
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES 
Série des Documents de Travail du CREST 

(Centre de Recherche en Economie et Statistique) 
 
 
 
 
 
 
 
 
 

n° 2005-40 
 

Efficient Derivative Pricing by 
Extended Method of Moments 

 

P. GAGLIARDINI1 
C. GOURIEROUX2 

E. RENAULT3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Les documents de travail ne reflètent pas la position de l'INSEE et n'engagent que 
leurs auteurs. 
 
Working papers do not reflect the position of INSEE but only the views of the authors. 

                                                 
1 University of St. Gallen and University of Lugano. 
2 CREST, CEPREMAP (Paris) and University of Toronto. 
3 CIRANO-CIREQ (Montreal) and University of North Carolina at Chapel Hill. 
 
Acknowledgements : We thank D. Andrews, X. Chen, R. Davidson, R. Garcia, J. Jackwerth, L. Mancini, A. 
Melino, M. Stutzer, F. Trojani and E. Zivot for helpful comments. 



EFFICIENT DERIVATIVE PRICING BY EXTENDED
METHOD OF MOMENTS

P., GAGLIARDINI∗, C., GOURIEROUX†, and E., RENAULT‡

First version: July 2004
This version: December 2005

∗University of St. Gallen and University of Lugano.
†CREST, CEPREMAP (Paris) and University of Toronto.
‡CIRANO-CIREQ (Montreal) and University of North Carolina at Chapel Hill.

Acknowledgements: We thank D. Andrews, X. Chen, R. Davidson, R. Garcia, J. Jackwerth, L. Mancini, A.
Melino, M. Stutzer, F. Trojani and E. Zivot for helpful comments.

1



Efficient Derivative Pricing by Extended Method of Moments

Abstract

In this paper, we consider an incomplete market framework and explain how to use
jointly observed prices of the underlying asset and of some derivatives written on this asset
for an efficient pricing of other derivatives. This question involves two types of moment
restrictions, which can be written either for a given value of the conditioning variable,
or can be uniform with respect to this conditioning variable. This distinction between
local and uniform conditional moment restrictions leads to an extension of the Generalized
Method of Moments (GMM); indeed, GMM assumes that all restrictions are uniform. The
Extended Method of Moments (XMM) provides estimators of the parameters with different
rates of convergence: the rate is the standard parametric one for the parameters, which are
identifiable from the uniform restrictions, whereas the rate can be nonparametric for the risk
premium parameters. We derive the kernel nonparametric efficiency bounds for estimating
a conditional moment of interest and prove the asymptotic efficiency of XMM. To avoid
misleading arbitrage opportunities in estimated derivative prices, an XMM estimator based
on an information criterion is introduced. The general results are applied in a stochastic
volatility model to get efficient derivative prices, to measure the uncertainty of estimated
prices, and to estimate the risk premium parameters.

Keywords: Generalized Method of Moments, Weak Instruments, Information Based Esti-
mation, Kernel Nonparametric Efficiency, Limited- and Full-Information, Derivative Pric-
ing, Stochastic Volatility, Risk Premium.

JEL number: C13, C14, G12.



Valorisation efficace de produits dérivés par la Méthode des Moments Etendue

Résumé

Dans cet article, nous supposons les marchés incomplets et expliquons comment utiliser
conjointement des observations sur les prix d’un actif support et de certains de ses dérivés
pour valoriser de façon efficace d’autres produits dérivés. Cette question fait intervenir deux
types de conditions de moments, qui peuvent soit être écrites pour une valeur donnée de la
variable conditionnante, soit être uniformes par rapport aux valeurs possibles de cette vari-
able. Cette distinction entre les conditions de moments conduit à étendre la méthode des
moments généralisée (GMM), dans laquelle toutes les restrictions sont uniformes. La méth-
ode des moments étendue (XMM) fournit des estimateurs des paramètres avec divers taux
de convergence. Ce taux est paramétrique pour les paramètres caractérisant la distribution
historique des prix, qui sont identifiables à partir des restrictions uniformes; il peut être non
paramétrique pour les paramètres définissant les primes de risque. Nous dérivons les bornes
d’efficacité non paramétrique pour ces paramètres et montrons l’efficacité asymptotique de
la méthode des moments étendue. Ces résultats sont utilisés pour obtenir des valorisations
efficaces de dérivés, mesurer l’incertitude des prix estimés et analyser les primes de risque
dans un modèle à volatilité stochastique.

Mots clés: Méthode des moments généralisée, instruments faibles, efficacité non paramétrique,
information complète, information limitée, valorisation d’options, volatilité stochastique,
prime de risque.

Classification JEL: C13, C14, G12.



1 Introduction

The Generalized Method of Moments (GMM) has been initially introduced by Hansen
(1982), Hansen, Singleton (1982) to estimate parameters defined by Euler conditions. Typ-
ically, in a Consumption based CAPM [Lucas (1978)] the moment restrictions at date t
are:

pi,t = Et

£
pi,t+1δ (qt/qt+1)U

0(Ct+1; γ)/U
0(Ct; γ)

¤
, i = 1, . . . , n, (1)

where U is a utility function, pi,t the observed prices of the n financial assets, qt the price of
the consumption good, Ct the consumption level and Et denotes the conditional expectation
given the available information including the current and lagged values of prices and income.
The parameters of interest are the preference parameter γ and the psychological discount

rate δ. The model is semi-parametric. GMM focuses on the estimation of θ =
³
γ
0
, δ
´0

and disregards the nuisance parameter, that is, the joint conditional distribution of prices
pi,t+1, i = 1, . . . , n, and consumption Ct+1. Recently, different approaches, called empirical
likelihood, minimum chi-square, or information based approach, have been proposed to
simplify the derivation of a GMM estimator and to improve its finite sample properties1.
The basic idea is to estimate jointly the structural parameter θ and the nuisance infinite
dimensional parameter under the moment restrictions.

However, the Euler conditions are not only useful to estimate the preference parameters,
or test a structural equilibrium model. They are also used in Finance for pricing derivatives.
More precisely, the Euler condition is considered as a pricing formula:

pi,t = Et [Mt,t+1(θ)pi,t+1] , i = 1, . . . , n, ∀t, (2)

where Mt,t+1(θ) = δ (qt/qt+1)U
0(Ct+1; γ)/U

0(Ct; γ) is a parameterized stochastic discount
factor (sdf) [see e.g. Hansen, Richard (1987), Hansen, Jagannathan (1991), Bansal, Viswanathan
(1993), Cochrane (2001)]. This pricing formula is assumed to be also valid for the other as-
sets, whose payoffs are written on p1,t, . . . , pn,t, and whose current prices are not observed.
For instance, the price at date t0 of a European call, written on p1, with strike K, and
time-to-maturity 1 is:

ct0(1,K) = Et0

£
Mt0,t0+1(θ)(p1,t0+1 −K)+

¤
. (3)

It is naturally estimated by:

ĉt0(1,K) = Êt0

h
Mt0,t0+1(θ̂)(p1,t0+1 −K)+

i
, (4)

where θ̂ is a GMM estimator of θ based on the orthogonality conditions (2) and Êt0 is
a (functional) estimator of the conditional expectation. For the application to derivative
pricing, the interest is focused on estimation of the conditional moment ct0(1,K) = Et0 (a)
of function a = Mt0,t0+1(p1,t0+1 − K)+, which is the product of the sdf by the derivative

1See e.g. Owen (1991), (2001), Qin, Lawless (1994), Hansen, Heaton, Yaron (1996), Kitamura, Stutzer
(1997), Imbens (1997), Smith (1997), Imbens, Spady, Johnson (1998), Baggerly (1998), Smith (2000), Ki-
tamura (2001), Ai, Chen (2003), Kitamura, Tripathi, Ahn (2004), Newey, Smith (2004), Bonnal, Renault
(2004).
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payoff. Clearly, this problem requires a joint estimation of the parameter θ and of the
conditional distribution.

However, the problem becomes much more complicated if we consider a more general
pricing formula and if we want to account for the observed prices of assets, which are less
actively traded (such as a derivative with given moneyness strike and time-to-maturity),
when estimating θ and the conditional distribution. Typically, we can observe the prices of
the short term zero-coupon bond:

B(t, t+ 1) = Et [Mt,t+1 (θ)] , for all t, (5)

the prices of the underlying asset:

p1,t = Et [Mt,t+1 (θ) p1,t+1] , for all t, (6)

and for instance the at-the-money call price at date t0, the current date, say:

ct0(1, p1,t0) = Et0

£
Mt0,t0+1(θ)(p1,t0+1 − p1,t0)

+
¤
. (7)

In this situation, the structural parameter θ is subject to two types of moment restrictions,
which can be satisfied either for multiple environments [uniform moment restrictions, equa-
tions (5) and (6)], or only for a given one [local moment restrictions, equation (7)]. These
two types of moment restrictions are difficult to take jointly into account. This explains the
approaches, which have been followed in practice (but also in the academic literature):

i) The observations of derivative prices can be neglected, the parameter θ estimated by
a standard GMM method based on (5)-(6) and the derivative price of interest approximated
by (4). The drawback of this approach is that the risk premium parameters are generally
non identifiable from historical dynamics alone, and some of them have to be fixed a priori
(frequently to zero). In this respect, the standard CCAPM equilibrium model (1) is not
representative of a general pricing formula. By assuming known a priori the number and
types of highly traded assets, it implies that the structural parameters γ,δ are identifiable
from historical dynamics of the price of underlying asset. In a more general setting, some
risk premia parameters can be unidentifiable from these histories. This arises in reduced
form pricing models (see Section 5 below for an example with stochastic volatility), as well
as in equilibrium models with nonproportional trading costs, which can create a lack of
trading on an endogenous set of assets. Moreover, an additional drawback of this approach
is that, by discarding information on derivative prices, we incur in an efficiency loss for
estimation of other derivative prices.

ii) An alternative is the so-called cross-sectional approach, which is based on derivative
prices at date t0 only. However, the convergence of the estimators requires a large number
of liquid derivatives, and this condition is far to be satisfied on derivative markets.

The aim of this paper is to use jointly observed prices of the underlying asset and of some
given derivatives written on this asset for an efficient pricing of other derivatives. Equiv-
alently, we explain how to estimate conditional moments under both types of conditional
moment restrictions, which are either uniform, or local with respect to the conditioning vari-
able. In particular, we derive the kernel nonparametric efficiency bound of the conditional
moment(s) of interest and explain how to reach this bound. In Section 2, we study the set
of moment estimators for both structural parameters and conditional moments of interest.
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The two types of moment restrictions are carefully studied, since they have different con-
sequences concerning the identifiability of structural parameters, and the accuracy of the
estimator of the conditional moment of interest. In particular, the linear combinations of
structural parameters, which are identifiable from uniform moment restrictions, converge at
a parametric rate, whereas the other linear combinations have a nonparametric rate of con-
vergence. We show that there exists an optimal moment method, called extended method
of moments (XMM), for the conditional moment of interest, which minimizes its asymptotic
variance. This minimal variance defines the so-called kernel nonparametric efficiency bound.
We derive the explicit expression of the efficiency bound in a general framework. Finally,
we consider the special cases of limited-information, when all constraints are conditional on
a given environment, and of full-information, when all constraints are uniform with respect
to the environment.

By definition, the extended method of moments is kernel nonparametrically efficient.
However, it does not in general provide a coherent estimator of the whole conditional dis-
tribution. The aim of Section 3 is to consider an information based approach to estimate
jointly the structural parameter and the conditional distribution. The associated informa-
tion based estimators of the moments of interest are also kernel nonparametrically efficient.

Section 4 is concerned with the application to efficient derivative pricing from both ob-
served underlying asset prices and derivative prices. We discuss in detail the moment restric-
tions for this problem and distinguish these constraints depending whether they are uniform
or local with respect to the conditioning variable. The approach is applied in Section 5 to
a stochastic volatility model. We discuss carefully the identifiability of the different param-
eters from the uniform restrictions. Based on the kernel nonparametric efficiency bounds,
we provide the patterns of the confidence bands on derivative prices according to time-
to-maturity and strike. This allows us to measure the uncertainty on estimated derivative
prices, when the sole informational content of no-arbitrage is taken into account. We discuss
the finite sample properties of estimated derivative prices and estimated structural parame-
ters by Monte-Carlo. The estimators of the structural parameters, which correspond to the
risk premium on volatility, converge at a nonparametric rate, whereas the estimators of the
other components of the structural parameter converge at a parametric rate. These different
behaviours are consequences of market incompleteness and lack of liquidity on derivative
markets. Section 6 concludes. Since the focus of the paper is mainly on the structural
interpretations of moment restrictions and on the application to derivative pricing, detailed
regularity conditions and proofs of asymptotic results for the XMM estimator are gathered
in Appendix 1. The asymptotic results for the information based estimator are sketched in
Appendix 2 with the purpose of deriving the limiting distribution and proving kernel non-
parametric efficiency. Proofs of technical Lemmas are given in Appendix B and C, which
are available at web-site: http://www.istituti.usilu.net/gagliarp/web/proofsXMM.htm.

2 Extended Method of Moments

In this section, we consider the estimation of conditional moments E0[a(Y ; θ0)|X = x]
under moment restrictions E0[g(Y, θ0)|X = x] = 0 from a sample of observations (xt, yt),
t = 1, ..., T, where process (Xt, Yt) is assumed strongly stationary. Thus, the conditioning
(state) variables X are assumed observable. In this framework, it is important to discuss
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carefully the set of estimating constraints.
i) Firstly, we can be interested in a conditional moment E0 (a|x0) = E0 [a(Y ; θ0)|X = x0]

for a given value x0, under the set of constraints E0 [g(Y ; θ0)|X = x] = 0,∀x. The moment
to be estimated has a local interpretation, whereas parameter θ0 is defined uniformly in
x. Equivalently, we can consider that we are interested in a conditional moment E0 (a|x0)
under marginal moment restrictions E0 [g1(Y,X; θ0)] = 0, where g1 is derived by multiplying
function g(Y ; θ) by appropriate instrumental variables. This explains the different rates of
convergence for the different parameters, that are, a parametric rate for the estimator2 of θ
(based on marginal moments) and a nonparametric rate for the estimator of the conditional
moment E0 (a|x0). As a consequence, the asymptotic accuracy of the estimated moment of
interest is not influenced by the first step estimation of θ0.

ii) Secondly, we can be interested in a conditional momentE0 (a|x0) = E0 [a(Y ; θ0)|X = x0] ,
given the constraints E0 [g(Y ; θ0)|X = x0] = 0 . Both the moment of interest E0 (a|x0) and
the parameter θ0 have local interpretations. The rates of convergence are nonparametric
for both parameter θ0 and conditional moment E0 (a|x0). The asymptotic accuracy of the
estimated conditional moment E0 (a|x0) will take into account the estimation of θ0.

These two cases are said with full- and limited-information, respectively. In Subsection
2.1, we consider a general framework in which the structural parameter θ is subject to both
types of moment restrictions, that are uniform or local restrictions. We study the set of
moment estimators of the conditional moment of interest, look for an optimal one, and
compute the kernel nonparametric efficiency bound. In Subsection 2.2, the result is applied
to the pure limiting cases of full- and limited-information, respectively.

2.1 General framework

Let us consider a general framework with both uniform and local constraints:

E [g(Y ; θ0) | X = x] = 0, ∀x,
E [eg(Y ; θ0) | X = x0] = 0, (8)

where θ0 is an unknown structural parameter with dimension p. As usual in GMM approach,
we assume in a first step that the uniform restrictions have been replaced by a set of marginal
restrictions, by introducing a finite number of appropriate instrumental variables. Then, in
a second step, we discuss an optimal choice of the instruments.

2.1.1 Efficiency bound for given instruments

i) Identification condition

Let us introduce instruments Z = H(X), and let function g1 define the corresponding
marginal restrictions: E0 [Z · g(Y ; θ0)] = E0 [g1(Y,X; θ0)] = 0. Therefore, structural pa-
rameter θ0 satisfies both marginal and conditional (local) restrictions:

E0 [g1(Y,X; θ0)] = 0, E0 [g2(Y ; θ0) | X = x0] = 0, (9)

2Whenever θ is identifiable from the marginal moment restrictions.
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where g2 =
³eg0 , g0´0 is obtained by gathering all conditional restrictions for environment

x0. Intuitively, there are different situations concerning the identifiability of parameter θ.

i) If θ is identifiable from the marginal restrictions only, the conditional ones
E0 [g2(Y ; θ0) | X = x0] = 0 provide a negligible additional information, and the effi-
cient estimator of θ will converge at a parametric rate.

ii) If θ is not identifiable from the marginal restrictions only, but is identifiable when both
types of restrictions are jointly considered, we can expect different parametric, or non-
parametric rates of convergence according to the function (component) of parameter
θ, which is considered. This is the general situation.

More precisely, the identification assumptions are the following:

Assumption A.1: Parameter θ is globally identifiable from marginal and conditional mo-
ment restrictions, that is, the application:

θ→
³
E0 [g1(Y,X; θ)]

0
, E0 [g2(Y ; θ) | X = x0]

0´0
is one-to-one.

Assumption A.2: Parameter θ is locally identifiable from marginal and conditional mo-
ment restrictions, that is, the matrix: E0

h
∂g1
∂θ

0 (Y,X; θ0)
i

E0

h
∂g2
∂θ

0 (Y ; θ0) | X = x0

i  has full column-rank.
The above rank condition implies the order condition K1 + K2 ≥ p, where K1 (resp.

K2) denotes the number of marginal restrictions (resp. conditional restrictions). If matrix

E0

h
∂g1/∂θ

0
(Y,X; θ0)

i
has full column rank, then parameter θ is locally identifiable from

the marginal restrictions only, and is said to be full-information identifiable.
Assumptions A.1 and A.2 provide the identification conditions for structural parameter

θ. However, the parameter of primary interest for our purpose is the conditional moment:

β0 = E0 [a(Y ; θ0)|X = x0] ,

where a is a function of dimension L. At this step, we need to discuss the interpreta-
tion of parameter of interest β0, which corresponds to a set of derivative prices at some
given date in the application. More precisely, we have to distinguish between the map-
ping x 7−→ E0 [a (Y ; θ0) | X = x] , usually interpreted in terms of predictor, and its value
at a given point x0, that is, β0 = E0 [a (Y ; θ0) | X = x0], which can be considered as a
standard parameter. The latter interpretation is used for developing our estimation ap-
proach. To this end, the parameters to be estimated can be written in an extended vector

θ∗ =
³
θ
0
, β

0´0
[see Back, Brown (1992)], whose true value

³
θ
0
0, β

0
0

´0
satisfies the extended

set of moment restrictions: E0 [g1(Y,X; θ0)]
E0 [g2 (Y ; θ0) | X = x0]

E0 [a (Y ; θ0)− β0 | X = x0]

 = 0.
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Since the dimension of β is equal to the number of moments of interest, that is, the dimension
of a, the extended parameter θ∗ is also globally or locally identified under Assumptions A.1,
A.2. The extended problem always involves restrictions conditional on a given value of the
conditioning variable (the restrictions defining β0), even if θ0 is defined by means of uniform
restrictions only.

ii) Moment estimator

We will now consider moment estimators for θ∗ =
³
θ
0
, β

0´0
based on the approximated

moment restrictions:  bE [g1(Y,X; θ)]eE [g2(Y ; θ)|x0]eE [a (Y ; θ)− β|x0]

 ' 0,

where bE and eE [.|x0] denote an historical sample average and a kernel estimator of the
conditional moment, respectively. More precisely, let us introduce a kernel estimator3 of
the conditional density f0(y|x0). For expository purpose, we assume that processes Xt and
Yt have identical dimension d, say, which is generally the case in applications to derivative
pricing, where Xt = Yt−1. The kernel density estimator is defined by:

f̂(y|x0) = 1

hdT

TX
t=1

K

µ
yt − y

hT

¶
K

µ
xt − x0
hT

¶
/

TX
t=1

K

µ
xt − x0
hT

¶
, (10)

where K is the d-dimensional kernel and hT the bandwidth. The kernel K is a non-negative
symmetric function satisfying:Z

Rd
K(u)du = 1, w2 =

Z
Rd

K2(u)du <∞.

The kernel density estimator is used to approximate a conditional moment E0 (g2|x0) =
E0 [g2(Y ; θ)|X = x0] by:

eE (g2|x0) = Z g2(y; θ)f̂(y|x0)dy '
TX
t=1

g2(yt; θ)K

µ
xt − x0
hT

¶
/

TX
t=1

K

µ
xt − x0
hT

¶
.

Under standard regularity conditions including the bandwidth conditions: ThdT → ∞,¡
ThdT

¢1/2
h2T → 0 as T → ∞, estimator eE (g2|x0) is consistent and asymptotically nor-

mal: q
ThdT

³ eE (g2|x0)−E0 (g2|x0)
´

d−→ N
¡
0, w2V0 (g2|x0) /fX(x0)

¢
,

where fX denotes the marginal (stationary) density of process (Xt). In particular, the

different estimated moments have different rates of convergence, that are,
√
T for bE,qThdT

for eE (.|x0), respectively.
3Another type of nonparametric estimator of the conditional density can be used.
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Definition 1: A (kernel) moment estimator bθ∗T = µbθ0T , bβ0T¶0

of parameter θ∗ is defined

by: bθ∗T (Ω) = arg min
θ∗=

³
θ
0
,β
0´0 bgT (θ∗)0 ΩbgT (θ∗) ,

where

bgT (θ∗) = µ√T bE [g1(Y,X; θ)]0 ,qThdT
eE [g2(Y ; θ)|x0]0 ,qThdT

eE [a (Y ; θ)− β|x0]0
¶0

,

and Ω is a weighting matrix.

Under standard regularity conditions, the associated (kernel) moment estimator of parame-

ter β is consistent, converges at a nonparametric rate
q
ThdT , and is asymptotically normal

with a variance-covariance matrix w2VZ (Ω) depending on the weighting matrix Ω [see Ap-
pendix 1 for the list of regularity conditions and the derivation of the asymptotic properties
of bθ∗]. The expression of the asymptotic variance w2VZ (Ω) for the optimal choice of Ω is
provided next.

iii) Kernel nonparametric efficiency bound

Definition 2: The kernel nonparametric efficiency bound BZ (x0, a) for β0 = E0 (a|x0)
and given instruments Z is the minimal asymptotic variance VZ (Ω) corresponding to the
optimal choice of Ω. It defines the functional a→ BZ (x0, a). 4

The main result of this subsection, provided in Proposition 1 below, is that the kernel
nonparametric efficiency bound for β0 depends on the selected instrument Z only through
the local identification content of the corresponding marginal restrictions:

E [g1(Y,X, θ0)] = E [Z · g (Y, θ0)] = 0.

More precisely, what really matters is the null space of matrix JZ1 = E0

h
∂g1 (Y,X; θ0) /∂θ

0i
.

If sZ denotes the rank of this matrix, its null space is characterized by a p×(p− sZ) matrix
RZ such that:

E0

·
∂g1

∂θ
0 (Y,X; θ0)

¸
RZ = 0.

4Other notions of "nonparametric efficiency" have been introduced in the statistical literature, such as the
approach based on linear forms of the parameter of interest [see e.g. Stein (1956), Severini, Tripathi (2001)]
or the minimax lower bounds [see e.g. Donoho, Liu (1991), Fan (1993)]. However, these notions focus on the
functional dependence of parameter β0 from x0, whereas, in derivative pricing, x0 is given and the interesting
functional dependence is w.r.t. a. This is why we emphasize the mapping a → BZ (x0, a). Moreover,
these alternative notions of "nonparametric efficiency" are less operational for practical applications such
as derivative pricing. They will not be addressed in this paper. Finally, the kernel nonparametric efficiency
bound BZ (x0, a) does not depend on the kernel K. The effect of the kernel on the asymptotic distribution
of bθ∗T is summarized in the scale factor w2.
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The columns of RZ generate the null space of matrix JZ1 . Moreover, let us denote by eR a
p × sZ matrix whose columns complete those of RZ to get a basis of Rp. Then, the p × p

matrix R1 =
³ eR, RZ

´
is non singular, and allows to define a new parametrization:

η = R−11 θ =
³
η
0
1, η

0
2

´0
∈ RsZ ×Rp−sZ . (11)

The vector η1 defines sZ linear combinations of structural parameters θ0, which are identified
from the marginal restrictions, while η2 corresponds to p−sZ linear combinations for which
the marginal restrictions are not sufficiently informative, since:

E0

·
∂g1

∂η
0
2

(Y,X; θ0)

¸
= E0

·
∂g1

∂θ
0 (Y,X; θ0)

¸
RZ = 0.

This implies that parameters η1 can be estimated at a standard parametric rate, whereas
η2 features a nonparametric rate of convergence induced by the local conditional moment
restrictions. Thus, the intuition of the main result below is the following: as far as the
kernel nonparametric efficiency bound for β0 is concerned, parameters η1 can be considered
as known without estimation error, since they are actually estimated with a parametric rate
of convergence, which is infinitely faster than the non-parametric rate of convergence for
estimation of β0. This is why the efficiency bound for β0 depends on the instrument Z only
through the information matrix I0,Z :

I0,Z = fX(x0)

 E0

µ
∂g2
∂η

0
2

¶
0

E0

µ
∂a
∂η

0
2

¶
−IdL


0 µ

V0 (g2) Cov0 (g2, a)
Cov0 (a, g2) V0 (a)

¶−1 E0

µ
∂g2
∂η

0
2

¶
0

E0

µ
∂a
∂η

0
2

¶
−IdL

 ,

(12)
where all moments are conditional on X = x0. The matrix I−10,Z is similar to a standard

GMM efficiency bound for estimation of parameters
³
η
0
2, β

0´0
from moment restrictions

based on functions
³
g
0
2, a

0 − β
´0
, but, by contrast with the standard setting [Hansen (1982),

Back, Brown (1992)], both true unknown values of parameters and restrictions are defined
conditional on the given value x0 of X.

Proposition 1 : Let instruments Z satisfying Assumptions A.1 and A.2 be given and
the associated information matrix I0,Z be defined by (12). Then, the kernel nonparametric
efficiency bound a→ BZ (x0, a) for conditional moment β0 = E0 (a|x0) is the lower diagonal

8



L× L block of matrix I−10,Z , that is,

BZ (x0, a) = 1
fX(x0)

½
V0a−Cov0(a, g2)(V0g2)−1Cov0(g2, a)

+
h
E0
³
∂a

∂θ
0

´
RZ −Cov0(a, g2)(V0g2)−1E0

³
∂g2
∂θ

0

´
RZ

i
·
R
0
ZE0

µ
∂g

0
2

∂θ

¶
(V0g2)

−1E0
³
∂g2
∂θ

0

´
RZ

¸−1
·
R
0
ZE0

³
∂a

0

∂θ

´
−R

0
ZE0

µ
∂g

0
2

∂θ

¶
(V0g2)

−1Cov0(g2, a)
¸¾

,

where all moments are conditional on X = x0, and evaluated at the true parameter value
θ0.
Proof. See Appendix 1.

The matrix RZ is not unique, but is defined up to a post-multiplication by a non-singular
matrix. The above kernel nonparametric efficiency bound is not modified by such a post-
multiplication.

iv) Interpretation in terms of weak instruments

The problem considered above is related to the use of weak instruments [see Andrews, Stock
(2005) for a general presentation]. More precisely, the marginal moment restrictions in (9)
are obtained by introducing standard instruments satisfying the usual conditions. At the
contrary, the moment restrictions corresponding to a given value of the conditioning variable
can be approximately written as:

E0 [g2 (Y ; θ0) | X = x0] ' E0

·
1

fX(x0)hdT
K

µ
X − x0
hT

¶
g2 (Y ; θ0)

¸
.

They correspond to a finite number of weak moment restrictions5 constructed from in-
strument ZT (X) = K

³
X−x0
hT

´
/
£
hdT fX(x0)

¤
. This instrument depends on the number of

observations, and is "weak" due to localization around X = x0 induced by the kernel6; this
explains the different rate of convergence of the structural parameters, when this "weak"
instrument is used. Since the instruments depend on T , the problem considered above is not
a special case of the standard literature on weak instruments or weak IV asymptotics [see
e.g. Staiger, Stock (1997), Stock, Wright (2000), Yogo (2004), Andrews, Marmer (2005),
Andrews, Stock (2005)]. For instance, the functions of the parameters which are weakly

5Thus, our framework differs from the literature introducing a large number of weak instruments [see
e.g. Hansen, Hausman, Newey (2004), Hahn, Hausman, Kuersteiner (2004), Andrews, Stock (2005), Newey,
Windmeijer (2005)].

6More precisely, the corresponding sample moment
p
ThdT

eE [g2(θ)|x0] in Definition 1 of the estimator
is of order

p
ThdT for θ 6= θ0, which is lower than

√
T , as in the standard case of weak instruments [see

Assumption C in Stock, Wright (2000)].
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(resp. strongly) identified are not known a priori, and the asymptotic properties, especially
the rates of convergence, of the associated GMM estimator differ from the rates of conver-
gence obtained in the other types of applications, which have been considered earlier in the
literature. The different setting explains also why asymptotically efficient estimation meth-
ods are derived below in our framework, whereas "there does not seem to be any dominant
estimation method (for the linear model) with weak IV’s" [Andrews, Stock (2005), p.20].

2.1.2 Efficiency bound with optimal instruments

i) Optimal instruments

The main lesson of the previous subsection is that the instrument Z only matters for
estimation of β0 through the null space of matrix JZ1 = E0

h
∂g1 (Y,X; θ0) /∂θ

0i
. Larger

this null space is, larger the vector η2 of structural parameters, which are non-identified
from marginal restrictions and must be estimated at a non-parametric rate jointly with
β, leading to the asymptotic joint covariance matrix I−10,Z . Therefore, if Z and W are two
alternative sets of instruments such that the null space of JZ1 is included in the null space of
JW1 , the kernel nonparametric efficiency bound BZ (x0, a) cannot be larger than BW (x0, a).

Thus, there are many ways to choose instruments Z in order to get a minimal null space
for JZ1 . Let us define the subspace N0 of vectors v of Rp such that:

E0

·
∂g

∂θ
0 (Y ; θ0) | X = x

¸
v = 0 , (13)

almost surely for the marginal distribution PX of X. Vectors in N0 define linear combina-
tions of parameters θ that cannot be identified from the uniform restrictions. Subspace N0
is included in the null space of JZ1 for any choice of the instruments Z. Therefore, this null
space is minimal as soon as it coincides with N0. Let us consider in particular:

Z = E0

Ã
∂g

0

∂θ
(Y ; θ0) |X

!
W (X) , (14)

where W (X) is a positive definite matrix (PX-almost surely). Then, for v in the null space
of JZ1 , we have:

E0

"
E0

Ã
∂g

0

∂θ
(Y ; θ0) |X

!
W (X)E0

µ
∂g

∂θ
0 (Y ; θ0) |X

¶
v

#
= 0,

or:

v
0
E0

Ã
∂g

0

∂θ
(Y ; θ0) |X

!
W (X)E0

µ
∂g

∂θ
0 (Y ; θ0) |X

¶
v = 0, PX-almost surely,

or:

E0

µ
∂g

∂θ
0 (Y ; θ0) |X

¶
v = 0, PX-almost surely,

that is, v belongs to N0. Therefore, the choice (14) of instruments Z provides the minimal
null set JZ1 and is optimal, whenever it fulfils the identification Assumptions A.1 and A.2.

10



Moreover, for this special choice of instruments, Assumption A.2 is clearly tantamount to
the following identification assumption:

Assumption A.2∗: The structural parameter θ is locally identifiable from the conditional
restrictions, that is v = 0 is the only vector which fulfils jointly:

(i) the uniform restrictions: E0
h
∂g

∂θ
0 (Y ; θ0) |X = x

i
v = 0, PX-almost surely,

(ii) the conditional restrictions: E0
h
∂g2
∂θ

0 (Y ; θ0) |X = x0
i
v = 0, for the given value x0

of X.

Thus, we have shown:

Lemma 1: Under Assumption A.2 ∗, any instrument Z = E0
³
∂g

0

∂θ |X
´
W (X), where

W (X) is a positive definite matrix, satisfies Assumption A.2, and is an optimal instru-
ment for estimating β0 = E0(a|x0).

Since we focus on nonparametric estimation of β0, the set of optimal instruments is
larger than the standard one derived by Hansen (1982) and Chamberlain (1987) for ef-
ficient estimation of structural parameter θ. While in the standard framework W (X) =
[V ar0 (g(Y, θ0)|X)]−1 is the efficient weighting of the conditionally heteroskedastic moment
conditions, any choice of a positive definite matrix W (X) is valid, when β is the parameter
of interest. Moreover, the optimality result given in Lemma 1 is more general than the
standard one, since it does not require full (parametric) identification of θ.

ii) The identification assumption

Another useful formulation of Assumption A.2∗ is derived by considering a matrix R of
dimension p × (p − s), say, whose columns constitute a basis of the space N0 defined in
(13). Indeed, any vector v satisfying Assumption A.2∗ i) can be written as v = Rc for some
(p− s)-dimensional vector c. Then, Assumption A.2∗ ii) becomes:

E0

·
∂g2

∂θ
0 (Y ; θ0) |X = x0

¸
Rc = 0 =⇒ c = 0,

that is, E0
h
∂g2 (Y ; θ0) /∂θ

0 |X = x0

i
R is full column-rank. Thus, Assumption A.2∗ can be

rewritten as:

Assumption A.2∗: The matrix:

E0

·
∂g2

∂θ
0 (Y ; θ0) |X = x0

¸
R is full column-rank,

for any p× (p− s) matrix R whose columns generate the space:

N0 =

½
v∈Rp : E0

·
∂g

∂θ
0 (Y ; θ0) |X = x

¸
v = 0, PX-almost surely

¾
.
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iii) Kernel nonparametric efficiency bound

Let us now derive the kernel nonparametric efficiency bound. By the results above,
the matrix R coincides with the matrix RZ corresponding to the optimal instrument Z in
Lemma 1. A new parametrization:

η = R−11 θ =
³
η
0
1, η

0
2

´0
,

can be defined as above with R1 =
³ eR, R´, where matrix eR completes the basis of Rp. The

vector η1 represents the maximal set of structural parameters that can be identified from
uniform restrictions only. Then, the information matrix I0 corresponding to parameters
(η

0
2, β

0
)
0
is defined from (12) by:

I0 = fX(x0)

 E0
³
∂g2
∂θ

0

´
R 0

E0
³
∂a

∂θ
0

´
R −IdL

0 µ
V0 (g2) Cov0 (g2, a)

Cov0 (a, g2) V0 (a)

¶−1 E0
³
∂g2
∂θ

0

´
R 0

E0
³
∂a

∂θ
0

´
R −IdL

 .

The main result of this section is a direct consequence of Proposition 1.

Proposition 2 : Let Assumption A.2∗ be satisfied. Then, the kernel nonparametric effi-
ciency bound a → B (x0, a) for conditional moment E0 (a|x0) is the lower diagonal L × L
block of matrix I−10 , that is,

B (x0, a) = 1
fX(x0)

½
V0a−Cov0(a, g2)(V0g2)−1Cov0(g2, a)

+
h
E0
³
∂a

∂θ
0

´
R−Cov0(a, g2)(V0g2)−1E0

³
∂g2
∂θ

0

´
R
i

·
R
0
E0

µ
∂g

0
2

∂θ

¶
(V0g2)

−1E0
³
∂g2
∂θ

0

´
R

¸−1
·
R
0
E0
³
∂a

0

∂θ

´
−R

0
E0

µ
∂g

0
2

∂θ

¶
(V0g2)

−1Cov0(g2, a)
¸¾

, ∀a,

where all moments are conditional on X = x0, evaluated at the true parameter value θ0,
and matrix R is defined in Assumption A.2∗.

The efficiency bound of Proposition 2 is not modified by post-multiplying matrix R by
a non-singular matrix.

2.2 Special cases

Proposition 2 can be applied to the limiting cases of full- and limited-information, respec-
tively.
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2.2.1 Full-information identifiability

When the structural parameter θ is full-information identifiable, the space N0 = {0}, and
the column space of matrix R in Proposition 2 is zero. We get the corollary below.

Corollary 1: The full-information kernel nonparametric efficiency bound is:

B(x0, a) = 1

fX(x0)

©
V0(a|x0)− Cov0(a, g2|x0)V0(g2|x0)−1 Cov0(g2, a|x0)

ª
.

This result is easily understood when all moment restrictions E0 [g(Y ; θ0)|X = x] = 0 are
uniform, and θ is full-information identifiable (as in the CCAPM framework). Since θ can be
estimated at a parametric rate using the marginal moment restrictions, it can be assumed
known for the computation of the kernel nonparametric efficiency bound. This explains
why the second term of the decomposition of the efficiency bound involving derivatives
with respect to θ vanishes.

The same reasoning applies when θ is full-information identifiable and satisfies both
uniform and local restrictions, since the additional local restrictions are not informative for
the estimation of θ. Note, however, that they are informative for the estimation of the
moment of interest β0 = E0 (a|x). Indeed, the kernel nonparametric efficiency bound in
Corollary 1 involves the whole set of constraints g2 =

³eg0 , g0´0 .
Finally, the conditional moment of interest is also equal to:

E0 (a|x0) = E0
h
a(Y ; θ0)−Cov0 (a, g2|x0)V0 (g2|x0)−1 g2(Y ; θ0) | x0

i
.

The bound is nothing but the variance-covariance matrix of the residual term in the affine
regression of a on g2. A similar interpretation has already been given by Back and Brown
(1993) in an unconditional setting, and extended to a conditional framework by Bonnal and
Renault (2004).

2.2.2 Limited-information

Let us now assume that all moment restrictions are conditional on the given value X = x0 :

E [eg(Y ; θ0)|X = x0] = 0.

Corollary 2: The limited-information kernel nonparametric efficiency bound is given by:

B (x0, a) = 1
fX(x0)

½
V0a−Cov0(a, eg)(V0eg)−1Cov0(eg, a)

+
h
E0
³
∂a

∂θ
0

´
−Cov0(a, eg)(V0eg)−1E0 ³ ∂eg

∂θ
0

´i
h
E0
³
∂eg0
∂θ

´
(V0eg)−1E0 ³ ∂eg

∂θ
0

´i−1
h
E0
³
∂a

0

∂θ

´
−E0

³
∂eg0
∂θ

´
(V0eg)−1Cov0(eg, a)io ,
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where all moments are conditional on X = x0 and evaluated at θ0.

This is the formula in Proposition 2 with g2 = eg and R = Id, since no linear combination
of parameter θ is full-information identifiable.

3 Information based estimator

The estimation of optimal instruments and the derivation of the associated optimal weight-
ing matrix in a moment method may be difficult to implement in practice, and provide
rather erratic results in finite sample [see e.g. Altonji, Segal (1996), Hansen, Heaton, Yaron
(1996)]. It has been proposed in the literature (see the Introduction) to derive the optimal
moment estimator in a single step, by optimizing with respect to both the structural param-
eter and the conditional pdf an appropriate measure of discrepancy between the distribution
and the unconstrained kernel density, subject to the moment restrictions. The discrepancy
measure is usually chosen among the Cressie-Read family of divergences [Cressie, Read
(1984)], leading to the so-called empirical likelihood, chi-square, or Kullback-Leibler infor-
mation criterion (KLIC) based approach.

In this section, we develop an information based equivalent of the XMM estimator. The
goal is to correct a structural drawback of the XMM approach as introduced in the previous
section, namely a lack of coherency. More precisely, conditional moments estimated by
XMM are generally not consistent with an underlying estimator of the conditional pdf, which
satisfies the unit mass and non-negativity constraints. In derivative pricing applications,
where the conditional (risk-neutral) pdf is interpreted as a state price density, such a feature
may imply misleading arbitrage opportunities in estimated option prices.

The existing literature on information based estimation considers a setting with uniform
moment restrictions, and assumes the full-information identifiability of parameter θ. In this
section, we develop an approach for the general framework with both uniform and local
restrictions by combining in an appropriate way chi-square and KLIC discrepancy measures.
The aim of this approach is to get an estimator of the conditional pdf, which satisfies the
unit mass and non-negativity restrictions, while keeping the estimator tractable.

In the first subsection, we explain why the XMM approach features a lack of coherency,
and does not provide an appropriate approximation of the conditional density. The infor-
mation based estimator is introduced in Section 3.2, and its kernel nonparametric efficiency
is proved. Finally, Section 3.3 considers the limiting cases of full- and limited-information.

3.1 A lack of coherency of XMM

It is well-known that a GMM approach can feature a lack of coherency, when the conditional
moments of interest are multiple. More precisely, it is expected that an estimation approach
for E0(a|x0) = E [a(Y ; θ0)|X = x0] provides an estimator of the type:

bE(a|x0) = Z a(y;eθ) ef(y|x0)dy,
where eθ is an estimator of θ and ef is an estimator of the conditional density. The XMM
approach does not satisfy this requirement.

14



i) For instance, in the full-information case with full-information identifiable parameter,
the XMM estimator of the moment of interest coincides with the estimator of the moment
of the residual

E0
h
a(Y ; θ0)−Cov0 (a, g|x0)V0 (g|x0)−1 g(Y ; θ0) | x0

i
,

which can be written as:Z
a(y; θ0) bf(y|x0) h1− g(y; θ0)

0
V0 (g|x0)−1E0 (g|x0)

i
dy.

This is an integral expression with respect to a measure, which does not depend on a,
satisfies the unit mass restriction, but is not necessarily positive.

ii) Moreover, in the general mixed framework such an integral representation can even
not exist, since the XMM estimator of θ depends on the moment of interest a.

Therefore, it is important to introduce a corrected estimation method, which is both
coherent and kernel nonparametrically efficient.

3.2 Information based estimator

The (unconstrained) kernel estimator bf (y|x) is a consistent estimator of the conditional pdf.
However, it is not efficient, since it does not take into account the parameterized moment
restrictions. The kernel density estimator can be improved by looking for the pdf, which is
the closest to bf (y|x), and satisfies the moment restrictions.

In this section, we consider the joint estimator defined by:³ bf0 (.|x0) , bf0 (.|x1) , ..., bf0 (.|xT ) ,bθ´
= arg min

f0,f1,...,fT ,θ

1

T

TX
t=1

Z h bf(y|xt)− f t(y)
i2

bf(y|xt) dy + hdT

Z
log
h
f0(y)/ bf(y|x0)i f0(y)dy,

s.t.
Z

f t(y)dy = 1, t = 1, ..., T,Z
f0(y)dy = 1,Z
g (y; θ) f t(y)dy = 0, t = 1, ..., T,Z
g2 (y; θ) f

0(y)dy = 0.

The objective function includes the two following components: a chi-square distance is
used for the optimization with respect to the conditional distributions associated with the
sample values of the conditioning variable, whereas a Kullback-Leibler information criterion
is used for the conditioning value x0 corresponding to the conditional moment of interest.
This second component corresponds to an "empirical likelihood"-type approach applied to
the distribution conditional on x0. Moreover, two types of constraints are introduced: the
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uniform restrictions are written for all observations x1, ..., xT , whereas the local restrictions
are written for x0 only. The chi-square component allows for closed form solutions f1 (θ),
..., fT (θ) for a given θ without ensuring positivity. Therefore, the objective function is
easily concentrated with respect to f1, ..., fT . Next, the information criterion provides a
solution bf0 (.|x0) satisfying the unit mass and positivity restrictions 7. In particular, the
computation of the estimator only involves the optimization of a concentrated criterion with
respect to parameter θ and a Lagrange multiplier of dimension dim(g2) [see Appendix 2 for
the concentration of the objective function].

Then, the information based estimator of the conditional moment is defined by:

bE(a|x0) = Z a(y;bθ) bf0 (y|x0)dy.
The kernel nonparametric efficiency of the information based estimator of f0(y|x0) is estab-
lished in Appendix 2.

Proposition 3 The estimator Ê (a|x0) is consistent, converges at rate
q
ThdT , is asymp-

totically normal and kernel nonparametrically efficient:q
ThdT

w
(Ê (a|x0)−E0(a|x0)) d→ N(0,B(x0, a)),

for any a.

3.3 Special cases

3.3.1 Limited-information

When the moment restrictions are:

E0[eg(Y ; θ0)|X = x0] =

Z eg(y; θ0)f0(y|x0)dy = 0,
the optimization problem becomes:

( bf0 (.|x0) ,bθ) = argminf,θ
R
log
h
f(y)/ bf(y|x0)i f(y)dy,

s.t.
R
f(y)dy = 1,

R
f(y)eg(y; θ)dy = 0. (15)

The associated estimator Ê (a|x0) =
R
a(y;bθ) bf0 (y|x0)dy is kernel nonparametrically effi-

cient. Its asymptotic variance is given by the expression of B(x0, a) in Corollary 2.

3.3.2 Full-information

In the full-information case, a kernel nonparametrically efficient estimator can be defined
by optimizing the mixed chi-square/information criterion with respect to both θ and the

7See e.g. Stutzer (1995), (1996), and Kitamura-Stutzer (1997).
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conditional distribution (see Section 3.2). Our approach extends results derived in the lit-
erature in the special case of pure uniform restrictions and i.i.d. observations. For instance,
Bonnal and Renault (2004) derive a result similar to Proposition 3, but without imposing
positivity of the estimated conditional distribution. Kitamura, Tripathi, Ahn (2004) focus
on estimation and inference about structural parameter θ only, and adopt a smooth empir-
ical likelihood approach. Smith (2004) establishes the results of Kitamura, Tripathi, Ahn
(2004) for the Generalized Empirical Likelihood (GEL) methodology 8. Section 3.2 extends
the results of these papers to a general setting with both uniform and local moment restric-
tions, where the structural parameter is possibly full-information unidentifiable, which is
the relevant setting for derivative pricing applications.

In the full-information case, a kernel nonparametrically efficient estimator of the moment
of interest can also be derived in a two-step approach. Indeed, the structural parameter θ
can be estimated consistently and efficiently by means of the uniform restrictions only. This
allows to separate the estimation of θ, and the estimation of the conditional pdf of interest
f(y|x0). A two-step estimator is defined by:

bE (a|x0) = Z a(y;bθ) bf0(y|x0)dy,
where:

bf0(.|x0) = argmin
f

Z
log[f(y)/ bf(y|x0)]f(y)dy,

s.t.
Z

f(y)dy = 1,

Z
f(y)g2(y;bθ)dy = 0, (16)

and bθ is any estimator of θ converging at a parametric rate. This estimator can be a
consistent (but possibly inefficient) moment estimator, a GMM estimator, or a continuously-
updated estimator [see Hansen, Heaton, Yaron (1996)]. Insofar as bθ is consistent and root-
T asymptotically normal, bE (a|x0) reaches the kernel nonparametric efficiency bound in
Corollary 1. By contrast with standard GMM, the two-step procedure implies no efficiency
loss, since the rates of convergence are different in the two steps.

4 Derivative pricing

Usually, derivative pricing formulas involve two types of parameters characterizing the dy-
namic of the underlying asset returns and the risk premia, respectively. The parameters
can be finite dimensional, or functional, leading to parametric, or nonparametric pricing
methods.

i) When the markets are complete, the only parameter concerns the dynamics of the
underlying asset returns, and can be estimated from return data. When the parameter
is finite dimensional, it is usually estimated by maximum likelihood9. Alternatively the

8See also Ai-Chen (2003).
9This approach can be extended to functional parameters, leading for instance to indirect spline estimation

of the state price density [see e.g. Gourieroux, Monfort (2005)].
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estimation of some parameters can be based on derivative data only. For instance, if the
Black-Scholes model is well-specified, the volatility can be estimated by an implied volatility
computed from an observed option price. However, the drift is not identifiable from option
prices observed at a given date, that is, by a cross-sectional approach.

ii) In the incomplete market framework, the model includes in general both dynamic
and risk premia parameters. These parameters can be estimated by an appropriate use
of both historical and cross-sectional data. Such approaches have already been considered
in the literature for parametric models assuming a fixed set of liquid derivatives [see e.g.
Duan (1994), Garcia, Luger, Renault (2003) for estimation, De Munnik, Schotman (1994),
Bams (1998) for specification tests]. Some of the parameters can also be estimated by a
pure cross-sectional approach using option data only, the typical example being the para-
metric fit of Black-Scholes implied volatility surfaces. Different nonparametric approaches
have also been considered in the literature. They are based for instance on nonparametric
approximation of the implied volatility surface [see e.g. Hutchinson, Lo, Poggio (1994) for
using neural networks, and Ait-Sahalia, Lo (1998), who use a kernel approach, and deduce
a nonparametric estimator of the state price density]. An alternative approach relies on
maximum entropy risk-neutral densities for given maturity, derived by using both asset
and option data [see e.g. Rubinstein (1994), Jackwerth, Rubinstein (1996), Buchen, Kelly
(1996), Stutzer (1996), Jondeau, Rockinger (2000)].

In this section, we consider a semi-nonparametric approach, in which the historical
parameter is functional and the risk premia parameter is finite dimensional. We explain
how to use jointly underlying returns and derivative prices for efficient pricing of other
derivatives.

4.1 The estimating constraints

For expository purpose, let us consider European calls written on an underlying asset with
geometric return rt = log(pt/pt−1). We assume that the state variable process (Yt) is a
Markov process of order one under the historical probability, including rt as its first com-
ponent. The state process is assumed observable for both the investor (for pricing formula)
and the econometrician (for estimation by XMM). Then, the price at t of a European call
with moneyness strike s and residual maturity one can be written as10 :

ct(s) = E
h
m(Yt+1; θ)(exp rt+1 − s)+ | Yt

i
, (17)

where m(Yt+1; θ) is the path dependent stochastic discount factor. The finite dimensional
parameter θ characterizes the risk premia, whereas the historical conditional distribution of
Yt+1 given Yt is let unspecified.

Let us now assume observations of a finite number of derivative prices ct0(sk), k =
1, . . . ,K, at a given date t0 (the current date, say), and observations of underlying asset
returns for earlier dates t = t0 − T + 1, . . . , t0. Then, the moment restrictions are twofold.
Some constraints concern the derivatives, and are given by:

10More precisely, this is the call price in percentage of the underlying asset price. Since (pt+1 − spt)
+ =

pt(exp rt+1 − s)+, the call or put written on pt+1 can also be written on exp rt+1.
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ct0(sk) = E
h
m(Yt+1; θ)(exp rt+1 − sk)

+|Yt = yt0

i
, k = 1, . . . ,K. (18)

Other constraints concern the pricing formula for the riskfree asset and the underlying asset.
They are:

E[m(Yt+1; θ)| Yt = yt ] = 1, ∀yt,
E[m(Yt+1; θ) exp rt+1| Yt = yt ] = 1, ∀yt, (19)

respectively, assuming for simplicity a zero riskfree rate.
The second subset of constraints on θ are uniform with respect to the conditioning

value, whereas the conditioning value is fixed in the first subset. The distinction between
both types of moment restrictions is due to the lack of liquidity of some assets. If the
asset is highly liquid, its price can be observed at any date leading to uniform conditional
moment restrictions (if the number of observation dates is large, and the return process
stationary with a continuous stationary distribution). If the asset is not very liquid, the
price is observed for a limited number of dates. This is the case for a derivative with given
moneyness strike and given residual maturity, due to periodic issuing in option markets11.
For expository purpose, we have considered above the simplest case, where option prices are
observed at date t0 only. The method might be improved by introducing derivative prices
observed at several dates different from t0, and the extension to this case is straightforward.
In particular, the most informative dates are not necessarily dates t0− 1, t0− 2, ... close to
t0, but the dates corresponding to an environment yt ∼ yt0 . However, what is important to
realize is that it is not possible to specify a moment condition for a derivative, which is valid
at all dates, since the number and the characteristics of highly traded derivatives, that are,
time-to-maturity and moneyness strike, are different on consecutive days, especially due to
the effect of the periodic issuing. Thus, moment conditions for observed derivative prices
are necessarily local.

Different pricing formulas are derived below depending whether or not the uniform
moment restrictions are totally taken into account.

4.2 Derivative pricing with limited-information

Let us assume that our interest is in the price at date t0 of a European call with time-to-
maturity 1 and strike s. Its price is equal to the conditional moment:

E (a|yt0) = E[m(Yt+1; θ)(exp rt+1 − s)+|Yt = yt0 ].

Under limited-information, the only restrictions E (g2|yt0), which are taken into account,
correspond to the same conditioning value. There is a set of K + 2 restrictions:

11See the discussion in Aït-Sahalia, Lo (1998) for the evolution of the set of liquid options on S&P.
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E[m(Yt+1; θ)(exp rt+1 − sk)
+ − ct0(sk)|Yt = yt0 ] = 0, k = 1, . . . ,K,

E
h
m(Yt+1; θ)− 1|Yt = yt0

i
= 0,

E[m(Yt+1; θ) exp rt+1 − 1|Yt = yt0 ] = 0.

(20)

Then, we can apply the estimation approach described in Section 3.3.1. This approach
ensures that the estimated risk-neutral pdf is nonnegative, which is compatible with the no
arbitrage restrictions.

Whereas the conditional moment restrictions concern date t0 and environment yt0 only,
the approach is not a pure cross-sectional approach. Indeed, the observations yt0−T+1, ..., yt0
corresponding to the other dates are used in the estimation of the conditional (historical)
pdf. In particular, the derivative prices are consistently estimated, if the number of ob-
servations T is large, even if the number of derivatives K is rather small (but larger than
the parameter size). Thus, the asymptotic theory is very different, and more realistic, than
the theory usually developed in the literature, which assumes an infinite number of liquid
derivatives at date of interest t0, or at dates t with yt ∼ yt0 [see e.g. Ait-Sahalia and Lo
(1998) approach for comparison].

At a first sight, it may seem surprising to get consistent derivative prices, when only a
small number of derivatives (3 in the Monte-Carlo study of Section 5) are observed. In fact,
our approach can be seen as a method, which creates "artificial" observed derivative prices
at well-chosen dates. More precisely, at any date t for which the conditioning variables are
close to the current value yt ∼ yt0 , say, we introduce the derivatives with the same strike and
time-to-maturity, but with a price computed for yt0 (instead of yt). This approximation has
no impact on consistency due to the continuity of the deterministic derivative price formula
with respect to the conditioning variable.

Finally, the limited-information method differs from the entropy based approaches by
the choice of the benchmark risk-neutral distribution. In our framework, this distribu-
tion is m(y; θ0)f0(y|x0), where f0(.|x0) is the historical conditional pdf. In Stutzer (1996),
p1639, the benchmark distribution is the historical distribution itself (implicitly assuming
zero risk premia); a parametric benchmark such as a Black-Scholes lognormal distribution
is suggested by Rubinstein (1994) and Jackwerth, Rubinstein (1996), whereas a uniform
distribution has been implicitly selected in Buchen, Kelly (1996) and Jondeau, Rockinger
(2000). Moreover, maximum entropy methods focus on the state price density for a given
date and a given maturity, whereas our approach allows to estimate coherently state price
densities at a given date for all maturities.

4.3 Derivative pricing with mixed limited- and full-information

Let us now assume that both types of moment restrictions (18) and (19) are taken into
account. Derivative pricing is improved by considering jointly the dynamics of the under-
lying asset prices between t = t0 − T + 1 and t = t0, and the way some prices of European
calls depend on the strike for date t0. Two cases have to be distinguished according to the
full-information identifiability of parameter θ from underlying asset price dynamics.
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i) Full-information identifiability

If parameter θ is identifiable from uniform moment restrictions (19), restrictions (18)
can asymptotically be neglected for the estimation of θ. A GMM estimator bθ of θ can be
computed by using restrictions (19) only, and is consistent at a parametric rate. Then, we
can apply the estimation method described in Section 3.3.2 with f̂ (.|x0) a kernel estimator
of the conditional pdf given Yt = yt0 , and the set of restrictions (20).

ii) Full-information underidentifiability

As seen in Section 2.1, a part of the parameters can be identified from the underlying
asset price dynamics (uniform restrictions), and will converge at a parametric rate, whereas
the remaining parameters are identified by means of the cross-sectional restriction (18), and
converge at a nonparametric rate. The latter are linear combinations of parameters R

0
θ,

where the columns of matrix R span the null space N0 defined in (13), with moment function
g corresponding to restrictions (19). In this case, the estimation has to be performed with
the general criterion introduced in Section 3.2.

When θ is full-information underidentified, there exists a multiplicity of values of pa-
rameter θ, that is a multiplicity of sdf, such that the no-arbitrage conditions are satisfied for
both the riskfree asset and the underlying risky asset [see equation (19)]. In the incomplete
market framework, the choice of a parametric specification for the sdf may be not sufficient
to get a unique pricing kernel from the observation of liquid asset prices. In other words,
the specification allows for some residual incompleteness and, from a financial point of view,
the degree of full-information underidentification is equal to the dimension of this residual
incompleteness.

4.4 Comparison of the limited- and mixed-information approaches

Both approaches use jointly historical information [by means of the kernel estimate of the
conditional pdf, and possibly by uniform moment restrictions (19)], and cross-sectional
information by moment restrictions (18). Moreover, they are consistent when T tends to
infinity with K fixed, whenever θ is identifiable from the whole set of uniform and local
moment restrictions.

When θ is identifiable from the conditional restrictions at date t0, it is possible to use
either the general approach, or the limited-information approach. The limited-information
method is likely to be preferred in practice in a first step. First, the asymptotic variance
is larger than the variance derived by the general approach, leading to larger prediction
intervals for derivative prices (which is a drawback from a statistical point of view), but
more secure risk management (which may be an advantage from the financial point of view).
Second, it is similar to the standard practice of reporting daily the implied volatilities in
the Black-Scholes framework. More precisely, let us assume that the pricing model is mis-
specified and that the stochastic discount factor is m[yt+1, θ(yt)], in which θ depends on the
lagged value. The limited information method provides the estimate of θ(yt0), whereas the
general method provides a kind of average of θ(yt) on all values observed in the past, with-
out the interpretation of an integrated risk premium. By applying the limiting information
approach at several consecutive dates t0, t0 + 1, t0 + 2, ...., we can detect an instability
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of the risk premium. Thus, we get a misspecification test for the hypothesis of constant θ
parameter. For instance, the sdf specification might be deduced from a preference based
interpretation with constant preference parameters. The above practice can allow to de-
tect preference parameters depending on state variables, such as wealth level for instance
[Ait-Sahalia and Lo (2000), Jackwerth (2000)].

Note, however, that the methodology differs from the usual implied Black-Scholes
volatility in one respect. In our framework the varying parameter depends on yt, whereas
this dependence is not explicit in the Black-Scholes practice. As a consequence, if func-
tion y → θ(y) is estimated, the pair including the historical pdf f(yt | yt−1) and the sdf
m[yt+1, θ (yt)] satisfy the arbitrage-free restrictions. To summarize, the approach above can
also be used to estimate a new pricing kernel, if the assumption of constant θ parameter is
rejected.

5 Stochastic volatility model

In this section, we illustrate the extended method of moments (XMM), or its information
based equivalent, for efficient derivative pricing. In Section 5.1, we describe the data gen-
erating process to get the prices of the underlying asset and derivatives. The DGP is a
discrete time version of the stochastic volatility model of Heston (1993), Ball, Roma (1994),
and Das, Sundaram (1999), with a risk premium introduced in the return equation12. In
Section 5.2, we describe the semi-parametric model, which is used for derivative pricing, and
discuss the identification of the risk premia parameter. The kernel nonparametric efficiency
bounds for limited- and mixed-information restrictions are computed in Section 5.3 for the
prices of European calls. We discuss how these bounds depend on the strike and on the set
of observed derivative prices. Finally, the finite sample properties of the estimated option
prices, and of the estimated structural parameters, are analyzed by Monte-Carlo in Section
5.4; see Appendix 3 for the verification and discussion of primitive regularity conditions for
XMM estimation in this stochastic volatility framework.

5.1 The design

Let us consider a market with a riskfree asset, with zero riskfree rate, and a risky asset with
geometric return rt = log (pt/pt−1), such that:

rt = γσ2t + σtεt, (21)

where (εt) is a standard Gaussian white noise, σ2t denotes the volatility, and γ measures
the magnitude of the risk premium in the expected return. The intercept is set to zero
because of no-arbitrage restrictions. Indeed, for zero volatility σt = 0, the return becomes
deterministic, and has to coincide with the zero riskfree rate.

The volatility
¡
σ2t
¢
is stochastic, with a dynamic independent of the shocks (εt) on

returns. It follows an autoregressive gamma process (ARG), which is the time discretized
Cox-Ingersoll-Ross process [see Gouriéroux, Jasiak (2005)]. The transition distribution of

12See Gouriéroux, Sufana (2004) for the multivariate extension based on Wishart autoregressive process.
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the stochastic volatility is characterized by the conditional Laplace transform (conditional
moment generating function):

Ψt(u) = E
£
exp

¡−uσ2t+1¢ | σ2t ¤ = exp £−a(u)σ2t − b(u)
¤
, (22)

where: a(u) = ρ u
1+cu , b(u) = δ log(1 + cu). The positive parameter ρ is the first-order

autocorrelation of the variance process
¡
σ2t
¢
, parameter δ ≥ 0 describes its (conditional)

over-/under-dispersion, and c > 0 is a scale parameter. In this model, the factors are the
return and the volatility:

Yt =
¡
rt, σ

2
t

¢0
. (23)

Model (21)-(23) is completed by a parametric specification of the stochastic discount factor
for period (t, t+ 1) . The sdf is specified as:

Mt,t+1 = exp
¡−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

¢
, (24)

where ν0, ν1, ν2, ν3 are parameters. The exponential affine specification (24) is compatible
with no-arbitrage restrictions and provides simple pricing formulas.

Let us first consider the restrictions implied by no-arbitrage opportunity. They are
derived by writing the pricing formula for both the riskfree asset and the underlying asset.
We get: ½

Et (Mt,t+1) = 1,
Et (Mt,t+1 exp rt+1) = 1,

⇐⇒
½

Et exp
£−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

¤
= 1,

Et exp
£−ν0 − ν1σ

2
t+1 − ν2σ

2
t − (ν3 − 1) rt+1

¤
= 1,

⇐⇒
 Et exp

h
−ν0 −

³
ν1 + ν3γ − ν23

2

´
σ2t+1 − ν2σ

2
t

i
= 1,

Et exp
h
−ν0 −

³
ν1 + (ν3 − 1) γ − (ν3−1)2

2

´
σ2t+1 − ν2σ

2
t

i
= 1,

(by integrating rt+1 conditional on σ2t+1)

⇐⇒
 ν0 + a

³
ν1 + ν3γ − ν23

2

´
σ2t + ν2σ

2
t + b

³
ν1 + ν3γ − ν23

2

´
= 0,

ν0 + a
h
ν1 + (ν3 − 1)γ − (ν3−1)2

2

i
σ2t + ν2σ

2
t + b

h
ν1 + (ν3 − 1)γ − (ν3−1)2

2

i
= 0.

(25)

Since the above conditions have to be satisfied for any admissible value of σ2t , we get the
following restrictions on the parameters:

ν0 + b
³
ν1 + ν3γ − ν23

2

´
= 0,

ν0 + b
h
ν1 + (ν3 − 1) γ − (ν3−1)2

2

i
= 0,

ν2 + a
³
ν1 + ν3γ − ν23

2

´
= 0,

ν2 + a
h
ν1 + (ν3 − 1)γ − (ν3−1)2

2

i
= 0.

Since functions a and b are one-to-one, the difference between the first two equations (resp.
the last two equations) imply:

ν1 + (ν3 − 1)γ − (ν3 − 1)
2

2
= ν1 + ν3γ − ν23

2
,
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that is,

ν3 = γ +
1

2
.

From the same pairs of equations, we deduce:

ν0 = −b
µ
ν1 + ν3γ − ν23

2

¶
= −δ log £1 + c

¡
ν1 + γ2/2− 1/8¢¤ ,

ν2 = −a
µ
ν1 + ν3γ − ν23

2

¶
= −ρ ν1 + γ2/2− 1/8

1 + c (ν1 + γ2/2− 1/8) . (26)

Therefore, we get the following proposition.

Proposition 4 : The sdf is compatible with the no-arbitrage conditions if, and only if,

ν0 = −δ log £1 + c
¡
ν1 + γ2/2− 1/8¢¤ ,

ν2 = −ρ ν1 + γ2/2− 1/8
1 + c (ν1 + γ2/2− 1/8) ,

ν3 = γ + 1/2.

In particular, parameter ν1 is unrestricted. In this incomplete market framework in
which the liquid assets are the riskfree asset and the underlying risky asset, the risk premium
for current stochastic volatility can be fixed arbitrarily, that is the dimension of residual
market incompleteness is equal to 1. This residual incompleteness is not a consequence of the
specific ARG dynamic assumed for stochastic volatility, but is the general case when state
variables Yt follow an affine process. Indeed, in this case, the specification of a parametric
exponential affine sdf does not select a unique pricing kernel.

The (standardized) price at t of a European call with moneyness strike s and residual
maturity h is given by:

ct(s, h) =
1

pt
Et

£
Mt,t+1...Mt+h−1,t+h (pt+h − spt)

+¤
= Et

¡
Mt,t+1...Mt+h−1,t+h [exp (rt+1 + ...+ rt+h)− s]+

¢
.

As usual in the stochastic volatility framework, the option price can be written in terms of
Black-Scholes price and integrated volatility σ2t+1(h) =

¡
σ2t+1 + ...+ σ2t+h

¢
/h. We get:

ct(s, h) = EQ
t

£
BS(h, s, σ2t+1(h))

¤
,

where EQ [.] denotes expectation w.r.t. the risk-neutral probability and BS(h, s, σ2) denotes
the Black-Scholes price of a European call with moneyness strike s, time-to-maturity h, and
constant volatility σ2. The derivative price is easily computed by Monte-Carlo, since, under
the risk-neutral probability, the returns still follow stochastic volatility model (21)-(22) with
risk premium parameter γ∗ = −1/2 and ARG volatility parameters (see Appendix B):

ρ∗ =
ρ

[1 + c (ν1 + γ2/2− 1/8)]2 , δ∗ = δ, c∗ =
c

1 + c (ν1 + γ2/2− 1/8) .
(27)
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To illustrate the properties of the stochastic ARG volatility model discussed above,
we display in Figures 1 and 2 below a joint simulated path for the return and volatility,
and the pattern of the implied Black-Scholes volatility as function of the log-moneyness
strike, respectively. The simulations are performed for the following set of values for the
parameters13:

γ = 0.5 ρ = 0.96 δ = 3.60 c = 7.34 · 10−7
ν0 = 3.82 · 10−2 ν1 = −1.44 · 104 ν2 = 1.40 · 104 ν3 = 1

The opposite sign of coefficients ν1 and ν2 corresponds to a volatility feedback effect on
the sdf [see Bekaert, Wu (2000)]. This effect distinguishes the consequence of a shock on
expected volatility, measured by ν1ρ + ν2 > 0, and the shock on the volatility surprise
ν1 < 0.

[Insert Figure 1: Simulated returns and volatility]

[Insert Figure 2: Implied Black-Scholes volatility]

As expected, the return series features volatility clustering, with periods of high return
volatility corresponding to large values of the stochastic volatility. Moreover, the Black-
Scholes implied volatility14 admits a smile. Since in this model stochastic volatility is
independent of shocks on returns, the smile is symmetric as a function of the log-moneyness
strike, and thus asymmetric as a function of the moneyness strike.

5.2 The observations and the model

In the next sections, we assume that the observations of the state variables are rt0−T+1, ..., rt0,
σ2t0−T+1, ..., σ

2
t0, and some derivative prices at date t0, corresponding to moneyness strikes

s1 = 1, s2 = 0.98, s3 = 1.02. The observed prices have been generated by the design of
Section 5.1 with the same set of parameter values. We are now interested in an efficient
estimation of some option prices.

i) The model

For simplicity, we assume that the specified sdf is compatible with the design above:

Mt,t+1 (θ) = exp
¡−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

¢
,

where θ = (ν0, ν1, ν2, ν3)
0
is now an unknown parameter. Moreover, the conditional distri-

bution of the observed factors Yt =
¡
rt, σ

2
t

¢
given Yt−1 is let unspecified. Thus, the model

is semi-nonparametric.

ii) Full-information identifiability
13Historical parameters ρ, δ and c are such that the ARG volatility process matches the stationary mean,

variance and first-order correlation of the discretely sampled CIR process estimated by Andersen, Benzoni
and Lund (2002). Risk premium parameter ν1 is such that the stationary mean of volatility process under
the risk-neutral distribution matches the value corresponding to CIR estimates in Bakshi, Cao and Chen
(1997). Both estimates refer to S&P 500 index over recent consistent sample periods.
14We select a time-to-maturity h = 5 for the European call and the relevant information at date t is the

volatility σ2t , whose value is set equal to the stationary mean E
¡
σ2t
¢
.
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Let us now discuss the identifiability of parameter θ from the uniform conditional restric-
tions: ½

Et [Mt,t+1 (θ)] = 1,
Et [Mt,t+1 (θ) exp rt+1] = 1,

assumed valid for any conditioning value yt. From Proposition 4, only three independent
linear combinations of parameter θ can be identified, including parameter ν3. Therefore, in
this model the structural parameter θ is full-information underidentified.

At this step, two approaches can be followed:

i. We can consider the stochastic discount factor above without introducing additional
restrictions on parameters ν0, ν1, ν2. Then, the degree of underidentification from
asset dynamics is equal to 1. The null space N0 defined in equation (13) has dimension
1, and is spanned by (see Appendix 3):

R =


−δ c

1+cν1
1

−ρ 1
(1+cν1)

2

0

 =


−2.67 · 10−6

1
−0.981
0

 . (28)

Component R
0
θ and parameters ν0, ν1, ν2 are full-information unidentifiable. Typi-

cally, parameters ν0, ν1, ν2 can only be identified by the cross-sectional restrictions
from observed derivative prices.

ii. Alternatively, we can introduce an identification restriction on the risk premium, for
instance ν1 = 0, that is, no risk premium on volatility surprise. Under this restric-
tion ν0, ν1, ν2 become full-information identifiable from asset price dynamics, and the
estimation problem is greatly simplified. This second approach is often followed in
the financial literature, at risk of a misspecification in the identification restriction.
Moreover, such an approach can have misleading consequences when considering the
confidence interval for derivative prices, which will likely be too narrow.

The first approach is considered in this paper.

iii) Limited-information identifiability and time-to-maturity

An additional identification problem may arise in the limited-information framework, since
the information depends on the maturity of the observed derivative prices. For instance, if
all observed derivative prices correspond to a short time-to-maturity h = 1, only parameters
ν0,t0 = ν0 + ν2σ

2
t0 and ν1 can be identified from asset dynamics and observed derivative

prices. This allows to identify the prices of derivatives with the same time-to-maturity 1, but
not to identify the prices of derivatives with larger time-to-maturity. However, parameters
ν0 and ν2 can be identified separately by means of observed prices of derivatives with
time-to-maturity larger than 1. To summarize, when the structural parameter is limited-
information underidentified, it can be necessary to use derivative prices with different times-
to-maturity to estimate the derivative prices at all maturities. Note, however, that derivative
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prices with large time-to-maturity are not very informative. Indeed, let us consider the
geometric stochastic yield associated with the sdf, that is,

−1
h
log (Mt,t+1...Mt+h+1,t+h) = ν0 + ν1

1

h

hX
k=1

σ2t+k + ν2
1

h

h−1X
k=0

σ2t+k + ν3
1

h

hX
k=1

rt+k.

If the joint process
¡
σ2t , rt

¢
is stationary, the geometric stochastic yield tends to the de-

terministic long run level ν0 + (ν1 + ν2)Eσ2t + ν3Ert for h tending to infinity. Thus, this
combination of the structural parameters is limited-information identifiable from long run
derivative prices, but the structural parameters themselves are not.

iv) Link with the macro-finance literature on Consumption CAPM

Stock, Wright (2000) [see also Yogo (2004)] considered an application to asset pricing, in
which the sdf is deduced from the optimisation of an expected CRRA utility function. The
sdf is:

Mt,t+1 (θ) = δ (Ct+1/Ct)
γ ,

where Ct denotes the consumption15. In our framework both δ and γ parameters would be
full-information identifiable from the observed asset prices of the basic assets. Thus, the
discussion differs from the discussion in Stock, Wright (2000), in which the risk aversion
parameter is assumed a priori weakly identified. In our framework, the weak identification
can only be the consequence of a lack of observations on derivative prices, and concern some
additional risk premium parameters.

5.3 Kernel nonparametric efficiency bounds

Two cases are distinguished according to the type of information.

i) Limited-information

The cross-sectional restrictions are:

E [Mt0,t0+1 (θ)− 1|yt0 ] = 0,

E [Mt0,t0+1 (θ) exp rt0+1 − 1|yt0 ] = 0,

E
£
Mt0,t0+1 (θ) (exp rt0+1 − s)+ − ct0(s)|yt0

¤
= 0, s = 0.98, 1, 1.02. (29)

The conditional moments of interest are the prices of European calls at horizon 1:

E (a(s)|yt0) = E
£
Mt0,t0+1 (θ) (exp rt0+1 − s)+ |yt0

¤
, ∀s.

The identifiable parameters are ν0,t0 = ν0 + ν2σ
2
t0, ν1, ν3, but are sufficient to identify

the conditional moments of interest, which have the same time-to-maturity. We provide in
Figure 3 the kernel nonparametric efficiency bound B(yt0 , s) for E (a(s)|yt0) as a function
of s, computed according to Corollary 2, with the current factor yt0 corresponding to a

15 In this framework, the price of the consumption good is qt = 1, and the returns yt have to be interpreted
as real returns.
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variance σ2t0 equal to the stationary expectation E
¡
σ2t
¢
. This efficiency bound gives the

statistical accuracy for the estimation of a call price based only on the informational content
of no-arbitrage restrictions at date t0.

[Insert Figure 3: Kernel nonparametric efficiency bound, limited-information]

The solid line corresponds to the call price E (a(s)|yt0), the dashed lines to confidence inter-
valsE (a(s)|yt0)±1.96 w√

Th2T
B(yt0 , s)1/2, computed with the standardization

q
w2/Th2T fX(x0) =

2. We adopt this standardization to illustrate the pattern of the kernel nonparametric ef-
ficiency bound as a function of the moneyness strike. For the relevant sample size T and
bandwidth hT , this pattern is the same, but the widths of the bands are much narrower (see
the next section). For expository purpose, we consider symmetric confidence bands, which
do not account for the positivity of derivative prices. These bands have to be truncated
at zero to satisfy the positivity restriction, which gives asymmetric bands. However, in
practice, when the bands are narrow, the truncation effect is negligible and arises only for
large strikes. The width of the confidence interval for derivative price E (a(s)|yt0) depends
on moneyness strike s. The interval is generally wider for almost at-the-money (ATM)
options, whereas it is narrower when the derivative is deep in-the-money (ITM), or deep
out-of-the-money (OTM). Indeed, for moneyness strikes approaching zero or infinity, the
kernel nonparametric efficiency bound goes to zero, since the derivative price has to be equal
to the underlying asset price or equal to zero, respectively, by no-arbitrage. Finally, the
width of the interval is zero, when s corresponds to the moneyness strikes of the observed
calls.

To compare the results for derivatives with longer time-to-maturity, let us consider the
kernel nonparametric efficiency bound for a European call with time-to-maturity h = 40
days. At date t0, the prices of three derivatives with the same time-to-maturity h = 40
and strikes s = 0.9, 1, 1.1, respectively, are assumed to be observed. In this case, the whole
parameter θ is limited-information identifiable. The efficiency bound is displayed in Figure
4 below16.

[Insert Figure 4: Kernel nonparam. efficiency bound, limited information, time-to-maturity 40]

The confidence interval admits similar pattern, but is generally larger, compared to time-
to-maturity h = 1.

The confidence intervals are pointwise confidence intervals. The choice of derivative
prices corresponding to different strikes have in practice to be compatible with both a
confidence band and also with the no-arbitrage restrictions. This implies the selection of
a decreasing convex function compatible with the band. Finally, lower and upper bounds
for European call prices can be derived from some observed call prices with the same time-
to-maturity. They correspond to the smallest and largest elements in the set of functions,
which are positive, decreasing, convex, smaller than 1 and compatible with these prices.
Due to the lack of liquidity, the number of observed derivative prices with the same time-
to-maturity is generally small, and the difference between the upper and lower bounds

16The efficiency bound is computed according to Corollary 2 using similar moment restrictions as in (29).
In particular, moment restrictions at horizon h = 40 are used for bond, underlying asset, and derivatives.
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very large (for instance, it can be equal to 100% if this number is less or equal to 1). As
for positivity discussed earlier, the unconstrained confidence bands are rather narrow in
practice, and these lower and upper bounds constraints can be neglected.

ii) Mixed limited- and full-information

Let us now consider the general approach with both uniform and local restrictions (see
Proposition 2). The conditional moments of interest are still:

E (a(s)|yt0) = E
£
Mt0,t0+1 (θ) (exp rt0+1 − s)+ |yt0

¤
, ∀s.

We check in Appendix 3 that Assumption A.2∗ is satisfied in our stochastic volatility frame-
work. Matrix R is given in equation (28). The kernel nonparametric efficiency bound for a
European call with time-to-maturity h = 1 is displayed in Figure 5.

[Insert Figure 5: Kernel nonparametric efficiency bound, mixed-information]

The confidence interval is very close to that obtained in the limited-information framework
(see Figure 3). In this example, the additional information, which is contained in the
no-arbitrage restrictions for bond and underlying asset at dates different from t0, is not
relevant for estimation of derivative prices at t0. Similarly, in Figure 6 we display the mixed-
information kernel nonparametric efficiency bound for a call option with time-to-maturity
h = 40, when the price of three derivatives with the same time-to-maturity and strikes
s = 0.9, 1, 1.1, respectively, are observed.

[Insert Figure 6: Kernel nonparam. efficiency bound, mixed-information, time-to-maturity 40]

Also in this case, the confidence band with mixed-information is very close to the one with
limited-information (see Figure 4).

The situation is different in Figure 7, where we display limited- and mixed-information
kernel nonparametric efficiency bounds for a European call option with time-to-maturity
h = 40, when only two derivative prices are observed, namely for moneyness strike s = 1
and 1.1, and time-to-maturity h = 40.

[Insert Figure 7: Kernel nonparametric efficiency bound, mixed- and limited-information]

The mixed-information confidence band is narrower than the limited information one for
ITM calls. Compared to Figures 4 and 6, the fact that the derivative price for moneyness
strike 0.9 is not observed implies a widening of the confidence band in this moneyness region.
This effect is less pronounced for mixed-information, due to the contribution of uniform no-
arbitrage restrictions. In general, we expect that the uniform restrictions on bond and
underlying asset are relevant to reduce the confidence bands in moneyness regions where
few derivative prices are observed.

Finally, in Figure 8 we display the limited- and mixed-information kernel nonparametric
efficiency bound for a European call with time-to-maturity h = 40, when the prices of three
derivatives with time-to-maturity 20 and strikes s = 0.9, 1, 1.1, respectively, are observed.

[Insert Figure 8: Kernel nonparametric efficiency bound, time-to-maturity 40 and 20]
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The maturity of the observed derivatives does not correspond with the maturity of interest.
This explains why the kernel nonparametric efficiency bound is much larger compared with
Figures 4 and 6, and, in particular, it is different from zero for all moneyness strikes17.
Thus, observed derivative prices at the maturity of interest have a large informational
content for the estimation of other derivative prices. Finally, note that in Figure 8 limited-
and mixed-information confidence bands differ.

5.4 Monte-Carlo

In this section, we report the results of a Monte-Carlo experiment to investigate the finite
sample properties of the information-based estimator. Data are generated according to
the ARG stochastic volatility model described in Section 5.1. We consider the general
framework with both local and uniform restrictions.

At date t0, the prices of three derivatives ct0(h, sk) with time-to-maturity h = 2 and
moneyness strikes sk = 0.98, 1, 1.02 are fixed. They are computed by simulation as explained
in Section 5.1 with available information σ2t0 = E

¡
σ2t
¢
. Then, we simulate S = 2500 paths of

return-volatility process
¡
rt, σ

2
t

¢
, t = t0−T +1, ..., t0, for sample size T = 250, such that the

observed values at date t0 are rt0 = 0, σ
2
t0 = E

¡
σ2t
¢
. Such paths are obtained by simulating

the process backward. More precisely, the time-discretized version of the Cox-Ingersoll-Ross
process is time reversible. Therefore,

¡
rt, σ

2
t

¢
follows the same stochastic volatility process

in direct and in reversed time. The information based estimator of structural parameter θ0
and of European call prices E [a(h, s)|yt0] at date t0 for time-to-maturity h = 2, and different
moneyness strikes s, are computed for each simulated sample according to Section 3.2. The
moment restrictions involve both the uniform no-arbitrage conditions from riskfree and
underlying asset returns, as well as the local restrictions from observed derivative prices
at date t0. The kernel estimator of the conditional pdf is based on a Gaussian product
kernel with different bandwidths for return and volatility, which are equal to hr,T = 0.0031
and hσ,T = 0.0014, respectively18. Finally, the selected sample size T = 250 corresponds to
about 1 year of trading days, which is the sample length typically suggested by the regulator
for risk management purposes.

i) Derivative prices

We display in Table 1 below the mean, median, 95% confidence interval, as well as the 5%
and 95% quantiles of the estimated European call prices for time-to-maturity h = 2 and
different values of the moneyness strike between s = 0.96 and s = 1.04.

[Table 1: Derivative prices, time-to-maturity 2, sample size 250]

For comparison, we also report for each moneyness strike the corresponding true derivative
price, and the 95% asymptotic confidence interval based on the kernel nonparametric effi-
ciency bound, computed according to Section 5.3. As seen previously in Figures 5 and 6,

17 In this case, the bounds based on smallest and largest decreasing convex functions is degenerate and
equal to 100%.
18The bandwidths are selected in order to get an appropriate smoothing of the joint pdf of (rt, σt) at

sample size T = 250.
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the width of the bound varies with strike s. In particular, the information content of the
moment restrictions for estimating derivative prices can be very different across strikes. For
instance, the width of the confidence interval is less than 0.5% of the true price for strike
s = 0.97, whereas it amounts to about 4% for strike s = 0.99 and more than 300% for strike
s = 1.03. Finally, the truncation effect due to positivity of call prices arises only for deep
OTM strikes s = 1.03 and s = 1.04, whereas it is negligible for all other strikes.

Let us first consider the finite sample bias of estimated derivative prices. This bias is
positive for call options close to the money (s = 0.99 and s = 1.01), whereas prices of
deep ITM (s = 0.97) and deep OTM (s = 1.03) calls are generally underestimated. The
corresponding relative pricing errors are less than 0.1% for ITM strikes, whereas they are
about 1% for strike s = 1.01, and about 20% for the deep OTM strike s = 1.03.

Let us now consider the finite sample accuracy of the estimated derivative prices. The
95% confidence intervals and the 95% - 5% interquantile ranges of estimated call prices
feature patterns across strikes similar to the patterns of the kernel nonparametric efficiency
bound, but they are somewhat wider (for strikes close to the money). For instance, the 95% -
5% interquantile range is about 5% of the median (or mean) call price for strike s = 0.99, and
about 400% of the mean for the deep OTM strike s = 1.03 19. In particular, these bounds
are much larger than those typically reported in the literature based on fully parametric
specifications. A narrow parametric bound can be highly misleading in the presence of model
misspecifications, that is, when the true data generating process of underlying asset returns
does not belong to the selected parametric family. In practice, the kernel nonparametric
bounds derived from the finite sample distribution of the information based estimator are
likely to be preferred, since they provide more secure bounds for risk management purposes.

Finally, we display in Figure 9 the histograms of estimated derivative prices for different
strikes.

[Figure 9: Histograms of estimated derivative prices]

These finite sample distributions feature some non-Gaussian patterns. The non-Gaussian
patterns are more pronounced for deep ITM and OTM strikes, for which right skewed and
fat tailed distributions are observed, whereas for strikes not far away from the money the
distributions are closer to normality20.

ii) Structural parameter

Although the focus of this paper is on estimation of conditional moments corresponding to
derivative prices, it is interesting to consider also the results for the estimator of structural
parameter θ. In Table 2, we display the mean, median, standard deviation and 95% - 5%
interquantile range of estimator bθ.

[Table 2: Structural parameter, time-to-maturity 2, sample size 250]

The estimators of the different components are rather biased for sample size T = 250. For
parameters ν0, ν1 and ν2, the bias is such that average estimates are larger, in absolute

19For strikes s = 0.97 and s = 1.03, the interquantile range is highly skewed, with a median very close to
the lower bound (see also Figure 9 below).
20Note however the different scales of the horizontal axis in the four panels.
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value, than true parameters. The converse is true for median estimates. The estimators
feature large standard deviation and rather wide interquantile ranges. These results are
confirmed by the histograms of the estimates, which are displayed in Figure 10.

[Figure 10: Histograms of estimated structural parameters]

The finite sample distributions of parameters ν0, ν1, ν2 are highly non-normal, in particular
skewed to the right for ν0 and ν2 (resp. to the left for ν1), with fat tails. The distribution of
parameter ν3, instead, is closer to a Gaussian distribution (even if it is not very accurate).
This difference in patterns of the finite sample distributions reflects the different rates of
convergence of the estimators, that are the parametric rate T 1/2 for ν3, and the nonpara-
metric rate (Thr,Thσ,T )

1/2 for ν0, ν1, ν2, respectively. These different rates of convergence
are a consequence of market incompleteness, which cause parameters ν0, ν1, ν2 related to
the risk premium for stochastic volatility to be full-information non-identifiable.

6 Concluding remarks

The aim of this paper is to explain why the standard GMM approach is not appropriate for
derivative pricing in an incomplete market framework, even if the stochastic discount factor
is specified parametrically. The difficulty in applying the GMM in such a framework is due
to two fundamental market characteristics, that are, lack of liquidity and incompleteness.
On the one hand, the lack of liquidity of some assets, such as a derivative with given
moneyness strike and time-to-maturity, implies that the corresponding no-arbitrage moment
restrictions are local, that is, valid for a given value of the conditioning variable only, instead
of uniform, as for liquid assets. On the other hand, the market incompleteness implies that
risk premium parameters are not necessarily identifiable from historical data on the prices
of liquid underlying assets, and that some of them can only be deduced from less frequent
cross-sectional observations on derivative prices.

These difficulties of the standard GMM are solved by the Extended Method of Mo-
ments (XMM), which explains how to appropriately account for both uniform and local
moment restrictions from liquid and less liquid assets, when the risk premia parameters are
possibly full-information unidentifiable. The XMM approach allows for efficient estimation
of derivative prices, and for consistent estimation of risk premia, even if the number of
observed derivative prices is small.

Lack of liquidity and market incompleteness show up in some non-standard properties
of the XMM approach. The inclusion of both local and uniform moment restrictions im-
plies different rates of convergence for the different risk premia parameters. In particular,
these rates of convergence are nonparametric, when identification is ensured only by the
infrequent cross-sectional observations on derivative prices. Moreover, the confidence bands
for estimated derivative prices are much wider than usually reported in both the theoretical
and applied literature.
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Table 1

Maturity: h=2, Sample size: T=250
Derivative price β = E (a(s)|yt0) (×100)

Strike s = 0.96 Strike s = 0.97
True price Nonparametric Bound True price Nonparametric Bound
4.000 3.999− 4.002 3.002 2.997− 3.007
Mean 95% confidence interval Mean 95% confidence interval
4.000 3.999− 4.001 3.001 2.997− 3.006
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
4.000 4.000 4.001 3.000 2.999 3.006

Strike s = 0.99 Strike s = 1.01
True price Nonparametric Bound True price Nonparametric Bound
1.125 1.103− 1.146 0.128 0.107− 0.149
Mean 95% confidence interval Mean 95% confidence interval
1.126 1.092− 1.159 0.129 0.097− 0.162
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
1.125 1.099 1.153 0.129 0.104 0.155

Strike s = 1.03 Strike s = 1.04
True price Nonparametric Bound True price Nonparametric Bound
0.003 −0.003 − 0.008 0.000 −0.002 − 0.002

Mean 95% confidence interval Mean 95% confidence interval
0.002 −0.003 − 0.007 0.000 −0.001 − 0.001

Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
0.001 0.000 0.008 0.000 0.000 0.001

Table 2

Maturity: h=2, Sample size: T=250
Parameter θ

True value Mean Median Stand. dev. 5% / 95% quant.
ν0 0.038 0.072 0.031 0.117 −0.014 / 0.293

ν1
¡×10−4¢ −1.440 −1.829 −0.930 2.611 −6.546 / 0.353

ν2
¡×10−4¢ 1.397 1.767 0.872 2.522 −0.355 / 6.331

ν3
¡×10−2¢ 0.010 0.008 0.006 0.099 −0.154 / 0.173
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Figure 1: Simulated series of return rt (upper Panel) and volatility series σt (lower Panel)
for the ARG stochastic volatility process.
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Figure 2: Implied Black-Scholes volatility (annualized %) as a function of the log-moneyness
strike log s for a European call with time-to-maturity h = 5.
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Figure 3: Limited information kernel nonparametric efficiency bound for a European call
with time-to-maturity 1. Derivative prices for moneyness strikes 0.98, 1, 1.02 and time-to-
maturity 1 are observed. The solid line corresponds to the price E (a(s)|yt0), the dashed
lines to 95% symmetric pointwise confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0, s)1/2.
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Figure 4: Limited information kernel nonparametric efficiency bound for a European call
with time-to-maturity 40. Derivative prices for moneyness strikes 0.9, 1, 1.1 and time-to-
maturity 40 are observed. The solid line corresponds to the price E (a(s)|yt0), the dashed
lines to pointwise 95% symmetric confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0, s)1/2.
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Figure 5: Mixed information kernel nonparametric efficiency bound for a European call
with time-to-maturity 1. Derivative prices for moneyness strikes 0.98, 1, 1.02 and time-to-
maturity 1 are observed. The solid line corresponds to the price E (a(s)|yt0), the dashed
lines to pointwise 95% symmetric confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0, s)1/2.
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Figure 6: Mixed information kernel nonparametric efficiency bound for a European call
with time-to-maturity 40. Derivative prices for moneyness strikes 0.9, 1, 1.1 and time-to-
maturity 40 are observed. The solid line corresponds to the price E (a(s)|yt0), the dashed
lines to pointwise 95% symmetric confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0, s)1/2.
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Figure 7: Limited information (dashed line) and mixed information (dash-dotted line) kernel
nonparametric efficiency bound for a European call with time-to-maturity 40. Derivative
prices for moneyness strikes 1, 1.1 and time-to-maturity 40 are observed. The solid line
corresponds to the price E (a(s)|yt0), the dashed and dash-dotted lines to pointwise 95%
symmetric confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0 , s)1/2.
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Figure 8: Limited information (dashed line) and mixed information (dash-dotted line) kernel
nonparametric efficiency bound for a European call with time-to-maturity 40. Derivative
prices for moneyness strikes 0.9, 1, 1.1 and time-to-maturity 20 are observed. The solid line
corresponds to the price E (a(s)|yt0), the dashed and dash-dotted lines to pointwise 95%
confidence intervals E (a(s)|yt0)± 1.96 w√

Th2T
B(yt0, s)1/2.
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Figure 9: Information based XMM estimator: histograms of estimated derivative prices.
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APPENDIX 1

Asymptotic properties of XMM estimator

In this Appendix, we derive the asymptotic properties of the (kernel) moment estimator bθ∗T for
given weighting matrix Ω and instruments Z. Let Θ ⊂ Rp, B ⊂ RL be compact sets. The kernel
moment estimator is defined by:

bθ∗T = argmin
θ∗=(θ0 ,β0)

0∈Θ×B
QT (θ

∗) = bgT (θ∗)0 Ω bgT (θ∗) ,
where

bgT (θ∗) = µ√T bE [g1(Y,X; θ)]0 ,qThdT
eE [g2(Y ; θ)|x0]0 ,qThdT

eE [a (Y ; θ)− β|x0]
0
¶0

,

and g1(Y,X; θ) = Z · g (y; θ), g2 =
³
g
0
,eg0´0 . Due to the different rates of convergence of the em-

pirical moments in bgT (θ∗), it is not possible to use the standard approach for GMM framework to
derive the asymptotic properties of bθ∗T . For instance, to prove consistency, we cannot rely on a.s.
uniform convergence of criterion QT to some limit deterministic criterion. Indeed, after dividing QT

by T , the part of the criterion involving conditional moment restrictions is asymptotically negligible.
Therefore, the limit criterion would only take into account marginal moment restrictions, and could
not allow for identifying parameter θ in the full-information underidentified case. To prove consis-
tency, we follow an alternative approach relying on empirical process methods [see Stock, Wright
(2000) for a similar approach].
Let us introduce the vector of standardized theoretical moments:

mT (θ
∗) =

µ√
TE0 [g1(Yt,Xt; θ)]

0
,
q
ThdTE0 [g2(Yt; θ)|x0]

0
,
q
ThdTE0 [a (Yt; θ)− β|x0]

0
¶0

,

and define the associated empirical process:

ΨT (θ) = bgT (θ∗)−mT (θ
∗) ≡ T−1/2

TX
t=1

gt,T (θ), θ ∈ Θ.

Indeed, due to the linearity of bgT w.r.t. β, the empirical process ΨT depends on parameter θ, but
not on parameter β.1

In this Appendix we will use the following notation. L2(FY ) denotes the Hilbert space of
real-valued functions, which are square integrable w.r.t. the distribution FY of r.v. Y , and
k.kL2(FY ) is the corresponding L2-norm. Linear space Lp (X ), p > 0, of p-integrable functions
w.r.t. Lebesgue measure λ on set X is defined similarly. For matrix A, kAk denotes matrix norm
kAk =

h
Tr
³
AA

0
´i1/2

. In particular, when A is a vector, kAk is the standard Euclidean norm
kAk =

³
A
0
A
´1/2

. For a multi-index α = (α1, ..., αd) ∈ Nd and vector y ∈ Rd, we set |α| :=
Pd

i=1 αi,

yα := yα11 · ... · yαdd , and ∂|α|f/∂yα := ∂|α|f/∂yα11 ...∂yαdd . Symbol =⇒ denotes weak convergence

1Compared to the standard definition of empirical process, triangular array gtT (θ) is not zero-mean, because of the
bias term in the nonparametric component. However, it is shown in the proof of Lemma A.1 (see Appendix B), that
this bias is asymptotically negligible under Assumption A.16 below, and process ΨT (θ) is asymptotically equivalent
to a zero-mean process.
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in the space of bounded real functions on Θ, equipped with the uniform metric [see e.g. Andrews
(1994)]. Symbol kfk∞ denotes the sup-norm kfk∞ = supy∈Y kf(y)k of a function f defined on
space Y. We denote by Cm (Y) the space of functions f on Y, which are continuously differentiable
up to order m ∈ N, and kDmfk := P|α|=m

°°∂|α|f/∂yα°°∞ . Finally, we denote by g∗2 the function

g∗2 =
³
g
0
2, a

0
´0
=
³
g
0
,eg0 , a0´0 [see equations (8) and (9) in the text].

A.1.1 Regularity assumptions

Let us introduce the following set of regularity conditions in addition to Assumptions A.1 and A.2
in the text:

Assumption A.3: The parameter sets Θ ⊂ Rp and B ⊂ RL are compact and the true parameter
θ∗0 =

³
θ
0
0, β

0
0

´0
is in the interior of Θ×B.

Assumption A.4: The process
½³

X
0
t , Y

0
t

´0
: t ∈ N

¾
on X ×Y ⊂ Rd×Rd is strictly stationary and

geometric strong mixing.

Assumption A.5: The function g∗2 (.; θ) is in L2(FY ), for any θ ∈ Θ, where FY is the stationary
cdf of Yt. There exists a basis of functions

©
ψj : j ∈ N

ª
in L2 (FY ), such that

°°ψj°°L2(FY ) = 1,
j ∈ N, and:

g∗2 (y; θ) =
∞X
j=1

cj (θ)ψj(y), y ∈ Y,

for any θ ∈ Θ, where {cj (θ) : j ∈ N} is a sequence of coefficient vectors. Moreover, there exist
r > 2 and a sequence {λj > 0 : j ∈ N}, such that

P∞
j=1 λj <∞, and:

∞X
j=1

λj
³
E0
£°°Ztψj(Yt)°°r¤2/r +E0

h
ψj (Yt)

2 |Xt = x0
i´

< ∞,

lim
J→∞

sup
θ∈Θ

∞X
j=J

1

λj
kcj (θ)k2 = 0.

Assumption A.6: The matrices:

S0 = lim
T→∞

V0

"
1√
T

TX
t=1

g1 (Yt,Xt; θ0)

#
, Σ0 = V0 [g

∗
2 (Yt; θ0)|Xt = x0] ,

exist and are positive definite.

Assumption A.7: The stationary density f of Xt is in class Cm (X ) for some m ∈ N, m ≥ 2, is
such that kfk∞ <∞ and kDmfk∞ <∞.

Assumption A.8: For l > 0, the stationary density ft,t+l ≡ fl of (Xt,Xt+l) is such that:

sup
l>0

kflk∞ <∞.
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Moreover, for t1 < t2 < t3 < t4, the stationary density ft1,t2,t3,t4 of (Xt1 ,Xt2 ,Xt3 ,Xt4) is such
that:

sup
t1<t2<t3<t4

kft1,t2,t3,t4k∞ <∞.

Assumption A.9: For any θ ∈ Θ, the function:
x 7−→ ϕ(x; θ) = E [g∗2(Yt; θ)|Xt = x] f (x) ,

is in class Cm (X ), such that:
sup
θ∈Θ

kDmϕ (.; θ)k∞ <∞.

Assumption A.10: For any θ, τ ∈ Θ, the functions:

E [g∗2(Yt; θ)|Xt = .] f (.) , E
h
g∗2(Yt; θ)g

∗
2(Yt; τ)

0 |Xt = .
i
f (.) ,

are continuous at x = x0.

Assumption A.11: The instrument Z is given by Z = H(X), where the function H defined on X
is continuous at x = x0.

Assumption A.12: The mapping:

x 7−→ E

·
sup
θ∈Θ

kg∗2(Yt; θ)k2 |Xt = x

¸
f (x) ,

is bounded. Moreover, there exists β > 2 such that:

E

·
sup
θ∈Θ

kg∗2(Yt; θ)kβ
¸
<∞.

Assumption A.13: For any θ, τ ∈ Θ :
kE [g∗2(Yt; θ)|Xt = .] f(.)k∞ < ∞

sup
l>0

°°°E hg∗2(Yt; θ)g∗2(Yt−l; τ)0 |Xt = .,Xt−l = .
i
fl(., .)

°°°
∞

< ∞.

Assumption A.14: The moment function:

θ 7−→
³
E [g1 (Yt,Xt; θ)]

0
, E [g∗2 (Yt; θ) |Xt = x0]

0´0
,

is continuous on Θ.

Assumption A.15: The weighting matrix Ω is positive definite.

Assumption A.16: The bandwidth hT is such that:

Thd+2mT → 0, as T →∞,

and there exists α < 1/2− 1/β, where β is defined in Assumption A.12, such that:

TαhdT / logT →∞, as T →∞.
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Assumption A.17: The kernel K : Rd → R is a Parzen kernel of order m, that is,
i) K ≥ 0 and RRd K(u)du = 1,
ii) K is bounded, limkuk→∞ kukdK(u) = 0 and w2 :=

R
Rd K(u)

2du <∞,

iii)
R
Rd u

αK(u)2du = 0 for any α ∈ Nd such that |α| < m, and:Z
Rd

K(u) kukm dv <∞.

Assumption A.18: The function:

x 7−→ ϕj (x) = E
£
ψj(Yt)

2|Xt = x
¤
f (x) ,

is in class C2 (X ), for any j ∈ N, such that:
sup
j∈N

°°D2ϕj
°°
∞ <∞.

Assumption A.19: The following inequalities hold:

sup
j∈N

°°E £ψj(Yt)|Xt = .
¤
f (.)

°°
∞ < ∞,

sup
j∈N

sup
l>0

°°E £ψj(Yt)ψj(Yt−l)|Xt = .,Xt−l = .
¤
fl (., .)

°°
∞ < ∞,

sup
j∈N

°°E £¯̄ψj(Yt)¯̄r |Xt = .
¤
f (.)

°°
∞ < ∞,

where r is defined in Assumption A.5.

Assumption A.20: For any θ ∈ Θ:

E
h
kg1 (Yt,Xt; θ)k4

i
<∞ , E

h
kg∗2 (Yt; θ)k4

i
<∞.

Assumption A.21: For any θ ∈ Θ,
sup

t1≤t2≤t3≤t4

°°E £ kg∗2(Yt1 ; θ)k kg∗2(Yt2 ; θ)k kg∗2(Yt3 ; θ)k kg∗2(Yt4 ; θ)k

| Xt1 = .,Xt2 = .,Xt3 = .,Xt4 = .
¤
ft1,t2,t3,t4 (., ., ., .)

°°
∞ <∞.

Assumption A.22: Function g∗2 (y; θ) is twice continuously differentiable w.r.t. (y, θ).

Assumption A.23: There exist δ, γ > 1 and τ > 2, such that:

E

·°°°°∂g1∂θ
0 (Yt,Xt; θ0)

°°°°τ¸ <∞ , E

"
sup
θ∈Θ

°°°°∂g1∂θ
0 (Yt,Xt; θ)

°°°°δ
#

< ∞,

E

·
sup
θ∈Θ

°°°° ∂2g1
∂θi∂θj

(Yt,Xt; θ)

°°°°γ¸ <∞ , i, j = 1, ..., p.

Assumption A.24: The mapping:

x 7−→ E

"
sup
θ∈Θ

°°°°∂g∗2∂θ
0 (Yt; θ)

°°°°2 |Xt = x

#
f (x) ,
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is bounded. Moreover,

E

"
sup
θ∈Θ

°°°°∂g∗2∂θ
0 (Yt; θ)

°°°°β
#
<∞.

for β > 2 defined in Assumption A.12.

Assumption A.25: Functions:

θ 7−→
Ã
E

"
∂g

0
1

∂θ
(Yt,Xt; θ)

#
, E

"
∂g∗

0
2

∂θ
(Yt; θ) |Xt = x0

#!
,

θ 7−→ E

·
∂2g1
∂θi∂θj

(Yt,Xt; θ)

¸
, i, j = 1, ..., p,

are continuous on Θ.

Assumption A.5 is needed to prove stochastic equicontinuity of process ΨT along the lines of An-
drews (1991) [see the proof of Lemma A.1 in Appendix B]. Note that standard results for stochastic
equicontinuity [e.g. Hansen (1996)] do not apply here, since the kernel component in ΨT does not
allow for uniformly bounded moments of order larger than two for functions gt,T (θ). Let us now
discuss the bandwidth conditions in Assumption A.16. The condition Thd+2mT → 0 is the standard
assumption for a negligible asymptotic bias. Condition TαhdT/ logT → ∞, for α < 1/2 − 1/β, is
stronger than the standard condition ThdT →∞; it is used to prove the consistency of kernel regres-
sion estimator eE [g2(Y ; θ)|x0] , uniformly in θ ∈ Θ (see Lemma B.1 in Appendix B). Such a stronger
bandwidth condition is also necessary to ensure negligible second-order term in the asymptotic ex-
pansion of the kernel moment estimator. Indeed, in the full-information underidentified case, some

linear combinations of parameter θ0 are estimated at a nonparametric rate 1/
q
ThdT , whereas other

linear combinations are estimated at a parametric rate 1/
√
T . Thus, we need to ensure that the

second-order term with smallest rate of convergence is negligible w.r.t. the first-order term with
largest rate of convergence:µ

1/
q
ThdT

¶2
= o(1/

√
T )⇐⇒ T 1/2hdT →∞.

This condition is satisfied under Assumption A.16. Finally, the bandwidth condition in Assumption
A.16 can be satisfied when d < 2m (β − 2) / (β + 2). In particular, m = 2 is sufficient when d < 4,
if β > 14.

A.1.2 Consistency

To study the asymptotic properties of the kernel moment estimator we have to derive the asymptotic
distribution of the empirical process ΨT . This asymptotic distribution is given in Lemma A.1 below,
which is proved in Appendix B. The proof uses consistency and asymptotic normality of kernel
estimators [e.g. Bosq (1998), Bosq, Lecoutre (1987)], the Liapunov CLT [Billingsley (1965)], results
on kernel M-estimators [Tenreiro (1995)], weak convergence of empirical processes [Pollard (1990)],
and a proof of stochastic equicontinuity similar to Andrews (1991).

Lemma A.1: Under Assumptions A.1-A.25:

ΨT =⇒ Ψ,
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where Ψ(θ), θ ∈ Θ, denotes the Gaussian stochastic process defined on Θ with covariance function
V0 (θ, τ) = E

h
Ψ(θ)Ψ(τ)

0
i
given by:

V0 (θ, τ) =

Ã
S0 (θ, τ) 0

0 w2

f(x0)
Σ0 (θ, τ)

!
,

for θ, τ ∈ Θ, where,

S0 (θ, τ) =
∞X

k=−∞
Cov [g1 (Yt,Xt; θ) , g1 (Yt−k,Xt−k; τ)] ,

Σ0 (θ, τ) = Cov [g∗2 (Yt; θ) , g
∗
2 (Yt; τ) |Xt = x0] .

In particular ΨT (θ0)
d−→ N(0, V0 (θ0, θ0)) where,

V0 (θ0, θ0) =

µ
S0 0
0 w2Σ0/f(x0)

¶
, (A.1)

and matrices S0, Σ0 are defined in Assumption A.6.

Block diagonal elements of matrix V0 (θ0, θ0) are the standard asymptotic variance-covariance
matrices of sample average, and kernel regression estimators, respectively. Lemma A.1 implies
that marginal and conditional moment restrictions are asymptotically independent, and that the
convergence is uniform w.r.t. θ.
We have the following proposition:

Proposition A.2: Under Assumptions A.1-A.25, the (kernel) moment estimator bθ∗T is consistent:°°°bθ∗T − θ∗0
°°° p−→ 0 , as T →∞.

Proof: Write the criterion as:

QT (θ
∗) = [ΨT (θ) +mT (θ

∗)]
0
Ω [ΨT (θ) +mT (θ

∗)] , θ∗ ∈ Θ×B.

For any ε > 0, we have:

P
h°°°bθ∗T − θ∗0

°°° ≥ ε
i
≤ P

"
inf

θ∗∈Θ×B:kθ∗−θ∗0k≥ε
QT (θ

∗) ≤ QT (θ
∗
0)

#

≤ P

"
inf
θ∈Θ
ΨT (θ)

0
ΩΨT (θ) + inf

θ∗∈Θ×B:kθ∗−θ∗0k≥ε
2mT (θ

∗)
0
ΩΨT (θ)−QT (θ

∗
0) ≤

− inf
θ∗∈Θ×B:kθ∗−θ∗0k≥ε

mT (θ
∗)

0
ΩmT (θ

∗)

#
. (A.2)

Let us compare the asymptotic orders of the different terms. From Lemma A.1 and Continuous
Mapping Theorem [CMT, Billingsley (1968)], we have:

inf
θ∈Θ
ΨT (θ)

0
ΩΨT (θ) = Op(1), (A.3)

inf
θ∗∈Θ×B:kθ∗−θ∗0k≥ε

mT (θ
∗)

0
ΩΨT (θ) = Op(

√
T ). (A.4)
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Similarly, since ΨT (θ0) = Op(1) and mT (θ
∗
0) = 0, we deduce:

QT (θ
∗
0) = Op (1) .

Let λ > 0 be the smallest eigenvalue of Ω (Assumption A.15). We get:

mT (θ
∗)

0
ΩmT (θ

∗)

≥ Tλ
³
kE0 [g1 (Yt,Xt; θ)]k2 + hdT kE0 [g2 (Yt; θ) |Xt = x0]k2 +hdT kE0 [a (Yt; θ) |Xt = x0]− βk2

´
,

≥ ThdTλ
³
kE0 [g1 (Yt,Xt; θ)]k2 + kE0 [g2 (Yt; θ) |Xt = x0]k2 + kE0 [a (Yt; θ) |Xt = x0]− βk2

´
,

for T large, and any θ∗ ∈ Θ × B. From continuity of moment functions (Assumption A.14), com-
pactness of Θ×B (Assumption A.3) and global identification (Assumption A.1), we have:

inf
θ∗∈Θ×B:kθ∗−θ∗0k≥ε

mT (θ
∗)

0
ΩmT (θ

∗) ≥ CThdT , (A.5)

for some constant C > 0. Thus from (A.2)-(A.5) we get:

P
h°°°bθ∗T − θ∗0

°°° ≥ ε
i
≤ P

£
ZT ≤ −CThdT

¤
,

where ZT is a random variable of order Op(
√
T ). From bandwidth Assumption A.16, we have√

T = o
¡
ThdT

¢
, and we deduce:

P
h°°°bθ∗T − θ∗0

°°° ≥ ε
i
→ 0 , as T →∞.

¥

A.1.3 Rate of convergence

In this section, we derive the rate of convergence of bθ∗T .
Lemma A.3: Under Assumptions A.1-A.25:°°°bθ∗T − θ∗0

°°° = Op

µ
1/
q
ThdT

¶
.

Proof: We follow the approach in the proof of Lemma A1 in Stock, Wright (2000). Since bθ∗T is the
minimizer of QT we have:

QT

³bθ∗T´−QT (θ
∗
0) =

h
ΨT (bθT ) +mT (bθ∗T )i0 Ω hΨT (bθT ) +mT (bθ∗T )i−ΨT (θ0)0ΩΨT (θ0) ≤ 0,

that is,
mT (bθ∗T )0ΩmT (bθ∗T ) + 2mT (bθ∗T )0ΩΨT (bθT ) + d1,T ≤ 0,

where d1,T = ΨT (bθT )0ΩΨT (bθT )−ΨT (θ0)0ΩΨT (θ0). Using:
mT (bθ∗T )0ΩmT (bθ∗T ) ≥ λ

°°°mT (bθ∗T )°°°2 ,
mT (bθ∗T )0ΩΨT (bθT ) ≥ −

°°°mT (bθ∗T )°°°°°°ΩΨT (bθT )°°° ,
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we deduce: °°°mT (bθ∗T )°°°2 − 2d2,T °°°mT (bθ∗T )°°°+ d3,T ≤ 0, (A.6)

where:

d2,T =
°°°ΩΨT (bθT )°°° /λ and d3,T = d1,T/λ =

h
ΨT (bθT )0ΩΨT (bθT )−ΨT (θ0)0ΩΨT (θ0)i /λ.

Inequality (A.6) implies: °°°mT (bθ∗T )°°° ≤ d2,T +
¡
d22,T − d3,T

¢1/2
.

Let us now derive the order of the RHS. From Lemma A.1 and CMT we have:

d2,T ≤ sup
θ∈Θ

kΩΨT (θ)k /λ = Op (1) ,

|d3,T | ≤ 2 sup
θ∈Θ

¯̄̄
ΨT (θ)

0
ΩΨT (θ)

¯̄̄
/λ = Op (1) .

We get: °°°mT (bθ∗T )°°° = Op (1) .

Define:
G (θ∗) =

³
E0 [g1(Yt,Xt; θ)]

0
, E0 [g2(Yt; θ)|x0]

0
, E0 [a (Yt; θ)− β|x0]

0´
,

for θ∗ ∈ Θ×B. Since kmT (θ
∗)k2 ≥ ThdT kG (θ∗)k2 , θ∗ ∈ Θ×B, we deduce:°°°G(bθ∗T )°°° = Op

µ
1/
q
ThdT

¶
.

By the mean-value theorem we can write:°°°° ∂G

∂θ∗
0 (eθ∗T )³bθ∗T − θ∗0

´°°°° = Op

µ
1/
q
ThdT

¶
,

where eθ∗T is between bθ∗T and θ∗0. Since bθ∗T converges to θ∗0 by Proposition A.2, and ∂G/∂θ∗
0
(θ∗) is

continuous by Assumption A.25, we have:

∂G

∂θ∗
0 (eθ∗T ) p−→ ∂G

∂θ∗
0 (θ
∗
0),

where ∂G/∂θ∗
0
(θ∗0) has full rank, by local identification condition A.2. Thus we conclude:°°°bθ∗T − θ∗0

°°° = Op

µ
1/
q
ThdT

¶
.

¥

The rate of convergence of the components of bθ∗T is in general the nonparametric rate 1/qThdT ,
due to the full-information unidentified directions. However, it will be seen below that there may exist
linear combinations of θ∗0 which are estimated at a parametric rate 1/

√
T . These linear combinations

correspond to the full-information identified directions.

A.1.4 Asymptotic normality
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In this section, we derive the asymptotic distribution of the kernel moment estimator bθ∗T . We have
to distinguish between the linear combinations of θ0, which are full-information identifiable, and
the linear combinations of θ0, which are full-information non-identifiable. Indeed, the former linear

combinations feature a parametric rate of convergence 1/
√
T , whereas a nonparametric rate 1/

q
ThdT

is expected for the latter linear combinations.
Let η = R−11 θ =

³
η
0
1, η

0
2

´
∈ RsZ × Rp−sZ , where R1 =

³ eR,RZ

´
, be the new parametrization

introduced in equation (11) of the text. Parameter η1 defines the sZ directions of full-information
identification, whereas η2 gives the p− sZ full-information underidentified directions. Furthermore,
let us introduce the matrix:

J0 =


E0
³
∂g1
∂θ

0

´ eR 0 0

0 E0
³
∂g2
∂θ

0 |x0
´
RZ 0

0 E0
³
∂a0
∂θ

0 |x0
´
RZ −IdL

 =


E0

³
∂g1
∂η

0
1

´
0 0

0 E0

³
∂g2
∂η

0
2

|x0
´

0

0 E0
³

∂a
∂η

0
2

|x0
´
−IdL

 .

(A.7)

Under Assumption A.2, matrix J0 has full column-rank. Matrix J0 is the asymptotic matrix of
derivatives of standardized moment conditions. Indeed let us introduce the standardization matrix:

DT =


√
TIdsZ 0 0

0
q
ThdT Idp−sZ 0

0 0
q
ThdT IdL

 ,

and define the matrix:

RT =

µ eR RZ 0
0 0 IdL

¶
D−1T =

Ã
T−1/2 eR ¡

ThdT
¢−1/2

RZ 0

0 0
¡
ThdT

¢−1/2
IdL

!
.

Then, R−1T
³
θ
0
, β

0´0
=

µ√
Tη

0
1,
q
ThdT η

0
2,
q
ThdTβ

0
¶0

, and we have the following Lemma A.4, proved

in Appendix B using the ULLN and the CLT for mixing processes in Potscher, Prucha (1989), and
Herrndorf (1984), respectively .

Lemma A.4: Let eθ∗T be such that °°°eθ∗T − θ∗0
°°° = Op

µ
1/
q
ThdT

¶
. Then, under Assumptions A.1-

A.25, we have:

p lim
∂bgT
∂θ∗

0

³eθ∗T´RT = J0.

In particular, matrix J0 is block diagonal w.r.t. parameters η1 and
³
η
0
2, β

0´0
reflecting the different

rates of convergence, 1/
√
T and 1/

q
ThdT , respectively.

The joint asymptotic distribution of
µ√

T
¡bη1,T − η1,0

¢0
,
q
ThdT

¡bη2,T − η2,0
¢0
,
q
ThdT

³bβT − β0

´0¶0

is provided in the next proposition.

Proposition A.5: Under Assumptions A.1-A.25, kernel moment estimator bθ∗T is asymptotically
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normal: 
√
T
¡bη1,T − η1,0

¢q
ThdT

¡bη2,T − η2,0
¢q

ThdT

³bβT − β0

´
 d−→ N

µ
0,
³
J
0
0ΩJ0

´−1
J
0
0ΩV0 (θ0, θ0)ΩJ0

³
J
0
0ΩJ0

´−1¶
.

Proof: The first-order condition for kernel moment estimator bθ∗T is:
∂bg0T
∂θ∗

³bθ∗T´ΩbgT ³bθ∗T´ = 0.
By a mean-value expansion we can write:

∂bg0T
∂θ∗

³bθ∗T´ΩbgT (θ∗0) + ∂bg0T
∂θ∗

³bθ∗T´Ω ∂bgT
∂θ∗

0

³eθ∗T´³bθ∗T − θ∗0
´
= 0,

where eθ∗T is between bθ∗T and θ∗0. By multiplying this first-order condition by invertible matrix R
0
T ,

we get:

R
0
T

∂bg0T
∂θ∗

³bθ∗T´ΩbgT (θ∗0) +R
0
T

∂bg0T
∂θ∗

³bθ∗T´Ω ∂bgT
∂θ∗

0

³eθ∗T´RT


√
T
¡bη1,T − η1,0

¢q
ThdT

¡bη2,T − η2,0
¢q

ThdT

³bβT − β0

´
 = 0.

Let us define: bJT = ∂bgT
∂θ∗

0

³bθ∗T´RT , eJT = ∂bgT
∂θ∗

0

³eθ∗T´RT .

From Lemma A.3 and A.4, we have:

p lim bJT = p lim eJT = J0. (A.8)

Thus, bJ 0
TΩ

eJT is non-singular with probability approaching 1, and we can write:
√
T
¡bη1,T − η1,0

¢q
ThdT

¡bη2,T − η2,0
¢q

ThdT

³bβT − β0

´
 = −

³ bJ 0
TΩ eJT´−1 bJ 0

TΩgT (θ
∗
0) .

Since mT (θ
∗
0) = 0, we get:

√
T
¡bη1,T − η1,0

¢q
ThdT

¡bη2,T − η2,0
¢q

ThdT

³bβT − β0

´
 = −

³ bJ 0
TΩ eJT´−1 bJ 0

TΩΨT (θ0) .

The result follows from Lemma A.1 and (A.8).
¥

A.1.5 Optimal weighting matrix

From Proposition A.5, the optimal weighting matrix Ω0, which minimizes the asymptotic variance

of
µ√

T
¡bη1,T − η1,0

¢0
,
q
ThdT

¡bη2,T − η2,0
¢0
,
q
ThdT

³bβT − β0

´0¶0

, is:

Ω0 = V0 (θ0, θ0)
−1

,
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and the corresponding variance of the efficient estimator is:³
J
0
0V0 (θ0, θ0)

−1 J0
´−1

.

Since V0 (θ0, θ0) and J0 are block diagonal w.r.t. η1 and
³
η
0
2, β

0´0
, the variance of the efficient

estimator of β is the lower right L× L block of matrix:

w2

f(x0)


 E0

³
∂g2
∂η

0
2

|x0
´

0

E0
³

∂a
∂η

0
2

|x0
´
−IdL


0

V0

µµ
g2
a

¶¯̄̄̄
x0

¶−1 E0

³
∂g2
∂η

0
2

|x0
´

0

E0
³

∂a
∂η

0
2

|x0
´
−IdL



−1

.

APPENDIX 2

Information based estimator

The aim of this Appendix is to derive the asymptotic expansion of the objective function and of
the estimators, in order to prove the asymptotic kernel nonparametric efficiency of the information
based estimator (Proposition 3).

A.2.1 Concentration with respect to functional parameter

Let us introduce Lagrange multipliers λ0, µ0, λt, µt, t = 1, .., T . The Lagrangian function is given
by:

L =
1

T

TX
t=1

Z h bf(y|xt)− f t (y)
i2

bf(y|xt) dy + hdT

Z
log
h
f0(y)/ bf(y|x0)i f0(y)dy

−2 1
T

TX
t=1

µt

µZ
f t (y) dy − 1

¶
− hdTµ0

µZ
f0(y)dy − 1

¶

−2 1
T

TX
t=1

λ
0
t

Z
g(y; θ)f t (y) dy − hdTλ

0
0

Z
g2(y; θ)f

0(y)dy.

The first-order conditions w.r.t. functional parameters ft, t = 1, ..., T , f0 are:h
f t (y)− bf(y|xt)i 1bf(y|xt) − µt − λ

0
tg(y; θ) = 0, t = 1, ..., T,

1+ log
³
f0(y)/ bf(y|x0)´− µ0 − λ

0
0g2(y; θ) = 0,

that are:

f t (y) = bf(y|xt) + µt bf(y|xt) + λ
0
tg(y; θ) bf(y|xt), t = 1, ..., T, (A.9)

f0(y) = bf(y|x0) exp³λ00g2(y; θ) + µ0 − 1
´
. (A.10)
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The Lagrange multipliers are deduced from the constraints. From (A.9), we get:Z
f t (y) dy = 1 ⇐⇒ µt = −λ

0
t

Z
g(y; θ) bf(y|xt)dy,

and: Z
g(y; θ)f t (y) dy = 0

⇐⇒
Z

g(y; θ) bf(y|xt)dy + µt

Z
g(y; θ) bf(y|xt)dy + Z g(y; θ)g(y; θ)

0 bf(y|xt)dy · λt = 0
⇐⇒ λt = −

·Z
g(y; θ)g(y; θ)

0 bf(y|xt)dy − Z g(y; θ) bf(y|xt)dy Z g(y; θ)
0 bf(y|xt)dy¸−1

·
Z

g(y; θ) bf(y|xt)dy, t = 1, ..., T.
Similarly, from (A.10) we deduce the value of Lagrange multiplier µ0:Z

f0 (y) dy = 1 ⇐⇒ exp (1− µ0) =

Z
eλ

0
0g2(y;θ) bf(y|x0)dy.

Thus, from (A.9) and (A.10), µ0, λt, µt, t = 1, ..., T can be eliminated to get the concentrated
functional parameters:

f t (y; θ) = bf(y|xt)− eE (g(θ)|xt)0 eV (g(θ)|xt)−1 hg(y; θ)− eE (g(θ)|xt)i bf(y|xt),
t = 1, ..., T,

f0 (y; θ, λ0) =
expλ

0
0g2(y; θ)eE ³expλ00g2(θ)|x0´ bf(y|x0), (A.11)

where eE(.|x) and eV (.|x) denote the conditional expectation and the conditional variance w.r.t. the
kernel density, respectively. The concentrated objective function becomes:

Lc(θ, λ0) =
1

T

TX
t=1

eE (g(θ)|xt)0 eV (g(θ)|xt)−1 eE (g(θ)|xt)
−hdT log eE ³expλ00g2(θ)|x0´ .

Then, the information based estimator is such that bθT is solution of the saddle point problem [see
Kitamura-Stutzer (1997) in a marginal framework]:

bθT = argmin
θ
Lc(θ, λ0 (θ)),

where
λ0 (θ) = argmax

λ0
Lc(θ, λ0) ⇐⇒ eE ³g2(θ) expλ0 (θ)0 g2(θ)|x0´ = 0,

and the conditional density estimators are:

bf0(.|xt) = f t(.;bθT ), t = 1, ..., T,bf0(.|x0) = f0(.;bθT , bλ0,T ), bλ0,T = λ0
³bθT´ .
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A.2.2 Asymptotic expansions

i) Asymptotic expansion of the concentrated objective function

Since the conditional moment restrictions are satisfied asymptotically, we have bλ0,T p→ 0, when
T →∞. Therefore, we can consider the second-order asymptotic expansion of function Lc(θ, λ0) in
a neighbourhood of θ = θ0, λ0 = 0. Let us first derive the expansion w.r.t. λ0. We have:

log eE ³expλ00g2(θ)|x0´
' log

·
1+ λ

0
0
eE (g2(θ)|x0) + 1

2
λ
0
0
eE ³g2(θ)g2(θ)0 |x0´λ0¸

' λ
0
0
eE (g2(θ)|x0) + 1

2
λ
0
0
eV (g2(θ)|x0)λ0.

Therefore, we can asymptotically concentrate w.r.t. λ0:

λ0 ' −eV (g2(θ)|x0)−1 eE (g2(θ)|x0) , (A.12)

and the asymptotic expansion of the concentrated objective function becomes:

Lc(θ) ' 1

T

TX
t=1

eE (g(θ)|xt)0 eV (g(θ)|xt)−1 eE (g(θ)|xt)
+
1

2
hdT eE (g2(θ)|x0)0 eV (g2(θ)|x0)−1 eE (g2(θ)|x0) .

Let us now consider the expansion around θ = θ0. We have:

eE (g(θ)|xt) ' eE (g(θ0)|xt) +E0

µ
∂g

∂θ
0 (θ0) | xt

¶
(θ − θ0) ,

eV (g(θ)|xt) ' V0 (g(θ0) | xt) ,
and similarly for the expectations of function g2. Thus, we get:

Lc(θ) ' 1

T

TX
t=1

½ eE (g|xt) +E0

µ
∂g

∂θ
0 | xt

¶
(θ − θ0)

¾0

V0 (g | xt)−1

·
½eE (g|xt) +E0

µ
∂g

∂θ
0 | xt

¶
(θ − θ0)

¾
+
1

2
hdT

½eE (g2|x0) +E0

µ
∂g2

∂θ
0 | x0

¶
(θ − θ0)

¾0

V0 (g2 | x0)−1

·
½eE (g2|x0) +E0

µ
∂g2

∂θ
0 | x0

¶
(θ − θ0)

¾
,

where functions g, g2 are evaluated at θ0.

ii) Asymptotic expansion of bθT
In order to derive the asymptotic expansion of bθT , we have to carefully distinguish between the
directions of θ converging at a parametric rate and those converging at a nonparametric rate. Let
us introduce the change of parameter:

η = R−11 θ =
³
η
0
1, η

0
2

´0
,
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where R1 =
³ eR R

´
, and R is a matrix whose columns span the null space N0 [see Section 2.1.2].

Then, we have:

E0

µ
∂g

∂θ
0 | xt

¶
(θ − θ0) = E0

µ
∂g

∂θ
0 | xt

¶ eR ¡η1 − η01
¢
.

We get:

Lc(η)

' 1

T

TX
t=1

½eE (g|xt) +E0

µ
∂g

∂θ
0 |xt

¶ eR ¡η1 − η01
¢¾0

V0 (g|xt)−1

·
½ eE (g|xt) +E0

µ
∂g

∂θ
0 |xt

¶ eR ¡η1 − η01
¢¾

+
1

2
hdT

½eE (g2|x0) +E0

µ
∂g2

∂θ
0 |x0

¶ eR ¡η1 − η01
¢
+E0

µ
∂g2

∂θ
0 |x0

¶
R
¡
η2 − η02

¢¾0

·V0 (g2|x0)−1
½eE (g2|x0) +E0

µ
∂g2

∂θ
0 |x0

¶ eR ¡η1 − η01
¢
+E0

µ
∂g2

∂θ
0 |x0

¶
R
¡
η2 − η02

¢¾
.

The asymptotic expansion of bη1,T is obtained from the maximization of the first term in Lc(η), since
the contribution of the second term is asymptotically negligible. We get:

√
T
¡bη1,T − η01

¢ ' −
"
1

T

TX
t=1

eR0
E0

Ã
∂g

0

∂θ
|xt
!
V0 (g|xt)−1E0

µ
∂g

∂θ
0 |xt

¶ eR#−1

· 1√
T

TX
t=1

eR0
E0

Ã
∂g

0

∂θ
|xt
!
V0 (g|xt)−1

Z
g(y; θ0) bf(y|xt)dy

' −
ÃeR0

E

"
E0

Ã
∂g

0

∂θ
|xt
!
V0 (g|xt)−1E0

µ
∂g

∂θ
0 |xt

¶# eR!−1

·
√
T

Z Z eR0
E0

Ã
∂g

0

∂θ
|x
!
V0 (g|x)−1 g(y; θ0) bf(y, x)dxdy.

Thus bη1,T converges at a parametric rate.
The asymptotic expansion of bη2,T can be deduced from the maximization of the second component

of Lc(η). Estimator bη2,T converges at a nonparametric rate, and terms involving ¡bη1,T − η01
¢
can be

neglected. We get:

q
ThdT

¡bη2,T − η02
¢ ' −

"
R

0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

#−1

·R0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1

q
ThdT

Z
g2(y; θ0) bf(y|x0)dy.

(A.13)
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iii) Asymptotic expansion of bf0(.|x0)
Let us consider the expansion of f0 (y; θ, λ0) in (A.11) around λ0 = 0. We have:

f0 (y; θ, λ0) ' 1+ λ
0
0g2 (y; θ)

1+ λ
0
0
eE (g2(θ)|x0) bf(y|x0)

'
h
1+ λ

0
0

³
g2 (y; θ)− eE (g2(θ)|x0)´i bf(y|x0)

' bf(y|x0)
− eE (g2(θ)|x0)0 eV (g2(θ)|x0)−1 ³g2(y; θ)− eE (g2(θ)|x0)´ bf(y|x0),

from (A.12). Thus, we get:

bf0(y|x0)
= f0(y;bθT , bλ0,T )
' bf(y|x0)− eE ³g2(bθT )|x0´0 eV ³g2(bθT )|x0´−1 ³g2(y;bθT )− eE ³g2(bθT )|x0´´ bf(y|x0)
' bf(y|x0)− eE ³g2(bθT )|x0´0 V0 (g2|x0)−1 g2(y; θ0)f(y|x0). (A.14)

Moreover,

eE ³g2(bθT )|x0´ '
Z

g2(y; θ0) bf(y|x0)dy +E0

µ
∂g2

∂θ
0 |x0

¶³bθT − θ0

´
'

Z
g2(y; θ0) bf(y|x0)dy +E0

µ
∂g2

∂θ
0 |x0

¶
R
¡bη2,T − η02

¢
(since the contribution of bη1,T − η01 is asymptotically negligible)

= (Id−M)

Z
g2(y; θ0) bf(y|x0)dy,

from (A.13), where

M = E0

µ
∂g2

∂θ
0 |x0

¶
R

"
R

0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

#−1

·R0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1 ,

is an orthogonal projector for the inner product V0 (g2|x0)−1. After substituting in (A.14), we get:

bf0(y|x0) ' bf(y|x0)− f(y|x0)g2(y; θ0)0V0 (g2|x0)−1 (Id−M)

Z
g2(y; θ0) bf(y|x0)dy.

(A.15)
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iv) Asymptotic expansion of the moment of interest

We have:

bE(a|x0) = Z a(y;bθT ) bf0(y|x0)dy
'

Z
a(y; θ0)f(y|x0)dy +

Z
∂a

∂θ
0 (y; θ0)f(y|x0)dy

³bθT − θ0
´

+

Z
a(y; θ0)

h bf0(y|x0)− f(y|x0)
i
dy

' E(a|x0) +E0

µ
∂a

∂θ
0 |x0

¶
R
¡bη2,T − η02

¢
+

Z
a(y; θ0)

nbf(y|x0)− f(y|x0)− f(y|x0)g2(y; θ0)0V0 (g2|x0)−1

(Id−M)

Z
g2(y; θ0) bf(y|x0)dy¾dy [from (A.15)]

= E(a|x0)−E0

µ
∂a

∂θ
0 |x0

¶
R

"
R

0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

#−1

·R0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1

Z
g2(y; θ0) bf(y|x0)dy [from (A.13)]

+

Z
a(y; θ0)

h bf(y|x0)− f(y|x0)
i
dy

−Cov0 (a, g2|x0)V0 (g2|x0)−1 (Id−M)

Z
g2(y; θ0) bf(y|x0)dy.

Thus, we get: bE(a|x0)−E(a|x0)
'

Z
a(y; θ0)δ bf(y|x0)dy −Cov0 (a, g2|x0)V0 (g2|x0)−1

Z
g2(y; θ0)δ bf(y|x0)dy

−
·
E0

µ
∂a

∂θ
0 |x0

¶
R−Cov0 (a, g2|x0)V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

¸
·
"
R

0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

#−1

·R0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1

Z
g2(y; θ0)δ bf(y|x0)dy, (A.16)

where δ bf(y|x0) = bf(y|x0)− f(y|x0).

A.2.3 Asymptotic distribution of the estimator

Let us finally derive the asymptotic distribution of the conditional moment estimator bE(a|x0).
In the asymptotic expansion (A.16), the first two terms involve the residual of the regression ofR
a(y; θ0)δ bf(y|x0)dy on R g2(y; θ0)δ bf(y|x0)dy. This residual is asymptotically independent of the

third term. Thus, from the asymptotic normality of integrals of kernel estimators, we get:
√
ThT
w

h bE(a|x0)−E(a|x0)
i

d−→ N(0,W (x0)/fX(x0)),
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where the asymptotic variance is such that:

W (x0) = V0(a|x0)−Cov0 (a, g2|x0)V0 (g2|x0)−1Cov0 (g2, a|x0)
+

·
E0

µ
∂a

∂θ
0 |x0

¶
R−Cov0 (a, g2|x0)V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

¸
·
"
R

0
E0

Ã
∂g

0
2

∂θ
|x0
!
V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

#−1

·
·
E0

µ
∂a

∂θ
0 |x0

¶
R−Cov0 (a, g2|x0)V0 (g2|x0)−1E0

µ
∂g2

∂θ
0 |x0

¶
R

¸0
.

Since W (x0)/fX(x0) corresponds to the kernel nonparametric efficiency bound B (x0, a) [see Propo-
sition 2], the kernel nonparametric efficiency of the information based estimator is proved.

APPENDIX 3

Regularity conditions in the stochastic volatility model

In this Appendix, we discuss conditions that ensure the regularity assumptions for XMM esti-
mator (see Appendix 1.1) in the stochastic volatility model.

A.3.1 Identification

Let us first consider the identifiability of structural parameter θ (Assumption A.2∗) and provide the
expression of matrix R defining the directions of full-information underidentification.

i) Computation of matrix R

The null space N0 associated with the uniform restrictions is the linear space of vectors v ∈ R4 such
that:

E0

µµ
1

exp rt+1

¶
∂Mt,t+1

∂θ
0 (θ0) | yt

¶
v = 0, ∀yt. (A.17)

We know that θ0 satisfies the no-arbitrage restrictions:

E0

µ
Mt,t+1 (θ0)

µ
1

exp rt+1

¶
| yt
¶
=

µ
1
1

¶
, ∀yt.

We deduce that any θ = θ0 + vε, where ε is small and v satisfies (A.17), is also such that:

E0

µ
Mt,t+1 (θ)

µ
1

exp rt+1

¶
| yt
¶
=

µ
1
1

¶
, ∀yt,
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at first order in ε. Therefore, the vectors of N0 are the directions dθ = θ− θ0 of parameter changes,
which are compatible with no-arbitrage. From Proposition 4 and equations (26), the parameters θ,
compatible with no-arbitrage, are characterized by the nonlinear restrictions:

ν0 = −b ¡ν1 + ν3γ − ν23/2
¢
,

ν2 = −a ¡ν1 + ν3γ − ν23/2
¢
,

ν3 = γ + 1/2,

where γ is a parameter of the DGP considered as fixed. In particular, γ = 1/2 for the DGP
considered in Section 5. Therefore,

ν0 = −b (ν1) ,
ν2 = −a (ν1) ,
ν3 = 1.

Thus, the tangent set is spanned by the vector:

v =


dν0/dν1
dν1/dν1
dν2/dν1
dν3/dν1

 =


−db (ν1) /dν1

1
−da (ν1) /dν1

0

 =


−δ c
1+cν1
1

−ρ 1
(1+cν1)

2

0

 ,

and matrix R is given by:

R =


−δ c
1+cν1
1

−ρ 1
(1+cν1)

2

0

 . (A.18)

ii) Verification of Assumption A.2∗

Let us now verify that Assumption A.2∗ is satisfied when the conditional restrictions include the
observed price of a European call. We have to prove that:

E0

µ
∂Mt,t+1

∂θ
0 (θ0) (exp rt+1 − s)+ | yt

¶
R 6= 0, ∀s > 0.

We have:

E0

µ
∂Mt,t+1

∂θ
0 (θ0) (exp rt+1 − s)+ | yt

¶
R

= −E0
³
Mt,t+1 (θ0) (exp rt+1 − s)

+ ¡1, σ2t+1, σ2t , rt+1¢R | yt´
=

"
δ

c

1+ cν1
+ ρ

1

(1+ cν1)
2σ

2
t

#
E0

³
Mt,t+1 (θ0) (exp rt+1 − s)+ | yt

´
−E0

³
Mt,t+1 (θ0) (exp rt+1 − s)+ σ2t+1 | yt

´
.

From (27), we have:

δ
c

1+ cν1
+ ρ

1

(1+ cν1)
2 σ

2
t = ρ∗σ2t + δ∗c∗ = EQ

t

£
σ2t+1

¤
,
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where Q denotes the risk neutral distribution, whereas from the Hull-White formula:

E0
³
Mt,t+1 (θ0) (exp rt+1 − s)

+ | yt
´

= EQ
t

£
BS

¡
1, s, σ2t+1

¢¤
,

E0
³
Mt,t+1 (θ0) (exp rt+1 − s)+ σ2t+1 | yt

´
= EQ

t

£
σ2t+1BS

¡
1, s, σ2t+1

¢¤
.

Thus, we get:

E0

µ
∂Mt,t+1

∂θ
0 (θ0) (exp rt+1 − s)

+ | yt
¶
R = −CovQt

£
σ2t+1, BS

¡
1, s, σ2t+1

¢¤
,

which is negative since the Black-Scholes price is an increasing function of volatility.

A.3.2 Stationary distribution

Let us consider process
©
Yt =

¡
rt, σ

2
t

¢
: t ∈ Zª, where rt and σ2t are defined in equations (21), (22)

of the text. Markov process Yt is exponential affine:

E
h
e−z

0
Yt+1 | Yt

i
= E

h
e−urt+1−vσ

2
t+1 | Yt

i
= E

h
e−(γu+v)σ

2
t+1E

£
e−uσt+1εt+1 | ¡σ2t¢ , Yt¤ | Yti

= E
h
e−(γu+v−

1
2u

2)σ2t+1 | σ2t
i
= exp

·
−a
µ
γu+ v − 1

2
u2
¶
σ2t − b

µ
γu+ v − 1

2
u2
¶¸

≡ exp
h
−A(z)0Yt −B(z)

i
,

where:

A(z) =

µ
0, a

µ
γu+ v − 1

2
u2
¶¶0

, B(z) = b

µ
γu+ v − 1

2
u2
¶
,

for z = (u, v)
0 ∈ C2 such that Re ¡γu+ v − 12u2

¢
> −1/c, and functions a and b are defined in (22).

i) Strict stationarity and geometric strong mixing

From Proposition 2 of Gourieroux, Jasiak (2005), the ARG process
¡
σ2t
¢
is stationary if 0 ≤ ρ < 1,

with marginal invariant distribution such that [(1− ρ) /c]σ2t ∼ γ (δ), where γ (δ) denotes the gamma
distribution with parameter δ. Thus, when ρ < 1, process (Yt) admits the marginal invariant
distribution:

f(y) =
1

σ
φ

µ
r − γσ2

σ

¶
[(1− ρ) /c]

δ

Γ (δ)
e
1−ρ
c σ2

¡
σ2
¢δ−1

, y =
¡
r, σ2

¢ ∈ R×R+ = Y.
(A.19)

To prove that (Yt) is geometrically strong mixing, we use Proposition 4.2 of Darolles, Gourieroux,
Jasiak (2005), and verify the condition:

lim
h→∞

∂A

∂z0
(0)h = 0. (A.20)

We have:
∂A

∂z0
(0) =

µ
0 0
γρ ρ

¶
.

Condition (A.20) is satisfied if ρ < 1. Thus, with Xt = Yt−1, we conclude that Assumption A.4 is
satisfied if 0 ≤ ρ < 1.
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ii) Smoothness of the marginal distribution

Stationary distribution f in (A.19) is in C∞ (Y). Moreover, we have:

f(y) ≤ C1e
1−ρ
c σ2

¡
σ2
¢δ−3/2

, y ∈ Y,

for a constant C1 > 0. Thus, kfk∞ < ∞ if, and only if, δ ≥ 3/2. Moreover, we have the following
Lemma A.6, proved in Appendix B.

Lemma A.6 : kDmfk <∞ if, and only if, δ ≥ 3/2 +m.

Thus, Assumption A.7 is satisfied if δ ≥ 3/2 +m. For instance, for m = 2, we get δ ≥ 7/2.

A.3.3 Existence of moments

The moment function g∗2 (y; θ), which corresponds to the estimating constraints (17)-(19), is given
by:

g∗2 (yt; θ) = e−θ0−θ1σ
2
t+1−θ2σ2t−θ3rt+1



1
ert+1

(ert+1 − s1)
+

...
(ert+1 − sK)

+

(ert+1 − s)+


−



1
1

ct0 (s1, h)
...

ct0 (sK , h)
ct0 (s, h)


, yt =

¡
rt+1, σ

2
t+1, σ

2
t

¢0
.

The relevant state and conditioning variables are Yt =
¡
rt+1, σ

2
t+1, σ

2
t

¢
, and Xt =

¡
rt, σ

2
t

¢
, respec-

tively.
The following Lemma A.7, proved in Appendix B, provides a condition for g∗2 (.; θ) ∈ L2 (FY )

[see Assumption A.5].

Lemma A.7: The function g∗2 (.; θ) is in L2 (FY ) if, and only if:

θ ∈ Γ =
n
(θ0, θ1, θ2, θ3)

0 ∈ R4 | θ2 > −1/2c, θ1 > −1/2c− γθ3 + θ23 + (1+ γ − 2θ3)+
o
.

Thus, the condition g∗2 (.; θ) ∈ L2 (FY ) is satisfied, whenever the risk premia parameters θ1 and
θ2 for stochastic volatility are above some thresholds. In particular, the lower bound for θ1 depends
on θ3. For the values of c and γ in Section 5, and intermediate values of θ3, the lower bounds for θ1
and θ2 are of the order −107.
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