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NONASYMPTOTIC BOUNDS FOR BAYESIAN ORDER
IDENTIFICATION WITH APPLICATION TO MIXTURES

By Antoine Chambaz and Judith Rousseau

Université René Descartes and Université Dauphine

Abstract

The efficiency of two Bayesian order estimators is studied under

weak assumptions. By using nonparametric techniques, we prove new

nonasymptotic underestimation and overestimation bounds. The bounds

compare favorably with optimal bounds yielded by the Stein lemma

and also with other known asymptotic bounds. The results apply

to mixture models. In this case, the underestimation probabilities

are bounded by a constant times e−an (some a > 0, all sample size

n ≥ 1). The overestimation probabilities are bounded by 1/
√

n (all

n larger than a known integer), up to a log n factor.

Résumé

Dans cet article nous étudions deux estimateurs bayésien de l’ordre

d’un modèle, le mode a posteriori et un estimateur basé sur un fac-

teur de Bayes séquentiel. Nous étudions l’efficacité de ces estimateurs,

en particulier nous obtenons, dans un cadre général des bornes non

asymptotiques sur les probabilités de surestimation et de sousestima-

tion de cet ordre. Nous appliquons ces résultats au cas des mélange

où nous montrons que la probabilité de surestimer l’ordre décroit en
√

n et celle de sousestimer décroit exponentiellement vite.
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Order estimation, Rate of convergence
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1. Introduction. Model choice is an important and difficult topic and
the literature on the subject is vast. In this paper, we consider a special case
of model choice, namely the identification of the order of a model. Order
identification deals with the estimation and test of a structural parameter
which indexes the complexity of a model. In words, a most economical rep-
resentation of a random phenomenon is sought. This problem is encountered
in many situations and for instance: in mixture models (Titterington et al.,
1985; McLachlan & Peel, 2000) with unknown number of components; in
autoregressive models (Azencott & Dacunha-Castelle, 1986), when the pro-
cess memory is not known; in cluster analysis (Hastie et al., 2001), when
the number of clusters is unknown. One of the main difficulties lies in the
fact that, although it is stated as a discrete problem, order identification is
in essence continuous.

This paper is devoted to the study of two Bayesian estimators of the order
of a model. Frequentist properties of efficiency are particularly investigated.
We obtain new nonasymptotic efficiency bounds under mild assumptions.
Those bounds provide a theoretical answer to the questions raised for in-
stance in (Fraley & Raftery, 2002) (see their Section 4). Application of the
main results to the notoriously difficult problem of order identification for
mixture models illustrates their generality.

1.1. Description of the problem. We observe n i.i.d. random variables
Z1, . . . , Zn with values in a measured sample space (Z,F , µ). These ob-
servations are defined on a common measurable space upon which all the
random variables will be defined.

Let {(Θk, dk)}k≥1 be an increasing family of nested parametric sets (dk

will abbreviate to d for simplicity). The dimension of Θk is denoted by D(k).
Let us introduce Θ∞ = ∪k≥1Θk. For every θ ∈ Θ∞, let fθ be a probability
density with respect to the measure µ. We denote by Pθ the probability
measure whose density is fθ. The expectation with respect to Pθ (resp.
P⊗n

θ = Pn
θ ) writes as Eθ (resp. En

θ ).
The order of any distribution Pθ0 is the unique integer k such that Pθ0 ∈

{Pθ : θ ∈ Θk \ Θk−1} (with convention Θ0 = ∅). It is assumed that the
distribution P ? of Z1 belongs to one model {Pθ : θ ∈ Θk} for some k ≥ 1.
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The density of P ? is denoted by f? = fθ? (θ? ∈ Θk? \ Θk?−1). The order of
P ? is denoted by k?, and is the quantity we want to estimate.

We are interested in frequentist properties of two Bayesian estimates of
k?. In that perspective, the problem can be restated as an issue of composite
hypotheses testing: we want to decide between the null hypothesis “k?≤ k0”
and its alternative “k? > k0” (for some integer k0), that is to test

“P ? ∈ {Pθ : θ ∈ Θk0}” against “P ? 6∈ {Pθ : θ ∈ Θk0}”.

This question is obviously crucial when the order is the quantity of inter-
est. Furthermore, order identification may also be a prerequisite to consis-
tent parameter estimation, when overestimation of the order causes loss of
identifiability.

Efficiency issues. Let αn and βn be the type I and type II errors of a
procedure that tests the hypotheses above. The efficiency of this procedure
is measured in terms of rates of convergence of αn and βn to zero. Obviously,
if k̃n estimates k?, then the natural rule is to reject the null hypothesis if
k̃n > k0. Then

αn ≤ P ?{k̃n > k?} and βn ≤ P ?{k̃n < k?}.

These upper bounds do not depend on k0. Moreover, even from a Bayesian
decision theoretical point of view, these quantities are of interest when con-
sidering 0-1 types of losses.

In most previous work, the behavior of the underestimation probability
P ?{k̃n < k?} and overestimation probability P ?{k̃n > k?} are investigated as
the sample size n grows to infinity. In this paper, we obtain new nonasymp-
totic upper bounds of these probabilities for two Bayesian order estimators.

Two Bayesian procedures. Let Π be a prior on Θ∞ that writes as

dΠ(θ) = π(k) πk(θ) dθ

for all θ ∈ Θk (every k ≥ 1). We denote by Π(k|Zn) the posterior probability
of each k ≥ 1.
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In a Bayesian decision theoretic perspective, the Bayes estimator associ-
ated with the 0-1 loss function is the mode of the posterior distribution of
the order k:

k̂G
n = arg max

k≥1
{Π(k|Zn)}.

This estimator is often used in practice. It is a global estimator in the sense
that it takes into account the whole of the posterior distribution on k. Follow-
ing the Ockam’s razor principle and considering a more local and sequential
approach, we propose another estimator:

k̂L
n = inf{k ≥ 1 : Π(k|Zn) ≥ Π(k + 1|Zn)} ≤ k̂G

n .

If the posterior distribution on k is unimodal, then obviously both estimators
are equal. The advantage of k̂L

n over k̂G
n is that k̂L

n does not require the
computation of the whole posterior distribution on k. It can also be slightly
modified into a second sequential estimator, based on the marginal likelihood
Π(k|Zn)/π(k):

(1) inf
{

k ≥ 1 :
Π(k|Zn)

π(k)
≥ Π(k + 1|Zn)

π(k + 1)

}
.

In other words, this estimator equals the smallest integer k such that the
Bayes factor comparing Θk+1 to Θk is less than one. When considering a
model comparison point of view, Bayes factors are often used to compare two
models (Kass & Raftery, 1995). They are also to some extent Bayesian solu-
tions to the 0-1 loss, in a two models testing problem. One of the advantages
of Bayes factors over posterior probabilities is that the prior probability of
each (sub) model does not need to be specified.

In the following, we shall focus on k̂G
n and k̂L

n . The estimator defined by
(1) differs very little from k̂L

n and shares the same properties.

1.2. Results in perspective. The resort to nonparametric techniques in
the spirit of (Barron et al., 1999; Ghosal et al., 2000) combined with a
variant of the locally conic parameterization (first introduced in (Dacunha-
Castelle & Gassiat, 1997b)) allows to prove that the underestimation prob-
abilities are both a O(e−an) (some a > 0), see Theorems 1 and 2. We also
show that the overestimation probabilities are both a O((log n)b/nc) (some
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b ≥ 0, c > 0), see Theorems 3 and 4. The bounds we get actually hold for
any sample size. All constants can be expressed explicitly. This particularly
makes it possible to compare precisely our results with previous ones. Be-
sides, it is interesting to analyze the contribution of each assumption to the
final bounds. Finally, we show that our results apply to mixture models, for
which order identification is notoriously difficult. Such models are notably
characterized by their lack of identifiability when overestimating the order
and the subsequent singularity of the Fisher information matrix, which pre-
vents from using classical methods based on Taylor expansions. It is also
known (Dacunha-Castelle & Gassiat, 1999) that the maximum likelihood
statistic is not asymptotically Gaussian. However, we obtain for k̂L

n that the
underestimation probability is a O(e−an) and that the overestimation prob-
ability is a O(1/

√
n), see Theorem 5. The case of location-scale mixture of

Gaussian densities is particularly addressed in Corollary 1.
In most previous work, the choice of the framework is contingent on the

need for tractable explicit calculus. Order identification for exponential mod-
els is studied in (Haughton, 1989), with a generalization to regular models
(Keribin & Haughton, 2003). A method is developed ad hoc for mixture or-
der identification in (Dacunha-Castelle & Gassiat, 1997a). In (Guyon & Yao,
1999), a common basic procedure is adapted then applied to various models
characterized by the existence of an exhaustive finite dimensional statistic.
(Boucheron & Gassiat, 2004) is devoted to order identification for autore-
gressive processes. All these papers deal with efficiency issues. In (Chambaz,
2003), general efficiency results are obtained thanks to the resort to powerful
properties of empirical processes.

None of the papers cited above use Bayesian techniques. There is an
extensive literature on Bayesian estimation of mixture models and in par-
ticular on the order selection in mixture models. However this literature is
essentially devoted to determining coherent noninformative priors, see for
instance (Moreno & Liseo, 2003) and to implementing procedures, see for
instance (Mengersen & Robert, 1996). To the best of our knowledge, there is
hardly any work on frequentist properties of Bayesian estimators such as k̂G

n

and k̂L
n outside the regular case. In the case of mixture models, Ishwaran et

al. (2001) suggest a Bayesian estimator of the mixing distribution when the
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number of components is unknown and bounded. They deduce from this an
estimator of the order based on a sort of penalized likelihood; they obtain
rates of convergence on the mixing distribution but not on the order. Note
that in (Finesso et al., 1996; Gassiat & Boucheron, 2003), asymptotic effi-
ciency results are obtained for estimates that have a Bayesian flavor. They
are indeed based on the so-called Krichevsky-Trofimov mixture, which is a
product of Dirichlet priors in the information theory literature (Csiszár &
Körner, 1981).

Not only our Bayesian approach to order identification yields nonasymp-
totic bounds in place of the usual asymptotic results. In addition, it provides
an answer (at least theoretical) to the delicate question of the choice of the
penalty which is central in all the papers cited above.

Indeed, posterior probabilities or Bayes factors naturally take into account
the uncertainty on the parameter by integrating it out (Jefferys & Berger,
1992).

On the contrary, any bare information criterion chooses the largest model,
since the latter necessarily fits the best the data at hand. A well balanced
penalization term can compensate this drawback. In (Chambaz, 2003), two
minimal penalization requirements yield two asymptotic overestimation be-
haviors (see Theorems 10 and 11). However, both requirements exclude pe-
nalization terms in log n and particularly the Bayesian Information Crite-
rion (BIC) (Schwarz, 1978), that is the maximum likelihood penalized by a
term −1

2D(k) log n (for Θk).
The BIC criterion is well behaved in regular models. Nonetheless, it is

known that it can be inconsistent outside regular models, for instance in
models where the number of parameters increases with n (Stone, 1979). The
role of BIC criterion is preponderant due to its equivalence with marginal
likelihood in regular models (Kass & Raftery, 1995). This equivalence does
not always hold. For instance, Berger et al. (2003) have proved that in
ANOVA models, marginal likelihood behaves like a penalized maximum
likelihood, where the penalization term differs from the BIC one. Also, the
equivalence between marginal likelihood and BIC criterion has not been es-
tablished in mixture models, where the maximum likelihood statistic has
a nonstandard asymptotic distribution. Although we have not sought to
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determine an equivalent of the marginal likelihood, it appears (see Section
2.3), that generally speaking it behaves like a penalized likelihood estimator,
where the penalization is equal to the logarithm of the prior probability of
1/n-Kullback-Leibler neighborhoods of the true density. Perhaps more re-
strictively, it seems that the penalization can be expressed as −1

2D̃(k) log n,
where D̃(k) represents an effective dimension of Θk relative to Θk?.

1.3. Organization of the paper. In Section 2, we state our main results.
Underestimation is addressed in Section 2.2 and overestimation in Sec-
tion 2.3. We deal with Bayesian order identification for mixture models in
Section 2.4. The main proofs are gathered in Section 3 (underestimation),
Section 4 (overestimation) and Section 5 (mixtures). In Section A of the
appendix, a useful family of tests is introduced. Section B is devoted to the
subtle verification of an assumption, by using a variant of the locally conic
parameterization. This section may be of general interest. Finally, entropy
estimates are considered in Section C.

2. Nonasymptotic efficiency bounds.

2.1. Notations and global assumptions. Let us introduce some notations.
For every a, b ∈ R, max(a, b) and min(a, b) are denoted by a∨ b and a∧ b,

respectively. The integral
∫

fdλ of a function f with respect to a measure λ

is written as λf .
Let L1

+(µ) be the subset of all nonnegative functions in L1(µ). For every
f ∈ L1

+(µ)\{0}, the measure Pf is defined by its derivative dPf/dµ = f with
respect to µ. For every f, f ′ ∈ L1

+(µ) such that Pf � Pf ′ and µf = µf ′ = 1,
H(f, f ′) stands for the relative entropy (or Kullback-Leibler divergence)
between Pf and Pf ′ (Dupuis & Ellis, 1997):

H(f, f ′) = Pf

(
log f − log f ′

)
≥ 0,

with equality if and only if f = f ′ Pf -a.s. This definition is extended to
functions f, f ′ ∈ L1

+(µ) \ {0} for which Pf (log f − log f ′) is defined.
Let finally H(f?, f) = H(f) for every f ∈ L1

+(µ) \ {0}.
For every f, f ′ ∈ L1

+(µ), let also

V (f, f ′) = Pf

(
log f − log f ′

)2
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(with convention V (f, f ′) = ∞ if the set {z : log f(z)/f ′(z) = ∞} has
positive Pf measure). It is worth noting that, for every f, f ′ ∈ L1

+(µ) \ {0},

(2) |H(f, f ′)| ≤
[
V (f, f ′) µf

]1/2
.

Besides, the quantity

V (f) = V (f?, f) ∨ V (f, f?) (every f ∈ L1
+(µ))

will play a central role in this study.
For every probability density f ∈ L1(µ), the probability measure Pf⊗n is

denoted Pn
f for abbreviation. The expectation with respect to Pf (resp. Pn

f )
is denoted by Ef (resp. En

f ).
For simplicity of notations, for every f ∈ L1

+(µ) \ {0} and θ, θ′ ∈ Θ∞, the
following shortcuts will be used throughout the paper: H(f, fθ) = H(f, θ),
H(fθ, f) = H(θ, f), H(fθ, fθ′) = H(θ, θ′) and H(fθ) = H(θ). Similarly, for
every f ∈ L1

+(µ) and θ, θ′ ∈ Θ∞: V (f, fθ) = V (f, θ), V (fθ, f) = V (θ, f),
V (fθ, fθ′) = V (θ, θ′) and V (fθ) = V (θ).

For all θ ∈ Θ∞, we introduce the following quantities: `θ = log fθ, `? =
log f?, `n(θ) =

∑n
i=1 `θ(Zi), `?

n =
∑n

i=1 `?(Zi) and, for every k ≥ 1,

Bn(k) = π(k)
∫
Θk

e`n(θ)−`?
ndπk(θ).

Obviously, if k < k′ are two integers, then k̂L
n = k yields Bn(k) ≥ Bn(k + 1)

and k̂G
n = k implies that Bn(k) ≥ Bn(k′).

Basic assumptions. The dimension of Θk is denoted by D(k). The two
following assumptions will be needed throughout this paper.

A1 Compactness. For every k ≥ 1, the parameter set (Θk, d) is a com-
pact metric set.

A2 Parameterization. The parameterization θ 7→ `θ(z) from Θk to R is
continuous for every z ∈ Z and k ≥ 1.

The continuous parameterization assumption A2 is standard in Statistics
(see for instance (van der Vaart, 1998)). Another standard assumption is
the boundedness of the parameter sets. Assumption A1 is slightly stronger.
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2.2. Underestimation efficiency. Let us define, for every k ≥ 1, α, δ > 0
and θ ∈ Θ∞,

H?
k = inf{H(θ) : θ ∈ Θk},

Sk(δ) = {θ ∈ Θk : H(θ) ≤ H?
k + δ/2},

q(θ, α) = P ?(`? − `θ)2eα(`?−`θ) + V (θ?, θ) ∈ [0,∞].

The definition of the order k? yields that H?
k = 0 for all k ≥ k?.

Three main assumptions are required when dealing with underestimation
efficiency.

U-prior. πk{Sk(δ)} > 0 for all δ > 0 and k = 1, . . . , k?.
U-moment. There exist δ0 > 0 and α, M > 0 such that, for all δ ∈ (0, δ0],

sup
1≤k≤k?

sup
θ∈Sk(δ)

q(θ, α) ≤ M.

U-local brackets. For k = 1, . . . , k?− 1, for all θ ∈ Θk, let us define for
every η > 0:

lθ,η = inf{fθ′ : θ′ ∈ Θk, d(θ, θ′) < η} and

uθ,η = sup{fθ′ : θ′ ∈ Θk, d(θ, θ′) < η}.

For every k = 1, . . . , k?− 1 and θ ∈ Θk, there exists ηθ > 0 such that

V (uθ,ηθ
, θ?) + V (θ?, lθ,ηθ

) + V (θ?, uθ,ηθ
) + V (uθ,ηθ

, θ) < ∞.

Theorem 1. Let us assume that assumptions U-prior, U-moment
and U-local brackets are satisfied.

If in addition H?
k > H?

k+1 for k = 1, . . . , k?− 1, then there exist c1, c2 > 0
such that, for every n ≥ 1,

(3) P ?n
{
k̂L

n < k?
}
≤ c1e

−nc2 .

Similarly,

Theorem 2. If assumptions U-prior, U-moment and U-local bra-
ckets are valid, then there exist c′1, c

′
2 > 0 such that, for every n ≥ 1,

(4) P ?n
{
k̂G

n < k?
}
≤ c′1e

−nc′2 .
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Exploring the assumptions. Assumption U-prior is classical in the Ba-
yesian literature. It requires that prior probabilities πk do put some mass
around the Kullback-Leibler projections of θ? upon Θk for all k = 1, . . . , k?.

Assumption U-moment is a condition of existence of some (rather than
any) exponential moment for log ratios of densities (`?−`θ) for θ ranging over
some neighborhoods of the same projections of θ?. Although some kind of
uniformity is required of these exponential moments, we want to emphasize
that assumption U-moment is mild. As explained in (Chambaz, 2003), the
underestimation phenomenon is tightly bound to large deviations of the log-
likelihood process (see Section 4.2 therein). Such large deviations results are
quite easy to obtain under the classical Cramér condition of existence of any
exponential moments. They are much more delicate when existence of some
exponential moments is guaranteed, as it is here or in (Chambaz, 2003).

As for assumption U-local brackets, it is less restrictive than the ex-
istence of l, u ∈ RZ such that (u − l) ∈ L2(u) and l ≤ lθ ≤ u (µ-almost
everywhere for all θ ∈ Θk?), which is also a standard assumption.

Comment. According to inequalities (3) and (4), both underestimation
probabilities decay exponentially with respect to the sample size n. This is
the best achievable rate. Indeed, a variant of the Stein lemma (see Theo-
rem 2.1 in (Bahadur et al., 1980)) guarantees that, if k̃n is an order estimator
which ultimately overestimates it with a probability bounded away from one,
then the underestimation rate is at most exponential (an optimal exponent
is provided), see Lemma 3 in (Chambaz, 2003)).

Exact values of constants c1, c
′
1, c2, c

′
2 can be found in the proofs of The-

orems 1 and 2. We think that they shed some light on the underestimation
phenomenon. Their expressions involve quantities among which: a common
finite exponential moment for log ratios of densities (`? − `θ) (constant α of
assumption U-moment); prior masses of neighborhoods of the projections
of θ? upon Θk for k < k? (constant c in the proof of Theorem 1); covering
numbers (constant Nε in the same proof); differences H?

k −H?
k+1 > 0 for k̂L

n

(or H?
k −H?

k? = H?
k > 0 for k̂G

n ); infima of ratios infθ∈Θk
[H(θ)−H?

k+1]/V (θ)
for k̂L

n (or infθ∈Θk
H(θ)/V (θ) for k̂G

n ).
It is natural to compare c2 and c′2 (known as underestimation error expo-



10 A. CHAMBAZ AND J. ROUSSEAU

nents in the information theory literature) to the constant infθ∈Θk?−1
H(θ, θ?)

which appears in Stein’s lemma. The constants do not match.
We want to emphasize that this does not mean that k̂L

n and k̂G
n are not

optimal. See (Chambaz, 2003) for a discussion about optimality.

2.3. Overestimation efficiency. Given δ > 0 and two functions l ≤ u, the
bracket [l, u] is the set of all functions f with l ≤ f ≤ u. The bracket [l, u]
is a δ-bracket if l, u ∈ L1

+(µ) and

µ(u− l) ≤ δ, P ?(log u− log l)2 ≤ δ2,

Pu−l(log u− log f?)2 ≤ δ log2 δ and Pl(log u− log l)2 ≤ δ log2 δ.

For C a class of functions (or C a set which parameterizes a class of
functions), the δ-entropy with bracketing of C is the logarithm E(C, δ) of the
minimum number of δ-brackets needed to cover C (or the class of functions
that C parameterizes). A set of cardinality exp(E(C, δ)) of δ-brackets which
cover C is called a δ-bracketing net and written as H(C, δ).

Let us state the five main assumptions which are required for controlling
the overestimation efficiency. Let K ≥ k?+ 1 be an integer.

O-comparison. There exist h1 ∈ (0, 1] and C1 ≥ 1/32 such that, for all
k = k?+ 1, . . . ,K, for every θ ∈ Θk, H(θ) ≤ h1 yields

V (θ) ≤ C1H(θ) log2 H(θ).

O-prior. There exist C2 > 0 and dimensional indices D̃(k) > D(k?) for all
k = k?+ 1, . . . ,K such that, for every sequence {δn} that decreases to
zero, for all n ≥ 1,

πk

{
θ ∈ Θk : H(θ) ≤ δn

}
≤ C2 δn

D̃(k)/2.

O-approximation. There exists C3 > 0 such that, for each k = k? +
1, . . . ,K, there exists a sequence of approximating sets Fk

n ⊂ Θk such
that, for all n ≥ 1,

πk

{
(Fk

n)c
}
≤ C3 n−D̃(k)/2.
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O-local brackets. For all k = k? + 1, . . . ,K, for all θ ∈ Θk, there exists
ηθ > 0 such that

V (uθ,ηθ
, θ?) + V (θ?, lθ,ηθ

) + V (θ?, uθ,ηθ
) + V (uθ,ηθ

, θ) < ∞.

O-Laplace. There exist β1, β2 ≥ 0 and L > 0 such that, for all n ≥ 1,

P ?n
{

Bn(k?) <
(
β1(log n)β2nD(k?)/2

)−1
}
≤ L

(log n)3D̃(k?+1)/2+β2

n[D̃(k?+1)−D(k?)]/2
.

Theorem 3. Let us suppose that assumptions O-comparison, O-pri-
or, O-approximation and O-local brackets are satisfied for K = k?+1.
Let us also assume that O-Laplace is valid.

Let n0 be the smallest integer n such that

δ0 = 4max
m≥n

{
m−1 log

[
β1(log m)β2mD(k?)/2

]}
≤ h1 ∧ e−2

2
.

Let δn = δ1n
−1 log3 n for each n ≥ 2, with

(5) δ1 ≥ 512(C1 + 2)[D̃(k?+ 1)−D(k?)] ∨ 128C1D̃(k?+ 1) ∨ log−3 n0.

If in addition, for all integers n ≥ n0 such that δn < δ0 and for every
j ≤ bδ0/δnc,

(6) E
(
Fk?+1

n ∩
[
Sk?+1

(
2(j + 1)δn

)
\ Sk?+1

(
2jδn

)]
,
jδn

4

)
≤

njδn

256(C1 + 2) log2(jδn)
,

then there exists c3 > 0 (which depends on C2, C3, π(k?+ 1), D̃(k?+ 1) and
δ1) such that, for all n ≥ n0,

(7) P ?n
{
k̂L

n > k?
}
≤ c3

(log n)3D̃(k?+1)/2+β2

n[D̃(k?+1)−D(k?)]/2
.

Here, the largest integer which is strictly smaller than u ∈ R is denoted
by buc. Similarly,
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Theorem 4. Let kmax be a prior bound on k?. Let us suppose that
assumptions O-comparison, O-prior, O-approximation and O-local
brackets are satisfied for K = kmax. Let us also assume that O-Laplace
is valid.

Let n0 be the smallest integer n such that

δ0 = 4max
m≥n

{
m−1 log

[
β1(log m)β2mD(k?)/2

]}
≤ h1 ∧ e−2

2
.

Let us set for every k = k? + 1, . . . , kmax and for all n ≥ 2, δk,n =
δk,1n

−1 log3 n, with

δk,1 ≥ 512(C1 + 2)[D̃(k)−D(k?)] ∨ 128C1D̃(k) ∨ log−3 n0.

If in addition, for every k = k?+ 1, . . . , kmax, for all integers n ≥ n0 such
that δk,n < δ0 and for every j ≤ bδ0/δk,nc,

(8) E
(
Fk

n ∩ Sk

(
2(j + 1)δk,n

)
\ Fk

n ∩ Sk

(
2jδk,n

)
,
jδk,n

4

)
≤

njδk,n

256(C1 + 2) log2(jδk,n)
,

then there exists c′3 > 0 such that, for all n ≥ n0,

(9) P ?n
{
k̂L

n > k?
}
≤ c′3

(log n)3maxk D̃(k)/2+β2

nmink[D̃(k)−D(k?)]/2
.

In the formula above, index k in the maximum and minimum ranges between
k?+ 1 and kmax.

Exploring the assumptions. Proofs of Theorems 3 and 4 rely on tests
of P ? versus complements {Pθ : θ ∈ Θk, H(θ) ≥ ε} of Kullback-Leibler
balls around P ? for k > k?. By doing this, we follow the paradigm re-
cently presented by Ghosal et al. (2000) in the spirit of earlier works by
Schwartz (1965) and Le Cam (1973). Assumption O-comparison and the
entropy conditions stated in inequalities (6) and (8) are at the core of the
construction of those tests. Such a comparison of V (θ) and H(θ) is proved
in (Wong & Shen, 1995) under mild conditions. The entropy is known to
quantify the complexity of a model. Thus, the related conditions warrant
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that (a critical region of) Θk (k = k?+1 for k̂L
n and each k = k?+1, . . . , kmax

for k̂G
n ) is not too large.

Besides, the reader should not pay too much attention to the various
multiples of 2 that appear in inequalities (5), (6) and (8). They are by-
products of the repeated use of inequality (a+ b)2 ≤ 2(a2 + b2) (all a, b ∈ R)
in the proofs, and could be replaced by smaller numbers at extra calculations
cost.

Assumption O-prior is concerned with the decay to zero of the prior
mass of shrinking Kullback-Leibler neighborhoods of θ?. Verifying that this
assumption holds in the mixture setting is a demanding task (more on this
in Section 2.4). Note that dimensional indices D̃(k) (k > k?) are introduced,
which might be different from the usual dimensions D(k). They should be
understood as effective dimensions of Θk relative to Θk?. In models of mix-
tures of gγ densities (γ ∈ Γ ⊂ Rd) for instance, D̃(k?+ 1) = D(k?) + 1 while
D(k?+ 1) = D(k?) + (d + 1).

Assumption O-approximation is standard in Bayesian Statistics. It can
be useful to get rid of difficulties which are not relevant to the main problem,
see Section 5.2 for the mixture example.

Assumption O-local brackets is similar to assumption U-local brack-
ets.

Finally, assumption O-Laplace is milder than the existence of a Laplace
expansion of the marginal likelihood(which holds in regular models). As
explained in (Chambaz, 2003), the overestimation phenomenon is tightly
bound to moderate deviations of the log-likelihood process (see Section 4.3
therein). The bound stated in assumption O-Laplace plays here the role
that moderate deviations play in (Chambaz, 2003).

Comment. The upper bounds we get in the proofs are actually tighter
than the one stated in the theorems. Each time, we actually chose the largest
of several terms to make the formulas more readable. Besides, the possibility
in Theorem 3 to tune the value of δ1 makes it easier to apply the theorem
to the mixture model example. Naturally, the best value is given by the
right-hand side of inequality (5) and the larger δ1, the larger c3 and the less
accurate the overestimation bound.
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Furthermore, assuming the existence of a bound kmax on k?when studying
k̂G

n is convenient but not mandatory. It is possible to adapt the scheme of
proof with a prior bound on k? that increases as a function of the sample
size. We omit the details of the adaptation.

According to inequalities (7) and (9), both overestimation probabilities
decay as a negative power of the sample size n (up to a power of a log n

factor). This is in stark contrast with the exponential rate exhibited for
underestimation probabilities in Theorems 1 and 2. It is however another
consequence of the Stein lemma that, if k̃n is an order estimator which ul-
timately underestimates it with a probability bounded away from one, then
the overestimation rate is necessarily slower than exponential, see Lemma 3
in (Chambaz, 2003). We want to emphasize that the overestimation rates
obtained in Theorems 3 and 4 depend on intrinsic quantities (such as di-
mensions D(k) and D̃(k), power β2 from assumption O-Laplace). On the
contrary, the rates obtained in Theorems 10 and 11 of (Chambaz, 2003)
depend directly on the choice of a penalty term.

2.4. Application to mixture models. This section is devoted to the partic-
ular case of mixture models. Because order identification in mixture models
is notoriously difficult, we think that this section illustrates the generality
of our results. We prove that Theorems 1 and 3 apply here with

D̃(k?+ 1) = D(k?) + 1,

yielding an overestimation rate of order O((log n)c/
√

n) for some positive c.
Let Γ be a compact subset of Rd. Let us denote by | · |1 and | · |2 the `1

and `2 norms on Rd.
For all γ ∈ Γ, let gγ be a density. In this section, mixtures of gγ ’s are

studied. Formally, Θ1 = Γ and for every k ≥ 1,

Θk =

θ = (p,γ) : p = (p1, . . . , pk−1) ∈ Rk−1
+ ,

k−1∑
j=1

pj ≤ 1,γ ∈ Γk

 .

We point out that, obviously, D(k) = k(d + 1)− 1 for each k ≥ 1. Besides,
assumptions A1 (compactness of the parameter sets) and A2 (continuous
parameterization) are satisfied.
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Now, let us state six assumptions. The first, second and third order dif-
ferentiation operators are denoted by ∇, D2 and D3, and | · | stands for any
norm on the space of second and third order derivatives (upon which all
norms are equivalent).

M-prior Prior probabilities πk (all k ≥ 1) write as

dπk(θ) = πp
k (p) πγ

k (γ) dpdγ

for all θ = (p,γ) ∈ Θk. For every k ≥ 1, πk is continuously dif-
ferentiable over Θk. Here, πp

k is probability density on the simplex.
Moreover, if

∆ =
{
g = (g1, . . . , gk) ∈ Γk : min

j<j′
|gj − gj′ |2 = 0

}
,

then πk is bounded away from zero on the complementary of an open
neighborhood of ∆. Furthermore, when Γ is one-dimensional (d = 1),
for all γ in that open neighborhood of ∆,

πγ
k (γ) ∝

∏
j<j′

|γj − γj′ |2.

M-local brackets For all γ ∈ Γ, let us define for all η > 0:

g
γ,η

= inf{gγ′ : |γ − γ′|1 ≤ η} and gγ,η = sup{gγ′ : |γ − γ′|1 ≤ η}.

There exist η1,M > 0 such that, for every γ1, γ2 ∈ Γ, there exists
η2 > 0 such that

Pgγ1,η1
−g

γ1,η1

(1 + log2 gγ2) ≤ Mη1,

Pgγ2
(log gγ1,η1

− log g
γ1,η1

)2 ≤ Mη2
1,

Pgγ1,η1
−g

γ1,η1

log2 gγ1,η1
≤ Mη1 log2 η1 and

Pgγ1,η1
log2 gγ1,η1

+ Pgγ1,η1
log2 gγ2+

Pgγ2
log2 gγ1,η1

+ Pgγ2
log2 g

γ1,η1
≤ M.
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M-moment For every γ1, γ2 ∈ Γ, there exists α > 0 such that

sup
γ∈Γ

Pγ1

(
gγ2

gγ

)α

< ∞.

M-regularity The parameterization γ 7→ gγ(z) is twice continuously differ-
entiable for µ-almost every z ∈ Z. Moreover, the set {|∇gγ |1, |D2gγ | :
γ ∈ Γ} is bounded.
The parameterization γ 7→ log gγ(z) is three times continuously dif-
ferentiable for µ-almost every z ∈ Z. Besides, for all γ1, γ2 ∈ Γ, there
exists η > 0 for which

Pγ1 |D2 log gγ2 |2 < ∞,

Pγ1 sup
|γ−γ2|1≤η

|D3 log gγ |2 < ∞.

M-Fisher For every γ ∈ Γ, the Fisher information matrix I(γ) is positive
definite.

M-linear independence Let I = {(r, s) : 1 ≤ r ≤ s ≤ d}. There exist a
nonempty subset A of I and two constants η0, a > 0 such that, for
every k ≥ 2, for every k-tuple (γ1, . . . , γk) of pairwise distinct elements
of Γ,

(a) the functions

gγj , (∇gγj )l (for j = 1, . . . , k and l = 1, . . . , d)

are linearly independent;

(b) for every j = 1, . . . , k, the functions

gγj , (∇gγj )l, (D2gγj )rs (for l = 1, . . . , d and all (r, s) ∈ A)

are linearly independent;

(c) for every j = 1, . . . , k and each (r, s) ∈ I \ A, there exist real
numbers λ0j

rs, . . . , λ
dj
rs such that

(D2gγj )rs = λ0j
rsgγj +

d∑
l=1

λlj
rs(∇gγj )l;



BOUNDS FOR BAYESIAN ORDER IDENTIFICATION 17

(d) for all η ≤ η0 and all u, v ∈ Rd, for every j = 1, . . . , k, if

∑
(r,s)∈A

(|urus|+ |vrvs|) +

∣∣∣∣∣∣
∑

(r,s) 6∈A
λ0j

rs(urus + vrvs)

∣∣∣∣∣∣ ≤ η,

then |u|22 + |v|22 ≤ aη.

These assumptions suffice to guarantee that the conclusions of the theo-
rem below are valid.

Theorem 5. Let us assume that assumptions M-prior, M-local bra-
ckets, M-moment, M-regularity, M-Fisher and M-linear indepen-
dence hold. Then for all n ≥ n0,

P ?
{
k̂L

n < k?
}

≤ c1e
−nc2 ,(10)

P ?
{
k̂L

n > k?
}

≤ c3
(log n)[3(d+1)k?/2]

√
n

.(11)

The positive constants c1, c2 are defined in Theorem 1. Constant c3 corre-
sponds to a convenient choice of δ1 (both are defined in Theorem 3).

As an illustration, the previous theorem applies to the case of location-
scale mixtures of Gaussian distributions.

Corollary 1. Set A,B > 0 and Γ =
{
(µ, σ2) ∈ [−A,A]× [ 1

B , B]
}
. For

every γ = (µ, σ2) ∈ Γ, let us denote by gγ the Gaussian density with mean
µ and variance σ2.

Inequalities (10) and (11) with d = 2 hold for all n ≥ n0 (as defined in
Theorem 3).

Comments. We emphasize that all assumptions involve the mixed den-
sities gγ (γ ∈ Γ) rather than the resulting mixture densities fθ (θ ∈ Θ∞). In
assumption M-prior, the required form of prior distributions πk is specified
for all k ≥ 1. Assumption M-local brackets states conditions for U-local
brackets and O-local brackets to hold. Assumption M-moment is also a
condition that guarantees the validity of assumption U-moment. Assump-
tions M-regularity and M-Fisher are common.
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On the contrary, assumption M-linear independence is more original.
It draws its inspiration from a similar assumption that appears in (Dacunha-
Castelle & Gassiat, 1997b; Dacunha-Castelle & Gassiat, 1999), where the
locally conic parameterization is introduced. Indeed, proving that assump-
tion O-prior holds in the mixture setting relies on a variant of this method
(see Proposition 1 in Section 5.2 and its proof in Section B). It is quite
involved and we think our method may be of general interest.

Assumption M-linear independence is less stringent than its parent
in (Dacunha-Castelle & Gassiat, 1997b; Dacunha-Castelle & Gassiat, 1999).
This is due to the introduction of the subset of indices A, which implicitly
equals I in (Dacunha-Castelle & Gassiat, 1997b; Dacunha-Castelle & Gas-
siat, 1999). Property (d) guarantees that enough indices (r, s) ∈ I (namely,
those from A) are involved in property (b), when property (c) deals with
the remaining indices.

When A is set to I, then assumption M-linear independence is not
verified in the setting of Corollary 1. Luckily, it is for A = I \ {(1, 1)}.
Indeed, Properties (a) and (b) are obviously satisfied. Besides, for any γ ∈ Γ,
(D2gγ)11 is a linear combination of gγ and (∇gγ)2, with coefficients bounded
away from zero independently of γ. Therefore, Properties (c) and (d) also
hold.

3. Underestimation proofs. Theorem 1 relies on the following lower
bound for Bn(k).

Lemma 1. Let us assume that assumptions U-prior and U-moment
of Theorem 1 are satisfied. Let us set k ≤ k? and some positive δ ≤ αM ∧δ0.

With probability at least 1− 2 exp
{
−nδ2/8M

}
,

Bn(k) ≥ π(k)πk{Sk(δ)}
2

e−n[H?
k+δ].

The proof of this lemma is based on a comparison of `n(θ) − `?
n for θ ∈

Sk(δ) to its expectation E?n[`n(θ)− `?
n] = −nH(θ) ≥ −nH?

k − nδ/2.

Proof. Let us set 1 ≤ k ≤ k?, 0 < δ ≤ αM ∧ δ0 and define

B = {(θ, Zn) ∈ Θk ×Zn : `n(θ)− `?
n ≥ −n[H?

k + δ]}.
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Then

Bn(k) ≥ π(k)
∫

Sk(δ)
e`n(θ)−`?

ndπk(θ)

≥ π(k)
∫

Sk(δ)∩B
e−n[H?

k+δ]dπk(θ)

≥ π(k)e−n[H?
k+δ]

(
πk{Sk(δ)} − πk{Sk(δ) ∩Bc}

)
.

The goal is therefore to provide a convenient lower bound for the factor
between parentheses above.

The Markov inequality and Fubini theorem yield

(12) P ?n
{

πk{Sk(δ) ∩Bc} ≥ πk{Sk(δ)}
2

}
≤
∫

Sk(δ)

2P ?n{Bc}
πk{Sk(δ)}

dπk(θ).

Set s ∈ [0, α] and θ ∈ Sk(δ) and let ϕθ(t) = P ?et(`?−`θ) (every t ∈ R). By
virtue of U-moment, function ϕθ is C∞ over [0, α] and ϕ′′θ is bounded by
q(θ, α) ≤ M on that interval. Moreover, a Taylor expansion implies that

ϕθ(s) = 1 + sH(θ) + s2
∫ 1

0
(1− t)ϕ′′θ(st)dt ≤ 1 + sH(θ) +

1
2

s2M.

Applying the Chernoff bounding method and inequality log t ≤ t−1 (t > 0)
implies that

E?1l{θ ∈ Sk(δ) ∩Bc} = P ?n{`?
n − `n(θ) > n[H?

k + δ]}

≤ exp {−ns[H?
k + δ] + n log ϕθ(s)}

≤ exp
{
−ns[H?

k + δ −H(θ)] + ns2M/2
}

.

Let us finally choose s = [H?
k + δ −H(θ)]/M , then emphasize that:

• since θ ∈ Sk(δ), s ≥ δ/2 ≥ 0;
• since H?

k ≤ H(θ) and δ ≤ αM , s ≤ α;
• since θ ∈ Sk(δ), this value of s yields a bound which is less than

exp
{
−nδ2/8M

}
.

Thus, the last statement above and (12) imply the lemma.

The proof of Theorem 1 is now at hand. It will particularly rely on nets
of upper bounds for the fθ (θ ∈ Θk, k = 1, . . . , k?− 1) whose construction
is detailed below. Similar nets have been first introduced in a context of
nonparametric Bayesian estimation in (Barron et al., 1999).
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Proof of Theorem 1. Since P ?n{k̂L
n < k?} =

∑k?

k=1 P ?n{k̂L
n = k}, it

is sufficient to study P ?n{k̂L
n = k} for k arbitrarily chosen between 1 and

k?− 1.
Let δ < αM ∧ δ0 be a small positive number and c = 1

2π(k)πk{Sk(δ)} ∈
(0, 1]. Let us define for convenience ε = 2δ/[H?

k−H?
k+1] > 0. Lemma 1 yields

P ?n
{
k̂L

n = k
}

≤ P ?n {Bn(k) ≥ Bn(k + 1)}

≤ 2e−n δ2

8M + P ?n
{

Bn(k) ≥ ce−n[H?
k+1+δ]

}
.(13)

Let us construct a net of upper bounds for the fθ (θ ∈ Θk) in order to
control the rightmost term of (13). Let θ, θ′ ∈ Θk.

Because V (θ?, uθ,ηθ
) + V (θ?, lθ,ηθ

) is finite, the dominated convergence
theorem ensures that, first H(θ′) tends to H(θ) when θ′ goes to θ, second
H(uθ,η) tends to H(θ) when η goes to zero. Therefore, for some η′θ < ηθ, for
all η < η′θ, d(θ, θ′) < η yields

(14) H(uθ,η) ≤ H(θ′) ≤ H(uθ,η) + δ.

Similarly, because V (θ?, uθ,ηθ
) + V (θ?, lθ,ηθ

) is finite, first V (θ?, θ′) tends
to V (θ?, θ) > 0 when θ′ goes to θ and second V (θ?, uθ,η) tends to V (θ?, θ)
when η goes to zero. Therefore, for some η′′θ < η′θ, for all η < η′′θ , d(θ, θ′) < η

yields

(15) V (θ?, uθ,η) ≤ (1 + ε)V (θ?, θ′).

Finally, by using the same arguments as before, there exists ηo
θ < η′′θ , such

that for all η < ηo
θ , d(θ, θ′) < η yields

(16) V (uθ,η, θ
?) ≤ (1 + ε)V (θ′, θ?).

In summary, for every θ ∈ Θk, there exists ηo
θ > 0 such that (14), (15), (16)

hold for η = ηo
θ as soon as d(θ, θ′) < ηo

θ . Let us define B(θ, ηo
θ) = {θ′ ∈ Θk :

d(θ, θ′) < ηo
θ} for all θ ∈ Θk. The collection of open sets {B(θ, ηo

θ)}θ∈Θk
covers

Θk, which is a compact set (by virtue of A1). So, there exist θ1, . . . , θNε ∈ Θk
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such that Θk = ∪Nε
j=1B(θj , η

o
θj

). For j = 1, . . . , Nε, let uj = uθj ,ηo
θj

,

T̃kj =
{
θ ∈ Θk : `θ ≤ log uj , H(θ) ≤ H(uj) + δ,

V (θ?, uj) ≤ (1 + ε)V (θ?, θ),

V (uj , θ
?) ≤ (1 + ε)V (θ, θ?)

}
.

then Tk1 = T̃k1 and Tkj = T̃kj ∩ (∪j′<j T̃kj′)c (j = 2, . . . , Nε). The family
{Tk1, . . . , TkNε} is a partition of Θk.

Accordingly, with `n,uj =
∑n

i=1 log uj(Zi) (j = 1, . . . , Nε), the rightmost
term of (13) satisfies:

P ?n
{

Bn(k) ≥ ce−n[H?
k+1+δ]

}
= P ?n


Nε∑
j=1

∫
Tkj

e`n(θ)−`?
ndπk(θ) ≥ c e−n[H?

k+1+δ]


≤

Nε∑
j=1

P ?n

{
e`n,uj−`?

n

∫
Tkj

e`n(θ)−`n,uj dπk(θ) ≥ c e−n[H?
k+1+δ]πk+1{Tkj}

}

≤
Nε∑
j=1

P ?n
{
`n,uj − `?

n ≥ −n[H?
k+1 + δ] + log c

}

≤
Nε∑
j=1

P ?n
{
`n,uj − `?

n + nH(uj) ≥ nρj + log c
}

for ρj = [H(uj)−H?
k+1−δ]. Let us point out that ρj ≥ (1−ε)[H(θj)−H?

k+1] >

0 for j = 1, . . . , Nε by construction. Applying (30) of Proposition 3 (whose
assumptions are satisfied) finally implies that

P ?n
{

Bn(k) ≥ ce−n[H?
k+1+δ]

}
≤

Nε

c
exp

{
−n

(1− ε)2

4(1 + ε)
[H?

k −H?
k+1]min

(
inf

θ∈Θk

H(θ)−H?
k+1

V (θ)
,
2(1 + ε)
1− ε

)}
.

This bound and (13) conclude the proof, since Nε does not depend on n.

Remark 1. The proof of Theorem 2 is a straightforward adaptation of
the preceding one. It relies on the bound

P ?n
{
k̂G

n < k?
}

=
k?∑

k=1

P ?n
{
k̂G

n = k
}
≤

k?∑
k=1

P ?n {Bn(k) ≥ Bn(k?)} .
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Let us emphasize that the quantity H?
k+1 which arise when dealing with

P ?n{Bn(k) ≥ Bn(k?)} is replaced by H?
k? = 0 for all k = 1, . . . , k?− 1.

It is worth pointing out that, as far as underestimation is concerned, the
posterior mode k̂G

n does not require that the models be nested, whereas k̂L
n

needs that property.

4. Overestimation proofs.

Proof of Theorem 3. Set

δ0 = 4 max
n≥n0

{n−1 log
[
β1(log n)β2nD(k?+1)/2

]
},

where n0 is chosen so that 2δ0 be smaller than the constant h1 of assump-
tion O-comparison and e−2 (note that function u 7→ u log2 u increases on
interval (0, e−2)). Obviously, for every n ≥ n0,

− log
(
β1(log n)β2nD(k?)/2

)
≥ −n

δ0

4
.

By definition of k̂L
n ,

(17) P ?n
{
k̂L

n > k?
}
≤ P ?n{Bn(k?) < Bn(k?+ 1)} ≤

P ?n
{

Bn(k?) ≤
(
β1(log n)β2nD(k?)/2

)−1
}

+

P ?n
{

Bn(k?+ 1) ≥
(
β1(log n)β2nD(k?)/2

)−1
}

.

Thus, the left-hand side term is bounded as described in O-Laplace. Let
us focus on the right-hand side term.

To this end, the parameter set Θk?+1 is decomposed into the union of
the following three disjoint sets: let us set δ1 satisfying inequality (5) of
Theorem 3 and δn = δ1n

−1 log3 n,

Sk?+1(2δ0)c = {θ ∈ Θk?+1 : H(θ) > δ0},

Sn = Sk?+1(2δ0) ∩ Sk?+1(2δn)c = {θ ∈ Θk?+1 : δn < H(θ) ≤ δ0},

Sk?+1(2δn) = {θ ∈ Θk?+1 : H(θ) ≤ δn}.
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Note that Sn can be empty. According to this decomposition, the quantity
of interest is bounded by the sum of three terms (of which the second is zero
when Sn is empty): if we define wn = 3π(k?+ 1)β1(log n)β2nD(k?)/2, then

P ?n
{

Bn(k?+ 1) ≥
(
β1(log n)β2nD(k?)/2

)−1
}
≤

P ?n

{∫
Sk?+1(2δ0)c

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/wn

}
+

P ?n
{∫

Sn

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/wn

}
+

P ?n

{∫
Sk?+1(2δn)

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/wn

}
.(18)

The Markov inequality, Fubini theorem and O-prior yield the follow-
ing bound for the third term of (18) denoted by pn,3 (a similar argument
appeared in the proof of Lemma 1):

pn,3 ≤ wn πk?+1 {Sk?+1(2δn)}

≤ C2wn δn
D̃(k?+1)/2

≤ 3β1C2π(k?+ 1)δ1
D̃(k?+1)/2 (log n)3D̃(k?+1)/2+β2

n[D̃(k?+1)−D(k?)]/2
.(19)

The first term of (18), denoted by pn,1, is alike the quantity P ?n{Bn(k) ≥
ce−n[H?

k+1+δ]} that has already been bounded in the proof of Theorem 1.
Indeed, the infima for θ ∈ Sk?+1(2δ0)c of H(θ), V (θ?, θ) and V (θ, θ?) are
positive (obviously, if inf V (θ?, θ) or inf V (θ, θ?) were not, then θ? would
belong to Sk?+1(2δ0)c). It is readily seen that the scheme of proof of Theo-
rem 1 also applies here. Thus, there exist a finite number Nδ0 of functions
u1, . . . , uNδ0

and c1, . . . , cNδ0
∈ (0, 1] such that infj H(uj) ≥ δ0/2 and (with

notations `n,uj =
∑n

i=1 log uj(Zi))

pn,1 ≤
Nδ0∑
j=1

P ?n
{
`n,uj − `?

n + nH(uj) ≥ nH(uj)−

log
(
β1(log n)β2n−D(k?)/2

)
+ log cj

}
≤

Nδ0∑
j=1

P ?n
{

`n,uj − `?
n + nH(uj) ≥ n

δ0

4
+ log cj

}
.
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By virtue of (30) in Proposition 3 (whose assumptions are satisfied) and
some simple calculations, there finally exist c4, c5 > 0 which do not depend
on n and guarantee that

(20) pn,1 ≤ c4e
−nc5 .

Bounding the second term of (18), which is denoted by pn,2, is the most
demanding step of this proof. Of course, this study is required only when
δn < δ0.

Let ∆n = bδ0/δnc be the largest integer strictly smaller than δ0/δn. For
all j = 1, . . . ,∆n, let us introduce Sn,j = {θ ∈ Fn ∩ Sn : jδn < H(θ) ≤
(j + 1)δn}. Let us choose [li, ui] ∈ H(Sn,j , jδn/4), define ui = ui/µui and
introduce the local tests

φi,j = 1l
{

`n,ui − `?
n + nH(ui) ≥ n

jδn

2

}
.

In the perspective of Proposition 3, φi,j = φn,f,ρ,c for f = ui, ρ = jδn/2 and
c = 1.

• Set θ ∈ Sn,j such that fθ ∈ [li, ui], g = fθ and ρ′ = log µui. Then
µg = 1, V (g) = V (θ) > 0 and

H(ui)−(ρ+ρ′) = P ?(`?− log ui)− log µui−ρ = P ?(`?− log ui)−ρ =

H(θ)+P ?(`θ− log ui)−ρ ≥ H(θ)−P ?(log ui− log li)−ρ ≥ jδn

4
> 0.

Thus, according to (31) of Proposition 3,

En
θ (1− φi,j) ≤ exp

{
−n[H(ui)− (ρ + ρ′)]

2

(
H(ui)− (ρ + ρ′)

V (θ)
∧ 1
)}

.

Besides, since

H(θ) ≤ (j + 1)δn ≤ δ0 + δn ≤ 2δ0 ≤ h1 ∨ e−2,

then log2 δn ≥ log2(jδn) ≥ log2((j +1)δn) and assumption O-compa-
rison ensures that

V (θ) ≤ C1H(θ) log2 H(θ)

≤ C1(j + 1)δn log2((j + 1)δn)

≤ C1(j + 1)δn log2(jδn).
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Consequently, using 8C1 log2(jδn) ≥ 1 (this justifies the condition
C1 ≥ 1/32 in O-comparison) and j/(j + 1) ≥ 1/2 implies that the
following bound holds:

(21) En
θ (1− φi,j) ≤ exp

{
− njδn

64C1 log2(jδn)

}
.

• According to (30) of Proposition 3, (the assumptions of the proposition
are satisfied),

E?nφi,j ≤ exp
{
−njδn

4

(
jδn

4V (ui)
∧ 1
)}

.

The point is now to bound V (ui) = V (θ?, ui) ∨ V (ui, θ
?). Let again

θ ∈ Sn,j be such that fθ ∈ [li, ui]. First, using repeatedly (a + b)2 ≤
2(a2 + b2) (a, b ∈ R), the definition of a δ-bracket and assumption
O-comparison yields

V (θ?, ui) = P ?(log f? − log ui + log µui)2

≤ 2P ?(log f? − log ui)2 + 2 log2 µui

≤ 4P ?(log f? − log fθ)2 + 4P ?(log fθ − log ui)2 +

2(µ(ui − li))2

≤ 4V (θ) + 4P ?(log ui − log li)2 + 2(µ(ui − li))2

≤ 2(2C1 + 3)δn log2((j + 1)δn).(22)

Second, similar arguments imply that

V (ui, θ
?) = Pui(log ui − log f? − log µui)2

≤ 2V (ui, θ
?) + 2 log2 µui

≤ 2Pli(log ui − log f?)2 + 2Pui−li(log ui − log f?)2 +

2(µ(ui − li))2

and the first term in the line above is bounded by

4Pli(log ui − log fθ)2 + 4Pli(log fθ − log f?)2 ≤

4Pli(log ui − log li)2 + 4Pθ(log fθ − log f?)2 ≤

4V (θ) + 4Pli(log ui − log li)2.
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Thus, combining the two previous bounds finally yields

V (ui, θ
?) ≤ 4(C1 + 2)(j + 1)δn log2((j + 1)δn)

≤ 4(C1 + 2)(j + 1)δn log2(jδn).(23)

A bound for V (ui) is derived from (22) and (23), which yields in turn

(24) E?nφi,j ≤ exp

{
− njδn

128(C1 + 2) log2(jδn)

}
.

Now, let us define the global test

φn = max{φi,j : i ≤ exp{E(Sn,j , jδn/4)}, j ≤ ∆n}.

• Of course, for every j ≤ ∆n and θ ∈ Sn,j , En
θ (1− φn) ≤ En

θ (1− φ1,j),
hence Inequality (21) implies that

(25) En
θ (1− φn) ≤ exp

{
− njδn

64C1 log2(jδn)

}
.

• Furthermore, bounding φn by the sum of all φi,j , invoking (24) and
assumption (6) in Theorem 3 yield

E?nφn ≤
∆n∑
j=1

exp

{
E(Sn,j , jδn/4)− njδn

128(C1 + 2) log2(jδn)

}

≤
∆n∑
j=1

exp

{
− njδn

256(C1 + 2) log2(jδn)

}

≤
∆n∑
j=1

exp

{
− njδn

256(C1 + 2) log2 δn

}
.(26)

Let us set ρn = nδn/256(C1 + 2) log2 δn. Inequality (26) writes as

E?nφn ≤
∆n∑
j=1

exp{−jρn} ≤
exp{−ρn}

1− exp{−ρn}
.

Now, the choice of δ1 ≥ 512(C1 + 2)[D̃(k? + 1) − D(k?)] ∨ log−3(n0)
yields log2 δn ≤ 4 log2 n, hence ρn ≥ 1

2 [D̃(k? + 1) − D(k?)] log n. The
final bound for E?nφn is thus

(27) E?nφn ≤
1

n[D̃(k?+1)−D(k?)]/2 − 1
.
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Bounding term pn,2 is now at hand. By virtue of a simple decomposition,

pn,2 = E?n
(
φn + (1− φn)

)
1l
{∫

Sn

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/wn

}
≤ E?nφn + P ?n

{∫
Sn∩Fc

n

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/2wn

}
+

E?n(1− φn)1l
{∫

Sn∩Fn

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/2wn

}
.

The first term of the right-hand side expression above is bounded according
to (27). Moreover, applying the Markov inequality and Fubini theorem to
the second term ensures that

P ?n

{∫
Sn∩Fc

n

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/2wn

}
≤ 2wnπk?+1{Fc

n}

≤ 6β1C3
(log n)β2

n[D̃(k?+1)−D(k?)]/2
.(28)

As for the third term, by invoking again the Markov inequality and Fubini
theorem, then inequality (25), it satisfies

E?n(1− φn)1l
{∫

Sn∩Fn

e`n(θ)−`?
ndπk?+1(θ) ≥ 1/2wn

}
≤ 2wn

∫
Sn∩Fn

En
θ (1− φn)dπk?+1(θ)

≤ 2wn

∆n∑
j=1

∫
Sn,j

En
θ (1− φn)dπk?+1(θ)

≤ 2wn

∆n∑
j=1

exp

{
− njδn

64C1 log2(jδn)

}
πk?+1{Sn,j}

≤ 2wn exp
{
− nδn

64C1 log2 δn

}
≤ 2wn exp

{
− δ1

256C1
log n

}
≤ 6 β1π(k?+ 1)

(log n)β2

n[D̃(k?+1)−D(k?)]/2
.(29)

Combining inequalities (27), (28) and (29) yields

pn,2 ≤
1

n[D̃(k?+1)−D(k?)]/2 − 1
+ 6β1

(
π(k?+ 1) + C3

) (log n)β2

n[D̃(k?+1)−D(k?)]/2
.



28 A. CHAMBAZ AND J. ROUSSEAU

Inequalities (19), (20) and the one above conclude the proof.

Remark 2. The proof of Theorem 4 is very similar to the proof of The-
orem 3. Indeed, by virtue of the union bound,

P ?n
{
k̂G

n > k?
}

≤
kmax∑

k=k?+1

P ?n{Bn(k) ≥ Bn(k?)}

≤ P ?n
{

Bn(k?) ≤
(
β1(log n)β2nD(k?)/2

)}
+

kmax∑
k=k?+1

P ?n
{

Bn(k) ≥
(
β1(log n)β2nD(k?)/2

)}
,

so the parallel with the previous proof is obvious.

5. Mixtures proofs.

5.1. Mixtures proofs: underestimation. This section is dedicated to the
proof of Inequality (10) in Theorem 5, which asserts that the underestima-
tion error exponent is positive. It is a consequence of Theorem 1. Let us
verify that its assumptions are satisfied.

In the sequel, we shall use the notation f? = fθ? , θ? = (p?,γ?), p? =
(p?

1, . . . , p
?
k?−1) and p?

k? = 1−
∑k?−1

j=1 p?
j . In greater generality, if θ = (p,γ) ∈

Θk, then 1−
∑k−1

j=1 pj will be denoted by pk.
In the first place, let us point out a convenient property satisfied by general

mixtures (see Lemma 3 in (Leroux, 1992)):

Lemma 2. Let F be a mixing distribution on Γ. Let P0 have density
p0 =

∫
gγdF (γ). For any k ≥ 1, P0 6∈ {Pθ : θ ∈ Θk} yields H?

k > H?
k+1.

Lemma 2 particularly implies that the additional condition in Theorem
1 is satisfied in the mixture models. Some useful results due to assumption
M-local brackets now follow.

Lemma 3. In the setting of the mixture model, assumption U-local
brackets is valid. Besides, function θ 7→ H(θ) is continuous on the in-
terior int(Θk) of Θk for all k ≥ 1. Finally, θ 7→ V (θ?, θ) is continuous on
Θk for all k ≥ 1.
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Proof. The first part of Lemma 3 is a straightforward consequence of
assumption M-local brackets.

Let us set k ≥ 1 and θo ∈ int(Θk). Let us fix some positive η1 ≤
minj≤k po

j/2. Let θ = (p,γ) satisfy |pj − po
j | ≤ η1 and |γj − γo

j |1 ≤ η1

for all j ≤ k. Since P ?`? is finite, |H(θ) − H(θo)| = |P ?(`θo − `θ)|. Now,
simple calculation yield

|`θo − `θ| ≤ log

 ∑k
j=1 po

jgγo
j∑k

j=1(po
j − η1)gγo

j,η1

∨

∑k
j=1(p

o
j + η1)gγo

j,η1∑k
j=1 po

jgγo
j


≤ max

j≤k
log

 po
jgγo

j

(po
j − η1)gγo

j,η1

∨
(po

j + η1)gγo
j,η1

po
jgγo

j


≤ log 2 + max

j≤k
log(gγo

j
/g

γo
j ,η1

) + max
j≤k

log(gγo
j ,η1

/gγo
j
).

So, the second part of Lemma 3 is a consequence of the dominated conver-
gence theorem.

Finally, let θo = (po,γo) ∈ Θk and η2 > 0. Let θ = (p,γ) satisfy |pj−po
j | ≤

η2 and |γj − γo
j |1 ≤ η2 for every j ≤ k. A crude bound for `2

θ writes as

`2
θ ≤ log2

(
k max

j≤k
gγo

j ,η2

)
+ log2

(
1
k

min
j≤k

g
γo

j ,η2

)

≤
k∑

j=1

log2
(
kgγo

j ,η2

)
+

k∑
j=1

log2
(

1
k

min
j≤k

g
γo

j ,η2

)

By invoking assumption M-local brackets, η2 can be chosen small enough
so that each term in the right-hand side of the previous display (which do
not depend on θ) belongs to L1(P ?). Because `?2 ∈ L1(P ?), the dominated
convergence theorem implies that V (θ?, θ) = P ?(`?− `θ)2 tends to V (θ?, θo)
when θ tends to θo. This completes the proof.

The two lemmas below complete the verification.

Lemma 4. Assumption U-prior is valid in the setting of the mixture
model.

Proof. Let us set k ≤ k? and δ, η > 0.
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By virtue of Lemma 2 and the continuity of θ 7→ H(θ) on int(Θk) (see
Lemma 3), there exists θo ∈ int(Θk) such that H(θo) = H?

k .
Let θ = (p,γ) satisfy |pj − po

j | ≤ η and |γj − γo
j |1 ≤ η for all j ≤ k.

Since θ 7→ H(θ) is continuous, η can be chosen so that H(θ)−H(θo) ≤ δ/2.
This concludes the proof, because the set of all such θ’s has a positive πk-
probability.

Lemma 5. In the setting of the mixture model, there exists α, M > 0
such that, for all θ ∈ Θk?, P ?eα(`?−`θ) ≤ M . Consequently, assumption U-
moment is valid.

Proof. By virtue of Lemma 3, the continuous function θ 7→ V (θ?, θ) is
bounded on the compact set Θk?. So, assumption U-moment holds if we
prove for instance the existence of α > 0 such that function θ 7→ P ?eα(`?−`θ)

is bounded on Θk?.
Let us set α > 0 and θ = (p,γ) ∈ Θk?. By convexity, the following bound

holds

`? − `θ ≤ `? −
k?∑

j=1

pj log gγj =
k?∑

j=1

pj(`? − log gγj ),

hence it is sufficient to show that α can be chosen so that function γ 7→
P ?eα(`?−log gγ) is bounded on Γ. Now, let us observe that

P ?eα(`?−log gγ) ≤
k?∑

j=1

Pgγ?
j

 k?∑
j′=1

gγ?
j′

gγ

α

≤ (k?)α
∑

j,j′≤k?

Pgγ?
j

(
gγ?

j′

gγ

)α

.

Therefore, invoking assumption M-moment yields the existence of α for
which the right-hand side of the inequality above is finite. Thus, the proof
is complete.

Inequality (10) of Theorem 5 is true by virtue of Theorem 1 and Lem-
mas 2, 3, 4 and 5.
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5.2. Mixtures proofs: overestimation. This section is dedicated to the
proof of Inequality (11) in Theorem 5, according to which the overestimation
probability declines as 1/

√
n, up to a log n factor. It is a consequence of

Theorem 1. Let us verify that its assumptions are satisfied.

Lemma 6. Assumptions O-local brackets and O-comparison are ve-
rified in the setting of mixture models.

The second assumption follows from Lemma 5 and Theorem 5 in (Wong
& Shen, 1995). We show that assumption O-Laplace is valid by invoking a
Laplace expansion.

Lemma 7. Assumption O-Laplace is valid for some β1 > 0 and β2 = 0
in the setting of mixture models.

Proof. Let us write θ̂ for a maximizer of `n over Θk? and β1 for a
positive number. For every u ∈ RD(k?) and g = (gijk)i,j,k≤D(k?), u(3)g =∑

i,j,k≤D(k?) uiujukgijk.
Obviously, for any δ > 0,

Bn(k?) ≥
∫
Θk?

e`n(θ)−`n(θ̂)dπk?(θ)

≥
∫
|θ−θ̂|1≤δ

e`n(θ)−`n(θ̂)dπk?(θ).

Using the usual techniques of Laplace expansions (Guihenneuc & Rousseau,
2004) and invoking assumptions M-prior, M-regularity and M-Fisher
yield

Bn(k?) ≥ n−D(k?)/2πk?(θ̂)
∫
|u|1≤δ

√
n

e−
uT Ju

2

(
1− C

|u|31 + |u|1√
n

)
du

≥ C n−D(k?)/2

for some C > 0. Therefore, choosing β1 = 1/C implies the result.

Two results are still needed. They are stated in the two propositions
below. On the one hand, in relation with assumption O-prior, the following
holds:
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Proposition 1. There exists C2 > 0 such that, in the setting of mixture
models, for every sequence {δn} that decreases to zero, for all n ≥ 1,

πk?+1

{
θ ∈ Θk?+1 : H(θ) ≤ δn

}
≤ C2 δn

[D(k?)+1]/2.

On the other hand, in relation with assumption O-approximation and
the related condition on δ-entropy, we shall show that

Proposition 2. If Fk?+1
n = {(p,γ) ∈ Θk?+1 : minj≤k?+1 pj ≥ e−n} ap-

proximates the set Θk?+1, then assumption O-approximation is fulfilled
for K = k?+ 1. Furthermore, the entropy condition given by inequality (6)
in Theorem 3 holds as soon as δ1 is chosen large enough.

Proofs of Propositions 1 and 2 are rather technical. Thus, we postpone
them to Section B and Section C, respectively.

Finally, inequality (11) of Theorem 5 is a consequence of Theorem 1,
Lemmas 6, 6, 7 and Propositions 1 and 2.

Appendix

APPENDIX A: CONSTRUCTION OF TESTS

Proposition 3. Let (ρ, c) belong to R∗+×(0, 1] and f ∈ L1
+(µ)\{0}. Let

us assume that V (f) is positive and finite. Thus, H(f) exists and is finite
too.

Let `n,f =
∑n

i=1 log f(Zi) and

φn,f,ρ,c = 1l{`n,f − `?
n + nH(f) ≥ nρ + log c}.

The following bound holds true:

(30) E?nφn,f,ρ,c ≤
1
c

exp
{
−nρ

2

(
ρ

2V (f)
∧ 1
)}

.

Let ρ′ ∈ R+ and g ∈ L1
+(µ) be such that µg = 1, g ≤ eρ′ f and V (g) is

finite. If in addition (ρ + ρ′) < H(f), then the following bound holds true:

(31) En
g (1−φn,f,ρ,c) ≤ exp

{
−n[H(f)− (ρ + ρ′)]

2

(
H(f)− (ρ + ρ′)

V (g)
∧ 1
)}

.
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Proof. H(f) is finite because of (2). Let us denote log f by `f and log g

by `g. For every s ∈ [0, 1],

c E?nφn,f,ρ,c = c P ?n {`n,f − `?
n ≥ nρ− nH(f) + log c}

≤ e−ns(ρ−H(f))
(
P ?es(`f−`?)

)n
.

Now, invoking the Taylor formula with integral remainder applied to the C∞

function s 7→ P ?es(`f−`?) implies that, for every s ∈ [0, 1],

P ?es(`f−`?) = 1− sH(f)+

s2
∫ 1

0
(1− t)P ?

[
(`? − `f )2(1l{`f ≥ `?}+ 1l{`f < `?})est(`f−`?)

]
dt

≤ 1− sH(f) + s2V (f).

Consequently, because log t ≤ t− 1 (every t > 0), the following bound holds
true:

cE?nφn,f,ρ,c ≤ exp
[
−nsρ + ns2V (f)

]
.

The choice s = 1 ∧ ρ
2V (f) yields (30).

Similarly, for all s ∈ [0, 1],

En
g (1− φn,f,ρ,c) ≤ P ?n{`?

n − `n,f > n[H(f)− ρ]}

= P ?n{`?
n − `n,g > n[H(f)− (ρ + ρ′)]}

≤ e−ns[H(f)−(ρ+ρ′)]
(
Pge

s(`?−`g)
)n

.

Again, the Taylor expansion of the function s 7→ Pge
s(`?−`g) and the Hölder

inequality imply that, for every s ∈ [0, 1],

Pge
s(`?−`g) ≤ 1− sH(g, θ?) + s2

∫ 1

0
(1− t)

∫
(`? − `g)2(f?)stg1−stdµdt

≤ 1 + s2
∫ 1

0
(1− t)

[
P ?(`? − `g)2

]st [
Pg(`? − `g)2

](1−st)
dt

≤ 1 +
s2

2
V (g).

Therefore, because log t ≤ t− 1 (every t > 0),

En
g (1− φn,f,ρ,c) ≤ exp

{
−ns

[
H(f)− (ρ + ρ′)

]
+ n

s2

2
V (g)

}
,

and the choice s = 1 ∧ H(f)−(ρ+ρ′)
V (g) yields (31).
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APPENDIX B: PROOF OF PROPOSITION 1

The key-tool in this section is a variant of the locally conic parameteri-
zation first introduced in (Dacunha-Castelle & Gassiat, 1997b). The main
difference is the substitution of the L1 norm to the L2 norm.

In the sequel, c, C will be positive constants whose values can change from
one line to another.

Let {δn} be a decreasing sequence of positive numbers which tend to zero.
Let us denote by ‖ · ‖ the L1(µ) norm. Our first move is to point out that,
for all θ ∈ Θk?+1, √

H(θ) ≥ ‖f? − fθ‖
2

.

So, assumption M-prior ensures that Proposition 1 holds if

(32) πk?+1

{
θ ∈ Θk?+1 : ‖f? − fθ‖ ≤

√
δn

}
≤ C2

√
δn

D(k?)+1

for some C2 > 0 which does not depend on {δn}.
The hard work is now to translate the condition ‖f? − fθ‖ ≤

√
δn (each

θ = (p,γ) ∈ int(Θk?+1)) in terms of parameters p and γ.

Introducing the L1 locally conic parameterization. For each θ = (p,γ) ∈
int(Θk?+1), let us define iteratively the permutation σθ upon {1, . . . , k?+ 1}
as follows:

• let (j1, σθ(j1)) be such that

|γσθ(j1) − γ?
j1 |1 = min

j≤k?
min

j′≤k?+1
|γ?

j − γj′ |1,

subject to j1 and σθ(j1) are minimal;
• let us assume that (j1, σθ(j1)), . . . , (jl−1, σθ(jl−1)) with l < k? have

been defined; then (jl, σθ(jl)) is chosen such that

|γσθ(jl) − γ?
jl
|1 = min

j
min

j′
|γ?

j − γj′ |1,

subject to jl and σθ(jl) are minimal, where index j ≤ k? does not
belong to {j1, . . . , jl−1} and index j′ ≤ k? + 1 does not belong to
{σθ(j1), . . . , σθ(jl−1)};
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• once (j1, σθ(j1)), . . . , (jk?, σθ(jk?)) are defined, σθ(j) is known for each
j ≤ k?. The value of σθ(k?+ 1) ∈ {j : j ≤ k?+ 1} \ {σθ(j) : j ≤ k?} is
imposed.

At this stage, let us present a simple yet useful decomposition of the
quantity of interest:

Lemma 8. For every θ = (p,γ) ∈ Θk?+1 and each permutation ς onto
{1, . . . , k?+1}, let us denote by θς = (pς ,γς) ∈ Θk?+1 the parameter with co-
ordinates pς

j = pς(j), γς
j = γς(j) (all j ≤ k?+1) and set πς

k?+1(θ) = πk?+1(θς).
Since for all θ and ς, ‖f? − fθ‖ = ‖f? − fθς‖,

(33) πk?+1

{
θ ∈ Θk?+1 : ‖f? − fθ‖ ≤

√
δn

}
=∑

ς

πς
k?+1

{
θ ∈ Θk?+1 : σθ = id, ‖f? − fθ‖ ≤

√
δn

}
,

where index ς in the sum above ranges through the set of all permutations
onto {1, . . . , k?+ 1}.

We show below that the term in the sum above associated with ς = id is
bounded by a constant times

√
δn

D(k?)+1. Besides, the proof involves only
properties that all πς

k?+1 share. Studying the latter term is therefore sufficient
to conclude that Proposition 1 holds.

Proof. We abbreviate 1l{‖f? − fθ‖ ≤
√

δn} to h(θ). Note that, for all ς,
h(θς) = h(θ). The left-hand side term in Equation (33) equals (index ς in
the sums below ranges over the permutations onto {1, . . . , k?+ 1})∫

Θk?+1

h(θ)dπk?+1(θ) =
∑

ς

∫
Θk?+1

h(θ)1l{σθ = ς}dπk?+1(θ)

=
∑

ς

∫
Θk?+1

h(θ)1l{σθ = id}dπς
k?+1(θ),

hence the result.

Let us set Θ? = {θ ∈ Θk?+1 : σθ = id}. For all θ ∈ Θ?, let γθ = γk?+1,
pθ = pk?+1 and Rθ = (ρ1, . . . , ρk?−1, r1, . . . , rk?), where

ρj =
pj − p?

j

pθ
and rj =

γj − γ?
j

pθ
(all j ≤ k?)
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(we emphasize that
∑

j≤k?ρj = −1). Now, let us define

N(γθ, Rθ) =

∥∥∥∥∥∥gγθ
+

k?∑
j=1

p?
jr

T
j ∇gγ?

j
+

k?∑
j=1

ρjgγ?
j

∥∥∥∥∥∥ ,

then tθ = pθN(γθ, Rθ).

Proposition 4. For all θ ∈ Θ?, let Ψ(θ) = (tθ, γθ, Rθ). Function Ψ is a
bijection between Θ? and Ψ(Θ?). Furthermore, T = supθ∈Θ? tθ is finite, so
that the projection of Ψ(Θ?) along its first coordinate is included in [0, T ].
Finally, for all ε > 0, there exists η > 0 such that, for every θ ∈ Θ?,
‖f? − fθ‖ ≤ η yields tθ ≤ ε.

Proof. It is readily seen that Ψ is a bijection. We point out that N(γ, R)
is necessarily positive for all (t, γ,R) ∈ Ψ(Θ?), by virtue of assumption M-
linear independence. As for the finiteness of T , let us note that, for any
θ ∈ Θ?,

tθ =

∥∥∥∥∥∥pθgγθ
+

k?∑
j=1

p?
j (γj − γ?

j )T∇gγ?
j

+
k?∑

j=1

(pj − p?
j )gγ?

j

∥∥∥∥∥∥(34)

≤ 2 +
k?∑

j=1

p?
j‖(γj − γ?

j )T∇gγ?
j
‖.

The right-hand side term above is finite because Γ is bounded and ‖(∇gγ?
j
)l‖

(j ≤ k?, l ≤ d) are finite thanks to assumption M-regularity. Besides, the
term does not depend on θ, so T is finite indeed.

In order to show that the last point is valid, let us consider a sequence
{θn} with values θn = (pn,γn) ∈ Θ? such that ‖f? − fθn‖ goes to zero as n

tends to infinity. Let {θϕ(n)} be a convergent subsequence to some θo. Then
fθϕ(n) converges almost-surely to fθo (see assumption A2) so that fθo = fs.

Now, since tθn belongs to the compact set [0, T ], it suffices to prove that
any convergent subsequence {tθϕ(n)} tends to zero. Because Γ is compact,
there exists a subsequence of {γθϕ(n)} (still denoted by {γθϕ(n)} for simplicity
of notations) which converges to γo
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(a) Let us assume that γo 6∈ {γ?
j : j ≤ k?}. Then necessarily, pθϕ(n) , p

ϕ(n)
j

and γ
ϕ(n)
j respectively tend to zero, p?

j and γ?
j for all j ≤ k?. In this

case, tθϕ(n) tends to zero.
(b) Let us assume on the contrary that γo = γ?

k?, say. Then necessarily,
(pθϕ(n) + p

ϕ(n)
k? ), γ

ϕ(n)
k? , p

ϕ(n)
j and γ

ϕ(n)
j respectively tend to p?

k?, γ?
k?, p?

j

and γ?
j for all j < k?. In this case too, tθϕ(n) tends to zero.

This completes the proof.

Using the L1 locally conic parameterization.

Proposition 5. For every τ > 0 there exists C > 0 such that, for all
n ≥ 1,

πk?+1

{
θ ∈ Θ? : min

j≤k?
|γθ − γ?

j |1 > τ, ‖f? − fθ‖ ≤
√

δn

}
≤ C

√
δn

k?(d+1)
.

We shall need the following lemma of equivalence of norms while proving
Proposition 5:

Lemma 9. Let Λ be a compact subset of Rd and, for all λ ∈ Λ, gλ ∈
L1(µ). Let us suppose that ‖gλ − gλ′‖ tends to zero when λ′ tends to λ. Let
g1, . . . , gk ∈ L1(µ) be k functions such that, for every λ ∈ Λ, gλ, g1, . . . , gk

are linearly independent.
There exists C > 0 such that, for all a = (a0, . . . , ak) ∈ Rk+1 and λ ∈ Λ,∥∥∥∥∥∥a0gλ +

k∑
j=1

ajgj

∥∥∥∥∥∥ ≥ C
k∑

j=0

|aj |.

Proof. Set λ ∈ Λ and let |a|λ = ‖a0gλ +
∑k

j=1 ajgj‖ for all a ∈ Rk+1.
This defines a norm | · |λ on Rk+1. Because Rk+1 is finite dimensional, the
| · |1 and | · |λ norms are equivalent: particularly, if S1 is the | · |1-sphere of
Rk+1 with radius one, then for all a ∈ S1,

|a|λ ≥ Cλ |a|1,

where Cλ = inf{|a|λ : a ∈ S1} > 0. Furthermore, function (λ, a) 7→ |a|λ is
continuous and positive over the compact set Λ×S1, so that inf{Cλ : λ ∈ Λ}
is positive, hence the result.
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Proof of Proposition 5. Let τ > 0, let (t, γ,R) ∈ Ψ(Θ?) and θ =
(p,γ) = Ψ−1(t, γ,R) satisfy |γθ − γ?

j |1 > τ for all j ≤ k? and ‖f? − fθ‖ ≤√
δn. A Taylor-Lagrange expansion (in t) of (f?− fθ) yields the existence of

to ∈ (0, t) such that

|f? − fθ| ≥
t

N

∣∣∣∣∣∣gγ +
k?∑

j=1

p?
jr

T
j ∇gγ?

j
+

k?∑
j=1

ρjgγ?
j

∣∣∣∣∣∣−
t2

N2

∣∣∣∣∣∣
k?∑

j=1

ρjr
T
j ∇gγo

j
+

1
2

k?∑
j=1

po
jr

T
j D2gγo

j
rj

∣∣∣∣∣∣ ,
where γo

j = γ?
j + torj/N and po

j = p?
j + toρj/N (all j ≤ k?). Therefore, by

virtue of assumption M-regularity, there exists a constant C > 0 such that

(35) ‖f? − fθ‖ ≥ t

1− C
t

N2

 k?∑
j=1

(
|ρj ||rj |1 + |rj |22

) .

Furthermore, assumption M-linear independence and Lemma 9 imply
that, for some constant C > 0 (that depends on τ),

(36) N ≥ C

1 +
k?∑

j=1

(
|ρj |+ p?

j |rj |1
) ,

so the following lower bounds for ‖f?−fθ‖ are deduced from inequality (35):

‖f? − fθ‖ ≥ t

1− C
t

N

∑k?

j=1

(
|ρj ||rj |1 + |rj |22

)
1 +

∑k?

j=1

(
|ρj |+ p?

j |rj |1
)


≥ t

1− C

∑k?

j=1

(
|pj − p?

j ||γj − γ?
j |1 + |γj − γ?

j |22
)

pθ +
∑k?

j=1

(
|pj − p?

j |+ p?
j |γj − γ?

j |1
)


≥ t

1− C

∑k?

j=1

(
|pj − p?

j ||γj − γ?
j |1 + |γj − γ?

j |22
)

∑k?

j=1

(
|pj − p?

j |+ p?
j |γj − γ?

j |1
)

 .(37)

Now, it is readily seen by mimicking the last part of the proof of Proposition
4 that for all ε > 0, there exists η > 0 such that, for every θ ∈ Θ?, ‖f?−fθ‖ ≤
η yields |pj − p?

j | ≤ ε, |γj − γ?
j |1 ≤ ε and |γj − γ?

j |2 ≤ ε. Consequently, for n
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large enough, the quantity between parentheses in inequality (37) is lower
bounded by 1/2, hence the validity for n large enough of

(38) t ≤ 2 ‖f? − fθ‖ ≤ 2
√

δn.

Finally, combining equality t = pθN with inequalities (36) and (38) yields
the existence of a constant C > 0 such that, for n large enough,

pθ +
k?∑

j=1

(
|pj − p?

j |+ p?
j |γj − γ?

j |1
)
≤ C

√
δn.

Therefore, for large values of n,

πk?+1

{
θ ∈ Θ? : min

j≤k?
|γθ − γ?

j |1 > τ, ‖f? − fθ‖ ≤
√

δn

}
≤

πk?+1

θ ∈ Θ? :
k?∑

j=1

(
|pj − p?

j |+ p?
j |γj − γ?

j |1
)
≤ C

√
δn

 .

Finally, by virtue of assumption M-prior, the latter is bounded by a con-
stant (independent of n) times

√
δn

k?(d+1). The conclusion of Proposition 5
follows.

Proposition 6. There exist τ, C > 0 such that, for all n ≥ 1,

πk?+1

{
θ ∈ Θ? : min

j≤k?
|γθ − γ?

j |1 ≤ τ, ‖f? − fθ‖ ≤
√

δn

}
≤ C

√
δn

k?(d+1)
.

Proof. Let τ > 0, let θ = (p,γ) ∈ Θ? satisfy ‖f? − fθ‖ ≤
√

δn. Let us
also assume that |γθ − γ?

j |1 ≤ τ for some j ≤ k?, say j = 1. By construction
of Θ?, |γ1 − γ?

1 |1 ≤ |γθ − γ?
1 |1 ≤ τ . The first inequality also implies that τ

can be chosen small enough so that γθ must be different from γ?
j for every

j = 2, . . . , k?. We consider without loss of generality that γθ 6∈ {γ?
j : j ≤ k?}.

Moreover, using the result stated in the proof of Proposition 4, it holds
that |γj − γ?

j |1 and |pj − p?
j | go to zero as n goes to infinity for every j =

2, . . . , k?. This implies that |p1 + pθ − p?
1| goes to zero as n goes to infinity.

Therefore, by virtue of assumption M-linear independence and Lemma 9,
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there exist constants c, C > 0 such that, for n large enough,

(39) ‖f? − fθ‖ ≥ C

 k?∑
j=2

|pj − p?
j |+

k?∑
j=2

p?
j |γj − γ?

j |1+

∣∣∣∣∣∣ (p1 + pθ − p?
1)+

∑
(r,s) 6∈A

λ0
rs

[
pθ(γθ − γ?

1)r(γθ − γ?
1)s + p1(γ1 − γ?

1)r(γ1 − γ?
1)s

]∣∣∣∣∣∣+∑
(r,s)∈A

[
pθ|(γθ − γ?

1)r(γθ − γ?
1)s|+ p1|(γ1 − γ?

1)r(γ1 − γ?
1)s|

]
+

d∑
l=1

∣∣∣∣∣ p1(γ1 − γ?
1)l + pθ(γθ − γ?

1)l+

∑
(r,s) 6∈A

λl
rs

[
pθ(γθ − γ?

1)r(γθ − γ?
1)s + p1(γ1 − γ?

1)r(γ1 − γ?
1)s

]∣∣∣∣∣∣


− c

pθ|γθ − γ?
1 |31 + p1|γ1 − γ?

1 |31 +
k?∑

j=2

|γj − γ?
j |22

 .

Let us denote by A1 and A2 the first and second expressions between
parentheses above. Since |γj − γ?

j |1 goes to zero for j = 2, . . . , k?, when n is
large enough,

∑k?

j=2 |γj − γ?
j |22 can be neglected in A2. If CA1 ≤ 2cA2, then∑k?

j=2 |pj − p?
j | ≤ 2cA2, so that |p1 + pθ − p?

1| ≤ 2cA2, which yields in turn

∣∣∣∣∣∣
∑

(r,s) 6∈A
λ0

rs

[
pθ(γθ − γ?

1)r(γθ − γ?
1)s + p1(γ1 − γ?

1)r(γ1 − γ?
1)s

]∣∣∣∣∣∣+∑
(r,s)∈A

[
pθ|(γθ − γ?

1)r(γθ − γ?
1)s|+ p1|(γ1 − γ?

1)r(γ1 − γ?
1)s|

]
≤ 3cA2.

Consequently, assumption M-linear independence guarantees the exis-
tence of a constant C ′ > 0 such that

pθ|γ1 − γ?
1 |22 + p1|γ1 − γ?

1 |22 ≤ C ′
(
pθ|γ1 − γ?

1 |31 + p1|γ1 − γ?
1 |31
)

.

By choosing τ > 0 small enough, we can ensure that the latter is impossible.
Therefore, CA1 > 2cA2 and using inequality (39) and assumption M-linear
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independence gives, for another constant C > 0,

‖f? − fθ‖ ≥ C

 k?∑
j=2

|pj − p?
j |+

k?∑
j=2

p?
j |γj − γ?

j |1 + |p1 + pθ − p?
1|+

pθ|γθ − γ?
1 |22 + p1|γ1 − γ?

1 |22 +
d∑

l=1

∣∣∣∣∣ p1(γ1 − γ?
1)l + pθ(γθ − γ?

1)l+

∑
(r,s) 6∈A

λl
rs

[
pθ(γθ − γ?

1)r(γθ − γ?
1)s + p1(γ1 − γ?

1)r(γ1 − γ?
1)s

]∣∣∣∣∣∣
 ,

hence finally (up to a change of C),

(40) |p1 + pθ − p?
1|+

k?∑
j=2

|pj − p?
j |+ p1|γ1 − γ?

1 |22 + pθ|γθ − γ?
1 |22+

|p1(γ1 − γ?
1) + pθ(γθ − γ?

1)|1 +
k?∑

j=2

p?
j |γj − γ?

j |1 ≤ C
√

δn.

Therefore, for the chosen τ and large values of n,

πk?+1

{
θ ∈ Θ? : min

j≤k?
|γθ − γ?

j |1 ≤ τ, ‖f? − fθ‖ ≤
√

δn

}
≤

πk?+1

{
θ ∈ Θ? : inequality (40) holds

}
.

The conclusion is now at hand. The conditions on pj and γj (j = 2, . . . , k?)
and a symmetry argument imply that the right-hand side term above is
bounded by a constant times

√
δn

[(d+1)(k?−1)] times wn, where

wn =
∫

1l{pθ ≥ p1}1l{|p1 + pθ − p?
1|+ p1|γ1 − γ?

1 |22 + pθ|γθ − γ?
1 |22+

|p1(γ1 − γ?
1) + pθ(γθ − γ?

1)|1 ≤ C
√

δn} dπγ
k?+1(γ) dπp

k?+1(p).

Let us also point out that under the conditions of the formula above, |γθ −
γ1|22 ≤ 4C

√
δn/p1 and pθ ≥ p?

1/4 as soon as n is large enough to en-
sure C

√
δn ≤ p?

1/2. Now, according to assumption M-prior, let ε > 0 be
such that minj<j′ |γj − γj′ |22 ≤ ε implies πγ

k?+1(γ) ∝
∏

j<j′ |γj − γj′ |2 when
d = 1. We split the integral by considering the cases 4C

√
δn/p1 > ε and

4C
√

δn/p1 ≤ ε. Let h = 1 when d = 1 and h = 0 otherwise. There exist
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constants c, c′ > 0 such that wn is bounded (up to a constant factor) by the
sum of wn,1 and wn,2, where

wn,1 ≤
∫

1l
{
|γθ − γ?

1 |1 ≤ c
√

δn, |pθ − p?
1| ≤ c

√
δn

}
dπp

k?+1(p) dπγ
k?+1(γ)

≤ c′
√

δn
(d+1)

,

and

wn,2 ≤
√

δn
h/2
∫

1l
{∣∣∣∣γθ −

pθ + p1

pθ
γ?

1 +
p1

pθ
γ1

∣∣∣∣
1

≤ c
√

δn

}
1l
{
|γ1 − γ?

1 |22 ≤ c
√

δn/p1

}
p
−h/2
1 dπp

k?+1(p) dγ

≤ c′
√

δn
[d+(d+h)/2]

∫ 1/2

4C
√

δn/ε

dp1

p1
(d+h)/2

≤ c′
√

δn
[d+(d+h)/2]

(
ε

4C
√

δn

)(d+h−2)/2

.

This completes the proof of Proposition 6, because in summary,

πk?+1

{
θ ∈ Θ? : min

j≤k?
|γθ − γ?

j |1 ≤ τ, ‖f? − fθ‖ ≤
√

δn

}
= O

(√
δn

)(d+1)k?

.

APPENDIX C: PROOF OF PROPOSITION 2

It is readily seen that assumption O-approximation holds for the chosen
approximating set. Let us focus now on the entropy condition.

Constructing δ-brackets. Let δ1 satisfy inequality (5) of Theorem 3. A
convenient value will be chosen later on. Let us set j′ ≤ bδ0/δnc and ε =
j′δn/4. Let τ ≥ 1 be a constant.

Let θ = (p,γ) ∈ Θk?+1 be arbitrarily chosen. Let η ∈ (0, η1) be small
enough so that, for every j = 1, . . . , k? + 1, uj = gγj ,η and vj = g

γj ,η
(as

defined in assumption M-local brackets) satisfy, for all γ ∈ Γ,

Puj−vj (1 + log2 gγ) ≤ ε/τ,(41)

Pgγ (log uj − log vj)2 ≤ (ε/τ)2,(42)

Puj−vj log2 uj ≤ (ε/τ) log2(ε/τ).(43)
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Let us introduce

vθ = (1− ε/τ)
k?+1∑
j=1

pjvj and uθ = (1 + ε/τ)
k?+1∑
j=1

pjuj .

Lemma 10. There exists τ ≥ 1 (which depends only on k? and con-
stant M introduced in assumption M-local brackets) such that the bracket
[vθ, uθ] be an ε-bracket as defined in Section 2.3.

Proof. Let us verify that the first condition that defines an ε-bracket is
satisfied. Invoking (41) yields

(44) µ(uθ − vθ) = (1 + ε/τ)
k?+1∑
j=1

pjµ(uj − vj) + (2ε/τ)
k?+1∑
j=1

pjµvj ≤ 4ε/τ.

As for the second condition, let us point out that (index j ranges below
between 1 and k?+ 1)

log uθ − log vθ = log
1 + ε/τ

1− ε/τ
+ log

∑
j pjuj∑
j pjvj

≤ log
1 + ε/τ

1− ε/τ
+ max

j
log

uj

vj
,

hence

(45) (log uθ − log vθ)2 ≤ 2

log2 1 + ε/τ

1− ε/τ
+
∑
j

log2 uj

vj

 .

Using (1+ε/τ)/(1−ε/τ) ≤ 1+4ε/τ , log(1+t) ≤ t (all t > 0) and inequality
(42) then ensures that

(46) P ?(log uθ − log vθ)2 ≤ 2(k?+ 17)(ε/τ)2.

Let us consider now the third condition. Straightforwardly,

(47) Puθ−vθ
log2(uθ/f?) ≤ (1 + ε/τ)

k?+1∑
j=1

pjPuj−vj log2(uθ/f?)+

2ε/τ
k?+1∑
j=1

pjPgγj
log2(u/f?).

It is readily seen that log2(uθ/f?) ≤ 2k?+1∑k?

j=1 log2 gγ?
j

+ 4 log2(1 + ε/τ) +
2k?+3∑k?+1

j=1 log2 uj . Besides, assumption M-local brackets ensures that,
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for all γ ∈ Γ and j = 1, . . . , k?+1, Pgγj
log2 gγ?

j
and Pgγj

log2 uj are bounded
by M . Now, because log2(1 + ε/τ) ≤ ε/τ and inequalities (41), (43) hold,
inequality (47) yields

(48) Puθ−vθ
log2(uθ/f?) ≤

(
2k?+2k?(M + 1) + 4(1 + log2 2)+

2k?+4(k?+ 1)(M + 1)
)

(ε/τ) log2(ε/τ)

The last step of this proof is dedicated to the verification of the fourth
condition. Since the following holds:

Pvθ
(log uθ − log vθ)2 ≤

k?+1∑
j=1

pjPgγj
(log uθ − log vθ)2,

inequalities (42) and (45) imply

(49) Pvθ
(log uθ − log vθ)2 ≤ 2(k?+ 17)(ε/τ)2.

In conclusion, inequalities (44), (46), (48) and (49) show that τ can be
chosen large enough (independently of θ) so that [vθ, uθ] be an ε-bracket.

Controlling the δ-entropy. The rule x1(1 − ε/τ) = e−n and xj+1(1 −
ε/τ) = xj(1+ ε/τ) is used for defining a net for the interval (e−n, 1). Such a
net has at most 1+n/ log(1+ε/τ)/(1−ε/τ) ≤ 1+2nτ/ε support points. Us-
ing repeatedly this construction on each dimension of the (k?+1)-dimensional
simplex yields a net for {p ∈ Rk?

+ : minj≤k?pj ≥ e−n, 1 −
∑

j≤k?pj ≥ e−n}
with at most a O((n/ε)(k

?+1)) support points. Besides, we can choose a
net for Γk?+1 with at most a O(ε−d(k?+1)) support points such that each
γ ∈ Γk?+1 is within | · |1-distance ε of some element of the net. Conse-
quently, the minimum number of ε-brackets needed to cover Fk?+1

n is a
O(n(k?+1)/ε(d+1)(k?+1)), so that there exist positive constants a, b, c for which
the δ-entropy with bracketing of Fk?+1

n (as defined in Section 2.3) is bounded
as follows:

(50) E
(
Fk?+1

n ,
j′δn

4

)
≤ a log n− b log(j′δn) + c.

Now, let us note that the following simple inequalities hold

nj′δn

log2(j′δn)
≥ nδn

(log δn) log(j′δn)
≥ nδn

log2 δn

and consider each term of equation (50) in turn:
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• it is readily proven that a log n ≤ nδn/ log2 δn is equivalent to

(51) δ1 ≥
1

(log3 n)n(δ1/a)1/2−1
.

When δ1 ≥ a, the largest value of the right-hand side of inequality (51)
is achieved at n0. Hence, δ1 can be chosen large enough (independently
of j′ and n) so that inequality (51) holds for all n ≥ n0 and j′ ≤
bδ0/δnc.

• now,

−b log(j′δn) ≤ nδn

(log δn) log(j′δn)
iff − b log δn ≤ δ1 log3 n.

Since log2 δn ≤ 4 log2 n, both inequalities above are valid as soon as

(52) δ1 ≥
2b

log2 n
.

The largest value of the right-hand side of inequality (52) is achieved
at n0. Therefore, δ1 can be chosen large enough (independently of j′

and n) so that inequality (52) holds for all n ≥ n0 and j′ ≤ bδ0/δnc.
• finally, using again log2 δn ≤ 4 log2 n yields that c ≤ nδn/ log2 δn is

implied by

(53) δ1 ≥
4c

log n
.

Obviously, δ1 can be chosen large enough (independently of j′ and n)
so that inequality (53) holds for all n ≥ n0 and j′ ≤ bδ0/δnc.

In summary, δ1 can be chosen according to inequality (5) in order to guar-
antee that E(Fk?+1

n , j′δn/4) be bounded by the right-hand side of inequality
(6) (with j′ substituted to j). This completes the proof of Proposition 2,
because E(Fk?+1

n , j′δn/4) is larger than the left-hand side of inequality (6)
(with the same substitution).
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