

dXt = (αXt + β) dt+

(
H0 +

K∑

k=1

HkXkt

)1/2
dWt,

whereβ is a(K, 1) vector,α is a(K,K) matrix,Hk, k = 0, 1, . . . , K, are(K,K) symmetric

matrices, and(Wt) is aK-dimensional Brownian motion under the risk-neutral distribution

Q.

Then, functionsA andB satisfy the following ordinary Riccati differential equations:




dA(t)
dt

= α0 + α
′A (t)− 1

2

[
A (t)′H1A (t) , . . . , A (t)

′HKA (t)
]
′

,

dB(t)
dt

= β0 + β
′A (t)− 1

2
A (t)′H0A (t) ,

with initial conditionsA (0) = 0,B (0) = 0, corresponding toD (t, t) = 1. In particular, the short

term rate is:rt = α′0Xt + β0, whereα0 =
dA(0)
dt

, β0 =
dB(0)
dt

.

The parameters of the factor dynamics cannot be chosen arbitrarily, since thefactor volatility

matrix has to satisfy: i) the positive semidefiniteness condition:

H0 +
K∑

k=1

HkXkt ≫ 0,

for any valuesXt in the factor domainD (H ≫ 0 means thatH is positive semidefinite), and
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ii) the rejection condition that ensures the reflection of the volatility matrix towards a positive

definite matrix when it becomes singular.

A limited number of parametric specifications satisfying both the positivityand rejection con-

ditions have been derived in the literature.

i) A well-known specification corresponds to the Duffie-Kan model [Duffie, Kan (1996)] in

which the volatility matrix is:

H0 +
K∑

k=1

H1kXkt = Q




a′1Xt + c1 0

...

0 a′KXt + cK


Q

′,

and the factor domain is the intersection of half-planes:

D = {a′kXt + ck ≥ 0, k = 1, . . . , K} ,

whereaK , k = 1, . . . , K, are (K, 1) vectors,ck, k = 1, . . . , K, are scalars, andQ is a (K,K)

invertible matrix. Thus, up to a deterministic invertible transformation, the volatility matrix is

diagonal and an affine function of the factors. For this specification, Dai,Singleton (2000) de-

rive sufficient, but not necessary, parameter restrictions for which the positivity and rejection

conditions are satisfied.

ii) Another specification has been recently introduced by Gourieroux and Sufana (2003) to ex-

tend the standard Cox-Ingersoll-Ross process [Cox, Ingersoll, Ross (1985)] to a multivariate

framework. They consider factors corresponding to the different elements of a stochastic

symmetric positive semidefinite matrixYt with dimension(n, n): Xt = vech (Yt), where the

matrixYt follows a Wishart autoregressive (WAR) process (and more generally affine transfor-

mations of such factor processes). The number of Wishart factors isn(n+1)/2, and they vary

in a nonlinear domain, which is not an intersection of half-planes. For instance, the domain

restrictions in a three-factor Wishart model corresponding ton = 2 are:X1,t = Y11,t ≥ 0,

X3,t = Y22,t ≥ 0,X1,tX3,t −X2
2,t = Y11,tY22,t − Y 212,t ≥ 0; they involve quadratic restrictions

due to the determinant condition.
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The Wishart process shows that there exist important affine diffusion processes that are not

members of the set of "standard" affine processes considered by Duffie, Kan (1996), and classified

by Dai, Singleton (2000).1 These nonstandard affine processes have a nonlinear state space and

lead to more general specifications of the factor volatility matrix.

The general aim of this paper is to extend the classification of standard affine diffusion pro-

cesses proposed by Dai, Singleton (2000) to the set of all possible affine diffusions. Whereas Dai,

Singleton (2000) assume a priori that the state space is an intersection of half planes and consider

only sufficient parameter restrictions to ensure the positivity and rejection conditions (as noted in

Dai, Singleton (2000), p. 1949), we characterize all admissible state spaces, and give necessary

and sufficient parameter restrictions. To highlight the problems and facilitate the comparison with

the literature, we focus on the bidimensional caseK = 2.

The contribution of this paper is the proof that in the bivariate case the only admissible nonlinear

state spaces are parabolic domains. In particular, we prove that in the bivariate case the state space

cannot be a hyperbolic or elliptic domain. A special example of affine diffusion process with

parabolic domain is provided by Duffie, Filipovic, Schachermayer (2003) (Section 12.2, p. 50),

who conjecture that this type of bivariate affine process is the only one with a nonlinear state

space, but leave the systematic investigation for future research. This paper proves that this is

indeed the case ifK = 2, but the existence of Wishart processes indicates that there are additional

affine processes with nonlinear domain when the number of factors is larger thantwo.2 Also,

we completely characterize all bivariate affine diffusion processes with nonlinear state space, and

show that some of the parameter restrictions obtained by Dai, Singleton (2000)for standard affine

diffusions are not necessary.

In Section 2, we present the general principle for deriving the pattern of thestate space, and

1 The set of standard affine processes does not include all possible affine processes due to the restrictive additional

assumption on the state space introduced in Appendix 1 of Duffie, Kan (1996), p. 398.

2 Thus, the conjecture of Duffie, Filipovic, Schachermayer (2003) that the diffusion processes with parabolic domain

are also the only nonstandard multifactor affine processes is not valid.
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the necessary and sufficientparametric restrictions which ensure that the process will stay in its

state space. In Section 3 we present a classification of bidimensional affine processes. The affine

processes with parabolic state space are studied in more detail in Section 4. Section 5 concludes.

2 Principle for deriving the state space and the parametric restric-

tions

A two-factor affine process with components(xt, yt) satisfies a diffusion system:
(
dxt
dyt

)
=

[(
α11 α12
α21 α22

)(
xt
yt

)
+

(
β1
β2

)]
dt

+

(
a11xt + b11yt + c11 a12xt + b12yt + c12
a12xt + b12yt + c12 a22xt + b22yt + c22

)1/2
dWt, (2.1)

with affine driftµ (xt, yt) = α(xt, yt)′ + β, and volatility matrixΣ(xt, yt) = Axt +Byt + C.

Let us assume an initial datet = 0 and an initial value(x0, y0)′, such that the volatility matrix

at (x0, y0)′ is positive semidefinite. Whenever the volatility matrix stays positivesemidefinite, the

standard sufficient conditions for the existence and uniqueness of a solution are satisfied, since the

drift and the volatility matrix are affine [see Ikeda, Watanabe (1989),theorems 2.4, 3.1, p. 177-

178]. The positive semidefiniteness of the volatility matrix is ensured if the process is rejected

towards the interior of the domain when it reaches its boundary, following thestandard argument

used for the Cox-Ingersoll-Ross process [see Ikeda, Watanabe (1989), example 8.2,p. 236]. Thus,

these rejection conditions are sufficient for the existence and uniqueness of the process. They

are also necessary and sufficient conditions if any point on the boundary of the set of symmetric

positive semidefinite matrices is reached with a strictly positive probability. It is beyond the scope

of this paper to derive the conditions on the drift and volatility parameters which ensure that the

assumption above is satisfied [see e.g. Kunita (1978), (1980), or Ikeda, Watanabe (1989), Chapter

VI]. 3

3 By analogy with the standard Cox-Ingersoll-Ross process [see Ikeda, Watanabe (1989), p. 237, and theorems

VI.3.1, VI.3.2], the rejection from the boundary has to be sufficiently small.
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The analysis involves several steps.

Step 1. Write the positivity conditions onΣ(xt, yt), that are:

a11xt + b11yt + c11 ≥ 0, (2.2)

a22xt + b22yt + c22 ≥ 0, (2.3)

F (xt, yt) = detΣ (xt, yt) ≥ 0. (2.4)

Let us introduce the bilinear form on symmetric matrices defined by(A,B) = 1
2
(a11b22 + a22b11)−

a12b12. We get(A,A) = detA, and the third inequality constraint (2.4) involves the quadratic

function:

F (xt, yt) = (xt, yt) Λ

(
xt
yt

)
+ 2 (A,C)xt + 2 (B,C) yt + (C,C) , (2.5)

where:

Λ =

[
(A,A) (A,B)
(A,B) (B,B)

]
.

Step 2. Derive necessary and sufficient conditions on the volatility parametersA, B, C to

ensure that the inequality restrictions (2.2), (2.3) and (2.4) define a nonempty domainfor the

pair (x, y).

Step 3. Discuss the form of the domainD and of its boundarỹD. The boundary is reached

whena11xt + b11yt + c11 = 0 or a22xt + b22yt + c22 = 0, orF (xt, yt) = 0.

Since the positivity conditions involve two affine functions and a quadratic function of the fac-

tors, the admissible domains will be deduced from elliptic, parabolic, hyperbolic domains (accord-

ing to the eigenvalues of the matrixΛ), or intersections of the previous domains with half planes,

or even intersections of half planes in degenerate cases.

Step 4. Write the conditions for rejection towards the interior of the domainD for any(x, y) on
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the boundarỹD.

These rejection conditions can be written in a general framework. Let us assume that the bound-

ary is reached for a pair(x, y) such thatF (xt, yt) = 0. Then we have to consider the drift on

F (xt, yt), which is:

Drift F (xt, yt) =
(
∂F
∂x

∂F
∂y

)
µ (xt, yt) +

1

2
Tr

[(
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y2

)
Σ (xt, yt)

]
. (2.6)

From the expression (2.5), it is immediately seen that:

∂F

∂x
= 2 (A,A) xt + 2 (A,B) yt + 2 (A,C) ,

∂F

∂y
= 2 (A,B) xt + 2 (B,B) yt + 2 (B,C) ,

∂2F

∂x2
= 2 (A,A) ,

∂2F

∂y2
= 2 (B,B) ,

∂2F

∂x∂y
= 2 (A,B) .

Thus, the drift is a quadratic function ofxt andyt:

Drift F (xt, yt) = (xt, yt) Λ
∗

(
xt
yt

)
+ λ′

(
xt
yt

)
+ λ0, say, (2.7)

whereΛ∗, λ andλ0 are given in Appendix 1.

The rejection conditions require a zero volatility and a strictly positive drift of F (xt, yt) on the

boundary:

∆(xt, yt) =

(
∂F

∂x
(xt, yt) ,

∂F

∂y
(xt, yt)

)
Σ(xt, yt)

(
∂F

∂x
(xt, yt) ,

∂F

∂y
(xt, yt)

)
′

= 0,

and

Drift F (xt, yt) > 0,

for any(xt, yt) such thatF (xt, yt) = 0.

Similar conditions can be written when the boundary is reached for (xt, yt) such thata11xt +

b11yt + c11 = 0:

(a11, b11) Σ (xt, yt) (a11, b11)
′ = 0, and Drift (a11xt + b11yt + c11) > 0,

for any(xt, yt) on the linea11xt + b11yt + c11 = 0. If the boundary is reached for (xt, yt) such that

9



a22xt + b22yt + c22 = 0, the conditions are:

(a22, b22) Σ (xt, yt) (a22, b22)
′ = 0, and Drift (a22xt + b22yt + c22) > 0,

for any(xt, yt) on the linea22xt + b22yt + c22 = 0.

3 Classification of bidimensional affine processes

The volatility matrix is singular when the determinant4 F (x, y) = detΣ (x, y) = 0. SinceF (x, y)

is a polynomial of degree less than or equal to 2, different cases can be distinguished. In the

nondegenerate cases, the conditionF (x, y) = 0 corresponds to a hyperbola, parabola, or ellipse.

The degenerate cases are obtained when either the polynomial is of degree 0 or 1, or the second

degree polynomial corresponds to a product of affine functions. In all these degenerate situations,

the domain is an intersection of hyperplanes, as studied in Duffie, Kan (1996),and in the main

sections of Duffie, Filipovic, Schachermayer (2003).

The nondegenerate and degenerate cases are presented below.

3.1 Nondegenerate cases

Up to an affine invertible transformation, the conditionF (x, y) = 0 corresponds to a hyperbola

(xy = 1, say), a parabola (y = x2, say), or an ellipse (x2 + y2 = 1, say). The property below is

proved in Appendix 2.

Proposition 1 To get a diffusion which is locally deterministic onF (x, y) = 0, the boundary of

the domainD cannot be a hyperbola or an ellipse. It can be the parabolay = x2, when

Σ(x, y) =


 1 2x

2x 4y


 .

The counterexample provided by Duffie, Filipovic, Schachermayer (2003) (Section 12.2, p. 50)

corresponds to this parabolic case. But their constraint on the drift implies anabsorbing boundary.

4 To simplify notation, the time subscripts ofx andy are omitted.
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Finally, the drift can be fixed to ensure the rejection property on the boundary of the domain

(see Appendix 3).

Proposition 2 The only nondegenerate bidimensional affine processes (up to invertible affine

transformations) are such that:

Σ(x, y) =


 1 2x

2x 4y


 , µ (x, y) =


 α11x+ β1

α21x+ α22y + β2


 ,

where

α22 > 2α11, (α21 − 2β1)2 < 4 (α22 − 2α11) (β2 − 1) ,

or

α22 − 2α11 = 0, α21 = 2β1, β2 > 1.

3.2 Degenerate cases

In the degenerate case, it is known from Duffie, Kan (1996) that the volatility matrix can be written

as:

Σ(x, y) =

(
a11x+ b11y + c11 0

0 a22x+ b22y + c22

)
,

up to an invertible affine transformation. Its determinant is:

F (x, y) = (a11x+ b11y + c11) (a22x+ b22y + c22) .

Let us now study what arises when the boundary of the domain is reached. We must have:

V (a11dx+ b11dy + c11) =
[
a211 (a11x+ b11y + c11) + b

2
11 (a22x+ b22y + c22)

]
dt

= b211 (a22x+ b22y + c22) dt = 0,

if a11x+ b11y + c11 = 0, and

V (a22dx+ b22dy + c22) =
[
a222 (a11x+ b11y + c11) + b

2
22 (a22x+ b22y + c22)

]
dt

= a222 (a11x+ b11y + c11) dt = 0,

if a22x+ b22y + c22 = 0. Then two cases have to be distinguished:

Type 2: Both conditionsa11x + b11y + c11 = 0 anda22x + b22y + c22 = 0 are jointly needed
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to define the boundary of the domain. When the boundary of the domain is reached, we can have

eithera11x + b11y + c11 = 0, or a22x + b22y + c22 = 0. In this situation, the volatility conditions

above have to be jointly satisfied. This implies that eithera22x + b22y + c22 is proportional to

a11x+ b11y + c11, or b11 = a22 = 0.

Type 3: The boundary of the domain is given by only one of the setsa11x + b11y + c11 = 0,

or a22x + b22y + c22 = 0, but not by both of them. This situation arises when the two diagonal

elements ofΣ(x, y) are proportional up to an additive constant.

Let us first assumeb11 = a22 = 0. The volatility matrix reduces to

Σ(x, y) =

(
a11x+ c11 0

0 b22y + c22

)
.

Different types of dynamics can be distinguished according to the presence of the affine terms in

the diagonal elements.

Type 2a: If b11 = a22 = a11 = b22 = 0, we get a constant diagonal volatility matrix, which

can always be chosen as the identity matrix by an invertible affine transformation. Moreover, the

constant termβ of the drift can be set to zero by an appropriate translation of the variablesx, y.5

The process satisfies: (
dx
dy

)
=

(
α11x+ α12y
α21x+ α22y

)
dt+ dWt,

and is a bivariate Ornstein-Uhlenbeck process. This is the modelA0(2) in the classification of Dai,

Singleton (2000)6.

Type 2b: One diagonal term is constant, whereas the other one is affine. Up to an affine

invertible transformation, the volatility matrix isΣ(x, y) =

(
x 0
0 1

)
, and the expected domain

isD = {x : x ≥ 0}. The condition on the drift is: Driftx|x=0 = α12y + β1 > 0, for anyy. This

5 Whenever the matrixα is invertible.

6 The conditionα12 = 0 orα21 = 0 in Dai, Singleton (2000) can be obtained by applying an appropriate orthogonal

transformation to(x, y).
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impliesβ1 > 0, α12 = 0. The process satisfies:
(
dx
dy

)
=

(
α11x+ β1

α21x+ α22y + β2

)
dt+

( √
x 0
0 1

)
dWt,

whereβ1 > 0. The first component is a Cox-Ingersoll-Ross process. This situation is a special

case of the modelA1(2) (with a22 = 0) in the classification of Dai, Singleton (2000) without sign

restrictions onα11 andα21 (see Appendix 4).

Type 2c: When both diagonal terms admit affine components, the volatility matrix canbe

chosen as:Σ(x, y) =

(
x 0
0 y

)
, and the expected domain isD = {(x, y) : x ≥ 0, y ≥ 0}. The

conditions on the drifts are:

Drift x|x=0 = α12y + β1 > 0, for anyy ≥ 0,

Drift y|y=0 = α21x+ β2 > 0, for anyx ≥ 0.

They implyα12 ≥ 0, α21 ≥ 0, β1 > 0, β2 > 0. We get:
(
dx
dy

)
=

(
α11x+ α12y + β1
α21x+ α22y + β2

)
dt+

( √
x 0
0

√
y

)
dWt,

whereα12 ≥ 0, α21 ≥ 0, β1 > 0, β2 > 0. In the special caseα12 = α21 = 0, we get two

independent Cox-Ingersoll-Ross processes. This case corresponds to the modelA2(2) in the clas-

sification of Dai, Singleton (2000), but without the sign restrictions on the components ofα−1β

(see Appendix 4).

Type 2d: Let us now consider the situation where the diagonal elements are proportional:

Σ(x, y) =

(
a11x+ b11y + c11 0

0 λ (a11x+ b11y + c11)

)
,

whereλ > 0, and at least one of the coefficientsa11, b11, is different from zero. For instance, let

us assumea11 	= 0. Up to an affine invertible transformation onx, it is possible to choose:

Σ(x, y) =

(
x+ b11y 0
0 λ (x+ b11y)

)
, λ > 0.

By applying the affine transformation:

X =
1

1 + λb211
(x+ b11y) , Y =

1

λ1/2 (1 + λb211)
(−b11λx+ y) ,
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we get the equivalent form:

Σ(x, y) =

(
x 0
0 x

)
,

and the domainD = {x : x ≥ 0}.

Let us now consider the drift onx: Drift x|x=0 = α12y + β1. The positivity condition for anyy

impliesα12 = 0, β1 > 0. Thus we obtain the following bidimensional affine process:
(
dx
dy

)
=

(
α12y + β1

α21x+ α22y + β2

)
dt+

( √
x 0
0

√
x

)
dWt,

whereβ1 > 0. This case does not appear explicitly in the classification of Dai, Singleton(2000),

but can be considered as a limiting case.

Type 3: This case occurs when the two affine forms are proportional up to an additive constant

that is, when:

a22x+ b22y + c22 = λ (a11x+ b11y + c11) + µ, say.

Without loss of generality, we assume that the domain isD = {(x, y) : a11x+ b11y + c11 ≥ 0},

and that the second affine form is strictly positive on the domain. This impliesλ ≥ 0, µ > 0.

The condition of zero local volatility on the boundary of the domain is:

V [d (a11x+ b11y + c11)] =
[
a211 (a11x+ b11y + c11) + b

2
11 (a22x+ b22y + c22)

]
dt

= b211µ dt (on the boundary)

= 0.

This impliesb11 = 0. Therefore, the volatility matrix is necessarily of the form:

Σ(x, y) =

(
a11x+ c11 0

0 λ (a11x+ c11) + µ

)
,

whereλ ≥ 0, µ > 0.

The affine transformation:

X =
1

a211
(a11x+ c11) , Y =

1√
µ
y,

14



provides the equivalent form:

Σ(x, y) =

(
x 0
0 1 + ρx

)
,

with ρ = λa211/µ ≥ 0, and the domainD = {x : x ≥ 0}.

The condition on the drift is: Driftx|x=0 = α12y + β1 > 0, for anyy, which impliesβ1 > 0,

α12 = 0. Thus, the process satisfies:
(
dx
dy

)
=

(
α11x+ β1

α21x+ α22y + β2

)
dt+

( √
x 0
0

√
1 + ρx

)
dWt,

whereβ1 > 0 andρ ≥ 0. This situation represents the modelA1(2) in the classification of Dai,

Singleton (2000). However, their set of sufficient conditions include the inequalities α21 ≥ 0,

α11 < 0, which are not necessary.

The classification is summarized in Table 1 below, where each classis defined up to an invertible

affine transformation.
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Table 1. Classification of bidimensional affine processes (state space with nonempty interior).

D-S denotes the classification of Dai, Singleton (2000).

Type Domain Equation Restrictions D-S

1 D = {y ≥ x2} , Σ(x, y) =

(
1 2x
2x 4y

)
, See Proposition 2 Missing

interior of a parabola µ (x, y) =

(
α11x+ β1

α21x+ α22y + β2

)

2a D = R2 Σ(x, y) = Id, α12 = 0, or A0(2)

µ (x, y) =

(
α11x+ α12y
α21x+ α22y

)
α21 = 0

2b D = {x ≥ 0} Σ(x, y) =

(
x 0
0 1

)
, β1 > 0 A1(2)

µ (x, y) =

(
α11x+ β1

α21x+ α22y + β2

)

2c D = {x ≥ 0, y ≥ 0} Σ(x, y) =

(
x 0
0 y

)
, α12 ≥ 0, α21 ≥ 0, A2(2)

µ (x, y) =

(
α11x+ α12y + β1
α21x+ α22y + β2

)
β1 > 0, β2 > 0

2d D = {x ≥ 0} Σ(x, y) =

(
x 0
0 x

)
, β1 > 0 Limiting

µ (x, y) =

(
α12y + β1

α21x+ α22y + β2

)
case

3 D = {x ≥ 0} Σ(x, y) =

(
x 0
0 1 + ρx

)
β1 > 0, ρ ≥ 0 A1(2)

µ (x, y) =

(
α11x+ β1

α21x+ α22y + β2

)
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4 The parabolic dynamics

In this section, we focus on affine models with parabolic domain (type 1). First, we discuss the

positivity of the rates and the form of the term structure. Second, we apply a change of variable to

provide another interpretation of the parabolic dynamics. Then, we study the limiting degenerate

case in which the state space is the parabolic curve.

4.1 Positivity of the rates

In affine term structure models the rates are affine functions of the factors.For instance, the short

term rate is:

rt =
dA1 (0)

dt
xt +

dA2 (0)

dt
yt +

dB (0)

dt
(see the introduction). The conditions for positive rates are easily derivedfor the different classes

described in Table 1.

Table 2. Conditions for positivity of the rates.

Type Conditions

1 dA2(0)
dt

> 0,
(
dA1(0)
dt

)2
− 4dA2(0)

dt
dB(0)
dt

< 0

2a dA1(0)
dt

= 0, dA2(0)
dt

= 0, dB(0)
dt

> 0

2b, 2d, 3 dA1(0)
dt

> 0, dA2(0)
dt

= 0, dB(0)
dt

> 0

2c dA1(0)
dt

> 0, dA2(0)
dt

> 0, dB(0)
dt

> 0

For types 2b, 2c, 2d, 3, the rate is an affine function of the nonnegative factorsx and / ory, with

nonnegative coefficients (see Dai, Singleton (2000), Levendorskii (2004) for such a condition). For

type 2a we get a degenerateflat term structure. Type 1 is much more interesting since the factorx
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is not necessarily positive and its sensitivity coefficient can be strictly negative.

In the parabolic case, the Riccati equation followed byA (t) = [A1 (t) , A2 (t)]
′, useful to

determine the term structure, becomes:

dA1 (t)

dt
=

dA1 (0)

dt
+ α11A1 (t) + α21A2 (t)− 2A1 (t)A2 (t) ,

dA2 (t)

dt
=

dA2 (0)

dt
+ α22A2 (t)− 2A2 (t)2 ,

with initial conditions:A1 (0) = 0, A2 (0) = 0. The second equation is a one-dimensional Riccati

equation similar to the Riccati equation corresponding to the Cox-Ingersoll-Ross process. There-

fore, this equation admits a closed form solution. Substitution of this solutioninto the first equation

leads to a linear differential equation inA1, which provides a closed form solution forA1.

The solutionA2 of the Riccati equation is:

A2 (t) =
α22 + γ

4
− γ

2

1

1− α22−γ
α22+γ

exp (γt)
,

whereγ =
√
8α02 + α222 andα02 =

dA2(0)
dt

> 0. The solutionA1 is derived in Appendix 5 and is

given by:

A1 (t) =
d2

d0
(
δ + γ

2

) + 1

1 + d0 exp (γt)

[
d1
δ − γ

2

− d2

d0
(
δ + γ

2

) −
(

d1
δ − γ

2

+
d2
δ + γ

2

)
exp

((γ
2
− δ
)
t
)]
,

where

δ =
α22
2
− α11,

d0 = −α22 − γ
α22 + γ

,

d1 = α01 + α21
α22 − γ
4

,

d2 = d0

(
α01 + α21

α22 + γ

4

)
.

Note thatγ > 0, δ ≥ 0, d0 > 0, and:

lim
t→∞

A1 (t) =
d2

d0
(
δ + γ

2

) .
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In the standard two-factor affine framework, the term structures arederived from two indepen-

dent Cox-Ingersoll-Ross processes (a special case of type 2c). Then, the componentof the term

structure sensitive to the factors corresponds to functions similar toA2. The parabolic framework

involves another type of term structure pattern associated with functionA1. Whereas function

A2 corresponding to the Cox-Ingersoll-Ross term structure has a monotonic increasing pattern,

functionA1 can feature humps, as shown in Figure 1.

Figure 1. Plot of functionA1 for γ = 0.1, d0 = 2, d1 = 5, d2 = 1, andδ = 0, 0.1, 0.2, 0.3, 0.4,

0.5.
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4.2 Change of variable

Let us consider the affine dynamics derived in Proposition 2 and introduce the change of variable

z = y − x2. The bivariate process(x, z) is a diffusion process with volatility matrix:

Σ∗ (x, z) =

(
1 0
−2x 1

)(
1 2x
2x 4y

)(
1 −2x
0 1

)
=

(
1 0
0 4 (y − x2)

)
=

(
1 0
0 4z

)
.

The drift onz is:

Drift z = 4
(
−2α11x2 − 2β1x+ α21x+ α22y + β2 − 1

)

19



= 4α22z + 4
[
(α22 − 2α11)x2 + (α21 − 2β1) x+ β2 − 1

]
.

We observe that in general the process(x, z) admits an affine volatility matrix and a quadratic

drift. However, the drift is still affine ifα22 = 2α11, which impliesα21 = 2β1 from Proposition 2.

Therefore, in this special case, another affine process can be recovered after a nonlinear quadratic

transformation of the factors.

Proposition 3 Let us consider the affine process:

 dx

dy


 =


 α11x+ β1

2β1x+ 2α11y + β2


 dt+


 1 2x

2x 4y



1/2

dWt,

with state spaceD = {(x, y) : y > x2}. Then the process(x, z = y − x2), is still affine:

 dx

dz


 =


 α11x+ β1

8α11z + 4 (β2 − 1)


 dt+


 1 0

0 4z



1/2

dWt,

with state spaceD∗ = {(x, z) : z > 0}. Thus the componentsx andz are independent,x follows

an Ornstein-Uhlenbeck process, whereasz follows a Cox-Ingersoll-Ross process.

The construction of this process is similar to the construction of the Wishart process for dimen-

sionn (n+ 1) /2, wheren is an integer [see Gourieroux, Sufana (2003)]7.

4.3 Degenerate parabolic dynamics

The characterizations of the state spaces of affine processes has been performed under the assump-

tion of a state space with nonempty interior. There exists also nonlinearstate spaces with empty

interior such as:D = {(x, y) : y = x2}. A simple example is derived as follows.

Let us consider an Ornstein-Uhlenbeck process:

dx = (αx+ β) dt+ cdWt,

7 Note that a Wishart process cannot be defined in the bidimensional case, since2 cannot be written asn (n+ 1) /2.
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and the joint process(x, y = x2). This is a bivariate diffusion process such that:




dx = (αx+ β) dt+ cdWt,

dy = [2x (αx+ β) + c2] dt+ 2cxdWt,

or, equivalently, 



dx = (αx+ β) dt+ cdWt,

dy = (2αy + 2βx+ c2) dt+ 2cxdWt.

This is a bidimensional affine process with state spaceD = {(x, y) : y = x2}. This type of trans-

formation has been used to construct the so-called quadratic term structure models (see e.g. Leip-

pold, Wu (2002)).

5 Concluding remarks

This paper extends the classification of standard affine diffusion processes of Dai, Singleton (2000)

in the bidimensional case by considering all nonlinear state spaces, and by providing necessary and

sufficient parameter restrictions that ensure the positivity and rejectionconditions. We prove that

in the bivariate case the only admissible nonlinear state spaces are parabolic domains. Thus the

conjecture of Duffie, Filipovic, Schachermayer (2003) that this type of bivariateaffine process is

the only one with a nonlinear state space is valid in the two-factor case. However, their conjecture

is not valid in a framework with more than two factors, since Wishart processes are additional

examples of affine processes with nonlinear domain. Also, we completely characterize all bivari-

ate affine diffusion processes with nonlinear state space, and show that some of the parameter

restrictions obtained by Dai, Singleton (2000) for standard affine diffusions are not necessary.

Appendix 1. Drift of F (xt, yt)

The drift ofF (xt, yt) is:

Drift F (xt, yt) = (xt, yt) Λ
∗

(
xt
yt

)
+ λ′

(
xt
yt

)
+ λ0,
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where

Λ∗ = 2Λβ,

λ′ = 2 [(A,C) , (B,C)] β + 2α′Λ+ [Tr (ΛA) , Tr (ΛB)] ,

λ0 = 2 [(A,C) , (B,C)]α+ Tr (ΛC) .

Appendix 2. Conditions for a locally deterministic system on the

boundary

In this appendix, we focus on nondegenerate cases. Up to an affine invertible transformation, the

conditionF (x, y) = detΣ (x, y) = 0 can correspond to:

i) a hyperbola :xy = 1 (say);

ii) a parabola :y = x2 (say);

iii) an ellipse :x2 + y2 = 1 (say).

In each case, we consider the restrictions implied on the volatility parameters by the equality:

∆(x, y) =

(
∂F

∂x
(x, y) ,

∂F

∂y
(x, y)

)
Σ(x, y)

(
∂F

∂x
(x, y) ,

∂F

∂y
(x, y)

)
′

= 0,

which has to be satisfied for the pairs(x, y) such thatF (x, y) = 0.

1. Hyperbolic case

WhenF (x, y) = k (xy − 1), k 	= 0, we get: ∂F
∂x
(x, y) = ky, ∂F

∂y
(x, y) = kx. The condition

∆(x, y) = 0 is equivalent to:

(a11x+ b11y + c11) y
2 + (a22x+ b22y + c22)x

2 + 2 (a12x+ b12y + c12) xy = 0,

or, sincexy = 1:

b11x
−3 + c11x

−2 + (a11 + 2b12) x
−1 + 2c12 + (b22 + 2a12)x+ c22x

2 + a22x
3 = 0,

for anyx in an open set. We deduce the necessary conditions:

b11 = c11 = c12 = c22 = a22 = 0, a11 + 2b12 = 0, b22 + 2a12 = 0.
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In particular,C = 0 and this condition is not compatible with:F (0, 0) = detC = −k 	= 0. Thus,

the boundary cannot correspond to a hyperbola.

2. Parabolic case

Let us now assume:F (x, y) = k (y − x2), k 	= 0. We get: ∂F
∂x
(x, y) = −2kx, ∂F

∂y
(x, y) = k.

The condition∆(x, y) = 0 becomes:

4 (a11x+ b11y + c11) x
2 + (a22x+ b22y + c22)− 4 (a12x+ b12y + c12)x = 0,

or, sincey = x2:

(4b11)x
4 + (4a11 − 4b12)x3 + (4c11 + b22 − 4a12)x2 + (a22 − 4c12) x+ c22 = 0,

for anyx in an open set. We deduce:

b11 = 0, a11 = b12, 4c11 + b22 − 4a12 = 0, a22 = 4c12, c22 = 0,

and the volatility matrix can be written as:

Σ(x, y) =

(
a11x+ c11 a12x+ a11y + c12

a12x+ a11y + c12 4c12x+ (4a12 − 4c11) y

)
.

Let us now write the conditions to ensure thatdetΣ (x, y) = k (y − x2). We get:

detΣ (x, y) = (a11x+ c11) [4c12x+ (4a12 − 4c11) y]− (a12x+ a11y + c12)2

= −a211y2 + x2
(
−a212 + 4a11c12

)
+ xy [−2a11a12 + a11 (4a12 − 4c11)]

+x (−2a12c12 + 4c11c12) + y [−2a11c12 + c11 (4a12 − 4c11)]− c212.

We deduce:

a211 = 0, − a212 + 4a11c12 = −k, − 2a11a12 + a11 (4a12 − 4c11) = 0,

c12 (−2a12 + 4c11) = 0, − 2a11c12 + c11 (4a12 − 4c11) = k, c212 = 0.

The system is equivalent to:

a11 = 0, c12 = 0, a
2
12 = k, c11 (4a12 − 4c11) = a212.

The last equality is equivalent to(a12 − 2c11)2 = 0 ⇔ a12 = 2c11. Finally the form of the
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volatility matrix is:

Σ(x, y) =

(
c11 2c11x
2c11x 4c11y

)
,

wherec11 > 0. Note thatc11 can be taken equal to 1 by considering the linear transformation:

x/c1/211 → x, y/c11 → y.

3. Elliptic case

In this case,F (x, y) = k (x2 + y2 − 1), k 	= 0. We get:∂F
∂x
(x, y) = 2kx, ∂F

∂y
(x, y) = 2ky. The

condition∆(x, y) = 0 becomes:

(a11x+ b11y + c11) x
2 + (a22x+ b22y + c22) y

2 − 2 (a12x+ b12y + c12) xy = 0,

or, sincey2 = 1− x2:

(a11 − a22 + 2b12)x3+(b11 − b22 − 2a12)x2y+(c11 − c22) x2−2c12xy+(a22 − 2b12) x+b22y+c22 = 0.

Let us consider the change of variables:

x = sin θ =
2t

1 + t2
,

y = cos θ =
1− t2
1 + t2

,

wheret = tan θ
2
,−π < θ < π. This leads to:

(c22 − b22) t6 + [4c12 + 2 (a22 − 2b12)] t5 + [−4 (b11 − b22 − 2a12) + 4 (c11 − c22)− b22 + 3c22] t4

+ [8 (a11 − a22 + 2b12) + 4 (a22 − 2b12)] t3 + [4 (b11 − b22 − 2a12) + 4 (c11 − c22) + b22 + 3c22] t2

+ [−4c12 + 2 (a22 − 2b12)] t+ b22 + c22

= 0,

for anyt in an open set. We deduce:

b22 = c22 = 0, c11 = 0, c12 = a22 − 2b12 = 0.

In particular,C = 0, and this condition is not compatible with:F (0, 0) = detC = −k 	= 0. Thus,

the boundary cannot correspond to an ellipse.

24



Appendix 3. Conditions for rejection on the boundary for the

parabolic case

In the parabolic caseΣ (x, y) =

(
1 2x
2x 4y

)
. We get:F (x, y) = 4 (y − x2), which is positive if,

and only if,y ≥ x2. The first and second order derivatives of the determinant are:

∂F

∂x
= −8x, ∂F

∂y
= 4,

∂2F

∂x2
= −8, ∂

2F

∂y2
=
∂2F

∂x∂y
= 0.

Fory = x2 the drift on the determinant is:

Drift F (xt, yt) = −8x (α11x+ α12y + β1) + 4 (α21x+ α22y + β2)− 4

= 4
[
−2α12x3 + (α22 − 2α11)x2 + (α21 − 2β1) x+ β2 − 1

]
.

The drift is positive for anyx if, and only if, one of the following sets of conditions is satisfied:

α12 = 0, α22 > 2α11, (α21 − 2β1)2 < 4 (α22 − 2α11) (β2 − 1) ,

or

α12 = 0, α22 − 2α11 = 0, α21 = 2β1, β2 > 1.

Appendix 4. Dai-Singleton classification

In this appendix, we particularize the classification derived by Dai, Singleton (2000) [with restric-

tions (11) - (19), p.1948 - 1949]8 to the one and two factor frameworks. They consider a model

satisfying the Duffie-Kan condition on the volatility matrix:
(
dxt
dyt

)
=

[(
α11 α12
α21 α22

)(
xt
yt

)
+

(
β1
β2

)]
dt

+

(
a11xt + b11yt + c11 0

0 a22xt + b22yt + c22

)1/2
dWt.

Different families of models are defined according to the numberm of linearly independent com-

binations of state variables involved in the volatility matrix. Then sufficient restrictions are intro-

duced on the parameters to ensure the positive definiteness of the volatility matrix.

8 Note that their conditions (17), p. 1949, differ from the condition C4 given in Appendix B.
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i) One factor framework

Family A0(1) corresponding tom = 0

Up to an invertible affine transformation, the model can be written as:

dxt = αxt dt+ dWt,

with no restriction onα. This is an Ornstein-Uhlenbeck process with zero mean and unitary volatil-

ity.

Family A1(1) corresponding tom = 1

Up to an invertible affine transformation, the model can be written as:

dxt = α (θ − xt) dt+
√
xtdWt,

where the parameters are constrained byαθ > 0 andθ > 0. This is a special case of the Cox-

Ingersoll-Ross process, but the conditionθ > 0 is not necessary. In fact since the inequalities

αθ > 0 andθ > 0 are equivalent toαθ > 0 andα > 0, Dai and Singleton implicitly imposed an

additional stationarity condition.

ii) Two factor framework

Family A0(2) corresponding tom = 0

Up to an invertible affine transformation, the model can be written as:
(
dxt
dyt

)
=

(
α11xt + α12yt
α21xt + α22yt

)
dt+ dWt,

where the parameters are constrained by eitherα12 = 0, orα21 = 0.

Family A1(2) corresponding tom = 1

Up to an invertible affine transformation, the model can be written as:
(
dxt
dyt

)
=

(
α11 (xt − θ)

α21 (xt − θ) + α22yt

)
dt+

(
xt 0
0 1 + a22xt

)1/2
dWt,
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where the parameters are constrained by:

θ ≥ 0, α11θ < 0, α21 ≥ 0, a22 ≥ 0.

Family A2(2) corresponding tom = 2

Up to an invertible affine transformation, the model can be written as:
(
dxt
dyt

)
=

(
α11xt + α12yt + β1
α21xt + α22yt + β2

)
dt+

(
xt 0
0 yt

)1/2
dWt,

where the parameters are constrained by:

α21 ≥ 0, α12 ≥ 0, β1 > 0, β2 > 0,

and the components of

(
α11 α12
α21 α22

)
−1(

β1
β2

)
are negative.

Appendix 5. Closed-form solution for the parabolic case

In this appendix, we derive the closed-form solution for functionA1 in the parabolic case. The

linear differential equation satisfied by functionA1 is of the type:

dA1 (t)

dt
= f [exp (γt)] +A1 (t) g [exp (γt)] , (A.5.1)

with initial conditionA1 (0) = 0, wheref [exp (γt)] = α01 + α21A2 (t) andg [exp (γt)] = α11 −

2A2 (t).

Let us introduce the functionA∗1 such thatA1 (t) = A∗1 (z), wherez = exp (γt). This function

satisfies the linear differential equation:

dA∗1 (z)

dz
=
f (z)

γz
+A∗1 (z)

g (z)

γz
, (A.5.2)

with initial conditionA∗1 (1) = 0. The solution of equation (A.5.2) is:

A∗1 (z) =

z∫

1

f (u)

γu
exp


−

u∫

·

g (v)

γv
dv


 du exp




z∫

·

g (v)

γv
dv


 .

In our framework, we have:

g (z) = α11 −
α22 + γ

2
+

γ

1− α22−γ
α22+γ

z
,
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g (z)

γz
=
1

z

[
1

γ

(
α11 −

α22 + γ

2

)
+ 1

]
+

α22−γ
α22+γ

1− α22−γ
α22+γ

z
,

exp




z∫

·

g (v)

γv
dv


 =

z
1

γ (α11−
α22+γ

2 )+1

1− α22−γ
α22+γ

z
, (A.5.3)

since1− α22−γ
α22+γ

z > 0. Since

f (z)

γz
=
α01 + α21

α22+γ
4

γz
− α21

2

1(
1− α22−γ

α22+γ
z
)
z
,

we get:

I (z) =

z∫

·

f (u)

γu
exp


−

u∫

·

g (v)

γv
dv


 du

=

(
α01 + α21

α22+γ
4

γ
− α21

2

)
z−

1

γ (α11−
α22+γ

2 )−1

− 1
γ

(
α11 − α22+γ

2

)
− 1

−α22 − γ
α22 + γ

α01 + α21
α22+γ
4

γ

z−
1

γ (α11−
α22+γ

2 )

− 1
γ

(
α11 − α22+γ

2

) , (A.5.4)

and

A∗1 (z) = [I (z)− I (1)] exp




z∫

·

g (v)

γv
dv


 . (A.5.5)

Substituting results (A.5.3) and (A.5.4) into equation (A.5.5), we obtain the solutionfor function

A1:

A1 (t) =
d2

d0
(
δ + γ

2

)+ 1

1 + d0 exp (γt)

[
d1
δ − γ

2

− d2

d0
(
δ + γ

2

) −
(

d1
δ − γ

2

+
d2
δ + γ

2

)
exp

((γ
2
− δ
)
t
)]
,

where:

δ =
α22
2
− α11,

d0 = −α22 − γ
α22 + γ

,

d1 = α01 + α21
α22 − γ
4

,

d2 = d0

(
α01 + α21

α22 + γ

4

)
.
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