
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES 
Série des Documents de Travail du CREST 

(Centre de Recherche en Economie et Statistique) 
 
 
 
 
 
 
 
 
 

n° 2005-41 
 

International Money and Stock 
Market Contingent Claims 

 

C. GOURIEROUX1 
A. MONFORT2 
R. SUFANA3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Les documents de travail ne reflètent pas la position de l'INSEE et n'engagent que 
leurs auteurs. 
 
Working papers do not reflect the position of INSEE but only the views of the authors. 

                                                 
1 CREST, CEPREMAP (Paris) and University of Toronto.. 
2 CREST and CNAM. 
3 University of Toronto. 
 
 



International Money and Stock Market Contingent

Claims

Christian Gouriéroux1, Alain Monfort2, and Razvan Sufana3

March 2005

1 CREST, CEPREMAP and University of Toronto.
2 CREST and CNAM.
3 University of Toronto.

1



International Money and Stock Market Contingent Claims

Abstract

We develop a unified approach with closed-form solutions for pricing bonds, stocks,

currencies and their derivatives. The specification assumes a fundamental risk factor

represented by a stochastic positive definite matrix following a Wishart autoregressive

(WAR) process. By assuming a volatility-in-mean specification for the domestic stock

returns and the relative changes of the exchange rates, and a domestic stochastic discount

factor exponential affine with respect to the fundamental risk, it is possible to derive

closed form solutions for the term structures of interest rates and for the risk neutral

probabilities. In particular:

i) The domestic and foreign term structures are jointly affine and correspond toWishart

quadratic term structures, which can ensure the positivity of interest rates;

ii) In this framework where the stock price follows a model with stochastic volatility

we obtain explicit or quasi-explicit formulas for futures and forward contracts, swaps and

options; this extends results by Heston (1993) and Ball, Roma (1994).

Keywords : Quadratic Term Structure, Exchange Rates, Stochastic Volatility Model,

Wishart (WAR) Process, Futures and Forward Contracts.

JEL number : G12, G13.
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1 Introduction

The major part of the financial literature considers separately the problems of bond and

stock pricing. For instance there exists a large literature on the term structure of interest

rates (see e.g. Martellini, Priaulet (2001), Dai, Singleton (2003) for surveys). The so-called

affine term structure models introduced by Duffie and Kan (1996) provide a specification

which is easily implementable and sufficiently flexible to fit the available bond data. In

parallel the models for stock pricing generally assume a constant riskfree rate and try to

reproduce the basic implication of the CAPM, that is the positive relationship between

expected return and volatility due to the existence of a risk premium (Merton (1973)).

From a modelling viewpoint, coherent models for bonds and stocks can also be used to

price commodity derivatives (futures and futures options) with a stochastic term structure,

or to analyze term structures and exchange rates in an international framework. They

are often presented in one of these ways in the literature. i) For instance, based on

preliminary works on the term structure of commodity derivative prices 4, several authors

have considered either stochastic spot price for the commodity and stochastic convenience

yield (Jarrow (1987), Gibson, Schwartz (1990)), or stochastic spot price, convenience

yield and interest rate (Schwartz (1997), Hilliard, Reis (1998), Miltersen, Schwartz (1998),

Jarrow, Turnbull (1998), (2000)). ii) Symmetrically Grabbe (1983), Amin, Jarrow (1991),

Brace, Musiela (1997) considered derivative pricing in an international economy from

both domestic and foreign perspectives. In particular, coherent approaches with closed

form pricing formulas have been developed by Miltersen, Schwartz (1998) for commodity

markets and by Amin, Jarrow (1991), Brace, Musiela (1997) for international markets.

They are all based on the Gaussian Heath-Jarrow-Morton model (Heath, Jarrow, Morton

(1992)). Despite the interest of the derived closed-form formulas, these approaches are

4 See Ramaswamy, Sundaresan (1985), Cortazar, Schwartz (1994), Amin, Ng, Pirrong (1995).
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valid under the restrictive assumption of constant or deterministic volatility 5. Moreover

they do not ensure the positivity of interest rates.

The present paper is in the spirit of the later literature. Its aim is to encompass the

affine term structure models and the standard models for stock pricing in a multicountry

framework, providing simple closed-form pricing formulas. Compared to Amin, Jarrow

(1991) and Miltersen, Schwartz (1998), the Wishart quadratic term structure model is

taken as a basis, instead of the Heath, Jarrow, Morton’ model. The approach still pro-

vides closed form pricing formulas and appears more flexible. For instance i) stochastic

volatilities and covolatilities are allowed; ii) stochastic risk premia of CAPM type can be

introduced in the return equations; iii) the positivity of interest rates is easy to character-

ize by means of appropriate parameter restrictions; iv) Last, but not least, the coherency

exists between the historical and risk-neutral distributions 6. Whereas the risk-neutral

analysis is important for derivative pricing, the historical analysis is needed for parameter

estimation based on time series observations and for the determination of Values at Risk

(VaR). In Section 2 we introduce a factor model, where the factors measure a funda-

mental multivariate risk which is represented by a stochastic symmetric positive definite

matrix. These factors influence i) the stochastic discount factor (sdf) of the domestic

country which drives the level of the domestic state prices, ii) the stock prices (domes-

tic and foreign market indexes) by means of a stochastic variance-in-mean model, and

iii) the relative changes of the exchange rates. By selecting a domestic sdf which is an

exponential affine function of the factor and a factor satisfying a Wishart autoregressive

(WAR) process (Gourieroux, Sufana (2003), (2004), Gourieroux, Jasiak, Sufana (2004)),

we derive in Section 3 affine domestic and foreign term structures. The relationship be-

5 See Section 4 in Miltersen, Schwartz (1998), Assumption 7 in Amin, Jarrow (1991), Section 2 in Brace,

Musiela (1997).

6 In previous papers [see e. g. Amin, Jarrow (1991), Miltersen, Schwartz (1998)], the analysis is only done in the

risk-neutral world.
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tween the domestic term structure, the foreign term structure and the exchange rate is

illustrated by numerical examples with realistic parameter values. In particular we show

the flexibility of the specification in producing various patterns of both the domestic and

foreign term structures. As well-known, it is important to distinguish between forward

and futures contracts when the interest rates are stochastic. Clearly in an international

economy at least one of the domestic and foreign interest rates is stochastic, whenever

the exchange rate is not deterministic. Futures and forward contracts written on mar-

ket indexes or exchange rates are explicitly priced in Section 4. Similarly we consider in

Section 5 closed-form pricing formulas for swaps and quasi-explicit formulas for options

written on foreign indexes, futures or forward contracts, and zero-coupon bonds. Section

6 concludes. Proofs are gathered in appendices.

2 The international economy

2.1 The assumptions

Let us consider n countries, indexed by j = 1, . . . , n. Country 1 is the domestic country,

used as a reference for defining the different variables of interest. The primitive variables

are: i) the exchange rates between the currencies of countries j and 1, that is the price of

one unit of currency j denominated in currency 1, with relative change denoted by rj|1,t,

j = 1, . . . , n. Note that r1|1,t = 0. ii) the domestic denominated market indexes with

geometric returns denoted by yj|1,t, j = 1, . . . , n. y1|1,t corresponds to a standard market

return, whereas yj|1,t, j = 2, . . . , n corresponds to the return of a quanto written on a

foreign index 7.

7 Quantos are contingent claims with a nominal "payoff" denominated in one currency, but paid in another

currency. A typical example is the Nikkei equity index option with the yen Nikkei return paid in dollars [Amin,

Bodurtha (1995)].
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As now usual in modern finance (see e.g. the survey by Ferson (2003)), the model

assumes a stochastic discount factor for country 1, that is a domestic sdf, which can be

used to price all assets of interest, that are bonds, stocks and derivatives written on bonds,

stocks, or currencies, whenever their prices and payoffs are denominated in currency 1.

To get tractable specifications, we consider the following set of assumptions written in

discrete time.

Assumption A.1 : (Information set) The information of the investors includes a

measure of the fundamental risk, represented by a (L,L) stochastic symmetric positive

definite matrix Σt, and some specific risks εj|1,t, j = 1, . . . , 2n, associated with the n

currencies and the n market indexes of interest.

Assumption A.2 : (Dynamics of exchange rates and domestic market returns)

i) The relative changes of the exchange rates can be written as8:

rj|1,t+1 = dj|1 + Tr(D0
j|1Σt) + Tr(Dj|1Σt+1) + εj|1,t+1, j = 1, . . . , n,

where D0
j,1, Dj|1 are (L,L) symmetric matrices, dj|1 is an intercept, and d1|1 = 0, D

0
1|1 = 0,

D1|1 = 0, ε1|1,t+1 = 0, by the choice of the domestic country 1.

ii) The market returns can be written as:

yj|1,t+1 = fj|1 + Tr(F 0
j|1Σt) + Tr(Fj|1Σt+1) + εj+n|1,t+1, j = 1, . . . , n,

where F 0
j|1, Fj|1 are (L,L) symmetric matrices and fj|1 an intercept.

iii) The error terms εj|1,t+1, j = 1, . . . , 2n, are such that : ε|1,t+1 = (ε1|1,t+1, . . . , ε2n|1,t+1)
′

is multivariate Gaussian conditional on 9 Σt+1, ε|1,t, with zero-mean and a variance-

8 Tr denotes the trace of a square matrix, that is the sum of its diagonal elements. Given two symmetric matrices

D and Σ, we get: Tr (DΣ) =
∑L

i=1

∑L

j=1
dijσij . Thus Tr (DΣ) is simply a convenient notation for representing a

linear combination of elements of Σ.

9 Σt+1 denotes the set of values Σt+1,Σt,Σt−1, ..., prior to date t+ 1.
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covariance matrix A′1Σt+1A1, where A1 is a matrix of dimension (L, 2n) with a first column

equal to zero.

The terms Tr(Fj|1Σt+1), T r(F
0
j|1Σt), T r(D

0
j|1Σt), T r(Dj|1Σt+1) included in the drifts can

be seen as risk premia. For the domestic market return y1|1,t+1, a positive risk premium

is expected. However it has to be noted that the effect of risk passes through both the

current and lagged values of Σ. We can expect that the risk premium is an increasing

function of the expected volatility and a decreasing function of the surprise on volatility,

that is10 Tr(F1|1Σt+1) < 0, Tr[(F1|1+F 0
1|1)Σt] > 0. This is the so-called volatility feedback

(see Bekaert, Wu (2000)). It is easily checked that Tr(FΣ) for instance is positive if 11

F is a symmetric positive semidefinite matrix. Thus we expect F1|1 ≪ 0, F1|1 +F 0
1|1 ≫ 0.

We expect similar parameter sign conditions for all market returns expressed in their own

money. Since:

yj|j,t+1 = yj|1,t+1 − rj|1,t+1

= fj|1 − dj|1 + Tr
[
(F 0

j|1 −D0
j|1)Σt

]
+ Tr

[
(Fj|1 −Dj|1)Σt+1

]
+ εj+n|1,t+1 − εj|1,t+1,

these expected conditions are:

Fj|1 ≪ Dj|1, Fj|1 + F 0
j|1 ≫ Dj|1 +D0

j|1, ∀j, (2.1)

where F ≫ D means that F −D is symmetric positive semidefinite.

When these inequalities are satisfied, the long term risk premia on market returns ex-

pressed in their own currencies increase when the fundamental risk increases (in the sense

10 Assuming volatility persistence.

11 Let us consider a symmetric positive semidefinite matrix F . Since F can be decomposed as F =
L∑

i=1

aia
′

i, where

ai, i = 1, . . . , L is a L−dimensional vector, we get:

Tr(FΣt) = Tr(
L∑

i=1

aia
′

iΣt) =
L∑

i=1

Tr(aia
′

iΣt) =
L∑

i=1

a
′

iΣtai,

by commuting within the trace. Thus Tr(FΣt) ≥ 0, since Σt is positive definite.
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of symmetric matrices)12.

Assumption A.3 : (Domestic stochastic discount factor) The stochastic discount

factor (sdf) for country 1 and period (t, t+ 1) can be written as:

M1,t,t+1 = exp{c1 + Tr(C0
1Σt) + Tr(C1Σt+1) + γ′1ε|1,t+1},

where C0
1 , C1 are (L,L) symmetric matrices, c1 is an intercept, γ1 is a (2n, 1) vector.

Thus the domestic sdf is an exponential affine function of both the fundamental risk

and idiosyncratic factors. This exponential affine functional form will facilitate further

computations (see e.g. Yao (2001), Dijkstra, Yao (2002), Gourieroux, Monfort (2005)).

The matrices C0
1 and C0

1 + C1 are expected to be positive semidefinite and negative

semidefinite, respectively, to represent the volatility feedback on state prices. Indeed under

this condition the state prices diminish when the fundamental risk increases, whereas a

surprise effect is introduced. Since the sdf in currency j (that is the domestic sdf of

country j) is:

Mj,t,t+1 = M1,t,t+1 exp rj|1,t+1

= exp{c1 + dj|1 + Tr[(C0
1 +D0

j|1)Σt] + Tr
[
(C1 +Dj|1)Σt+1

]
+ γ′1ε|1,t+1 + εj|1,t+1},

it is expected that:

C1 +Dj|1 ≫ 0, C0
1 + C1 +D0

j|1 +Dj|1 ≪ 0, j = 1, . . . , n.

Assumption A.4 : (Factor dynamics) The fundamental risk measure (Σt) follows a

Wishart autoregressive (WAR) process, with conditional Laplace transform:

E[expTr(ΓΣt+1)|Σt] =
exp Tr

[
M ′Γ (Id− 2ΩΓ)−1MΣt

]

[det (Id− 2ΩΓ)]K/2
,

where M is a (L,L) matrix of latent autoregressive coefficients, Ω is a (L,L) matrix of

12 Let us consider two levels of risks Σ1 ≫ Σ2, say. Suppose that the risk premium is equal to Tr(FΣ),

where F is positive definite. Since Σ1 − Σ2 ≫ 0, we know that Tr[F (Σ1 − Σ2)] ≥ 0, or equivalently Tr(FΣ1) ≥

Tr(FΣ2); therefore the risk premium increases with Σ.
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latent volatility andK a positive degree of freedom. Γ is a (L,L)matrix of real or complex

elements and the Laplace transform exists whenever ‖2ΩΓ‖ < 1.

The Wishart process is the direct extension of the Cox-Ingersoll-Ross process to multi-

variate "volatility-covolatility" matrices and feature the mean-reverting property usually

observed in practice. The conditional Laplace transform characterizes its transition dis-

tribution which is a noncentral Wishart distribution (see Gourieroux (2004)). Since the

conditional Laplace transform is an exponential affine function of Σt, the Wishart process

is a special case of affine process.13

The dynamic specifications introduced for market returns and relative changes of ex-

change rates imply restrictions on the joint marginal and conditional distributions of the

variables. For instance the marginal distribution of the relative change of exchange rate

rj|1,t+1 is easily characterized by its marginal Laplace transform:

E exp(urj|1,t+1)

= E exp[udj|1 + Tr(uD0
j|1Σt) + Tr(uDj|1Σt+1) + uεj|1,t+1]

= E exp[udj|1 + Tr(uD0
j|1Σt) + Tr((uDj|1 +

1

2
u2A1jA

′
1j)Σt+1)]

(by integrating conditional on Σt, Σt+1)

= exp
(
udj|1

)
det[Id− 2Ω(uDj|1 +

1

2
u2A1jA

′
1j)]

−K/2

E{expTr[(uD0
j|1 +M ′(uDj|1 +

1

2
u2A1jA

′
1j)(Id− 2Ω(uDj|1 +

1

2
u2A1jA

′
1j))

−1M)Σt]}

(by integrating conditional on Σt)

= exp(udj|1) det[Id− 2Ω(uDj|1 +
1

2
u2A1jA

′
1j)]

−K/2

det[Id− 2Ω(∞)(uD0
j|1 +M ′(uDj|1 +

1

2
u2A1jA

′
1j)(Id− 2Ω(uDj|1 +

1

2
u2A1jA

′
1j))

−1M)]−K/2,

by integrating with respect to Σt [see Gourieroux, Jasiak, Sufana (2004)], where A1j

13 Also called Compound Autoregressive (CAR) processes when they are considered in discrete time [Darolles,

Gourieroux, and Jasiak (2005)].
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denotes the jth column of A1 and Ω(∞) is the solution of the equation:

Ω(∞) =MΩ(∞)M ′ +Ω.

The first and second order moments are deduced by considering the second order

expansion of the log-Laplace transform.

Finally note that the basic set of assumptions A1-A4 differs from the basic sets intro-

duced in the previous literature for coherent modelling. i) They are written under the

historical distribution in order to be able to derive both the historical and risk-neutral

dynamics; ii) A Wishart factor process is introduced to get a quadratic term structure

model compatible with the observed positivity of interest rates; iii) They focus on the do-

mestic sdf and not on the domestic and foreign forward term structures as needed in the

Heath-Jarrow-Morton approach. The forward term structure dynamics will be derived as

a byproduct in Section 3.

2.2 An invariance property by change of currency

Up to now the dynamics of exchange rates, bonds and market returns have been defined

with reference to country 1. However we can adopt a foreign trader perspective and choose

the currency of another country l, say, as a new numeraire. The relative changes of the

exchange rates, the market returns and the sdf are modified in the following way (with

clear notations):

rj|l,t+1 = rj|1,t+1 − rl|1,t+1, j = 1, . . . , n,

yj|l,t+1 = yj|1,t+1 − rl|1,t+1, j = 1, . . . , n,

Ml,t,t+1 = M1,t,t+1 exp rl|1,t+1 =M1,t,t+1Ml|1,t,t+1, say.

Thus we deduce:

rj|l,t+1 = dj|1 − dl|1 + Tr[(D0
j|1 −D0

l|1)Σt] + Tr[(Dj|1 −Dl|1)Σt+1] + εj|1,t+1 − εl|1,t+1

= dj|l + Tr(D0
j|lΣt) + Tr(Dj|lΣt+1) + εj|l,t+1,
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where

dj|l = dj|1 − dl|1, D0
j|l = D0

j|1 −D0
l|1, Dj|l = Dj|1 −Dl|1, εj|l,t+1 = εj|1,t+1 − εl|1,t+1.

Note that εj|j,t+1 = 0, ∀j = 1, . . . , n and εj|l,t+1 = −εl|j,t+1 ∀j, l ∈ {1, . . . , n}.

Similarly we get:

yj|l,t+1 = fj|1 − dl|1 + Tr[(F 0
j|1 −D0

l|1)Σt) + Tr[(Fj|1 −Dl|1)Σt+1 + εj+n|1,t+1 − εl|1,t+1

= fj|l + Tr(F 0
j|lΣt) + Tr(Fj|lΣt+1) + εj+n|l,t+1,

where

fj|l = fj|1 − dl|1, F
0
j|l = F 0

j|1 −D0
l|1, Fj|l = Fj|1 −Dl|1, εj+n|l,t+1 = εj+n|1,t+1 − εl|1,t+1.

Finally the new sdf is given by:

Ml,t,t+1 = exp{(c1 + dl|1) + Tr[(C0
1 +D0

l|1)Σt] + Tr[(C1 +Dl|1)Σt+1] + γ′1ε|1,t+1 + εl|1,t+1}

= exp[cl + Tr(C0
l Σt) + Tr(ClΣt+1) + γ′lε|l,t+1],

where

cl = c1 + dl|1, C0
l = C0

1 +D0
l|1, Cl = C1 +Dl|1,

γ′lε|l,t+1 = [γ
′
1[Id− ee′1]− e′1]ε|l,t+1,

where e = (1, . . . , 1)′ and e1 denotes the vector of dimension 2n with zero components

except the first which is equal to one.

Since ε1|1,t+1 = 0, the component γ11 can be arbitrary and an identification constraint

for γ1 is : γ
′
1e = −1. Under this identifying restriction, the last equality becomes:

(γ′l − γ′1)ε|l,t+1 = 0.

Thus we can choose: γl = γ1, since γll is arbitrary because of εl|l,t+1 = 0.

Finally note that the new innovation ε|l,t+1 is still conditionally Gaussian, with zero-

mean. Its variance-covariance matrix is:

Vt(ε|l,t+1) = Vt
[
ε|1,t+1 − ee′lε|1,t+1

]
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= Vt
[
(Id− ee′l)ε|1,t+1

]

= A′lΣt+1Al,

where A′l = [Id− ee′l]A
′
1, and el denotes the vector of dimension 2n with zero components

except the component of order l which is equal to 1. We deduce the invariance property

by a change of currency.

Proposition 1 : The foreign denominated securities have a dynamics similar to the

corresponding domestic denominated securities. Their dynamic specifications are written

with modified parameters to account for the exchange rate risk.

2.3 The arbitrage-free restriction

This section analyzes the restrictions that need to be imposed upon the previous stochastic

processes to get an arbitrage free international economy. Since the sdf can be used to price

all assets of interest, it is in particular valid for the n market portfolios14 expressed in

currency 1. This implies the no-arbitrage restrictions:

Et[M1,t,t+1 exp yj|1,t+1] = 1, j = 1, . . . , n,

where Et denotes the expectation conditional on the information available at t, that is

Σt, ε1|t. The arbitrage-free restrictions are equivalent to:

Et[exp{c1 + Tr(C0
1Σt) + Tr(C1Σt+1) + γ′1ε|1,t+1 + fj|1 + Tr(F 0

j|1Σt)

+Tr(Fj|1Σt+1) + εj+n|1,t+1}] = 1, j = 1, . . . , n.

Applying the iterated expectation theorem, we can integrate out the innovation ε|1,t+1

conditional on Σt+1. Let us denote ej+n the 2n-dimensional vector with zero components

14 We implicitly assume that the market portfolio is tradable.
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except the (j + n)th component, equal to one. We get:

Et
[
exp{c1 + fj|1 + Tr[(C0

1 + F 0
j|1)Σt] + Tr[(C1 + Fj|1)Σt+1]

+
1

2
(γ1 + ej+n)

′A′1Σt+1A1(γ1 + ej+n)}

]

= exp
[
c1 + fj|1 + Tr[(C0

1 + F 0
j|1)Σt]

]

Et expTr([C1 + Fj|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1]Σt+1)

= exp
[
c1 + fj|1 + Tr

(
(C0

1 + F 0
j|1)Σt

)]

{
expTr[M ′Γj|1(Id− 2ΩΓj|1)

−1MΣt]
}
[det(Id− 2ΩΓj|1)]

−K/2,

where:

Γj|1 = C1 + Fj|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1. (2.2)

The arbitrage-free restrictions are immediately deduced.

Proposition 2 : The joint choice of the domestic sdf and asset dynamics is restricted by

the arbitrage-free conditions:

c1 + fj|1 −
K

2
log det (Id− 2ΩΓj|1) = 0, ∀j,

C0
1 + F 0

j|1 +M ′Γj|1(Id− 2ΩΓj|1)
−1M = 0, ∀j,

where the matrix Γj|1 is given by equation (2.2).

The arbitrage-free restrictions are fixing some drift components for all quanto market

indexes. We get:

yj|1,t+1 = −c1 +
K

2
log det[Id− 2ΩΓj|1]

+ Tr
{
[−C0

1 −M ′Γj|1(Id− 2ΩΓj|1)
−1M ]Σt

}

+ Tr(Fj|1Σt+1) + εj+n|1,t+1. (2.3)

It is not surprising to get a restriction between the predetermined components of the sdf

and expected market returns. For instance the limiting case M = 0,Ω = 0, corresponds

to zero risk : Σt = 0, we have no uncertainty and all returns coincide in the riskfree world.
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Indeed yj|1,t+1 = −c1 is independent of j and coincides with the common return of all

Arrow-Debreu securities.

Remark 1 : Since the fundamental risk factor Σt is exogenous, the observability of the

domestic and foreign interest rates does not imply additional arbitrage-free restrictions.

For instance from: Ml,t,t+1 =M1,t,t+1 exp rl|1,t+1, and applying the conditional expectation

to both sides of the equation, we get:

EtMl,t,t+1 = exp−rl(t+ 1) = Et(M1,t,t+1 exp rl|1,t+1).

The pricing operator applied to currencies simply defines the new variables rl(t + 1)

corresponding to the short term interest rate in country l; the complete term structures

will be derived in Section 3.

Remark 2 : The specification introduced in Section 2.1 and the arbitrage-free restric-

tions are easily extended to the pricing of stocks with payment of dividends, or to com-

modities with convenience yield including (minus) the cost of carry. Let us for instance

consider stocks with dividends. We have just to introduce a second discount factor

M∗
1,t,t+1, say, representing the discounting associated with dividends, to assume an ex-

ponential affine expression for M∗
1,t,t+1 too, and to change the arbitrage-free condition

into Et[M1,t,t+1M
∗
1,t,t+1 exp yj|1,t+1] = 1, j = 1, . . . , n, where the yj|1,t+1 are the ex-dividend

returns. Note that all dividends are also expressed in domestic currency. Thus the divi-

dends associated with a foreign market portfolio are transformed into "quanto-dividends".

Remark 3 : The assumption of conditionally Gaussian error terms can be weakened.

The above results are still valid if:

Et[exp
(
γ′ε|1,t+1

)
|Σt+1]

can be written as : exp[a(γ) + Tr(B(γ)A′1Σt+1A1)], say. Thus the model is compatible

with an error term admitting a conditional tail larger than Gaussian.
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2.4 Risk neutral probabilities

In currency l, the conditional density of the risk neutral probability with respect to the

historical probability is given by:

ql,t,t+1 =Ml,t,t+1 exp rl(t, 1) =Ml,t,t+1/Et[Ml,t,t+1], l = 1, . . . , n.

This density is an exponential affine function of Σt and Σt+1, which can be expressed in

terms of the domestic risk neutral density q1,t,t+1. We get:

ql,t,t+1 = M1,t,t+1 exp rl|1,t+1/Et[M1,t,t+1 exp rl|1,t+1]

= q1,t,t+1 exp rl|1,t+1Et(M1,t,t+1)/Et[M1,t,t+1 exp rl|1,t+1]

= q1,t,t+1
exp rl|1,t+1

E∗1
t

(
exp rl|1,t+1

) ,

where E∗1
t denotes the expectation with respect to the domestic risk neutral probability.

3 Domestic and foreign term structures

The coherent modelling defined by assumptions A1-A4 is appropriate for analyzing the

link between domestic and foreign term structures, and especially for examining how this

link depends on the dynamics of exchange rates. All these relations depend on the way

the common risk factor affects the exchange rates and the domestic sdf. We provide

numerical examples with realistic parameter values to illustrate these relations.

3.1 Closed-form expressions of the term structures

Let us first consider the domestic bond market and denote by B1(t, h) the price at t of a

zero-coupon bond with residual maturity h. The recursive bond pricing formula:

B1(t, h) = Et[M1,t,t+1B1(t+ 1, h− 1)],

and the expression of the domestic sdf (see Assumption A.3):

M1,t,t+1 = exp[c1 + Tr(C0
1Σt) + Tr(C1Σt+1) + γ′1ε|1,t+1],

15



allows us to derive the affine term structure along the lines of Gourieroux, Monfort,

Polimenis (2002) (see Appendix 1).

Proposition 3 : We have:

B1(t, h) = exp{Tr[Φ1(h)Σt] + ϕ1(h)}, for h ≥ 0,

where the matrix Φ1(h) and the scalar ϕ1(h) satisfy the recursive equations:

Φ1(h) = C0
1 +M ′[C1 +Φ1(h− 1) +

1

2
A1γ1γ

′
1A

′
1]

[
Id− 2Ω[C1 +Φ1(h− 1) +

1

2
A1γ1γ

′
1A

′
1]

]−1
M,

ϕ1(h) = c1 + ϕ1(h− 1)−
K

2
log det

{
Id− 2Ω[C1 +Φ1(h− 1) +

1

2
A1γ1γ

′
1A

′
1]

}
,

for h ≥ 0, with initial conditions Φ1(0) = 0, ϕ1(0) = 0 corresponding to B1(t, 0) = 1.

In particular the geometric yields : r1(t, h) = − 1
h
logB1(t, h), are affine functions of

the risk factors, represented by the fundamental volatilities and covolatilities, which are

the elements of Σt. We get a domestic affine term structure, called Wishart quadratic

term structure in the literature (Gourieroux, Sufana (2003)).

The specification is convenient for discussing the nonnegativity of interest rates r1(t, h)

at all maturities. First note that these rates are nonnegative whenever the short term

interest rate r1(t, 1) is nonnegative. Since:

r1(t, 1) = −Tr[Φ1(1)Σt]− ϕ1(1),

the nonnegativity condition is satisfied for any admissible risk factor Σt, if and only if

ϕ1(1) ≤ 0 and −Φ1(1) is positive semidefinite. This implies joint restrictions on parame-

ters C0
1 , C1, M , Ω, A1, γ1, c1. When these restrictions are satisfied: B1(t, 1) = EtM1,t,t+1

is smaller than 1, but the domestic sdf itself is still stochastic, with values smaller or

larger than 1.

The results of Proposition 3 are easily transposed to the foreign term structures by

16



using the invariance by change of currency (see Section 2.2).

Corollary 1 : The term structures of the different countries are jointly affine.

However these term structures may have different features in terms of time series or

cross-sectional properties. In the two next sections we consider numerical examples, dis-

cuss the joint dynamics of the exchange rate and interest rates (Section 3.2) and the

associated term structure patterns (Section 3.3).

The (domestic) term structure of short term forward rates, which is the basis of Heath-

Jarrow-Morton approach, is easily derived from Proposition 3. Indeed we have:

f1,t,T = − log
B1(t, t− T )

B1(t, t− T − 1)
,

and therefore:

f1,t,T − f1,0,T = Tr[[Φ1(T − t− 1)−Φ1(T − t)]Σt] + ϕ1(T − t− 1)− ϕ1(T − t)

−Tr[[Φ1(T − 1)− Φ1(T )]Σ0]− ϕ1(T − 1) + ϕ1(T ).

This forward term structure is driven linearly by the Wishart factor Σt.

3.2 Interactions between domestic and foreign short term interest

rates

We consider the case of two countries (n = 2), three factors represented by two volatilities

and one covolatility (L = 2), and a degree of freedom K = 2; we also assume that there

are no specific risks (A1 = 0), no lagged effect (C0
1 = D0

2|1 = 0), take a diagonal matrix

M and an identity matrix Ω; in other words, the risk factor can be decomposed as:

Σt = x1tx
′
1t + x2tx

′
2t, where (xit), i = 1, 2, are independent bivariate processes, whose

components
(
x
(1)
it

)
,
(
x
(2)
it

)
are themselves Gaussian, independent and autoregressive of

order 1:

x
(1)
it = m1x

(1)
i,t−1 + ε

(1)
it ,

17



x
(2)
it = m2x

(2)
i,t−1 + ε

(2)
it , i = 1, 2,

where m1, m2 are the diagonal terms of M and the ε
(j)
it , j = 1, 2, are IIN(0,1) [see

Gourieroux, Jasiak, Sufana (2003)]. In particular, denoting the entries of Σt by σ21t, σ
2
2t,

σ12t, we have:

σ21t =
(
x
(1)
1t

)2
+
(
x
(1)
2t

)2
,

σ22t =
(
x
(2)
1t

)2
+
(
x
(2)
2t

)2
,

σ12t = x
(1)
1t x

(2)
1t + x

(1)
2t x

(2)
2t .

Finally we assume that the domestic sdf M1,t,t+1 only depends on σ21,t+1, that is:

C1 = λ1

[
1 0
0 0

]
, and that the exchange rate r2|1,t+1 only depends on σ22,t+1, that is:

D2|1 = λ2

[
0 0
0 1

]
. In particular the domestic sdf and the exchange rate follow indepen-

dent dynamics.

Then three dynamic models M1, M2, M3 are considered.

M1: In this model, we take: m1 = m2 = 0.1, that is weakly autocorrelated basic factors

x
(1)
it and x

(2)
it . We also take: c1 = −0.05, λ1 = −10

−2, d2|1 = 0, λ2 = −10
−3. The historical

(i.e. unconditional) densities of the domestic and foreign short term interest rates are

displayed in Figure 1. They correspond to noncentral chi-square distributions, since the

Wishart based models are direct extensions of the Cox-Ingersoll-Ross model. Moreover

the two series of short term rates are weakly autocorrelated (see the autocorrelograms

displayed in Figure 2).

[Insert Figure 1: Unconditional density function of r1 and r2]

[Insert Figure 2: Autocorrelogram of r2|1, r1 and r2]

M2: In this model, we take: m1 = 0.1 and m2 = 0.9. Thus the basic factors x
(1)
it

are weakly autocorrelated, whereas the basic factors x
(2)
it will feature high persistence.

We also take: c1 = −0.05, λ1 = −10−2, d2|1 = 0, λ2 = −10−4. In this example, r1 (t)
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is weakly autocorrelated since the domestic sdf only depends on σ21,t+1; r2|1,t is highly

autocorrelated, since it depends on σ22,t+1, and r2 (t) is also highly autocorrelated because

of the impact of the exchange rate dynamics on the dynamics of the foreign sdf (see Figure

4). The historical densities of the short term interest rates are displayed in Figure 3. We

observe the large increase of the tail magnitude of the foreign interest rate, which is a

consequence of the high persistence of the exchange rate.15

[Insert Figure 3: Unconditional density function of r1 and r2]

[Insert Figure 4: Autocorrelogram of r2|1, r1 and r2]

M3: In this model, we take: m1 = 0.9 and m2 = 0.1. Thus the basic factors x
(1)
it are

highly autocorrelated whereas the basic factors x
(2)
it are weakly autocorrelated. We also

take: c1 = −0.05, λ1 = −10−4, d2|1 = 0.02, λ2 = −10−2. In this case, both r1 (t) and

r2 (t) are strongly autocorrelated because the domestic sdf is strongly autocorrelated and,

although the relative change of the exchange rate is weakly autocorrelated, the foreign sdf

is also highly autocorrelated (see Figure 6). Both unconditional densities feature rather

fat tails (see Figure 5).

[Insert Figure 5: Unconditional density function of r1 and r2]

[Insert Figure 6: Autocorrelogram of r2|1, r1 and r2]

3.3 Term structure patterns

Let us now discuss the effect of the joint dynamics of r1, r2|1 on the pricing formula. More

precisely the aim of this section is to illustrate the flexibility of affine specifications and in

15 Detailed discussions on the link between the serial persistence and the tails of the unconditional density

have been done in Gourieroux, Jasiak (2001), Gourieroux, Robert (2005).
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particular to show that a very large set of patterns can be obtained for both the domestic

and foreign term structures of interest rates.

The domestic term structure of interest rates r1(t, h) = − 1
h
logB1(t, h) is given by

Proposition 3. Assuming that L = 2, that is a 3-factor model, and K = 2, this term

structure depends on the scalar c1, on the (2 × 2) matrix M (with eigenvalues smaller

than 1 in modulus), on the (2 × 2) symmetric positive semi-definite matrix Ω, on the

(2× 2) symmetric negative semidefinite matrices C0
1 , C1 and on the (2× 1) vector A1γ1.

Let us consider one foreign country; the term structure of interest rates in this country

is given by r2(t, h) = − 1
h
logB2(t, h), where B2(t, h) is obtained from Proposition 2 in

which c1 is replaced by c1 + d2|1, C
0
1 is replaced by C0

1 + D0
2|1 ≪ 0, C1 is replaced by

C1 +D2|1 ≪ 0, and A1γ1 is replaced by A2γ1 (since γ2 = γ1). Note that :

A2γ1 = A1(Id− e2e
′)γ1 = A1γ1 +A1e2.

In summary, for L and K fixed to 2, the parameters are M, Ω, c1, C
0
1 ,C1, A1γ1, d2|1,

D0
2|1, D2|1, A2γ2, Σt. This large set of parameters allow for various shapes of the domestic

and foreign term structures.

The choice of a three factor model is the minimal one to ensure deterministically

independent evolutions of the level, slope and curvature of each term structure. But

both domestic and foreign term structures depend on the same factors, which are the

elements of the fundamental volatility matrix Σt. For instance one given factor can

impact the slope of the domestic term structure and simultaneously the curvature of

the foreign term structure. We consider below four dynamic models. The values of the

parameters corresponding to these four cases and the current state of the environment

are given in Appendix 3. Experiment I (see Figure 7) provides an example where both

term structures are decreasing . In experiment II (see Figure 8) both term structures are

increasing. In experiment III (see Figure 9) one curve is decreasing and the other one is

increasing. Finally experiment IV (see Figure 10) provides an example where one curve
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is not monotonic.

[Insert Figure 7 : Term Structure of Interest Rates, Experiment I]

[Insert Figure 8 : Term Structure of Interest Rates, Experiment II]

[Insert Figure 9 : Term Structure of Interest Rates, Experiment III]

[Insert Figure 10 : Term Structure of Interest Rates, Experiment IV]

4 Pricing futures and forward contracts

In this section we derive closed form pricing formulas for standard forward and futures

contracts. These formulas are based on a lemma providing the multihorizon conditional

Laplace transform of the fundamental risk.

4.1 Multihorizon prediction

Lemma 1 : Suppose that (Σt) is a WAR process defined in Assumption A.4 and let us

consider the conditional multihorizon Laplace transform:

E{expTr(∧t+1Σt+1 + ∧t+2Σt+2 + . . .+ ∧TΣT )|Σt}.

This conditional Laplace transform is given by:

exp[Tr(Φ[∧](t, T )Σt) + ϕ[∧](t, T )],

where the operators Φ[∧](t, T ) and ϕ[∧](t, T ) are defined by the backward recursion:

Φ[∧](t, T ) =M ′[∧t+1 +Φ
[∧](t+ 1, T )][Id− 2Ω(∧t+1 +Φ

[∧](t+ 1, T ))]−1M,

and

ϕ[∧](t, T ) = −
K

2
log det[Id− 2Ω(∧t+1 +Φ

[∧](t+ 1, T ))] + ϕ[∧](t+ 1, T ),

for h > 0, with terminal conditions:

Φ[∧](T,T ) = 0, ϕ[∧](T, T ) = 0, ∀T.
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Proof : See Appendix 2.

4.2 Pricing futures contracts

4.2.1 Futures on foreign market indexes

Let us denote by Sj|1,t the domestic denominated index of market j at time t. We have:

Sj|1,t = Sj|1,t−1 exp yj|1,t.

The domestic futures price of the market j index for maturity T is given by:

SFj|1(t, T ) = EQ1
t Sj|1,T ,

where Q1 is the domestic risk neutral probability defined in Section 2.4.

Therefore we have:

SFj|1(t, T ) = Sj|1,tEt

[
M1,t,t+1...M1,T−1,T

EtM1,t,t+1...ET−1M1,T−1,T
exp(yj|1,t+1 + . . .+ yj|1,T )

]
.

Proposition 4 : The futures price SFj|1(t, T ) is given by:

SFj|1(t, T ) = Sj|1,t exp{(T − t)f̃j|1 +
(T − t)K

2
log det[Id− 2Ω(C1 +

1

2
γ1γ

′
1A

′
1A1)] + ϕ[∧](t, T )

+Tr[(∧0 +Φ
[∧](t, T ))Σt]},

where Φ[∧](t, T ), ϕ[∧](t, T ) are obtained recursively using the formulae of Lemma 1 for the

sequence of matrices (∧1, . . . ,∧1,∧2), where:

∧0 = G0
1 + F̃ 0

j|1,

∧1 = C1 + Fj|1 +G0
1 + F̃ 0

j|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1,

∧2 = C1 + Fj|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1,
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with:

f̃j|1 = −c1 +
K

2
log det(Id− 2ΩΓj|1), F̃ 0

j|1 = −C
0
1 −M ′Γj|1(Id− 2ΩΓj|1)

−1M,

G0
1 = −M ′Γ3(Id− 2ΩΓ3)

−1M, Γ3 = C1 +
1

2
γ1γ

′
1A

′
1A1.

Proof : See Appendix 4.

4.2.2 Futures on exchange rates

Let us denote by Rj|1,t the exchange rate of currency j at time t, denominated in domestic

currency. We have:

Rj|1,t = Rj|1,t−1 exp rj|1,t.

Therefore we can easily find the price of a futures written on the exchange rate with

maturity T just replacing yj|1,t by rj|1,t in the above subsection.

4.3 Pricing forward contracts

4.3.1 Forwards on foreign market indexes

Two cases have to be distinguished. In case a) the delivery priceK is specified in domestic

currency. In case b) the delivery price K is specified in foreign currency and the payoff at

the settlement date T is the difference between the prevailing price of the index (in for-

eign currency) and this delivery price converted in domestic currency at a predetermined

exchange rate R. This latter type of contract is called a quanto-forward contract. So the

domestic payoffs at T are, respectively:

case a): Sj|1,T −K;

case b): R(Sj|j,T −K).

In both cases the delivery price K is fixed to get a zero value of the contract at the
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agreement date t. This implies:

case a): Ka = Sfj|1(t, T ) =
Sj|1,t

B∗
1(t, T )

,

where B∗
1(t, T ) = B1(t, T − t), and:

case b): RKb = Sqj|1(t, T ) =
RSj|j,t
B∗
j (t, T )

=
RSj|1,t

Rj|1,tB∗
j (t, T )

.

In particular, if R = Rj|1,t, we get:

Sqj|1(t, T ) =
Sj|1,t

B∗
j (t, T )

.

In case a) the domestic term structure is involved, whereas in case b) the foreign term

structure is involved. In both cases the prices are explicit since the domestic and foreign

term structures are explicit as seen in Section 3.

4.3.2 Forwards on exchange rates

In a forward contract on exchange rate with settlement date T and price K (denominated

in domestic currency), the payoff at T is Rj|1,T − K. The delivery price K is fixed to

get a zero value of the forward contract at the agreement date t. The value at date t of

Rj|1,T , in currency j, is the value at date t of one unit of currency j delivered at date T ,

namely B∗
j (t, T ), and the domestic price is Rj|1,tB

∗
j (t, T ). Therefore the forward price for

a forward exchange rate is:

Rfj|1,t =
Rj|1,tB

∗
j (t, T )

B∗
1(t, T )

.

Again an explicit formula is derived from the formulae of both term structures.

5 Pricing swaps and options

In our international framework it is also possible to derive closed form formulae for pricing

swaps and quasi-explicit formulae for pricing many options, that is which require only the

computation of a univariate integral.
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5.1 A preliminary lemma

Let us consider a vector Zt,T whose entries are made from any subset of the yj|1,τ (j =

1, ..., n; τ = t+1, ..., T ), rj|1,τ (j = 2, ..., n; τ = t+1, ..., T ), and vech Σt (τ = t+1, ..., T )16.

Lemma 2 : For any vector w with real components, the price at date t of exp(w′Zt,T )

(in domestic currency) is exponential affine in Σt and is recursively computable.

Proof : The price is:

Et[M1,t,t+1...M1,T−1,T exp(w
′Zt,T )].

Replacing the stochastic discount factors and the components of Zt,T in terms of the Στ

and ε|1,τ (τ = t+ 1, ..., T ) using their expressions given in Section 2.1, we get:

Et exp
[
v0 +

∑T

τ=t
Tr(VτΣτ) +

∑T

τ=t+1
v′τε|1,τ

]
,

where v0, Vτ , vτ , are functions of w. Integrating with respect to ε|1,τ we get:

exp [v0 + VtΣt]Et exp
[∑T

τ=t
Tr(Vτ +A1vτv

′
τA1)Στ

]

and the result follows from Lemma 1.

�

5.2 Pricing cross-currency swaps

Let us first recall that the linear (or arithmetic, or simply compounded, or LIBOR) interest

rate at time t for maturity T and currency j is:

Lj(t, T ) =
1−B∗

j (t, T )

(T − t)B∗
j (t, T )

.

A general floating-for-floating cross-currency swap has a sequence of payoffs at dates Ts,

s = 1, ..., S, (with Ts+1 > Ts) of the form:

[Lk(Ts−1, Ts)− Ll(Ts−1, Ts)]Rm|1,Ts.

16 vech Σ denotes the vector whose components are the different elements of matrix Σ.
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Thus three currencies k, l, m, are involved and this is a swap between currencies k and l

per unit of currency m. Such a payoff can be written:

1

Ts − Ts−1

[
1

B∗
k(Ts−1, Ts)

−
1

B∗
l (Ts−1, Ts)

]
Rm|1,Ts.

Since the zero-coupon prices are exponential affine functions of ΣTs−1, such a payoff is the

difference of expressions of the form considered in Lemma 2. Therefore such a swap can

be explicitly priced at any date t < T1.

5.3 Option pricing

For option pricing we will use the inversion formula of complex Laplace transform given

in Duffie, Pan, Singleton (2000). From this result we know that the complex Laplace

transform Et[M1,t,t+1...M1,T−1,T exp(w
′Zt,T )], where w has complex components computed

as indicated in Lemma 2, can be used to deduce truncated real Laplace transforms of the

form

Et[M1,t,t+1...M1,T−1,T exp(w
′
0Zt,T )] 1(w′1Zt,T<λ)

, (5.1)

where w0 and w1 are real vectors and λ is a scalar. It is worth noting that any derivative

whose payoff at T is of the form:

[exp (w30 + w′3Zt,T )− exp (w40 + w′4Zt,T )]
+
, (5.2)

can be priced quasi-explicitly since this payoff can be written as:

exp(w30) exp(w
′
3Zt,T )[1− exp(w50 + w′5Zt,T )]

+,

with w50 = w40 − w30, w5 = w − w3, or:

exp(w30) exp(w
′
3Zt,T ) 1(w′5Zt,T<−w50)

− exp(w40) exp(w
′
4Zt,T ) 1(w′5Zt,T<−w50)

,

which is a difference of expressions of type (5.1).

Many payoffs can be written under the form (5.2). Examples are options on foreign

indexes (struck in domestic or foreign currencies), quanto-options, equity-linked foreign
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exchange rate options (ELFX), options on futures contracts, options on forward contracts,

options on zero-coupon bonds. Moreover, it is well-known that whenever options on

zero-coupon bonds are explicitly priced, the same is true for caps and floors. As usual

derivatives which are more difficult to price are the options on coupon bonds and the

swaptions17.

6 Concluding remarks

The affine approach in which the underlying fundamental risk is represented by a stochas-

tic symmetric positive definite matrix following Wishart process provides a convenient

framework for the joint analysis of bonds, stocks, and currencies. It leads to closed-form

solutions for the term structures of interest rates, for the forward and futures prices and

for a large set of derivatives. The approach features an invariance property with respect

to the change of basic currency, which allows us to derive similar results for any country

of reference. Moreover the illustration shows that the specification is very flexible and

able to reproduce various patterns of the domestic and foreign term structures.

17 Except if the payoff formula is linearized at some stage, as proposed by Brace, Musiela (1997).
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Appendix 1. Derivation of the affine term structure

Let us assume that:

B1(t, h) = exp{Tr[Φ1(h)Σt + ϕ1(h)]}.

The recursive bond pricing formula implies that:

B1(t, h)

= Et[M1,t,t+1B1(t+ 1, h− 1)]

= Et exp[c1 + Tr(C0
1Σt) + Tr(C1Σt+1) + γ′1ε|1,t+1 + Tr[Φ1(h− 1)Σt+1] + ϕ1(h− 1)]

= Et exp[c1 + ϕ1(h− 1) + Tr(C0
1Σt) + Tr([C1 +Φ1(h− 1)]Σt+1) +

1

2
γ′1A

′
1Σt+1A1γ1],

(by iterated expectation theorem)

= Et exp[c1 + ϕ1(h− 1) + Tr(C0
1Σt) + Tr(C1 +Φ1(h− 1) +

1

2
A1γ1γ

′
1A

′
1]Σt+1),

(by commuting within the trace operator).

By applying Assumption A.4 we get:

B1(t, h) = exp{c1 + ϕ1(h− 1)−
K

2
log det[Id− 2ΩΓ2(h− 1)]

+Tr[{C0
1 +M ′Γ2(h− 1)[Id− 2ΩΓ2(h− 1)]

−1M}Σt]},

where:

Γ2(h− 1) = C1 +Φ1(h− 1) +
1

2
A1γ1γ

′
1A

′
1.

The result follows by identifying the coefficients.
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Appendix 2. The multihorizon prediction of the risk

We have:

E{expTr(∧t+1Σt+1 + . . .+ ∧TΣT )|Σt}

= E{E[expTr(∧t+1Σt+1 + . . .+ ∧TΣT )|Σt+1]|Σt}

= E{exp[Tr(∧t+1 +Φ
[∧](t+ 1, T ))Σt+1 + ϕ[∧](t+ 1, T )|Σt]}

= exp[Tr[M ′(∧t+1 +Φ
[∧](t+ 1, T ))[Id− 2Ω(∧t+1 +Φ

[∧](t+ 1, T ))]−1MΣt]

−
K

2
log det[Id− 2Ω(∧t+1 +Φ

[∧](t+ 1, T ))] + ϕ[∧](t+ 1, T )

}
.

The formulae of the lemma follow by identification. Moreover we have:

Φ[∧](t, t+ 1) =M ′ ∧t+1 (Id− 2Ω∧t+1)
−1M, ϕ[∧](t, t+ 1) = −

K

2
log det[Id− 2Ω∧t+1],

and, therefore:

Φ[∧](t+ 1, t+ 1) = 0, ϕ[∧](t+ 1, t+ 1) = 0, ∀t.
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Appendix 3. Experiments

In all experiments we have :

C01 = −10−2




1 0.5

0.5 1



 , C1 = −10−2




1 −0.9

−0.9 1



 ,

A1γ1 = 10−2




2

1



 , d2|1 = −0.02,

D02|1 = 0.9 C01 , D2|1 = −0, 5 C1, A2γ2 = 10
−2




−1

−1



 ,

K = 2

M =




−1 −1

1 0.6



 (eigenvalues: -0.2± 0.6i, modulus 0.63)

Moreover, in experiment I we have :

Ω =




1 −0.9

−0.9 1



 , c1 = 0.1, Σt =




3 −1

−1 0, 5



 ;

in experiment II we have :

Ω =



 1 0

0 1



 , c1 = 0.15, Σt =



 2.5 −1.25

−1.25 2.5



 ;

in experiment III we have :
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Ω =



 1 −0.9

−0.9 1



 , c1 = 0.08, Σt =



 1 −0.5

−0.5 1



 ;

in experiment IV we have :

Ω =

[
1 0
0 1

]
, c1 = 0.2, Σt =

[
0.4 0.1
0.1 3

]
.
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Appendix 4. Derivation of the futures price

We show that the futures price involves the multihorizon conditional Laplace transform

of the future path Σt+1, . . . ,ΣT . Then we use the general formula given in Lemma 1.

For any date s, we have:

M1,s,s+1

EsM1,s,s+1
=

exp[Tr(C1Σs+1) + γ′1ε|1,s+1]

Es exp[Tr(C1Σs+1) + γ′1ε|1,s+1]

= exp[Tr(C1Σs+1) + Tr(G0
1Σs) + γ′1ε|1,s+1] [det(Id− 2ΩΓ3)]

K/2 ,

with:

G0
1 = −M

′Γ3(Id− 2ΩΓ3)
−1M, Γ3 = C1 +

1

2
γ1γ

′
1A

′
1A1.

Moreover from (3.2) we have:

yj|1,t+1 = f̃j|1 + Tr(F̃ 0
j|1Σt) + Tr(Fj|1Σt+1) + εj+n|1,t+1.

Thus, we get:

SFj|1(t, T ) = Sj|1,t exp

{
(T − t)f̃j|1 +

(T − t)K

2
log det(Id− 2ΩΓ3) + Tr[(G0

1 + F̃ 0
j|1)Σt]

}

×Et exp

{
Tr[[C1 + Fj|1 +G0

1 + F̃ 0
j|1 +

1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1]Σt+1]

+ · · ·

+ Tr[[C1 + Fj|1 +G0
1 + F̃ 0

j|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1]ΣT−1]

+ Tr[[C1 + Fj|1 +
1

2
A1(γ1 + ej+n)(γ1 + ej+n)

′A′1]ΣT ]

}
.

Or, with clear notations:

SFj|1(t, T ) = Sj|1,t exp{(T − t)f̃j|1 +
(T − t)K

2
log det(Id− 2ΩΓ3) + Tr[∧0Σt]}

Et expTr[∧1(Σt+1 + . . .+ΣT−1) + ∧2ΣT ].

We conclude by using Lemma 1.
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