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Abstract: In this paper we propose and analyse the Autoregressive Conditional Root (ACR) time
series model, which allows for endogenously generated regime switching between seemingly stationary
and non-stationary epochs. It proves to be an appealing alternative to existing nonlinear models such
as e.g. the threshold autoregressive or Markov switching classes of models, which are commonly used to
describe nonlinear dynamics as implied by arbitrage in presence of transaction costs. Simple conditions
on the parameters of the ACR process and its innovations, are shown to imply geometric ergodicity,
stationarity and existence of moments. Furthermore, we establish consistency and asymptotic normality
of the maximum likelihood estimators in the ACR model. An application to French-German exchange
rate data illustrate the conclusions and analysis.

Résumé: Nous proposons et analysons le modele & racine auto-régressive conditionnelle (Autoregressive
Conditional Root) qui permet des changements de régime endogenes entre des époques de stationnarité
et de non stationnarité apparentes. Ce modele constitue une alternative intéressante aux modeéles non
linéaires existants tels que les modeles auto-régressifs a seuils ou les modeles a changement de régime
markovien par exemple, qui sont souvent retenus pour décrire des dynamiques non linéaires du type
de celles impliquées par des comportements d’arbitrage en présence de colts de transaction. Sous des
conditions simples pour les parametres du processus ACR et ses innovations, I'ergodicité géométrique,
la stationnarité et ’existence des moments sont démontrées. De plus, la consistence et la normalité
asymptotique des estimateurs du maximum de vraisemblance sont établies. Ces résultats sont illustrés
par une application au taux de change réel Franc/Deutsch Mark.

Keywords: Nonlinear equilibrium correction model; Regime switching; Stochastic unit root; Threshold
autoregression.



1. Introduction

The purpose of this paper is to propose and analyse the Autoregressive Conditional Root (ACR)
model. A main feature of the model is that it allows regime switching between seemingly
stationary and non-stationary epochs, where the switching is a function of the magnitude of
lagged endogenous variables. This way it allows epochs of seeming non-stationarity, giving the
impression that possible long-term relationships, such as e.g. the purchasing power parity, have
broken down, before they endogenously collapse back toward their long term relationship.

The kind of dynamics considered here has been increasingly discussed over the past decade.
For instance, the general equilibrium models developed by e.g. Dumas (1992), Sercu, Uppal, and
Van Hulle (1995), or Berka (2004) imply such dynamics for the real exchange rate in presence of
trading costs. The basic underlying idea is that international trade in goods occurs only when the
gain expected from the home and foreign price differential is large enough to offset trading costs.
Once trade takes place across countries, it induces changes in home and foreign prices which
bring the real exchange rate back into the area where international arbitrage is not profitable
anymore. The latter area is a non-arbitrage zone where the real exchange rate behaves like a
non-stationary process. Nevertheless, since any price differential larger than the trading costs
will activate corrective international trade, the real exchange rate process is globally stationary
or stable. Another example of the relevance of such kind of non-linear behavior can be found in
Anderson (1997), see also Balke and Fomby (1997) for further examples. In Anderson (1997) it
is argued that transaction costs translate into two-regime dynamics for the interest rate spread,
the switching between an adjusting and a non-adjusting area being defined as a function of the
magnitude of the lagged spread value.

The empirical relevance of these theoretical implications has been explored by a large number
of studies, using either discontinuous or smooth threshold autoregressive models. For instance,
the empirical analyses by Michael, Nobay, and Peel (1997), Obstfeld and Taylor (1997), Kilian
and Taylor (2003), Taylor, Peel, and Sarno (2001), or Bec, Ben Salem, and Carrasco (2004)
provide support for two-regime dynamics for real exchange rate data. Regarding the interest
rate spread dynamics, similar results are obtained in e.g. Anderson (1997), Enders and Granger
(1998) and Enders and Siklos (2001).

The proposed ACR model may be viewed as an appealing alternative to the threshold au-
toregressive (TAR) class of models retained in the papers cited above, and the Markov switching
(MS) autoregressive class of models. As for the TAR and MS autoregressive models, it allows
for switching between adjusting and non adjusting regimes, but does so in a different way. By
contrast with the TAR models, the ACR model does not require a fixed threshold. And by
contrast to MS models, the switching between regimes in the ACR model depends explicitly on
lagged endogenous variables, in line with the economic theory outlined above.

Based on a univariate simple version of the ACR model with one lag only, the ACR(1) model,
the mentioned features will be emphasized in Section 2, where the ACR process is also compared
with related nonlinear processes in the literature. Despite the epochs of seeming non-stationarity
allowed by the ACR model, Section 3 establishes stationarity under simple regularity conditions
for the proposed general multivariate ACR model with k lags. The regularity conditions ensure
that the collapses regularize the periods of non-stationarity forcing the deviation from the long-
term relationship to be globally stationary. Next, Section 4 provides asymptotic theory for the
maximum likelihood (ML) estimators of the parameters of the multivariate model and show
how the ML estimators can be obtained. In particular, we state conditions under which the ML
estimators are consistent and asymptotically normally distributed. These results are illustrated
in Section 5 by an empirical analysis of French-German real exchange rate data. Section 6
discusses possible extensions. Finally Section 7 concludes the paper, while the Appendix contains
the proofs of the theorems stated in the paper.



Some notation is used throughout: For vectors a = (ay,...,a;) € R, we use ||a|| to denote
some vector norm. Key examples, which we use, include the Euclidean and the L' norms, as
given by (a'a)'/? and |a1| + ... 4 |ay| respectively. With A a matrix, we use ||A|| to denote the
matrix norm as given by ||A||* = tr {A’A}, and p (A) to denote the largest, in absolute value,
of the eigenvalues of A. We apply the notation, dL(A,dA) for the differential of the matrix
function L (-) with increment dA, see Appendix B.

2. The ACR-like dynamics

This section aims at conveying the flavour of the ACR model. To this end, its simplest univariate
version is first presented, and then compared with the threshold autoregressive class of models.
Finally, the specific features of the ACR model are further explored in the sight of a number of
other related models such as the Markov switching.

2.1. Univariate ACR(1) example

To fix ideas, consider initially the simplest version of a univariate autoregression of order one,
the ACR(1) model, as given by

pPTi—1 + €y, ifs; =1
= . 1
o { Ti_1 + &, if s, = 0. (1)

for t =1,2,...,T, with p a scalar, g; an i.i.d. N(0,0?) sequence and g fixed. With 7 = p — 1,
the ACR(1) model can be reparametrized as an equilibrium correction model (ECM),

Axy = sy 1 + &, (2)

where A is the difference operator. The binary variable s; is allowed to be unobserved, and the
switching stochastic rather than deterministic. More precisely, the conditional probability, or
the switching probability, that s; takes the values one or zero is given by

P(st = lzi—1,e1) = p(z1-1), (3)

where the notation p(z;_1) emphasizes dependence solely on ;1. Vitally if the regime s; is zero
the process behaves locally like a random walk, while the case s; = 1 implies it is locally like a
stationary autoregression of order one provided |p| = |7 + 1| < 1. The essential requirement for
the conditional probability p(z;—1), is that it tends to one as |z;_1| tends to infinity in addition
to it being a function of z;_1. No other condition is needed. A key example is given by the
logistic type specification of p (-),

A1) = log{p(zi-1)/ (1 = plzr-1))} = a + bf (z1-1). (4)

Here a and b are freely varying reals and f(-) some increasing function in |z;—;|. In our empirical
application we use the concave function f(z) = |z|'/? and an ACR model with more than one
lag.

As emphasized, the ACR(1) process defined this way can have epochs of seeming non-
stationarity, while at the same time be globally stable or stationary. More precisely for the
case of the simple ACR(1) process with p () given by (4), an initial distribution of z( exists such
that z; in (1) is stationary and has finite moments of all orders provided that |p| = |1 + 7| < 1
and b > 0. Furthermore, as to estimation of the parameters, which in this case are p (or 7), 02, a
and b, the likelihood function can be computed via a prediction decomposition as discussed later.
The thereby obtained ML estimators are shown to be consistent and asymptotically Gaussian
distributed.



In a recent paper, written independently and concurrently from our paper, Gourieroux and
Robert (2001) study in detail the ACR(1) process in the case where there is switching between
white noise and a random walk (i.e. the special case of the above process when p = 0). Their
wide ranging paper, motivated by value-at-risk considerations in financial economics, allows a
flexible distribution on &; and studies specifically the tail behaviour of the marginal distribution
of x;, the distribution of epochs of non-stationary behaviour and discusses stability of x; in
this case. Our analysis is complementary, focusing on estimation and asymptotic inference for
use in empirical work in the general, and also multivariate, version of the ACR model. We
also note that Bec and Rahbek (2004) apply results from this paper to an analysis of nonlinear
adjustments in error correction models

2.2. ACR and threshold autoregressive models

Clearly, the dynamics of the regimes in the ACR model are determined entirely endogenously
and so are similar to the threshold models in Tong (1990) and Enders and Granger (1998).
However, now the threshold is allowed to be stochastic rather than only deterministic. In the
general formulation of the ACR model, the switching probability p(-) is not bounded away from
one, and does allow for deterministic switching by defining p (-) as,

(30_1) = L, if |xgq| >7>0,
PiTt-1) = 0, otherwise.

This is indeed a Tong (1990) self-exciting threshold autoregressive (SETAR) process, as it implies

| pxio1 + e, if |xg_1] > T,
= { Ti_1 + &4, otherwise. (5)

The implication is that we can view ACR models as softening the thresholds in autoregressive
threshold models. This point will be amplified in the next subsection.

Thus a noticeable difference between the ACR and the SETAR models stands in the definition
of the binary variable s;. Contrary to the SETAR model, the ACR(1) model defined by equations
(1) and (3) does not require the assumption of a fixed deterministic threshold. While maintained
in SETAR models, this assumption might be too strong. Indeed, its relevance may be questioned
when the threshold reflects e.g. trading costs over several decades as is often the case in empirical
analyses.

Also note that in the threshold class of models, both regimes must be sufficiently visited for
estimation of the regime-specific parameters, which in practice is guaranteed by forcing typically
at least b percent of the observations to lie in each regime. No such forcing is needed in the
logistic ACR model, when estimating the conditional probability. In particular, the conditional
probability may well stay below one over the sample. This is in accordance with the model by
e.g. Dumas (1992) which states that without exogenous stochastic shocks, the real exchange
rate process should stay inside the interval whose edges are defined by trading costs: as soon as
one boundary is reached, the decision is made instantaneously to trade across countries a finite
amount of goods, which in turn instantaneously pushes the economy back into the interval.
Hence, even allowing for stochastic exogenous perturbations, one should predominantly observe
real exchange rate values inside the interval.

Finally, the link between the ACR model and the Smooth Transition Autoregression (STAR)
class of models can easily be seen from the conditional expectation of equilibrium correction.
For the ACR(1) process, it is given by

E(Ax|zi—1) = mp(zi—1)Ti—1.



Then, if the conditional probability is given by (4), the conditional expected change is given by,
exp (a + bf (z1-1))
) Ti—1

(6)

E(Azy|ry 1) =7 <1 +exp(a+bf (1

If we recast this as,

_( expla+bf(m1))
Ao = (1 +exp (a+ bf (xt_n)) oy

where 7, is a martingale difference sequence, then this is a smooth transition autoregression (see
Luukkonen, Saikkonen, and Terasvirta (1988), Tong (1990) and Granger and Terasvirta (1993,
Section 4.2)). Hence the ACR model has many of the features of STAR models. Importantly
however, STAR models do not have epochs of nonstationary behaviour. Consequently, they do
not belong to the class of processes considered in this paper.

2.3. A simulated example

The following simple example allows us to gain a better understanding of the behaviour of the
ACR process. Figure 1(a) shows a sample path from the simplest ACR process given by (1),
(3) and (4), together with the associated conditional probabilities p(z;—1) given in Figure 1(b).
Figure 1(c) reports the corresponding expected change in xz;, conditionally to z; 1, as given by
p(x4_1)(p — 1)xz4_;. The parameters values are a = —9, b = 28, p = 0.75, and o = 0.009.!
This simulated process delivers realizations for p(z;—1) such that the conditional probability
that s; = 1 never exceeds 0.5, which is enough for the x; series to be stable. The second
column of Figure 1 provides the same results based on a SETAR model simulated with p = 0.75,
o =0.009 and p(x;—1) = s = 1(|z4—1| > 0.04). Here, the corresponding expected change in zy,
conditionally to z;_; is given by 1(Jz¢—1]| > 0.04)(p — 1)z;_;. Comparing Figures 1(c) and 1(f)
makes clear that ACR models may be viewed as softening the SETAR regime switching process.

2.4. Other related models

Apart from the already mentioned threshold class of models, the ACR model is also related to
a number of well known models.

The prediction probability defined in equation (3) implies that the ACR(1) model appears
similar to a Markov switching autoregressive model. In the Markov switching literature, s;
is usually employed to shift the intercept in a time series model, but it has also been used
to make the variance to change (Hamilton and Susmel (1994)) delivering a simple stochastic
volatility process, and even to make the root of an autoregression move between a unit root
and a stationary root (Karlsen and Tjgstheim (1990)) or an explosive root (Hall, Psaradakis,
and Sola (1999)). However, a fundamental difference between these models and the ACR is
that the probability that s; takes the values one or zero explicitly depends on z; 1 in the ACR.
This in turn implies that a process defined by equations (1) and (3) is a Markov chain whereas
this is not the case for a MS autoregression. This proves important for estimation as well as
for the derivation of results for asymptotic inference in the ACR model. In fact, as mentioned,
the ML estimators are straightforward to compute and our derived asymptotic theory allows
for rigorous inference. This contrasts with the MS autoregressive models where estimation is
based on filtering algorithms, and where a full asymptotic theory for inference still needs to be
explored, even though much progress in that direction has been made in for example the recent
paper by Douc, Moulines, and Ryden (2004).

!These values are inspired by the estimates of model ACR-III for French franc/Deutche mark real exchange
rate data, reported in section 5. Similarly, the threshold parameter value for the SETAR comes from the estimate
obtained by Bec, Ben Salem, and Carrasco (2004) using the same data.
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Figure 1: Simulated ACR. (first column) and SETAR (second column) models.



The ACR model is also related to the stochastic root model introduced by Granger and
Swanson (1997) and further studied by Leybourne, McCabe, and Mills (1996). Those papers
use (1) but place an exogenous process on the root — allowing stationary, unit and explosive
values. An example of this is where the log of the root is specified as being a Gaussian au-
toregression. These models have many virtues, but the likelihood function cannot usually be
computed explicitly. Further, they do not have the clear cut epoch interpretation of the ACR
process.

A related approach is the switching regression idea introduced into economics by Goldfeld
and Quandt (1973). In our context this builds a model for the regime s; in (1) which can depend
upon explanatory variables and lagged values of the x; process. A simple example of this is given
by defining A\(z;—1) = a + bxy—1 in (4). This is outside our structure as it does not bound A (+)
away from minus infinity and so there is a possibility that the process will indeed be absorbed
into the random walk state. Hence this model has an entirely different interpretation than the
ACR model. The time series setup of A\(xz;—1) = a+bx;—1 was explicitly studied by Wong and Li
(2001), although its stochastic properties were not derived. Of course this can be generalised to
allow A(z¢—1) to depend upon many lags of x; or other potentially helpful explanatory variables.

3. ACR(k)

In this section we introduce the general ACR (k) process. Conditions which ensure stationarity
of the ACR process, despite epochs of non-stationarity, are discussed. These conditions imply
also geometric ergodicity, which, as used in Section 4, again implies that laws of large numbers
hold for moment matrices in the asymptotic theory of the ML estimators.

3.1. The ACR(k) process

The ACR(k) process X; is an immediate extension of the univariate ACR(1) process considered
in (1). Switching between two autoregressions of order k, the m-dimensional ACR(k) process
X, is defined by the equation,

Xt = St (Althl + ...+ Ak:Xt—k) + (]. - St) (Blthl + ...+ Bk:Xt—k) + Et
=5t (A1, ooy Ap) Xi1 + (1 = 8¢)(B1, ooy Bp)Xp1 + £, (7)

for t =1,2,...,T, where X;_; = (X[_,,..., X; ;)" and the initial value X is fixed. Furthermore,
(€t);—1 o isanii.d.(0,9) sequence with Q > 0, and with &; independent of the lagged variables
X1, X;,g, .... The autoregressive parameters A; and B; are m X m matrices.

Finally, the distribution of the switching variable, s, which can take values zero or one, is
given by the prediction or switching probability,

P(sy=1]e, X1, Xp9,...) =p(X; 1), (8)

where p (+) is a function of X; ;. Note that in particular s; and &; are independent conditional
on X;_1, and that an equivalent way of defining s;, is in terms of the indicator function 1{-},

se=1{ry >1-p(Xi_1)},

where (v4),_;, is an iid. sequence, independent of (e;),_,, = and with v uniformly dis-
tributed on [0, 1].
We make here the following assumption for the functional form of the switching probability

p():



Assumption 1. With p: R™ — [0,1] defined in (8), assume that
p(X) = 1 as ||IX|| - o0 9)
where X € R™F,

As previously emphasized, our focus is on the logistic type specification of p(-) satisfying
Assumption 1. The logistic specfication of p (+) is given by,

AXi1) = log {p(Xs-1)/ (1 = p(Xi1))} = a + bf (Xi1), (10)

where a and b are scalar parameters, b > 0 and f(-) an increasing function in || X;_;||. Trivially,
in this case,
(1-p(X)) = (L+expA(X))™" =0

as ||X]] — oo provided b > 0. In other words, the probability is such that whatever state the
process is in, there is always a non-negative probability that it will (re-)enter the state governed
by the A; parameters in (7). In addition, the structure is such that the further away the process
gets from the regime governed by A;, the more the probability of staying there tends to zero. This
mimics closely the economic theory outlined in the introduction and discussed in the references
given there.

Thus the generalisation differs from the univariate ACR(1) process in (1) in that we allow for
a vector process, a richer lag structure, potentially non-Gaussian errors and additional flexibility
in the dynamics by the introduction of the additional autoregressive regime parameters B;.
Specifically, the univariate ACR(1) example in (1) has m = k =1, A1 = p and By = 1. Here
A; = p governs the locally stationary regime, while By = 1 governs the unit-root regime. In the
multivariate extension consider as an example the case of £ = 2. Choosing, say, Bs = I, — By
introduces m unit-roots in the s; = 0 regime as desired and reflects the flexibility of the dynamics
in the current parametrization. Below we demonstrate how the autogressive regime governed
by Bi,..., By can have unit roots, even explosive roots, while X; remains globally stationary
provided the other regime corresponding to the A; parameters has no unit or explosive-roots.

Note that it is straightforward to generalize the switching between two regimes, to switching
between any fixed number of regimes. This is not done here in order to avoid unnecessary and
complicated notation. To ensure stationarity of the m-dimensional ACR(k) process a further
assumption is needed:

Assumption 2. Assume that
Im— oA — ... — 0" AL =0=|o| > 1, pe C. (11)

Assumption 2 states that the vector autoregressive process corresponding to the s; = 1
regime satisfies the well-known condition for stationarity. Importantly, there are no restrictions
on the parameters B; of the other regime. Hence this regime, may have unit-roots and even
explosive roots.

The final assumption addresses the distribution of the innovations &;:

Assumption 3. With (g),_, _, m-dimensional i.i.d.(0,2), assume that e, has a continuous

and strictly positive density with respect to the Lebesgue measure on R™ and that B ||e,||*" is
finite for some n > 1.

When discussing ML estimation and inference on the parameters in Section 4, Assumption 3
is particularly satisfied with ¢, Gaussian distributed, in which case also ¢; have finite moments
for all n > 1. The requirement of continuity in Assumption 3 on the density could be replaced
by the less strict assumption that for example the density is bounded on compact subsets of R™.



Theorem 1. Consider the m-dimensional ACR(k) process X; defined by (7) in terms of its
lagged values in X, 1 = (X,_, ---,Xé,k), and the switching probability p (X;_1) in (8).

Under Assumptions 1, 2 and 3, the mk-dimensional process (Xt)t:1,2,... is a geometrically
ergodic process. In particular, Xy = (X('), ...,X’_,H_l), can be given an initial distribution such
that X;, and hence also the ACR(k) process X, are stationary. Moreover, E || X;||*" < .

The proof is given in the appendix. As already noted, an important implication of X; being
geometrically ergodic is that a law of large numbers, and also a central limit theorem, apply
for product moment matrices appearing in the discussion about estimation in the next section.
Note furthermore, as emphasized and discussed by Carrasco and Chen (2002), that geometric
ergodicity implies that the stationary solution X;, and hence also the stationary ACR(k) process
Xy, will be §-mixing at an exponential decaying rate.

3.2. Switching and Assumption 1

Assumption 1 in Theorem 1 is important as it implies in particular that the switching probability
depends on all variables in Xj | = (X[ _,,..., X[ ). Based on existing econometric applications
of models with general switching between autoregressions, it is also of interest to allow the
switching probability to depend on only one of the lagged variables X; 1, say. This clearly
violates Assumption 1. In that case, to ensure stationarity of X;, while still allowing unit root
behaviour in the regime governed by the B; parameters, the autoregressive parameters of the
two regimes must be restricted such that As = Bs, ..., Ay = By corresponding to the lags of X,
which do not enter the switching probability. That is, the lag parameters of the variables not
entering the switching probability should be identical across the two regimes.
More generally, introduce the known mk x ¢ dimensional selection matrix n of full rank ¢,
g < mk and its orthogonal complement 7| , which is mk x (mk —q) dimensional of rank (mk — q)
and for which 'n;, = 0. Now let n'X; be the ¢ linear combinations of X; which enter in the
definition of p (-),
P(St = 1|6t,Xt_1,Xt_2,...) :p(’)],Xt_l), (12)

while the remaining (mk — ¢) linear combinations, 7, X;, do not. In terms of this notation,
replace Assumption 1 by:

Assumption 4. With n a known mk X q dimensional matrix of full rank q, ¢ < mk, and with
p:RY — [0, 1] defined in (12), assume that:

(1): p(n'X) = 1as [[n'X]| = oo
(i1): (A1 —Bi,...; Ay — Bp)nL =0

where X € R™ and A; and B; are the autoregressive parameters in (7).

In particular, with ' = ([,,,0,...,0) and n'X; 1 = X; 1, Assumption 4 (i) implies that
the probability of switching tends to one as the norm of X;_; gets large, independently of the
further lagged values, while (7i) implies that the autoregressive parameters corresponding to
Xi—9,...; X; k. do not switch. With ¢ = mk all elements of X;_; enter p(-) and all autoregres-
sive parameters switch, while for ¢ = 0 the ACR(k) process reduces to the well-known pure
vector AR(k) process. The formulation is based on Bec and Rahbek (2004, Theorem 1) where
nonstationary ACR(k) processes are studied. Analogous to Theorem 1 we have:

Theorem 2. Consider the ACR(k) process X; defined by (7) and the switching probability in
(12). Then under Assumptions 2, 3 and 4, the conclusions in Theorem 1 hold.

The proof is given in the appendix.



4. Likelihood based estimation

In this section we consider estimation and also asymptotic inference for the parameters of the
ACR(k) model with Gaussian i.i.d. innovations. The ACR(k) model is defined by equations
(7) and (8), or rather (7) and (12), where the switching probability may depend on a few of
the lagged variables. Estimation is considered specifically for a logistic prediction probability
function which is used in our application. The results have been formulated such that it should
be possible to apply them also for other types of switching probability functions. We also discuss
briefly how to test hypotheses on the parameters.

4.1. Estimation and inference

We consider here estimation in the general case with switching between AR(k) processes, where
the switching probability is logistic and depends on ¢, ¢ < k, linear known combinations as given
by n’X;_1, see Theorem 2. Thereby the cases where switching depends on all lagged X; in X;_1,
or just one X;_j;, say, are all covered simultaneously. A convenient way to write the ACR(k)
model is then,

Xy =5 An'Xy_1 + (1 — 8)) Bn'Xy—1 + Cn | Xy + ¢4 fort=1,2,..,T (13)

with X;_; = (Xé—p ey Xéik)l, X is fixed and ¢; is an i.i.d.N,, (0, Q) sequence with Q > 0 and ¢,
independent of X;_1,...,Xy. Here A and B are m x ¢ dimensional matrices of parameters which
switch between the two regimes, while C' is the m x (mk — ¢) dimensional parameter matrix
with non-switching parameters.

The parametrization in terms of A, B and C is a simple reparametrization in terms of
(A1,...,Ag) and (B4, ..., Bg) in (7). Specifically, if switching is allowed to depend on all variables,
that is n'X; 1 = X;_1, then C =0, A = (A4, ..., Ax) and B = (B, ..., By). Likewise, A = Ay,
B = By, and C = (A, ..., Ay) = (Bo, ..., Bg) if n’X;—1 = X;_1, that is switching is allowed to
depend on X; ; alone. Formally, the reparametrization is given by,

(A1sey Ap) = (A,0) (nyn1) and  (Bu,..., By) = (B,0) (n,11)" . (14)
The logistic specfication in (10) of the switching probability in (12) is given by,

Ap (n'Xe-1)) = a +bf (n'Xi-1), (15)

where a and b are scalar parameters, b > 0 and f : R? — R is an increasing function in ||n'X;_1||.
With 0 = {A, B, C,a,b,Q}, the log-likelihood function conditional on Xy is given by

Lr(0) = 3i=160(0) = S\ log (parbar + precm) . where (16)

par=(1—ppt) =p (77,th1) ) (17)

and, omitting constants in the Gaussian density,
¢Mt = |Q|71/2 exp (_%6Mt9718,]\4t) y EMt = Xt - M”I’]IXt,I - Cant,l, (18)

for M = A, B. The likelihood function in (16) is numerically maximised to obtain the maximum
likelihood estimator, 6, and the following result holds:

Theorem 3. Consider the ACR model defined by equations (13) and (15). Then under As-
sumptions 2, 3 and 4, and if A # B, there exists with probability tending to one as T tends to
infinity, a unique ML estimator 0 = {A, B,C,a,b, 2} which satisfies the score equation,

dLr (0,d6)|,_; =0, (19)

|0:é



for all df. Moreover, o5 0, and Or is asymptotically Gaussian,
\/T(é—o) 2N,y (20)

The proof of Theorem 3 is based on establishing Cramér type conditions from Jensen and
Rahbek (2005, Lemma 1) and is given in Appendix B. When discussing an algorithm to obtain
0 below, the explicit form of the score equation (19) is discussed. A consistent estimator of X
is given in Appendix B, equation (53).

It should be emphasized that the results show that the maximum likelihood estimators are
asymptotically Gaussian even if the B; regime allows unit and even explosive roots, provided
that the other has only stationary roots. Thus we provide distribution theory for a model which
allows epochs of stationarity and epochs without. As mentioned, we believe this is the first
paper providing this kind of result: In particular in existing literature on e.g. TAR models, both
regimes need stationary roots for distributional theory, or estimation is not based on maximum
likelihood. As discussed below, here ML estimators are straightforward to compute and our
derived asymptotic theory allows for rigorous inference. This is illustrated in the empirical
application in Section 5, where we also test for the presence of a unit root in the B; regime
by the LR test statistic which by Theorem 3 is asymptotically y? distributed. Note that the
imposed restrictions on the parameter space rule out the possibility of a unit root in both regimes
as well as the possibility of absorption in either of the two regimes. Indeed usual asymptotic
expansions in terms of score and information would then be problematic as discussed in general
in Andrews and Ploberger (1994), Davies (1987) and Hansen (1996). Related issues have recently
been analysed in the context of threshold autoregressive (TAR) models: Based on least squares
estimation, Hansen (1997) discusses the theory of Wald type testing for the hypothesis that one
of the regimes in a stationary model is an absorbing state. Testing for a unit root in two regimes
is treated in Caner and Hansen (2001) and Bec, Ben Salem, and Carrasco (2004). Furthermore,
cointegrated TAR models are discussed in Hansen and Seo (2002) and Bec and Rahbek (2004).

The results in Theorem 3 are derived specifically for the parametrization and functional
choice of a logistic probability in (15). While our derivations do depend on the chosen logistic
structure for the probabilities p (-) it is straightforward to modify the results to accommodate
alternative specifications of p (-). Specifically, for transparency we have formulated all relevant
quantities in terms of the derivative of A(p (:)) with respect to the parameters in 6 in Lemmas
3, 5 and 6.

4.2. On optimisation of the likelihood

In order to carry out likelihood inference we have to numerically maximise the likelihood func-
tion, and an algorithm for this is discussed here. When presenting the algorithm we use notation
as in least squares and logistic regression. Note that the algorithm could equivalentlty be derived
as the EM algorithm?, see e.g. Dempster, Laird, and Rubin (1977) and Ruud (1991).

2Specifically, treating (8t);—1 o, 1 @s observed variables, the log-likelihood function for the EM algorithm is
given by,

T
LEY (0) = 3 log(piils " 80), 60 =917 exp (—32i07"El)
t=1
and et = Xt — (StA + (1 — St) B)’I],Xt_l — CT]{LXt_l. By deﬁnition, FE (St|Xt, Xt—l) = PAt, and also
E (St|Xt, thl) =F (S?|XT, Xr-1,... a-XO) = Py

Using this, it follows that the updating recursions discussed below are identical to the M, or maximization, step
in the EM algorithm.
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Define first the weights

DAtPAL
pard At + PBdBE

par = (1 —pp) = (21)
in terms of the probabilities pa; = (1 —ppt) = p(n'X4—1) in (17) and the Gaussian densities
¢dar and ¢p; in (18). Denote by p 4, the probability p4; evaluated at the ML estimator 6, and
likewise for ppy, QIBMt and py,, with M = A, B.

Next, mimicking least squares regression notation, introduce product moment matrices in
terms of the m-dimensional response variable X; and the g-dimensional explanatory variables
P X1 and pi,n'Xs 1, as well as 1/, X;_; which is (mk — g)-dimensional. Define,

So1 = 2?21 P Xe X, m,  Soz = 2?21 P XeXi_m, and Spz = ZtT:1 XX, mi. (22)

Define further the product moments as given by,

T A T N
S = Zt:l p";;m’Xt—1X2_177 , Siz= S:’n = Zt:l p”;;m’Xt—1X2_1m,
Soo = L X aX) n, Soz=Shy = 0 P Xe X, 1, (23)
S33 =31 0 X1 Xm0 S12 = Sy = 0.

In terms 0}” these, it follows by Lemma 3 in the Appendix, that the components of the ML
estimator 6 satisfy
(A B C)=(5u1 So2 Sos)S™ ", (24)

where S is the (¢ + mk) x (¢ + mk) dimensional matrix with entries (S;;); ;_; 5 5 in (23). Likewise,
1

Q=2 (Phéadh + Pfné) (25)

t=1

where &y is ey defined in (18) evaluated at 6 for M = A, B. Finally, the estimators ¢ and b
for the logistic part satisfy the two equations:

T

M P —pa) (1 f'Xr) ) =0, (26)

t=1

corresponding to a logistic regression for the ‘observations’ p%;,.

In other words, 0 satifies equations (24), (25) and (26) which are therefore not in closed form.
However, an immediate recursive algorithm is the following. For M = A, B, let p},, denote p},
evaluated at the previously obtained estimator OA(”*I), say, then the updated estimator 6™ is
obtained by the least squares regression in (24) and (25), and the logistic nonlinear optimization
in (26). Convergence is then defined by evaluating the log-likelihood function LT(é(”)) until
convergence.

The algorithm is implemented in the illustration in the next section.

5. An application to the French/German real exchange rate

The possible nonlinear nature of the dynamics of the real exchange rates has been increasingly
discussed, both theoretically and empirically, since the beginning of the nineties. Until then, the
so-called Purchasing Power Parity relationship constituted a cornerstone of most open macroeco-
nomic theoretical models. This relationship comes from international arbitrage on goods market
under frictionless and costless adjustment assumption. It states that once converted into the
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same currency, home and foreign general price levels should equalize, thanks to international
trade in goods. More formally, the PPP relationship writes ep* = p, where e denotes the nominal
exchange rate, i.e. the price of foreign currency in terms of home currency, p and p* are national
price levels measured in local currency. As a consequence of this non-arbitrage condition, the
real exchange rate, defined as ep*/p, should be a linear stationary process. Nevertheless, this
implication has been challenged by a lot of empirical work®. One possible explanation for those
quite mitigated results could be the presence of trading costs, or more generally transaction
costs including transportation costs, tariffs, information costs, etc...* Trading costs imply a
nonlinear stationary process for the real exchange rate, as stressed in the theoretical models
by Dumas (1992), Sercu, Uppal, and Van Hulle (1995) or Berka (2004), from which it follows
that international arbitrage takes place if and only if the international price differential exceeds
transaction costs. Hence, price differentials smaller than these costs are not being corrected by
international trade. The simplest way to formalize this idea consists in defining two distinct
areas for the real exchange rate process. One is the arbitrage area, concerning relatively large
real exchange rate absolute values, where the real exchange rate adjusts towards its long-term
equilibrium. The other area is a non arbitrage area, gathering real exchange rate observations
which are relatively small in absolute value, where the real exchange rate behaves as if it were
non-stationary. A threshold defining these two areas could then be interpreted as the trading
costs level.

As underlined in the introduction, evidence of nonlinearity in the real exchange rate process
has been found by many authors since a decade, using either discontinuous (SETAR) or smooth
(ESTAR, LSTAR) threshold models. The ACR model provides an appealing alternative to
modelize the real exchange rate process, since it does not impose a fixed threshold nor require
that a certain percentage of the observations lies in each regime with probability one. So as to
illustrate the relevance of this model, let us consider the logarithm of French franc/Deutsche
mark real exchange rate, z;, defined as log(e;) + log(pPM) — log(pl'""), where e, is the monthly
average of the nominal exchange rate, and p! is the consumption price index of country i.
These post- Bretton Woods and pre- Euro data, spanning from 1973:09 to 1998:12, come from
Datastream. The centered FF/DM real exchange rate is plotted in figure 2. When applied to

hph
\ T

T T T T T T T T T T T T T T T T T T T T T
1973 1976 1979 1982 1985 1988 1991 1994 1997

Figure 2: Centered FF/DM real exchange rate.

these data, the ADF-GLS unit root test proposed by Elliott, Rothenberg, and Stock (1996)
rejects the null at the 10% level, with a t—statistics at -1.62. Furthermore, the stationary null is
not rejected at the 1% level according to the KPSS test by Kwiatkowski, Phillips, Schmidt, and
Shin (1992). This conclusion is confirmed using the SupLR test developed by Bec, Ben Salem,
and Carrasco (2004), which tests the null of a linear unit root process against a stationary self-

3See e.g. Rogoff (1996) for an overview of this topic.
“The crucial role of trading costs is emphasized in Obstfeld and Rogoff (2000).
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exciting threshold autoregressive alternative: the unit root null is rejected at the 5% level with
a SupLR of 20.35. Hence, z; may reasonably be considered as stationary.

The ACR model considered below is defined by equations (13) and (15). The function f(X)
retained here is: f(X;—1) = /21| + [ze—2| + - + [21—k]-

So as to allow for more straightforward inference regarding the existence of non-stationary
epochs, we rewrite this ACR model in the following equivalent form:

k—1 k=1
Axy = si(mame 1 + Z’yAiAwt,i) + (1 —s)(mpzy—1 + Z’)’Bz‘AﬂJt—z‘) + &t (27)

Within this equilibrium correction form of the ACR model, the test for epochs of non-stationarity
simply amounts to test the null 7z = 0.

The number of lags to include in the ACR model is chosen as the smallest one which succeeds
in eliminating residuals autocorrelation according to the LM test. Computing residuals for the
ACR model is not so straightforward. We have chosen to compute first the one-step ahead
prediction distribution functions

a=p0)® (24) 4 0 -peroge (2,

OB

where &;; denotes the maximum likelihood estimators of the ACR residuals in regime i (i = A, B),
for instance €4y = Axy — Tazi—1 — Ya1Ax—1 — - — Yap—1Az4_gy1, while ® is the distribution
function of the standard normal. These {¢;} are approximately standard uniform and i.i.d. if
the model is true, ignoring the effect of estimating the parameters. These have been frequently
used to define residuals in non-linear time series econometric models (see, for example, Shephard
(1994) and Kim, Shephard, and Chib (1998)). We then map these to our residuals for the ACR
model by the inverse distribution function, £/'“% = &~ (¢;).

Using these residuals, the LM test of serial autocorrelation leads to retain two lags in levels.
Then, regarding the ACR model estimation, it is necessary to initialize the parameters in order
to use the EM algorithm. All parameters are initialized from the corresponding linear model
estimates, obtained by setting 74 = mp and y4; = yp; Vi = 1,--- ,k — 1 in equation (27). The
last issue consists in initializing the logit function parameters. The EM algorithm outcome is in
fact quite sensitive to these initial conditions. In order to avoid ending up in a local optimum,
we highly recommend choosing them after the plot of the profile likelihood, i.e. the likelihood
as a function of @ and b. The ACR model log-likelihood is estimated using the EM Maximum
Likelihood algorithm, considering (a,b) fixed, for a wide range of (a,b) values picked up in a
grid consistent with the positiveness requirement for b°. For all EM ML estimations presented
hereafter, the algorithm is stopped as soon as the log-likelihood increment between two steps
is less than 10~7. Moreover, so as to make b approximately scale-free, the logit function is
reparameterized by dividing (|z; 1| + |z; o|)'/? by its sample standard deviation. The plot
obtained for the profile log-likelihood of this FF/DM real exchange rate model is in Figure 3,
for a grid over a € [—60;10], and over b € [0.1;300].° As can be seen from the graph at the
top of Figure 3, the shape of the profile log-likelihood suggests that initializing a from values
greater than, say, -20.0, and b from values smaller than 50.0 should allow the EM algorithm to
reach the global maximum. This is confirmed by the graph zooming the profile log-likelihood
for these ranges of a and b values, at the bottom of Figure 3.

®The span of the grid should be adapted to the magnitude of the switching variable: for instance, the smaller
it is, the larger the maximum of the grid over b.

SExtending the grid spans for a and b actually does not change the conclusions, but makes the graph less easy
to read. Also note that for values of a greater than 10, the EM ML algorithm failed to estimate the ACR model
for b values greater than 200, say, because the variance-covariance matrix of the estimated residuals becomes
singular.
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Figure 3: The profile log-likelihood as a function of a and b.
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Table 1 reports linear and ACR models results, where Az, is the left-hand side variable.
The standard deviations reported here were computed using equation (53) in Appendix. The
results corresponding to the ACR model described above are given in column ACR-I. As can

Linear =~ ACR-I ACR-II ACR-III
Tt—1 -0.039 — — —
(0.013)
StTi1 — -0.234 -0.234 -0.258
(0.034) (0.035)  (0.035)
(1= si)w1 — 0.033  0.029 —
(0.023)  (0.023)
Az 0.304 — 0.319 0.315
(0.055) (0.056)  (0.054)
StAmt_l — 0.407 — —
(0.104)
(]. — St)Al't,l — 0.227 — —
(0.074)
a — -6.47 -6.49 -9.41
(2.86)  (2.72)  (3.69)
b — 14.32 20.09 28.25
(6.69)  (8.89)  (12.14)
o 0.010 0.009 0.009 0.009
LM(AR 1-12) [p-value] | [0.14]  [0.18]  [0.18] [0.18]
log-L 1237.60 1259.91 1258.52 1257.63

Standard errors in parenthesis. LM test of no error autocorrelation.

Table 1: Linear and ACR model estimates

be seen from this column, the likelihood of the ACR model is higher than the one of the linear
model, as also reflected in the smaller standard error of estimated residuals. Moreover, this
ACR model points to a sharp contrast between the outer and inner regime dynamics. The outer
regime is characterized by a quite strong adjustment with a coefficient of -0.234 for 74. On the
contrary, this model reveals a random walk behavior of the real exchange rate associated with
small absolute value of the latter : 75 = 0.033, but it is not significantly different from zero
according to its standard error. This provides evidence in favor of the existence non-stationary
epochs, or in other words, the existence of a non-arbitrage area. Hence, the conclusion drawn
from the ACR model confirms the findings of numerous empirical studies performed within
threshold autoregressive models.

So as to make our analysis more comparable with this empirical literature, Theorem 2 above
is used to allow the switching probability to depend on only z; 1. Accordingly, the logit function
is defined in terms of |z;_1|'/? only, and the parameters of Az;_; are restricted to be identical
across regimes (see Assumption 4 above). The profile log-likelihood obtained in this case (not
reported) being very similar to the one plotted in Figure 3, we initialized the EM algorithm
with the same values as the ones retained for the ACR-I model’s estimation. The resulting ML
estimates are reported in column ACR-IT of Table 1. They are quite close to their analogues
from model ACR-I and clearly point to the same conclusion. Moreover, the decrease in the
log-likelihood is very small. This may come from the fact that even though the point estimates
of Az, parameters look rather different across regimes in model ACR-I (0.407 and 0.227 in
the outer and inner regime respectively), they are not significantly different from each other
according to their 5%-confidence intervals. The similarity of the results from models ACR-I and
ACR-IT also suggests that including z;_o in the switching probability does not convey crucial
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information about the switches.”

Since the parameter associated to (1 — s;)z;—1 is still found not to be significantly different
from zero, we also present the results of the estimation of the ACR-IT model, imposing that
this coefficient is zero (column ACR-III). The log-likelihood is not significantly decreased by
this restriction: the LR test does not reject it with a statistics value of 1.78 to be compared to
a x2(1), as shown in Theorem 3. Consequently, we will now focus on the restricted ACR-III
model. Again, the regime related to large real exchange rate in absolute value is characterized by
a quick mean reverting dynamics, with an estimated autoregressive coefficient of -0.258. Overall,
these results provide further support to the nonlinear model. When looking at the estimated

o.8

o.o T T T T T T T T T T T T T T T T T T T T T T T T T
1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Figure 4: Estimated conditional probability (outer regime).

conditional probability to be in the outer regime, Figure 4, it appears that it peaks more often
over the first half of the sample. The two largest peaks observed in 1974 and 1978 reflect
the sharp widening of the French-German inflation gap after the two oil shocks : the French
authorities tried to accommodate the recession by easing the monetary policy. The Bundesbank
did the same, but to a lesser extent. The smaller peak in between corresponds to the year
when France abandoned the European snake system, in 1976. The fourth epoch of increased
switching probability also corresponds to a widening of the French and German inflation rates
differential. Beyond the high inflation rates inherited from the oil price shocks, the new French
government elected in 1981, leaded by Prime Minister Pierre Mauroy and President Francois
Mitterrand, initiated a strong Keynesian policy in order to increase domestic demand. This
policy resulted quite quickly in even more inflation and in a sharp weakening of the French
franc against the German mark due to a noticeable worsening of the current account. This
nominal exchange rate central parity was realigned twice between October 1981 and June 1982.
It is worth noting that the conditional switching probability increase precedes the first franc
devaluation by roughly one year. Over the second half of the sample, things look quieter than
before. The reason for this is twofold. First, the Basle-Nyborg Agreement of September 1987
has probably stabilized the European Monetary System, basically by allowing the (limited)
use of EMS credit facilities for intramarginal intervention®. Second, this corresponds to the
French policy of “franc fort”, or “strong franc”. Actually, whereas other European countries
like United-Kingdom or Italy said they would not defend their exchange rate against the DM
when the Bundesbank maintained such high interest rates to finance the German unification,
France chose the other way to deal with that issue: the so-called “competitive desinflation”.
Consequently, the French-German inflation gap decreased sharply, hence contributing to the

"Testing this hypothesis is not straightforward since the ACR-I and ACR-II models are not nested; this will
be addressed in future research.

8Before this agreement, the use of EMS credit facilities were allowed at the edge of the fluctuation bands only,
which weakened the credibility of the EMS.
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relative stabilization of the real exchange rate. The last small peaks occur between 1993 and
1995, as a consequence of the speculative attacks against the French franc in July 1993 which
caused the widening of the fluctuation bands from +2.25% to +15% in September 1993.

Finally, it is worth noting that the conditional switching probability peaks at around 0.80,
and that only 1.3% of the sample is associated with a probability larger than 0.5 to switch to the
outer regime. This finding confirms that looking for a threshold value such that at least say 10%
of the observations lie in each regime, as it is usual for SETAR or ESTAR models estimation,
could prevent from reaching the global maximum of the log-likelihood. By fitting a SETAR to
the same data, Bec, Ben Salem, and Carrasco (2004) have found a threshold at 0.0455. In Figure
5, ACR and SETAR estimated probabilities to lie in the outer regime are plotted. The SETAR
probabilities closely match their non-zero ACR analogues. However, the SETAR classification
looks quite crude compared to the ACR one.

o.8
0.7 —
0.6 —
0.5 —
o.a —
0.3 —

o.z2 —

O.0 T T T T T T T T T T T T T T T T T T T T T T T T T
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Figure 5: Estimated ACR conditional probability (solid line) and SETAR regimes (shaded area).

6. Potential extension

ACR models could also be developed for models of conditional variance. Consider first the
traditional financial econometrics model with

24| Fr—1 ~ N(0,07),

where the conditional variance follows a GARCH type recursion (see for a review Bollerslev,
Engle, and Nelson (1994)) such as

2 2 2 2 2 2
oy = 0o + a1y + a0, | =op+ ag (xt,I — Ut,l) + po;_

where
p =1+ Q.

Here v, oy and ay are non-negative reals and, say, F; = o {z,0y,...}. Although this GARCH
model is strictly stationary even if p = 1, this unit root implies that the process is not covariance
stationary and the multistep forecasts of volatility will trend upwards. This is often regarded as
being unsatisfactory, however empirically near unit root GARCH models are often estimated.
See the discussion in, for example, Bollerslev and Engle (1993) and Engle and Lee (1999).

We can use the ACR structure to construct a GARCH model which behaves mostly like
a unit root process, but which is regularised by periods of stationary GARCH. This is simply
achieved by writing

$t|Ft_1, St ~ N(O, O'tZ)
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and then we change the conditional variance into
2 _ st 2 2
o;f = ag+ {(ag + a2)® — s} z; | + azo; 4.

Now when s; = 0 the GARCH process has a unit root, while when s; = 1 the process is locally
covariance stationary. The idea would be to allow, in the simplest case,

)\(0'?,1) =o+ 'YUt{lv

with v being positive. This would mean that if the conditional variance becomes large the
process has a chance to switch to a covariance stationary process, while when the conditional
variance is low the process behaves like an integrated GARCH.

7. Conclusion

This paper has proposed a new type of time series model, an autoregressive conditional root
model, which endogenously switches between being stationary and non-stationary. The periods
of stationarity regularise the overall properties of the model implying that although the process
has epochs of true non-stationarity overall the process is both strictly and covariance stationary.

This model was motivated by our desire to reflect the possibility that long-term economic
relationships between variables seem to sometimes breakdown over quite prolonged periods, but
when the disequilibrium becomes very large there is a tendency for the relationship to reassert
itself. This type of behaviour is quite often predicted by economic theory. Now we have a rather
flexible time series model which can test for this type of behaviour within the framework of
some established econometric theory. Based on this, cointegration and nonlinear adjustment are
discussed for the ACR model in the subsequent paper Bec and Rahbek (2004)
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Appendix

The Appendix is divided into two parts: Appendix A is concerned with Markov chain theory
used for the proof of geometric ergodicity in Section 2. Appendix B is about asymptotic inference
in Markov chain models. This is mostly covered in Section 3 of the paper.

A. Proof of Theorems 1 and 2:

With the m-dimensional ACR(k) process X; defined by (7) and the switching probability in (12),
we show that X; = (X, 4, ...,X;_k)l is a Markov chain on R™* which is geometrically ergodic,
see Meyn and Tweedie (1993) and Tong (1990) for an introduction to Markov chain theory and
geometric ergodicity. The proof falls in two parts: First it is verified in Lemma 1 that the
Markov chain X; is irreducible with respect to the Lebesgue measure p on R™* | it is aperiodic
and that compact sets K C R™ are small. By Meyn and Tweedie (1993) these regularity
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conditions imply that if a drift criterion is shown to hold, then X; is geometrically ergodic and
has finite moments as defined by the drift function. Geometric ergodicity of X; implies that Xg
can be given an inital distribution such that X;, and hence also X;, are stationary as claimed.
This is established in Lemma 2. Thus Theorem 2 holds by Lemmas 1 and 2. Likewise, Theorem
1 holds by setting n = I,

A similar strategy has been used in Bec and Rahbek (2004) and Saikkonen (2005) to establish
stationarity of cointegrated relations in nonstationary nonlinear vector autoregressive process.
In particular, Bec and Rahbek (2004, proof of Theorem 1) use the results of Lemma 1 here:

Lemma 1. Under Assumption 3 and Assumption 4 (i), (Xt)t:O,l,.. is a p-irreducible, aperiodic

Markov chain on (R™*,B™), where B™* is the Borel o-algebra on R™ . Moreover, compact
sets K C R™ are small.

Proof of Lemma 1: By definition of X; and s;, X; conditional on X; 1 has density f (X;|X;—1)
given by

fXXe1) =p ('Xe1) g (X — A1) + (L—p (n'Xe1))g (X — BX1), (28)

where A = (Ay,...,Ax), B = (B, ..., Bx) and g (-) is the density of ¢; which is well-defined by
Assumption 3. Next, by straightforward factorization, X, conditional on X; has density,

k
h(XepnlXe) = [T F(XerilKegio1)- (29)
i=1
That is, X; has a well-defined k-step transition density, which, similar to Tjgstheim (1990), will
be exploited in the next.

Let P"(D|z) = P(X¢4n € D|X; = z) denote the n-step transition probabilities for the
Markov chain X;, where z € R™ and D € B™. Then irreducibility with respect to u fol-
lows by Meyn and Tweedie (1993, Proposition 4.2.1 (ii)), by noting that for all z € R™* and
D € B™, with p (A) > 0,

S0 P*(D|z) > Pk (D|z) = fD (y|z) dy > 0, (30)

which holds by (29) and Assumption 3.
Likewise, with K C R™ a compact set, and (z,y) € K x K, h(y|z) > § for some § > 0 by
Assumptions 4 (i) and 3. Then for any z € K and any D € BP,

P¥(D | z) > PH(DNK | 2) = [, h(ylz)dy > op(DNK).

Hence for all z € K, P¥(- | x) is minorized by u(- N K ) and the compact set K by definition
small, cf. Meyn and Tweedie (1993, p. 106).

Finally, an irreducible chain is periodic if it has period d > 1 and aperiodic if d = 1. If X
has period d > 1, then by Meyn and Tweedie (1993, Theorem 5.4.4) there exist disjoint sets
Dy, D1, ...,D4_1 in B™ such that

P! (Djy1|z) =1 for z € D; and i = 0,1,..,d — 1 (mod d)

and furthermore, zp(Ud ' D;)¢ = 0, where 1 is a maximal irreducibility measure. By Meyn and
Tweedie (1993, Proposmon 4.2.2 (ii)) p is absolutely continuous with respect to ¢ and therefore
also M(nglDi—l)c = 0. For this to hold at least one of the sets Dy, say, must have u(D1) > 0,
which implies P¥ (D|z) > 0 for all z as in (30).

Iterating k£ times one gets for some j, the contradiction,

P* (Dy|z) = 0 with z € Ui Di

Hence X; has period d = 1 and is aperiodic. O
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Lemma 2. Under Assumptions 3 and 2, and Assumption 4 (i) and (ii), (Xt),_ ; satisfies a
drift criterion such that X; is geometrically ergodic and has finite 2n'th order moments.

Proof of Lemma 2: By Lemma 1 X; is a Markov chain for which we can apply the drift criterion
as stated in e.g. Meyn and Tweedie (1993, Theorem 15.0.1 (iii)). As to choice of drift function
d (X;) > 1 and calculation of E(d(X;)|X;—1 = z) the arguments mimic Bec and Rahbek (2004,
proof of Theorem 1). Specifically, a drift function implying finite second order moments is given
by

d(z) =1+2'Dz, D=3 2,A"A’

where A is the mk x mk dimensional matrix given by,

A Ay - A
I, 0 - 0
A= .
0 I, O

Assumption 2 is equivalent to the assumption that p (A) < 1, and therefore d (-) is well-defined.
Defining B similarly in terms of the B; coefficients, it follows that

Bd(X,)[X, 1 = 2) = (1 _ge—eo (il(;)p(""’”))h(x)> d(z), with (31)
h(z) = 2'(A — B)'D (A — B)z — 22/A'D(A — B)z,

and w a constant. For some A > 0, define the compact set K = {z| 2/Vz <A}. On its
complement K€ it holds by definition that

dz) =1+2'Ve <2'Va (1+3) <22'Vz

and therefore for A large enough,

watr(QV) (1 pl/aDh(x) 'z _ tr(QV) + (1 —p(n'z))h(z)

d(x) 20’ Vx d(g;)
1 @) + (= plya)ha)
= 2p(V) d(z)

Write = nif'x + 1.7, z, where e.g. 7=17 (n’n)_l. Then Assumption 4 (i) implies,
h(z) = (2'n) 7' (A —B)'D (A —B) 7 (n'z) — 22/ A'D(A — B)ij (n'z)

such that, as ||z||> = oo,
tr(QV) + (1 — p(n'z)) h(z)

(@) —0

Summarizing, for A large enough,
B(d(X)| Xi—1 = 2) < (1 - )d(x)

for z € K¢ and some § > 0. On K, E(d(X;)|Xy—1 = z) given by (31) which is continuous and
hence bounded on the compact set. O
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B. Proof of Theorem 3:

Theorem 3 holds by establishing the regularity conditions (A.1), (A.2) and (A.3) in Jensen and
Rahbek (2005, Lemma 1), which are classical Cramér type conditions addressing first, second
and third order differentials of the log-likelihood function. These hold by Lemma 5 and Lemma
6 below.

We apply notation as in Magnus and Neudecker (1988) for derivatives of matrix functions:
With k,l,m and n integers, the mapping G, G : RF*l — R™*" @ is differentiable of order
three in X € £ C RF*! if

G(X +dX) = G(X) 4+ dG(X,dX) + d*G(X,dX,dX) + d*G(X,dX,dX,dX) + o(||dX]*)

as ||dX|| — 0. Here, say, dG(X,dX) is the differential of G at X with increment dX € RF*!,

where X + dX in the interior of Z. The Jacobian, ﬁmvec{G (X)}, and the differential are

connected through the vec-operator by the identity,

!
vec{dG(X,dX)} = {%} vec(dX). (32)

Likewise for the second order derivative or Hessian, see Magnus and Neudecker (1988).

B.1. First and second order differentials

We start by listing the first and second order differentials, or score and observed information. In
both case, the differentials have been stated such that it is possible to accomodate for different
choices of the logistic specification in (15).

Lemma 3. With p(-) on the logistic form in (15), the first order differential for the log-likelihood
function in (16) is given by

dey(6,d0) = (piay — pac) dN(0,dO) + {p’y,dlog pai(0,dR) + ppidlog dppi(0,d)}, (33)

such that with pa, Py, ¢me and epy for M = A, B defined in (17), (21) and (18)

dty (0,dA) = tr{Q 1p*,eaX, ndA'Y, dl;(0,dB) = tr{Q 'p,ep X, ndB'}  (34)
dly (0,dC) = tr{Q" (Plyear+pien) Xi_1nLdC'}, (35)

de, (0,d(a,b)') = (phy — par) d(a,b)vy, vy = (1, f(n'X-1))". (36)

dey (0,dQ) = Ltr{Q1dQIQ ! (Piyeaess + Pinenies) — Inl} (37)

Proof of Lemma 3: The result follows by direct differentiation of the log likelihood function in
(16) combined with the identity (21). O

Lemma 4. With the notation from Lemma 3,

d%(o, de, d0) = pj‘tpfgt {d>\(0, d9) + dlog ¢At(0, d9) —dlog ¢Bt(9, d@)}2 + (38)
{p',d*1og s (0, d6, dO) + pig,d? log ¢pi(0,d6,d0) } — parpm: {dN(0,dO)} .
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The second order differentials for the autoregressive parameters are given by,

d20,(0, dA, dA)
d20,(0,dA, dB)
d20,(0, dA, dC)

d*¢,(0,dB,dB)
d?¢,(0,dB,dC)

d?6,(0,dC, dC)

Phpp (tr{Q Tea X} ndA'})? — phtr{Q 1 dAY' X, 1 X} ndA'}

—p Pt {0 e X, nd A" r{Q e, X]_ ndB'}
—phtr{Q 1Oy X1 X]_ ndA'}+
Phppitr{Q rearX)  nd AW r{Q ear — epi]X;_1n1dC"}

Pl (tr{Q ey X1 ndB'})? — pptr{Q~'dBn'X, 1 X;_ndB'}  (39)
—pltr{QtdCn X4_1X|_,ndB'}—
PaPptr{Q tep X ndB' Y r{Q ear — ep]X;_1n1dC"}
—tr{Q7dCn Xi1X]_ 0, dC"}+

PP (tr{Q ear — epdX_yn1dC"})?

Next, for the logistic parameters,

d*,(0,d(a,b)' d(a,b)) = (P — pawne) {d(a, o}

d%0,(0,d(a,b),dA) = piphtr{Q teaX]_ ndA'}d(a,b)v, (40)
d?0,(6,d(a,b),dB) = —pYPitr{Q epX]_ ndB'}d(a,b)v,

d?0,(0,d(a,b), dC) = PP tr{Q ear — ep)X]_1n1dC"}d(a, b)v,

And finally, for the covariance,

d20,(0, dS, dSY)
d20,(0,d2, dA)

d%¢,(0,dQ), dB)

d20,(6,d, dC)

d?0,(0,d9, d(a, b))

tr{(3 Ly — Q7' [p*yeais, + DieBiel) )2 QT O} +

PP (tr{3Q 1O e ey, — epiey]})?
pZtPEttT{%Q_IdQQ_I[5At524t - 5Bt533t]}tT{Q_lgAtXLﬂ?dA,}_
pj‘ttr{Q_ldQQ_lsAtX;_lndA'}

P Phtr {321 earey, — epielyr{Q ep X ndB'} ~
pitr{Q~ OO0 ep X, ndB'}

—tr{ Q7 QO (pY e 4t + P B) Xy dC I+
pjltp*i?ttr{%gildggfl[5At524t - 5Bt593t]}t7"{971[5f1t —epe)X}_1nLdC'}

PP tr{3971dQ e arely, — eprelz ] }d(a, b)v,
(41)

Proof of Lemma 4: Differentiation in (33) gives,
d*0,(6,df, d) = p'y,d* log ¢ 4:(6, d6, dB) + p,d® log dp: (6, dO, dO)

+ (p%y — par) d2X(0,d0, dB) + [dp*, (0, d) — dpas(0,dO)] dA(6, dO)
+ det(Qa d9) (d¢At (91 d9) - d¢Bt (91 d@))

which equals (38) using the identity dpa.(0,df) = pappidA(6,dH), the identity
dp’s,(0,d0) = playpp,(dA(6, dO) + dlog pa (8, dO) — dlog dpi (6, db))
and that d?\(6, df,df) = 0. The results in (39)-(41) hold by using the identities,

dlog pas (0,dA) = tr{Q ey X]_ndA'},
dlogpas (0,dC) = tr{Q  eaX]_ 7. dC"}
P log par(0,dA,dA) = tr{Q ' dAYX, 1 X]_ ndA'}
d?log par(0,dA,dC) = tr{Q 'dAYX;_1X]_,n, dC"}

(42)

and similarly for dB as well as standard matrix calculus results such as dlog || = tr {Q 1dQ}.

g
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B.2. Regularity conditions

Next, we verify that the information equality holds, positive definiteness of the information and
that the third order differential is bounded:

Lemma 5. Under the Assumptions of Theorem 3 it holds that
E(dty(0,d0))? = —E(d*¢,(0,d6, dh)) > 0. (43)
Furthermore, for each 0 there is a neighourhood N () of 6 such that

E sup |d*0;(0,d,dB,dh)]| < co.
GeN(0)

Proof of Lemma 5:
To see that e.g. E (d6y(0,dA)*) = —E (d?4,(0,dA,dA)) for all m x ¢ matrices dA we use the
conditional independence of s; and ¢; given X;_1: First note that

StEAL = St(Xt - Aﬁ,thl - Cﬁlthl) = St€t
and using (21),
E (phearl Xim1) = E(E (s¢] Xy, Xo—1) ear] Xim1) = E (8164 Xy—1) = 0. (44)

By definition,
E(phulXi1) = E (st n'Xi1) = pas- (45)
Now,

(de,(0,dA)?) + d20,(6,dA, dA) = p,ftr {Q e X, nd AV — tr { Q7 dAY'X, X, ndA'}),

and it holds that
E ((de,(0,dA)?) + d*,(0,dA,dA)| X, 1) = 0.

as desired. Likewise for the remaining terms in (43) the results follow by repeated use of the
additional identities

(L —si)ept = (L —s)er, E((ppienel Xe1) =0 (46)
E (phyeare’s “l‘p*Btc‘:BtéJBt‘ Xio1) =524 (1—s)2=Q (47)
Cov (tr {ee, P}, tr {e51Q}) = 2tr {PQQQ} (48)

for P, () symmetric p X p matrices. For instance, using (48) together with (47) and (46) it follows
that

E(dty(0,d9))? + E (d*,(6,d2, d9))
= 1B [tr {eiej0 a0 1)) - [der {0 1d0}” + o { [0 1d0)*}] =0,

Next, observe that E(d¢;(0,d))? > 0 for all df, is equivalent to linear independence of the first
order differentials or simply,

d0y(0, dA) + de,(0,dB) + de; (0,dC) + dly(6, d(a,b) + dé,(0,d) =0

implies dA = dB = dC = d(a,b) = df2 = 0. Note initially that by the definition of p%, in (21)
then
Diay — PAt = PApBt(Par — PBt) (49)
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Thus if A = B then by (49) p%, = pa: and the claimed implication does not hold. More precisely,
conditioning on X;_; and choosing dA = pdB # 0 for some real p, d¢,(8,dA) + d¢;(0,dB) =
0. This is a consequence of the fact that conditional on X;_1, and with a and b known, the
considerations simplify to the well-known for mixed normal models, see e.g. Titterington, Smith,
and Makov (1985). Therefore we focus on the non-singularity of the derivative with respect to
(a,b),
dgt(ga d(aa b), = dgt (97 d(aa b),) = (p);lt - pAt) d(aa b)vt
= (Pl —par) (da+ f (n'X;-1) db)

By (49) and Assumption 1, (p%, — pa:) # 0 almost surely (as b > 0). Next, the proof of geometric
ergodicity of X; implies that the Markov chain has the Lebesgue measure as a irreducibility
measure. This again implies, by the Lebesgue decomposition, that the invariant measure has
a component which has a strictly positive density w.r.t. Lebesgue measure and hence that,

Pr(f (n'X;—1) # constant) > 0.and therefore d¢;(0, d(a,b)" # 0 almost surely.
For the third order differential, use Lemma 4 and note that with

wi = dlog ¢} = tr {Q7 [X,X} 10— My'X,_1X]_yn] dM} (50)
for M = A, B, cf. (42), then
) < e s X0 e a3
for0 e N (#) and some constants k;, i=1,2. Consider first the direction of A,

|d*04(6,dA, dA,dA)| = ‘(piup’étw{‘tr {Q7 1A X X ndA'} + (1 = 2p%,)pty (w) )3‘
< i Jwf| IKell? + o [wit |

for some constants &;, i=1,2. Hence FEjy SUDGe v (g) ‘d3€t(9, dA,dA, dA)‘ is finite by existence of
second order moments of X;. Apart from tedious calculus similar results hold for the remaining
third order differentials. [l

Lemma 6. Under the assumptions of Theorem 3, then as T — oo:
Provided ¢(-,-) is measurable and E ||¢ (X, X¢—1)|| < oo, then for each 0

LT\ d20,(0,d6,d6) 5 E(d®¢, (6,d6,d6)). (51)

Furthermore,

FT1de (9,d0) B N (0, (a6, (9,d0))) (52)
where E [d¢,(6,d0)]* satisfies (43).

Proof of Lemma 6: The chain (X, Xg_l)l, t =1,2,.. is geometrically ergodic, and hence by the
law of large numbers in Meyn and Tweedie (1993, Theorem 17.0.1),

5T (X0, Xi1) & B (Xy, Xim1)),

for all ¢(-,-) measurable and E ||¢ (X, X;_1)|| < oco. Using the expressions in Lemma 4 for the
second order differential, the convergence in (51) holds as all moments are finite. Next, note that
de,(0,d0) is a Martingale difference sequence with respect to F; = o (X, X;—1, ...) . Specifically,

E(dty(0,d0)| Fi—1) = E(d6y(0,d0)| X, 1) =0
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using the expression for the differentials in Lemma 3 together with the identities (44), (45),
(46) and (47) applied in the proof of Lemma 4. Again the established geometric ergodicity and
existence of moments imply that

ST B([d6(8,d0))*| Xe1)

converges in probability by the law of large numbers. Furthermore, the Lindeberg condition in
Brown (1971) applies and the claimed asymptotic normality of the first order differential follows
by Brown (1971). O

B.3. Information

We end this section by stating the observed information, that is minus the second order derivative
of the log-likelihood function, which is used in the application as a consistent estimator for ¥ !
in Theorem 3. Consistency of the observed information, or Hessian, evaluated at é, holds
by Lemma 5 and Lemma 6 as the third-order derivative is uniformly bounded in mean in a
neigborhood of 6, that the Hessian evaluated at 0 is consistent, and finally that 6 is consistent
by Theorem 3.

Using Lemma 4, the observed information can be represented as follows setting

vect) = ((vecA)', (vecB)', (vecC)', (vecQ)',a,b,) .
The corresponding consistent estimator of the covariance matrix is given by £ 7! evaluated at 0
where 7! is given by

T
1
DI Y ED 3= T Z(blockdiag (T:® ol O2x2) + Uy) (53)
t=

Here T, is the (¢ +m(k + 1))x (¢ +m(k + 1)) dimensional matrix defined by,

Pacn Xe—1X4_1n 0 P Xe—1Xi_qmL P Xi16/, Q7"
0 o X1 X119 poen Xe1 Xi_imL puen Xio18p, Q7" .
pac L Xe 1 X peenL Xe 1 Xiam N X1 X ame nLXe-1 ZM=A,B P

P earXion prQ T emXip Q71 Yni—a.p PrremeXi 1L Q_I(ZM=A,B Prreemenr — 32271
Next, U, is the (¢ +m(k+ 1) +2)x (¢ +m(k + 1) +2) dimensional matrix given by

Uy = papBeitl — Pal i 7

where

o= [ vec (Q_lsAtX;__ln),, —vec (Q_lthX;_ln),, vec (%Q_IQtQ_l),, v} } ,
1/)115 = [ 01 Oa 01 ,Ug ] ) Qt = [6At514t _€Bt6IBt] and ,Ug = (Lf (nlxt—l))
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