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AbstratThis survey is devoted to the modelling and the estimation of redued-formtransition models, whih have been extensively used and estimated in labor mi-roeonometris. The �rst setion ontains a general presentation of the statistialmodelling of suh proesses using ontinuous-time (event-history) data. It alsopresents parametri and nonparametri estimation proedures, and fouses on thetreatment of unobserved heterogeneity. The seond setion deals with the estima-tion of markovian proesses using disrete-time panel observations. Here the mainquestion is whether the disrete-time panel observation of a transition proess isgenerated by a ontinuous-time homogeneous Markov proess. After disussing thisproblem, we present maximum-likelihood and bayesian proedures for estimatingthe transition intensity matrix governing the proess evolution. Partiular atten-tion is paid to the estimation of the ontinuous-time mover-stayer model, whih isthe more elementary model of mixed Markov hains.Keywords: labor market transitions, markovian proesses, mover-stayer model,unobserved heterogeneity. RésuméCette revue de la littérature est relative à la modélisation et l'estimation demodèles de transition en formes réduites. Ces modèles ont été largement util-isés en miroéonométrie du marhé du travail. La première setion ontientune présentation générale de es proessus lorsque eux-i peuvent être observésà partir de données en temps ontinu. Nous traitons aussi dans ette setion desproédures d'estimation paramétriques et nonparamétriques, et de la question del'hétérogénéité non observable. La seonde setion est onsarée à l'estimation deproessus observés à partir d'observations réalisées en temps disret. Ii, la ques-tion prinipale est de déterminer si les observations en temps disret du proessusde transition ont pu être générées par un proessus markovien en temps ontinuhomogène. Après avoir disuté de e problème, nous présentons des proéduresbayésiennes et par maximum de vraisemblane permettant d'estimer la matrie desintensités de transition gouvernant le proessus étudié. Une attention partiulièreest portée au as de l'estimation d'un proessus de type mover-stayer en tempsontinu, qui onstitue le modèle le plus simple de mélange de haînes de Markov.Mots Clés : transitions sur le marhé du travail, proessus markoviens, modèlede mover-stayer, hétérogénéité non observable.JEL Codes: C41, C51, J64.



1 IntrodutionDuring the last twenty years, the miroeonometri analysis of individualtransitions has been extensively used for investigating some problems inher-ent in the funtioning of ontemporary labor markets, suh as the relationsbetween individual mobility and wages, the variability of �ows between em-ployment, unemployment and non-employment through the business yle,or the e�ets of publi poliies (training programs, unemployment insur-ane, ...) on individual patterns of unemployment. Typially, labor markettransition data register sequenes of durations spent by workers in distintstates, suh as employment, unemployment and non-employment. Whenindividual partiipation histories are ompletely observed through panel orretrospetive surveys, the eonometriian then disposes of ontinuous-timerealizations of the labor market partiipation proess. When these histo-ries are only observed at many suessive dates through panel surveys, theavailable information is a trunated one; more preisely it takes the formof disrete-time observations of underlying ontinuous-time proesses. Ourpresentation of statistial proedures used for analysing individual transitionor mobility histories is based on the distintion between these two kinds ofdata.Statistial models of labor market transitions an be viewed as extensionsof the single-spell unemployment duration model (see Chapter 14, this vol-ume). Theoretially, a transition proess is a ontinuous-time proess takingits values in a �nite disrete state spae whose elements represent the mainlabor fore partiipation states, for example employment, unemployment andnon-employment.The goal is then to estimate parameters whih apture e�ets of di�erenttime-independent or time-varying exogenous variables on intensities of tran-sition between states of partiipation. Here transition intensities representonditional instantaneous probabilities of transition between two distintstates at some date. Typially, the analyst is interested in knowing the signand the size of the in�uene of a given variable, suh as the unemploymentinsurane amount or the past training and employment experienes, on thetransition from unemployment to employment for example, and more gener-ally in prediting the e�et of suh variables on the future of the transitionproess. For this purpose, she an treat these variables as regressors in thespei�ation of transition intensities. Doing that, she estimates a redued-form model of transition. Estimation of a more strutural model requires thespei�ation of an underlying dynami struture in whih the partiipationstate is basially the hoie set for a worker and in whih parameters to be1



estimated in�uene diretly individual objetive funtions (suh as intertem-poral utility funtions) whih must be maximized under some revelant on-straints inside a dynami programming setup. Suh strutural models havebeen surveyed by Ekstein and Wolpin (1989) or Rust (1994).Our survey fouses only on redued-form transition models, whih havebeen extensively used and estimated in labor miroeonometris. The �rstsetion ontains a general presentation of the statistial modelling of thetransition proess for ontinuous-time (event-history) data. The �rst se-tion brie�y realls the useful mathematial de�nitions, essentially the onesharaterizing the distribution of the joint sequene of visited states and ofsojourn durations in these states. It also presents parametri and nonpara-metri estimation proedures, and ends with the question of the unobservedheterogeneity treatment in this kind of proess.The seond setion deals with inferene for a partiular lass of transi-tion proesses, namely markovian proesses or simple mixtures of markovianproesses, using disrete-time panel observations. Here the main problem isthe embeddability of the disrete-time Markov hain into a ontinuous timeone. In other words, the question is whether or not the disrete-time panelobservations of a transition proess are generated by a ontinuous-time ho-mogeneous Markov proess. After a disussion of this problem, the seondsetion presents maximum-likelihood and bayesian proedures for estimat-ing the transition intensity matrix governing the evolution of the ontinuous-time markovian proess. Partiular attention is paid to the estimation of theontinuous-time mover-stayer model, whih is the more elementary model ofmixed Markov proesses.The onlusion points out some extensions.2 Multi-Spell Multi-State Models2.1 General framework2.1.1 NotationsLet us onsider a adlag1 stohasti proess Xt, t 2 IR+, taking its value ina �nite disrete-state spae denoted E = f1; : : :;Kg, K 2 IN and K � 2. Inother words, K represents the total number of states for the proess, and Xtis the state oupied at time t by the individual (so Xt 2 E;8t 2 IR+). Let1�adlag� means right-ontinuous, admitting left limits. For the de�nition of a adlagproess, see hapter 15, setion II.1, this volume.2



Figure 1xt3 � �2 � �1 � � t�0 �1 �2 �3 �efxt; t 2 IR+g be a realization of this proess. We suppose that all the individ-ual realizations of this proess are identially and independently distributed:to simplify the notations, we an then omit the index for individuals.As an illustration we onsider the ase of a labor fore partiipationproess desribing the state oupied by a worker at time t. In order tosimplify, we set:Xt = 8><>: 1 if the individual is employed at time t2 if the individual is unemployed at time t3 if the individual is out of the labour fore at time t (1)Now we suppose that eah individual proess is observed from the dateof entry into the labor market, denoted �0 for the individual, up to an ex-ogenously �xed time �e (�e > �0). An example of realization of proess Xtis represented in Figure 1.This �gure shows that the individual is �rst employed from time �0 upto time �1, then unemployed from time �1 up to time �2, then employed oneagain from time �2 up to time �3, and �nally out of the labor fore (fromtime �3 on) when the observation stops at time �e. If we denote:u` = �` � �`�1 ; ` = 1; 2; : : : (2)the sojourn duration in state x�(`�1) reahed by the individual at time �(`�1)(before a transition to state x�` at time �`), the proess xt an be equivalently3



haraterized by the sequenes f (�`; x�`) ; ` 2 IN g or f(u`; x�k̀=0uk)` ; ` 2INg with u0 = �0.Now suppose that proess Xt is observed from the exogenous date �s,with �s 2℄�0; �1[, up to time �e and that the date of entry into the stateoupied at time �s (i.e. the date of entry into the labor market, �0) isunknown to the analyst. Then, the sojourn duration in state x�s = x�0 issaid to be left-ensored. Symmetrially, for the example in Figure 1, thesojourn duration in state x�e = x�3 is said to be right-ensored, beause theouple (�4; x�4) is not observed.We restrit now our attention to non left-ensored samples, i.e. suh that�s = �0, for all individuals.2 We de�ne the event-history orresponding toproess Xt for the observation period [�0; �e℄ as:! = f�0; x�0 ; �1; x�1 ; : : :; �n; x�ng (3)where n is the number of transitions, i.e. the number of modi�ations, ofthe studied proess during the period [�0; �e℄. This event-history an beequivalently de�ned as:! = n�0; u1; x�0+u1 ; u2; x�0+u1+u2 ; : : :; un); x�0+ �ǹ=1u`o (4)This realization of the proess from time �0 to time �e an be written:! = ((�0; x�0); (u1; x�1); : : :; (un; x�n); (un+1; 0)) (5)where un+1 = �e��n is the duration of the last observed spell. The last spellis right-ensored. Indeed, �n+1 and xn+1 are not observed. Consequently,we �x xn+1 = 0 in order to signify that the last duration is at least equal toun+1. This realization of the proess an be rewritten! = (y0; y1; : : :; yn; yn+1) (6)where yk = 8>>><>>>: (�0; x�0) if k = 0(�k; x�k) if 1 � k � n(�n+1; 0) if k = n+ 1Let us de�ne a spell as a period of time delimited by two suessive tran-sitions. The history of the proess is a sequene of variables yk = (uk; x�k),where uk is the length of spell k and x�k is the state oupied by the indi-vidual at time �k.2The statistial treatment of left-ensored spells has been onsidered by Hekman andSinger (1984), Ondrih (1985) and Amemiya (2001).4



2.1.2 Distributions of spell durations.Suppose now that the proess enters state x�`�1 (x�`�1 2 f1; : : :;Kg) attime �`�1 (` = 1; : : :; n + 1). Let us examine the probability distributionof the sojourn duration in state x�`�1 entered after the (`� 1)-th transitionof the proess. For that purpose, we assume that this sojourn duration isgenerated by a onditional probability distribution P given the event-history(y0; : : :; y`�1) and a vetor of exogenous variables z, de�ned by the umulativedistribution funtionF (u j y0; : : :; y`�1; z; �) = Pr [U` � u j y0; : : :; y`�1; z; �℄= 1� S(u j y0; : : :; y`�1; z; �) (7)where � is a vetor of unknown parameters. Here U` denotes the randomvariable orresponding to the duration of the ` � th spell of the proess,starting with its (` � 1) � th transition. S(u j y0; : : :; y`�1; z; �) is the sur-vivor funtion of the sojourn duration in the `� th spell. If the probabilitydistribution P admits a density f with respet to the Lebesgue measure,then: F (u j y0; : : :; y`�1; z; �) = Z u0 f(t j y0; : : :; y`�1; z; �) dt (8)and f(u j y0; : : :; y`�1; z; �) = ddu F (u j y0; : : :; y`�1; z; �)= � ddu S(u j y0; : : :; y`�1; z; �) (9)If the funtion f(u j y0; : : :; y`�1; z; �) is adlag, then there exists a fun-tion, alled the hazard funtion of the sojourn duration in the ` � th spell,de�ned ash(u j y0; : : :; y`�1; z; �) = f(u j y0; : : :; y`�1; z; �)S(u j y0; : : :; y`�1; z; �)= � ddu log S(u j y0; : : :; y`�1; z; �) (10)or equivalently ash(ujy0; : : :; y`�1; z; �) du = limd u#0 Pr [u�U`<u+d u j U`�u; y0; : : :; y`�1℄d u (11)From (9), it follows that:� log S(u j y0; : : :; y`�1; z; �) = R u0 h(t j y0; : : :; y`�1; z; �) dt= H(u j y0; : : :; y`�1; z; �) (12)5



The funtion H`(u j y0; : : :; y`�1) is alled the onditional integrated haz-ard funtion of the sojourn in the `�th spell, given the history of the proessup to time �`�1.Redued-form statistial models of labour-market transitions an be viewedas extensions of ompeting risks duration models or multi-states multi-spellsduration models. These onepts will now be spei�ed.2.1.3 Competing risks duration modelsLet us assume that the number of states K is stritly greater than 2 (K > 2)and that, for eah spell, there exists (K � 1) independent latent randomvariables, denoted U?k;` (k 6= x�`�1 ; k 2 E). Eah random variable U�k;`represents the latent sojourn duration in state x�`�1 before a transition tostate k (k 6= x�`�1) during the `� th spell of the proess.The observed sojourn duration u` is the minimum of these (K�1) latentdurations: u` = infk 6=x�`�1 nu�k;`o (13)Then, for any �`�1 2 !:S(u j y0; : : :; y`�1; z; �) = KYk=1k 6=j S(u; k j y0; : : :; y`�1; z; �) (14)where S(u; k j y0; : : :; y`�1; z; �) = Pr(U�k;` � u j y0; : : :; y`�1; z) is the on-ditional survival funtion of the sojourn duration in state x�`�1 before atransition to state k during the `� th spell of the proess, given the historyof the proess up to time �`�1.Let g(u; k j y0; : : :; y`�1; z; �) be the onditional density funtion of thelatent sojourn duration in state x�`�1 before a transition to state k, andhk(u j y0; : : :; y`�1; z; �) the assoiated onditional hazard funtion. Then wehave the relations:hk(u j y0; : : :; y`�1; z; �) = g(u; k j y0; : : :; y`�1; z; �)S(u; k j y0; : : :; y`�1; z; �) (15)andS(u; k j y0; : : :; y`�1; z; �) = exp�� Z u0 hk(t j y0; : : :; y`�1; z; �) dt� (16)
6



Let us remark (14) and (16) imply:S(u j y0; : : :; y`�1; z; �) = exp0B�� Z u0 Xk 6=x�`�1 hk(t j y0; : : :; y`�1; z; �) dt1CA(17)Thus the onditional density funtion of the observed sojourn durationin state j during the `� th spell of the proess, given that this spell startsat time �`�1 and ends at time �`�1 + u by a transition to state k, is:f(u; k j y0; : : : y`�1; z; �) = hk(u j y0; : : :; y`�1; z; �);� exp�� Z u0 KXk0=1k0 6=x�`�1 hk0(t j y0; : : :; y`�1; z; �) dt� (18)This is the likelihood ontribution of the ` � th spell when this spell isnot right-ensored (i.e. when �` = �`�1+u � �e). When the `� th spell lastsmore than �e � �`�1, the ontribution of this spell to the likelihood funtionis: S(�e � �`�1 j y0; : : :; y`�1; z; �) = Pr(U` > �e � �`�1 j y0; : : :; y`�1; z)2.1.4 Multi-spells multi-states duration modelsThese models are the extension of the preeding independent ompeting risksmodel, whih treats the ase of a single spell (the `� th spell) with multipledestinations. In the multi-spells multi-states model, the typial likelihoodontribution has the following form:L(�) = n+1Ỳ=1 f(y` j y0; : : :; y`�1; z; �) (19)where f(y` j y0; : : :; y`�1; �) is the onditional density of Y` given Y0 =y0; Y1 = y1; : : :; Y`�1 = y`�1; Z = z and � is a vetor of parameters. De�ni-tion (18) implies that:L(�) = nỲ=1 f(�`��`�1; x�` jy0; : : :; y`�1; z; �)� Sn+1(�e � �njy0; : : :; yn; z; �) (20)The last term of the right-hand side produt in (20) is the ontribution ofthe last observed spell, whih is right-ensored. Referenes for a general7



presentation of labor market transition eonometri models an be foundin surveys by Flinn and Hekman (1982a, b, 1983a) or in the textbook byLanaster (1990a).2.2 Nonparametri and parametri estimation2.2.1 Nonparametri estimation2.2.1.1 The Kaplan-Meier estimator In the elementary duration model,a nonparametri estimator of the survivor funtion an be obtained using theKaplan-Meier estimator for right-ensored data. Let us suppose that we ob-serve I sample paths (i.i.d. realizations of the proess Xt) with the samepast history ![�0; �n�1℄. Let I? be the number of sample paths suh that�n;i � T2 and I � I? the number of sample paths for whih the n-th spellduration is right-ensored, i.e. �n;i > T2 (or n(�0; T2) < n), i denoting herethe index of the proess realization (i = 1; : : :; I). If �n;1; : : :; �n;I? are the I?ordered transition dates from state X�n�1 (i.e. �n;1 � : : : � �n;I? � T2), theKaplan-Meier estimator of the survivor funtion Sn(t j ![�0; �n�1℄) is:Ŝn(t j ![�0; �n�1℄) = Yi:�n;i�t�1� diri�i = 1; : : :; I?; t 2℄�n�1; T2℄ (21)where ri is the number of sample paths for whih the transition date fromstate X�n�1 is greater than or equal to �n;i and di is the number of transitiontimes equal to �n;i. An estimator for the variane of the survivor funtionestimate is given by the Greenwood's formula:Var hŜn(t j ![�0; �n�1℄)i' nŜn(t j ![�0; �n�1℄)o2 � Xi:�n;i�t diri(ri � di) (22)This estimator allows to implement nonparametri tests for the equalityof the survivor funtions of two di�erent subpopulations (suh as the Savageand log-rank tests).In the ase of multiple destinations (i.e. ompeting risks models), wemust restrit the set of sample paths indexed by i 2 f1; : : :; I?g to the pro-ess realizations experiening transitions from the state X�n�1 to some statek (k 6= X�n�1). Transitions to another state than k are onsidered as right-ensored durations. If we set X�n�1 = j, then the Kaplan-Meier estimator of8



the survivor funtion Sjk(t j ![�0; �n�1℄) is given by the appropriate appli-ation of formula (21), and an estimator of its variane is given by formula(22).2.2.1.2 The Aalen estimator The funtion H`(u j ![�0; �`�1℄), de�nedin equation (12) and giving the integrated hazard funtion of the sojournduration in the ` � th spell, an be estimated nonparametrially using theAalen estimator (Aalen, 1978):Ĥ`(u j ![�0; �`�1℄) = Xi:�`�1��`;i<u diri (23)Ĥ`(u j ![�0; �`�1℄) is an unbiased estimator of H`(u j ![�0; �`�1℄), and anestimator of its variane is given by:var hĤ`(u j ![�0; �`�1℄)i = Xi:�`�1��`;i<u diri(ri � di) (24)In the ompeting risks model, equation (12) is equivalent to:� log Sjk(u j ![�0; �`�1℄) = R u0 hjk(t j ![�0; �`�1℄) dt= Hjk(u j ![�0; �`�1℄) (25)where Hjk(u j ![�0; �`�1℄) is the integrated intensity (or hazard) funtionfor a transition from state j to state k (k 6= j) during the ` � th spell ofthe proess, and given the past history ![�0; �`�1℄ of the proess. The Aalenestimator of this funtion an be derived from the formula (24) by onsideringindexes i orresponding to transitions from state j to state k during the `�thspell of the proess; indexes orresponding to other types of transition fromstate j are now onsidered as right-ensored durations. The Aalen estimatoran be used to implement nonparametri tests for the equality of two or moretransition intensities orresponding to distint transitions.2.2.2 Spei�ation of onditional hazard funtions
9



2.2.2.1 The Markov model In a markovian model, the hazard funtionshk(t j y0; : : :; y�`�1 ; z; �) depend on t, on states x�`�1 and on k, but areindependent of the previous history of the proess. More preisely:hk(t j y0; : : :; y�`�1 ; z; �) = hk(t j x�`�1 ; z; �); k 6= x�`�1 (26)and hj(t j y0; : : :; y�`�1 ; z; �) = 0; if j = x�`�1When the Markov model is time-independent, it is said to be time-homogeneous. In this ase:hk(t j x�`�1 ; z; �) = hk(x�`�1 ; z; �) = hx�`�1 ;k(z; �) ; k 6= x�`�1 ; 8t 2 IR+(27)The partiular ase of a ontinuous-time markovian model observed indisrete-time will be extensively treated in the following subsetion (thisChapter). Let us now onsider two simple examples of markovian proesses.Example 1:Consider the ase of a time-homogeneous markovian model with twostates (K = 2) and assume that:hk(t j x�`�1 ; �) = 8>>><>>>:� if x�`�1 = 1 and k = 2� if x�`�1 = 2 and k = 10 otherwise (28)with � = (�; �). The parameter � > 0 is the instantaneous rate oftransition from state 1 (for instane, the employment state) to state 2 (forinstane, the unemployment state). Reiproally, � > 0 is the instantaneousrate of transition from state 2 to state 1.Durations of employment (respetively, unemployment) are independentlyand identially distributed aording to an exponential distribution with pa-rameter � (respetively, with parameter �). If p1(t0) and p2(t0) denote ou-pation probabilities of states 1 and 2 at time t0 respetively, then oupationprobabilities at time t (t > t0) are respetively de�ned by:p1(t) = ��+ � + �p1(t0)� ��+ �� e�(�+�)tp2(t) = ��+ � + �p2(t0)� ��+ �� e�(�+�)t (29)
10



Let (p?1; p?2) denote the stationary probability distribution of the proess.Then it is easy to verify from (29) that:p?1 = ��+ � and p?2 = ��+ � (30)In the eonomi literature, there are many examples of stationary jobsearh models generating suh a markovian time-homogeneous model withtwo states (employment and unemployment): see, for instane, the survey byMortensen (1986). Extensions to three-states models (employment, unem-ployment and out-of-labor-fore states) have been onsidered, for example,by Flinn and Hekman (1982a) and Burdett et al. (1984a, b). Markovianmodels of labor mobility have been estimated, for instane, by Tuma andRobins (1980), Flinn and Hekman (1983b), Mortensen and Neuman (1984),Olsen, Smith and Farkas (1986) and Magna and Robin (1994).Example 2:Let us onsider now the example of a non-homogeneous markovian modelwith two states (employment and unemployment, respetively denoted 1 and2). Let us assume that the orresponding onditional hazard funtions verifyhk(t j x�`�1 ; �) = 8>>><>>>:h2(t; �) if x�`�1 = 1 and k = 2h1(t; �) if x�`�1 = 2 and k = 10 otherwise (31)Let p(0) = (p1(t0); p2(t0))0 denote the initial probability distribution attime t0. The distribution of state oupation probabilities at time t, denotedp(t) = (p1(t); p2(t))0, is given by:p1(t) = expn� R tt0 [h1(s; �) + h2(s; �)℄ dso� hp1(t0) + R tt0 h1(s; �) expnR st0(h1(u; �) + h2(u; �)) duo dsi(32)and p2(t) = 1� p1(t) (see Chesher and Lanaster, 1983).Non-homogeneous markovian models are often used to deal with pro-esses mainly in�uened by the individual age at the transition date. Forexample, let us onsider a transition proess fXtgt�0 with state-spae E =f1; 2; 3g, and for whih the time sale is the age (equal to At at time t). Ifthe origin date of the proess (i.e. the date of entry into the labor market) isdenoted A�0 for a given individual, then a realization of the proess fXtgt�0over the period [A�0 ; �e℄ is depited in Figure 2.11



Figure 2xt3 � �2 � �1 � � tA�0 A�1 A�2 A�3 A�eNow let us suppose that transition intensities at time t depend only onthe age attained at this time and are spei�ed suh as:hk (t j y0; : : :; y`�1;A�0 ; �) = hk(At;x�`�1 ; �)= exp ��x�`�1 ;k + �x�`�1 ;k At� (33)where �j;k and �j;k (j; k 2 E�E and k 6= j) are parameters to be estimated.In formula (33), the individual index is omitted for simplifying notations.By noting that: At = A�`�1 + (At �A�`�1) = A�`�1 + ut` (34)where ut` denotes the time already spent in the ` � th spell at date t, it ispossible to write again transition intensities as:hk(t j y0; : : :; y`�1;A�0 ; �) = exp ��x�`�1 ;k + �x�`�1 ;k A�`�1 + �x�`�1 ;k ut`�(35)and to dedue the survivor funtion of the sojourn duration in the `�th spellwhih has the form:S(u j y0; : : :; y`�1;A�0 ; �)= expf�Xk 6=x�`�1 Z A�`�1+uA�`�1 exp(�x�`�1 ;k+�x�`�1 ;k A�`�1+�x�`�1 ;k ut`) d t g(36)12



where ` � 1. By setting ut` = t�A�`�1 in expression (36), it follows that:Sfu j y0; : : :; y`�1;A�0 ; �g =exp0B��Xk 6=x�`�1exp(�x�`�1 ;k)�x�`�1 ;k hexp(�x�`�1 ;k (A�`�1+u))� exp(�x�`�1 ;kA�`�1)i1CA(37)if �x�`�1 ;k 6= 0. Then the likelihood ontribution of the `� th spell beginningat age A�`�1 with a transition to state x�`�1 and ending at age A�` with atransition to state x�` is:L` = f(A�`�A�`�1 ; x�` j y0; : : :; y�`�1 ;A�0 ; �)= hx�` (�` j y0; : : :; y�`�1 ;A�0 ; �) S(A�`�A�`�1 j y0; : : :; y�`�1 ;A�0 ; �)= exp ��x�`�1 ;k + �x�`�1 ;k A�`�� exp0B��Xk0 6=x�`�1exp(�x�`�1 ;k0)�x�`�1 ;k0 hexp(�x�`�1 ;k0 A�`)� exp(�x�`�1 ;k0 A�`�1)i1CA(38)Non-homogeneous markovian models of transitions between employmentand unemployment have been estimated, for example, by Ridder (1986) andTrivedi and Alexander (1989).2.2.2.2 Semi-Markov models In semi-Markov models, hazard funtionsdepend only on the urrently oupied state (denoted x�`�1 for spell `), on thedestination state (denoted k), on the sojourn duration in state x�`�1 and onthe time of entry into the urrently oupied state. If the spell orrespondingto the urrently oupied state is the `� th spell of the proess, then hazardfuntions of the semi-Markov model have two alternative representations:hk(t j y0; : : :; y`�1; �) = hk(t j �`�1;x�`�1 ; �) (39)or hk(u j y0; : : :; y`�1; �) = hk(u j �`�1;x�`�1 ; �) (40)where u = t� �`�1 is the time already spent in the urrent state (i.e. in the`� th spell of the proess). When the hazard funtions do not depend on thedate �`�1 of the last event, but depend only on the time already spent in the13



urrent state, then the semi-Markov model is said to be time-homogeneous.In this ase, hazard funtions de�ned in (40) are suh that:hk(u j �`�1;x�`�1 ; �) = hk(u j x�`�1 ; �); u 2 IR+ (41)In this model, the mean duration of a sojourn in state x�`�1 an bealulated using de�nitions of hazard and survivor funtions, and thus it isgiven by:E(U` j x�`�1 ; �) = Z 10 u S(u j x�`�1 ; �)� Xk 6=x�`�1 hk(u j x�`�1 ; �)� du (42)where U` is the random variable representing the duration of a spell ` andS(u j x�`�1 ; �) = exp(� Z u0 Xk 6=x�`�1 hk(s j x�`�1 ; �) d s) (43)This onditional expetation an be obtained using the following prop-erty: E(U` j x�`�1 ; �) = Z 10 S(u j x�`�1 ; �) d u; (44)(see, for instane, Klein and Moeshberger, 2003). Semi-markovian modelsof transition between two or three states have been estimated by Flinn andHekman (1982b), Burdett, Kiefer and Sharma (1985), Bonnal, Fougère andSérandon (1997), and Gilbert, Kamionka and Laroix (2001).2.3 Unobserved HeterogeneityHere heterogeneity is supposed to over individual observable and unobserv-able harateristis. One again, we will omit the individual index.2.3.1 Correlation between spellsLet us assume that the onditional model is time-homogeneous semi-markovianand hk(u j y0; : : :; y`�1; z; v; �) = hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) (45)where v is a vetor of individual unobserved heterogeneity terms and � is thevetor of parameters to be estimated.14



Let hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) denote the onditional hazard fun-tion for the sojourn duration in the `� th spell of the partiipation proess,when the urrently oupied state is state x�`�1 and the destination state isk. Here z is a vetor of exogenous variables, possibly time-dependent, v(j;k)is an heterogeneity random term, whih is unobserved, and �jk is a vetorof parameters. The preeding hazard funtion is often supposed to be equalto:hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) = exp h'(z;u`; �x�`�1 ;k) + vx�`�1 ;ki (46)Several assumptions an be made onerning the unobserved randomterms vj;k. Firstly, vj;k an be supposed to be spei� to the transition fromj to k, so vj;k 6= vj0;k0 for any (j; k) 6= (j0; k0):It an be also spei� to the origin state, in whih ase :vj;k = vj for any k 6= j:Finally, vj;k an be supposed to be independent of states j and k andthus to be �xed over time for eah individual, i.e.vj;k = v for any (j; k) 2 E�E; k 6= j:This last assumption will be made through the remaining part of ourpresentation. Let us remark that a �xed heterogeneity term is su�ient togenerate some orrelation between spells durations. If we assume that v has aprobability density funtion with respet to the Lebesgue measure denotedg(v j �), where � is a parameter, then we an dedue that the marginalsurvivor funtion of the sojourn duration in the ` � th spell of the proess,when urrent state is x�`�1 , has the form:S(u` j x�`�1 ; z; �x�`�1 ) = ZDG S(u` j x�`�1 ; z; v; �x�`�1 ) g(v j �) d v= ZDG exp�� exp(v) Z u`0 � Xk 6=x�`�1 exp('(z; t; �x�`�1 ;k)�dt� g(v j �) d v(47)where �x�`�1 = n(�x�`�1 ;k)k 6=x�`�1 ; �o and DG is the support of the probabil-ity distribution of the random variable v.Suh formalizations of heterogeneity have been used for estimation pur-poses by Hekman and Borjas (1980), Butler et al. (1986, 1989), Mealli and15



Pudney (1996), Bonnal, Fougère and Sérandon (1997), Gilbert, Kamionkaand Laroix (2001), and Kamionka and Laroix (2003).� ExampleTo illustrate the treatment of unobserved heterogeneity in transition pro-esses, let us onsider a realization of a two state time-homogeneous Markovproess. More preisely, let us assume that this realization generates a om-plete spell in state 1 over the interval [0; �1℄ and a right-ensored spell in state2 over the interval [�1; �e[. Transition intensities between the two states aregiven by: hk(t j x�`�1 ; vx�`�1 ;�x�`�1 ) = �x�`�1 + vx�`�1 (48)where k 2 f1; 2g, �x�`�1 > 0 and t 2 IR+, �1 and �2 are two positive param-eters, and v1 and v2 are two random variables supposed to be exponentiallydistributed with a density funtion g(v j �) = � exp(�� v), � > 0. Wewant to dedue the likelihood funtion for this realization of the proesswhen v1 and v2 are supposed to be spell-spei� and independent (v1 6= v2and v1??v2) or �xed over time (v1 = v2 = v). In the �rst ase (v1 6= v2 andv1??v2), the onditional likelihood funtion is:Lv(�) = f(�1; x�1 j x0; v;�) S(�e��1 j x�1 ; v;�);= (�1+v1) exp f�(�1+v1)�1g exp f�(�2+v2)(�e��1)g (49)where v = (v1; v2)0, � = (�1; �2)0, x0 = 1 and x�1 = 2. Beause v1 andv2 are unobserved, we must deal with the following marginalized likelihoodfuntion:L(�;�) = Z 10 Z 10 L(v1; v2; �1; �2) g(v1 j �) g(v2 j �) d v1 d v2= f(�1; x�1 j x0;�;�) S(�e � �1 j x1;�;�) (50)where f(�1; x�1 j x0;�;�) = exp(��1 �1)� ��1 + ����1 + 1�1 + ��and S(�e � �1 j x�1 ;�;�) = exp(��2 (�e � �1)) � �(�e � �1) + �� (51)are the marginalized density and survivor funtions of sojourn durations �1and (�e � �1) in the �rst and seond spells respetively.
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When the heterogeneity term is �xed over time (v1 = v2 = v), then themarginal likelihood ontribution is:L(�; �) = Z 10 (�1+v) exp f�(�1�1+�2(�e��1)+v �e)g� exp(�� v) d v;= exp f��1�1 � �2(�e � �1)g ��+ �e ��1 + ��+ �e� (52)whih is obviously not equal to the produt of the marginalized density andsurvivor funtions of the sojourn durations in the �rst and seond spells asin the ase where v1 6= v2. ?Now, let us assume that there exists a funtion  de�ning a one-to-onerelation between v and some random variable �, suh as:v =  (�; �) (53)For instane,  an be the inverse of the .d.f. for v, and � an be uniformlydistributed on [0; 1℄. Then:S(u` j x�`�1 ; z; �x�`�1 ) = Z 10 S(u` j x�`�1 ; z; (�; �); �x�`�1 ) �(�) d� (54)where �(:) is the density funtion of �. The marginal hazard funtion forthe sojourn in the `� th spell an be dedued from equation (54) as:h(u` j x�`�1 ; z; �x�`�1 ) = � ddu`S(u` j x�`�1 ; z; �x�`�1 ) (55)Using de�nitions (54) and (55), the individual ontribution to the likeli-hood funtion an be easily dedued and maximized with respet to �, eitherby usual proedures of likelihood maximization if the integrals (40) and (41)an be easily alulated, or by simulation methods (see, e.g., Gouriéroux andMonfort, 1997) in the opposite ase.For instane, let us onsider the ase of a semi-markovian model wherethe individual heterogeneity term is �xed over time, i.e. vj;k = v for any(j; k) 2 E�E. From (20) and (46)-(47), the typial likelihood ontributionin the present ase is:Lv(�) = nỲ=1 hx�` ��` � �`�1 j x�`�1 ; z; v; �x�`�1 ;x�`�� n+1Ỳ=1 exp�� Z �`�`�1 Xk 6=x�`�1 hk(t j x�`�1 ; z; v; �x�`�1 ;k) dt� (56)17



with �n+1 = �e by onvention. Using relation (53), the marginalized likeli-hood ontribution obtained by integrating out � is:L(�) = Z 10 L (�;�)(�) �(�) d � (57)When the integral is not analytially tratable, simulated ML estimatorsof parameters � and (�jk)k 6=j an be obtained by maximizing the followingsimulated likelihood funtion with respet to � and (�jk)k 6=j :LN (�) = 1N NXn=1L (�n;�) (�) (58)where �n is drawn from the distribution with density funtion �(:), whihmust be onveniently hosen (for asymptoti properties of these estimators,see Gouriéroux and Monfort, 1997).2.3.2 Correlation between destination statesLet us assume that the onditional hazard funtion for the transition intostate k is given by the expressionhk(u j y0; : : :; y`�1; z; v;�) = h0k(u; ) '(y0; : : :; y`�1; z;�) �k (59)where '(:) is a positive funtion depending on the exogenous variables andthe history of the proess, �k an unobserved heterogeneity omponent spei�to the individual (�k > 0), � and  are vetors of parameters, h0k(u; ) is abaseline hazard funtion for the transition to state k (k 2 f1; : : :;Kg). Letus assume that (see Gilbert et al., 2001)�k = exp(ak v1 + bk v2) (60)where ak and bk are parameters suh that ak = 1I [k � 2 ℄ for k = 1; : : :;Kand b1 = 1. The latent omponents v1 and v2 are assumed to be indepen-dently and identially distributed with a p.d.f. denoted g(v;�), where � isa parameter and vs 2 DG, s = 1; 2.In this two fator loading model, the orrelation between log(�k) andlog(�k0), �k;k0, is given by the expression�k;k0 = ak ak0 + bk bk0qa2k + b2kqa2k0 + b2k0 (61)18



where k; k0 = 1; : : :;K. The ontribution to the onditional likelihood fun-tion of a given realization of the proess w = (y1; : : :; yn; yn+1) is:L(�)= ZDG ZDG n+1Ỳ=1 f(y`jy0; : : :; y`�1; z; v1; v2;�) g(v1;�) g(v2;�) d v1 d v2(62)wheref(u; k j y0; : : :; y`�1; z; v1; v2;�) = hk(u j y0; : : :; y`�1; z; v1; v2;�)Æk� expf� Z u0 Xj 6=x�`�1 hj(t j y0; : : :; y`�1; z; v1; v2;�) d tg (63)and the onditional hazard funtion is given by expression (59). The expo-nent Æk is equal to 1 if k 2 f1; : : :;Kg, and to 0 otherwise. � is a vetorof parameters and � = (�; �). As the last spell is right-ensored, the orre-sponding ontribution of this spell is given by the survivor funtionf(yn+1jy0; : : :; yn; z; v1; v2;�)= expf�un+1Z0 Xj 6=x�nhj(tjy0; : : :; yn; z; v1; v2;�) d tg(64)where yn+1 = (un+1; 0) (state 0 orresponds to right-ensoring).Bonnal et al. (1997) ontains an example of a two fator loading model.Lindeboom and van den Berg (1994), Ham and Lalonde (1996) and Eberweinet al. (1997, 2002) use a one fator loading model in order to orrelate theonditional hazard funtions. A four fator loading model has been proposedby Mealli and Pudney (2003). Let us remark that, in the ase of bivariateduration models, assoiation measures were studied by Van den Berg (1997).Disrete distributions of the unobserved heterogeneity omponent an be al-ternatively used (see, for instane, Hekman and Singer (1984), Gritz (1993),Baker and Melino (2000)).This way to orrelate the transition rates using a fator loading modelis partiularly useful for program evaluation on nonexperimental data. Inthis ase, it is possible to haraterize the impat on the onditional hazardfuntions of previous partiipation to a program by taking into aount entryseletivity phenomena.
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3 Markov Proesses Using Disrete-Time Observa-tionsThe eonometri literature on labor mobility proesses observed with disrete-time panel data makes often use of two elementary stohasti proessesdesribing individual transitions between a �nite number of partiipationstates.The �rst one is the ontinuous-time Markov hain, whose parametersan be estimated through the quasi-Newton (or soring) algorithm proposedby Kalb�eish and Lawless (1985). This kind of model allows to alulatestationary probabilities of state oupation, the mean duration of sojourn ina given state, and the intensities of transition from one state to another.A main di�ulty an appear in this approah: in some ases the disrete-time Markov hain annot be represented by a ontinuous-time proess. Thisproblem is known as the embeddability problem whih has been surveyed bySinger and Spilerman (1976a, b) and Singer (1981, 1982). However, somenon-embeddable transition probability matries an beome embeddable af-ter an in�nitesimal modi�ation omplying with the stohasti property.This suggests that the embeddability problem an be due to sampling er-rors.Geweke et al. (1986a) established a bayesian method to estimate the pos-terior mean of the parameters assoiated to the Markov proess and somefuntions of these parameters, using a di�use prior de�ned on the set ofstohasti matries. Their proedure allows to determine the embeddabil-ity probability of the disrete-time Markov hain and to derive on�deneintervals for its parameters under the posterior.The seond frequently used modelization inorporates a very simple formof heterogeneity among the individuals: this is the mover-stayer model, whihwas studied in the disrete-time framework by Frydman (1984), Sampson(1990) and Fougère and Kamionka (2003). The mover-stayer model is astohasti proess mixing two Markov hains. This modelling implies thatthe referene population onsists of two types of individuals: the �stayers�permanently sojourning in a given state, and the �movers� moving betweenstates aording to a non-degenerate Markov proess.These two modelizations will be suessively studied in the followingsubsetion.
20



3.1 The time-homogeneous markovian modelLet us onsider a markovian proess fXt; t 2 IR+g de�ned on a disretestate-spae E = f1; : : :;Kg, K 2 IN , with a transition probability matrixP (s; t) with entries pj;k(s; t), (j; k) 2 E �E; 0 � s � t, where:pj;k(s; t) = PrfXt = k j Xs = jg (65)and KXk=1 pj;k(s; t) = 1. If this markovian proess is time-homogeneous, then:pj;k(s; t) = pj;k(0; t� s) � pj;k(t� s); 0 � s � t (66)or equivalently: P (s; t) = P (0; t � s) � P (t� s); 0 � s � t (67)This implies that transition intensities de�ned by:hj;k = lim�t#0 pj;k(t; t+�t)=�t; �t � 0; (j; k) 2 E �E; j 6= k (68)are onstant through time, i.e.:hk(t j x�`�1 ; �) = hj;k(t j �) = hj;k ; t � 0; (j; k) 2 E �E; j 6= k (69)where x�`�1 = j. These transition intensities are equal to the hazard fun-tions previously de�ned in equations (26) and (27). The K �K transitionintensity matrix, whih is assoiated to the time-homogeneous markovianproess fXt; t 2 IR+g, is denoted Q and has entries:q(j; k) = 8>><>>:hj;k 2 IR+ if j 6= k; (j; k) 2 E �E� KXm=1m6=j hj;m � 0 if j = k; j 2 E (70)Let us denote IQ the set of transition intensity matries, i.e. the set of(K�K) matries with entries verifying the onditions (70). It is well known(f. Doob, 1953, p. 240 and 241) that the transition probability matrix overan interval of length T an be written:P (0; T ) = exp(QT ); T 2 IR+ (71)21



where exp(A) =P1k=0Ak=k! for any K �K matrix A.Main properties of the time-homogeneous markovian proess fXt; t 2IR+g with state-spae E, are the following:� sojourn times in state j (j 2 E) are positive random variables, whihare exponentially distributed with parameter �q(j; j):uj � exp(�q(j; j)); j = 1; : : :;K (72)with E[uj ℄ = var[uj ℄1=2 = �q(j; j)�1;� the probability of a transition to state k given that the proess isurrently in state j (k 6= j) is independent of the sojourn time in state j,and is found to be:rj;k = �q(j; k)=q(j; j); k 6= j; (j; k) 2 E �E (73)� if the time-homogeneous Markov proess fXtg is ergodi, its equilib-rium (or limiting) probability distribution is denoted P � = (p�1; : : :; p�K)0 andde�ned as the unique solution to the linear system of equations:Q0P � = 0 ; with KXi=1 p�i = 1 (74)3.1.1 Maximum likelihood estimator of the matrix P using disrete-time (multiwave) panel dataLet us suppose now that we observe � independent realizations of the proessfXtg at equally spaed times T0; T1; : : :; TL (L > 1) suh as: T`�T`�1 = T ,` = 1; : : :; L. Let us denote:� nj;k(`) the number of individuals who were in state j at time T`�1 andwho are in state k at time T`,� nj(`� 1) the number of individuals who were in state j at time T`�1.Maximizing the onditional likelihood funtion given the initial distributionat T0: L(P (0; T )) = LỲ=1 KYj;k=1 fpj;k(T`�1; T`)gnj;k(`)= KYj;k=1 fpj;k(0; T )g�L̀=1nj;k(`) (75)with KXk=1 pj;k(0; T ) = 1, gives the (j; k) entry of the MLE bP (0; T ) for P (0; T ):22



bpj;k(0; T ) =  LX̀=1nj;k(`)! = LX̀=1nj(`� 1)! (76)(see Anderson and Goodman, 1957). If the solution bQ to the equation:bP (0; T ) = exp( bQT ); T > 0 (77)belongs to the set IQ of intensity matries, then bQ is a MLE estimator for Q.Nevertheless, two di�ulties may appear:3� the equation (77) an have multiple solutions bQ 2 IQ: this problem isknown as the aliasing problem;4� none of the solutions bQ to the equation (77) belongs to the set IQ ofintensity matries; in that ase, the probability matrix bP (0; T ) is said to benon-embeddable with a ontinuous-time Markov proess.3.1.2 Neessary onditions for embeddabilityThe unique neessary and su�ient ondition for embeddability was givenby Kendall, who proved that, when K = 2, the transition matrix bP (0; T )is embeddable if and only if the trae of bP (0; T ) is stritly greater than 1.When K � 3, only neessary onditions are known; they are the following:51st neessary ondition (Chung, 1967):� if bpj;k(0; T ) = 0; then bp(n)j;k (0; T ) = 0; 8n 2 IN , where bp(n)j;k (0; T ) is the entry(j; k) of the matrix [ bP (0; T )℄n,� if bpj;k(0; T ) 6= 0, then bp(n)j;k (0; T ) 6= 0, 8n 2 IN ;2nd neessary ondition (Kingman, 1962): det h bP (0; T )i > 0,3rd neessary ondition (Elfving, 1937):� no eigenvalue �i of bP (0; T ) an satisfy j �i j= 1, other than �i = 1;� in addition, any negative eigenvalue must have even algebrai multipliity;3A detailed analysis of these problems is developed in papers by Singer and Spilerman(1976 a and b).4The aliasing problem has also been onsidered by Phillips (1973).5Singer and Spilerman (1976a) and Geweke, Marshall and Zarkin (1986b) survey thisproblem. 23



4th neessary ondition (Runnenberg, 1962): the argument of any eigen-value �i of bP (0; T ) must satisfy:( 12 + 1K )� � arg(log �i) � (32 � 1K )�This last ondition plays an important role in the remainder of the anal-ysis.3.1.3 Resolving the equation P̂ (0; T ) = exp(Q̂T )The proof of the following theorem an be found in Singer and Spilerman(1976a):If bP (0; T ) has K distint 6 eigenvalues (�1; : : :; �K) and an be writtenbP (0; T ) = A�D�A�1, where D = diag(�1; : : :; �K) and the eigenve-tor orresponding to �i (i = 1; : : :;K) is ontained in the i�th olumnof the (K �K) matrix A, then:log( bP (0; T )) = bQT = A�0B� logk1(�1) : : : 0... . . . ...0 : : : logkK (�K) 1CA�A�1(78)where logki(�i) = log j �i j +(arg�i + 2ki�)i; ki 2 ZZ ; is a branh ofthe logarithm of �i, when �i 2 C. 7Sine equation (77) has as many solutions bQ as there are ombinations ofthe form (logk1(�1); : : :; logkK (�K)), the number of these solutions is in�nitewhen the matrix bP (0; T ) has at least two omplex onjugate eigenvalues.However, an important impliation of the fourth neessary ondition for6The ase of repeated eigenvalues arises very rarely in empirial appliations. For itstreatment, the reader an onsult Singer and Spilerman (1976a, p. 19-25).7Let us reall that the logarithmi funtion is multiple valued in the omplex set C. Ifz = a+ ib (z 2 C), then: logk(z) = log j z j +i(�+2k�); k 2 ZZ , with j z j= pa2 + b2, and� = arg(z) = tan�1(b=a). Eah value for k generates a distint value for log(z), whih isalled a branh of the logarithm. 24



embeddability is that only �nitely many branhes of log( bP (0; T )) need to beheked for membership in IQ. Indeed, this ondition implies:8�i; � Li(K) � ki � Ui(K) (79)where Ui(K) = intpt ����� log j �i j tanf(12 + 1K )�g� j arg �i j2� �����Li(K) = intpt ����� log j �i j tanf(32 � 1K )�g� j arg �i j2� �����the funtion �intpt� being the integer part of a real number. So the numberof branhes of �i whih must be omputed is equal to Li(K)+Ui(K)+1, thelast one orresponding to the main branh (with ki = 0). Then the numberof solutions bQ that must be examined for membership in IQ is denoted k�( bP )and is equal to:k�( bP ) = 8><>: vYj=1 fLj(K) + Uj(K) + 1g if v � 11 if v = 0 (80)where v denotes the number of omplex onjugate eigenvalue pairs of thematrix bP (0; T ). Let us remark that:� for a real eigenvalue, only the prinipal branh of the logarithm mustbe examined: other branhes (with ki 6= 0) orrespond to omplex intensitymatries bQ;� eah element of a omplex onjugate eigenvalue pair has the samenumber of andidate branhes (see (79)); moreover, only ombinations ofbranhes involving the same ki in eah element of the pair must be om-puted; all others orrespond to omplex intensity matries; this fat explainswhy the alulation of k�( bP ) is based on the number of omplex onjugateeigenvalue pairs, and why the number of branhes needing to be heked foreah pair j is equal to Lj(K)+Uj(K)+1 rather than fLj(K) + Uj(K) + 1g2.If equation (77) has only one solution bQ 2 IQ, this solution is the MLEfor the intensity matrix of the homogeneous ontinuous-time Markov proessfXt; t 2 IR+g; an estimator for the asymptoti ovariane matrix of bQ hasbeen given by Kalb�eish and Lawless (1985).
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3.1.4 The soring proedureKalb�eish and Lawless (1985) have proposed to maximize with respet to� the onditional likelihood funtion (75), i.e.L(�) = KYi;j=1 f exp(QT )g�L̀=1ni;j(`)(i;j) ; Q 2 IQ (81)through a soring algorithm. In this expression, fexp(QT )gi;j is the entry(i; j) of the matrix exp(QT ) = P (0; T ) and � is the vetor of extra diagonalelements of the matrix Q (� � �(Q)). If it is assumed that matrix Q hasK distint eigenvalues, denoted (d1; � � � ; dK), matries Q and P (0; T ) an bewritten as: Q = A DQA�1 = A diag (d1; � � � ; dK)A�1and P (0; T ) = exp(QT ) = A exp(DQT )A�1= A diag(ed1T ; � � � ; edKT )A�1 = A diag(�1; � � � ; �K)A�1(82)These formulae lead to a onvenient expression of the sore (or gradient)vetor, whih is:S(�) = �� logL(Q)� qk` � = 8<: KXi;j=1 LX̀=1ni;j(`) �fexp(QT )g(i;j)=�qk`fexp(QT )g(i;j) 9=; (83)where �fexp(QT )g�qk` = 1Xs=1 (�Qs�qk` )T ss! = 1Xs=1 s�1Xr=0Qr �Q�qk` �Qs�1�r � T ss!= AVk`A�1the matrixVk` = 1Xs=1 s�1Xr=0DrQ(A�1 �Q�qk`A)Ds�1�rQ T ss! having elements:8><>: (Gk`)(i;j) edit � edj tdi � dj ; i 6= j;(Gk`)(i;j)t edit ; i = j;where (Gk`)(i;j) is the entry (i; j) of the matrix Gk` = A�1 �Q�qk`A:26



The information matrix, whih has the formE "��2 logL(�)�qk`�qk0`0 # = 8<: LX̀=1 KXi;j=1 E[Ni(`� 1)℄pi;j(0; T ) �pi;j(0; T )�qk` �pi;j(0; T )�qk0`0 9=; (84)(see Kalb�eish and Lawless, 1985, p. 864), is estimated by:M(�) = 8<: LX̀=1 KXi;j=1 ni(`� 1)pi;j(0; T ) �pi;j(0; T )�qk` �pi;j(0; T )�qk0`0 9=; (85)The iterative formula for the soring algorithm being:�n+1 = �n +M(�n)�1S(�n)where n � 0 and an initial value �0 = �(Q0) is still to be hosen. Two asesmust be onsidered (the ase with multiple solutions in Q is exluded):� equation (77) admits only one solution for bQ and this solution belongsto the set IQ of transition intensity matries: Q̂ is the MLE of the transi-tion matrix Q of the time-homogeneous markovian proess, and the matrixM(�( bQ))�1 gives a onsistent estimate of the ovariane matrix of �̂ = �( bQ);� the unique solution Q0 = bQ to equation (77) doesn't belong to the setIQ; however, it may exist matries ~P (0; T ) = exp( ~QT ) �lose� to bP (0; T ) andwhih are embeddable, i.e. suh that ~Q 2 IQ ; in this ase, the soring algo-rithm of Kalb�eish and Lawless (1985) an be applied to the maximizationof the likelihood (81) subjet to the onstraint Q 2 IQ ; this onstraint anbe diretly introdued into the iterative proedure by settingqi;j = 8>><>>: exp(ai;j); ai;j 2 IR; j 6= i; (i; j) 2 E �Eqii = � KXk=1k 6=i qik; i = j; i 2 E (86)and the initial value Q0 an be hosen to verify:Q0 = argminQ2 IQ k Q0 � bQ k (87)where bQ = 1T log bP (0; T ).
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3.1.5 Bayesian infereneGeweke, Marshall and Zarkin (1986a) have developed a bayesian approahfor statistial inferene on Q (and funtions of Q) by using a di�use prioron the set of stohasti matries. This approah an be justi�ed with twoarguments:� when the MLE of Q is on the parameter set boundary, standard asymp-toti theory annot be applied any more; bayesian inferene overomes thisdi�ulty: the posterior on�dene interval for Q an be viewed as its asymp-toti approximation;� moreover, bayesian inferene allows inorporating into the hoie of theprior distribution some information external to the sample (for example, thedistribution of sojourn durations in eah state).Let us denote PK the set of (K � K) stohasti matries, i.e. Pk =fP 2 MK;K : 8i; j 2 E; pi;j � 0 and PKj=1 pi;j = 1g; P �K the set of (K �K)embeddable stohasti matries, i.e. P �K = fP 2MK;K : P 2 PK and 9Q 2IQ; P (O;T ) = exp(QT ); T > 0g. For any P 2 P �K ; k�(P ) denotes the numberof ombinations of the form (78) belonging to IQ and verifying equation (77).Now let us onsider a prior distribution on P 2 PK , denoted �(P ), a priordistribution on Q, denoted hk(P ) and verifying Pk�(P )k=1 hk(P ) = 1 for P 2PK , and a IR-valued funtion of interest denoted g(Q). If the posteriorembeddability probability of P is de�ned as:Pr(P 2 P �K j N) = RP �K L(P ;N)�(P )dPRPK L(P ;N)�(P )dP > 0 (88)then the expetation of g(Q) is equal toE[g(Q) j N;P 2 P �K ℄ = RP �K Pk�(P )k=1 hk(P )g[Qk(P )℄L(P ;N)�(P )dPRP �K L(P ;N)�(P )dP (89)where the entry (i; j) of the matrix N is PL̀=1 ni;j(`); L(P ;N) is the like-lihood funtion and Qk(P ) is the transition intensity matrix orrespondingto the k-th ombination of logarithms of the eigenvalues of matrix P . Thefuntion of interest g(Q) an be, for example, g(Q) = qi;j; (i; j) 2 E�E, or:g(Q) = E n(qi;j �E(qi;j j N ;P 2 P �K))2 j N ;P 2 P �Kowhih is equivalent to:g(Q) = E nq2i;j j N ;P 2 P �Ko�E2 fqi;j j N ;P 2 P �Kg28



The embeddability probability for P and the �rst moment of g(Q) maybe omputed using Monte-Carlo integration. This involves the hoie of animportane funtion from whih a sequene of matries fPig 2 PK an beeasily generated (see Geweke et al., 1986a, for suh a funtion). Now let usonsider a funtion J(Pi) suh that J(Pi) = 1 if Pi 2 P �K and J(Pi) = 0otherwise. If �(Pi) is bounded above, then:limI!1 IXi=1 J(Pi)L(Pi;N)�(Pi)=I(Pi)IXi=1 L(Pi;N)�(Pi)=I(Pi)= Pr[P 2 P �K j N ℄ a.s. (90)Moreover, if Hk(P ) is a multinomial random variable suh that Pr[Hk(P ) =1℄ = hk(P ), and if g(Q) is bounded above, thenlimI!1 IXi=1 k�(Pi)Xk=1 Hk(Pi)g[Qk(Pi)℄J(Pi)L(Pi;N)�(Pi)=I(Pi)IXi=1 J(Pi)L(Pi;N)�(Pi)=I(Pi)= E[g(Q) j N ;P 2 P �K ℄ a.s. (91)(see Geweke et al., 1986a, p. 658).3.1.6 Tenure reordsUp to now we onentrated on the statistial analysis of disrete-time ob-servations of an underlying ontinuous-time Markov proess. The availableinformation is sometimes riher than the one brought by disrete-time data,but not as omplete as the one ontained in ontinuous-time data. Indeed itan onsist, for a given individual, in the joint sequene f(xT` ; dT`)g`=0;���;L ofoupied states fxT`g`=0;���;L and of times fdT`g`=0;���;L already spent in thesestates at distant observation times fT`g`=0;���L. Suh data have been studiedin the ontinuous-time markovian framework by Magna and Robin (1994),who proposed to all this kind of observations �tenure reords�. Figure 3gives an example of a tenure reord.In this example, T0; T1; T2 and T3 are the exogenous survey dates. Theproess fXtgt�0 is �rst observed to be in state xT0 = 1 at time T0: it29



Figure 3"xt3 � �2 �1 � � � ! t�0 T0 T1 T2 T3d0 d1 d3 !  !  !d2 !oupies this state from date (T0� d0) on. It is then observed to be in state3 at suessive times T1 and T2. This state was entered at time (T1 � d1) =(T2 � d2). Finally, the proess is at time T3 in state xT3 = 1 from date(T3 � d3) on. Indeed it is possible that a spell overs two survey dates, as itis the ase for the seond observed spell in the preeding example: obviously,the information olleted in T1 is redundant.Let us remark that in tenure reords data sets, any sojourn duration isright-ensored with probability one. Typially, a tenure reord onsists ofa sequene fxT` ; d`; t`g`=0;���;L with the onvention tL = 1. The proessfXtgt�0 enters state xT` at time (T` � d`) and is observed to stay in thisstate for a duration greater than d`. Then the proess is not observed (i.e.is trunated) during a period of length t` = (T`+1 � d`+1)� T`. Let hij(s; t)be the probability that the proess fXtg enters state j at time t given thatit was in state i at time s(s < t). If fXtg is time-homogeneous markovian,then hij(0; t� s) � hij(t� s); s < t. In this ase, hij(t) is equal to:hij(t) = KXk=1k 6=j pik(t) qkj; (i; j) 2 E �E (92)Consequently, the likelihood funtion for a tenure reord fxT` ; d`; t`g`=0;���;L30



is the following:L =(L�1Ỳ=0 S(d` j xT`) hxT` ;xT`+1 (t`))S(dL j xTL)= exp(��xTLdL) L�1Ỳ=0 � exp(��xT`d`) KXk=1k 6=xT`+1fexp(Qt`)g(xT` ;k) � qk;xT`+1�(93)where S(u j xT`) is the survivor funtion of the sojourn duration in state xT`and Q is the transition intensity matrix with entries:Q(i; j) = 8>>><>>>: ��i = � KXk=1k 6=i qik; if j = iqij ; if j 6= iMagna and Robin (1994) show that tenure reords allow to identify theintensity of transition from one state to the same state (for example, em-ployment) when within-state mobility is allowed (i.e. when a worker andiretly move from one job to another). Disrete-time observations do notpresent this advantage.For a treatment of inomplete reords, partiularly in presene of un-observed heterogeneity see, for instane, Kamionka (1998). Magna et al.(1995) propose to use indiret inferene to estimate the parameters of a tran-sition model under a semi-Markov assumption in the ontext of a ensoringmehanism.3.2 The Mover-Stayer model3.2.1 MLE for the disrete-time mover-stayer modelThe mover-stayer model has been introdued by Blumen et al. (1955) forstudying the mobility of workers in the labor market. Subsequently, Good-man (1961), Spilerman (1972) and Singer and Spilerman (1976a) have de-veloped the statistial analysis of this model, essentially on the disrete-time axis. The mover-stayer model in disrete time is a stohasti proessfX`; ` 2 IN g, de�ned on a disrete state-spae E = f1; : : :;Kg, K 2 IN ,and resulting from the mixture of two independent Markov hains; the �rstof these two hains, denoted fX 1̀; ` 2 IN g is degenerate, i.e. its transition31



probability matrix is the identity matrix, denoted I. The other hain, de-noted fX 2̀ ; ` 2 IN g is haraterized by a non-degenerate transition matrixM(s; u) =k mi;j(s; u) k, i; j = 1; : : :;K, 0 � s � u, where:mi;j(s; u) = PrfX2u = j j X2s = ig; i; j 2 E; s; u 2 IN ; s � u (94)and KXj=1mi;j(s; u) = 1.Moreover, the Markov hain fX 2̀; ` 2 IN g is assumed to be time homoge-neous, i.e.: mi;j(s; u) = mi;j(0; u� s) � mi;j(u� s); 0 � s � u (95)whih is equivalent to:M(s; u) =M(0; u� s) �M(u� s); 0 � s � u (96)Now let us assume that the mixed proess fX`; ` 2 IN g is observed at�xed and equally distant times: 0; T; 2T; : : :; LT; with T > 0 and L 2IN (L � 1). Transition probabilities for this proess are given by the formu-las: pi;j(0; kT ) = Pr[XkT = j j X0 = i℄; i; j 2 E; k = 1; : : :; L (97)= � (1� si)[mi;j(T )℄(k) if j 6= isi + (1� si)[mi;i(T )℄(k) if j = iwhere [mi;j(T )℄(k) is the entry (i; j) of the matrix [M(T )℄k, and (si; 1� si),with si 2 [0; 1℄, is a mixing measure for state i 2 E. So, in the mover-stayermodel, the referene population is omposed of two kinds of individuals: the�stayers�, permanently sojourning in the same state, and the �movers�, whomove from one state to another aording to the time-homogeneous Markovhain with transition probability matrix M(s; u); s � u. The proportion of�stayers� in state i (i 2 E) is equal to si.The estimation of the transition matrix M(0; T ) and of the mixing mea-sure s from a sample ofN independent realizations of the proess fX`; ` 2 IN g,has been extensively treated by Frydman (1984) and then arried out bySampson (1990). The method developed by Frydman relies on a simple re-ursive proedure, whih will be rapidly surveyed. Formally, the form of the32



sample is: fX0(n);XT (n);X2T (n); : : :;XLT (n); 1 � n � NgwhereXkT (n) (k = 0; : : :; L) is the state of the proess for the n�th realizationat time kT , and (L+1) is the number of equally spaed dates of observation.Let us denote ni0;: : :;iLT the number of individuals for whih the observeddisrete path is (i0; : : :; iLT ), ni(kT ) the number of individuals in state i attime kT , nij(kT ) the number of individuals who are in state i at time (k�1)Tand in state j at time (kT ), ni the number of individuals who have a onstantpath, 8 i.e. i0 = iT = : : : = iLT = i, i 2 E, nij = PLk=1 nij(kT ) the totalnumber of observed transitions from state i to state j, n�i = PL�1k=0 ni(kT )the total number of visits to state i before time (LT ), �i � 0 the proportionof individuals initially (i.e. at date 0) in state i, i 2 E, with PKi=1 �i = 1.The likelihood funtion for the sample is (Frydman, 1984, p. 633):L = KYi=1 �ni(0)i KYi=1Li (98)where:Li = fsi + (1� si)[mii(0; T )℄Lgni(1� si)ni(0)�ni [mii(0; T )℄nii�Lni� KYk=1k 6=i [mik(0; T )℄nikIn this last expression, ni(0) is the number of individuals in state i at time 0,ni is the number of individuals permanently observed in state i, (ni(0)�ni)is the number of individuals initially in state i who experiene at least onetransition in the L following periods, nik is the total number of transitionsfrom state i to state k. Maximizing the funtion (98) with respet to M ands subjet to the onstraints si � 0, i 2 E, is equivalent to maximize the Kexpressions: Li = Log Li + �isi; i = 1; : : :;K (99)for whih the �rst-order derivatives relatively to si are:�Li�si = nif1� [mii(0; T )℄Lgsi + (1� si)[mii(0; T )℄L � ni(0) � ni1� si + �i = 0 (100)8Among the individuals permanently sojourning in state i, we must distinguish the�stayers� from the �movers�; indeed, the probability that a �mover� is observed to be instate i at eah observation point is stritly positive and equal to fmii(0; T )gL.33



Two situations should be onsidered:First ase: If si > 0, then �i = 0 and:si = ni � ni(0)[mii(0; T )℄Lni(0)f1 � [mii(0; T )℄Lg (101)As shown by Frydman (1984, p. 634-635), the ML estimators of transitionprobabilities mij (with �xed i, and j varying from 1 to K) are given by thereursive equation:bmij(0; T ) = nijf1� bmii(0; T ) � j�1Xk=1k 6=i bmik(0; T )g= KXk=jk 6=i nik; j 6= i; i; j 2 E(102)To solve equation (102), it is neessary to begin by setting j = 1 if i 6= 1and j = 2 if i = 1. Furthermore, bmii(0; T ) is the solution, belonging to theinterval [0; 1℄, to the equation:[n�i � Lni(0)℄[mii(0; T )℄L+1 + [Lni(0)� nii℄[mii(0; T )℄L+[Lni � n�i ℄mii(0; T ) + (nii � Lni) = 0 (103)Frydman (1984) doesn't notie that si�0 whenever ( nini(0) )�[mii(0; T )℄L,where (ni=ni(0)) is the proportion of individuals permanently observed instate i. In that ase, the initial assumption si > 0 is violated, and it isneessary to onsider the ase where si = 0.Seond ase: If si = 0, then:bmij(0; T ) = nij=n�i ; 8 i; j = 1; : : :;K (104)This is the usual ML estimator for the probability of transition from i to jfor a �rst-order Markov hain in disrete time (for example, see Anderson andGoodman, 1957, or Billingsley, 1961). A remark, whih is not ontained inthe paper by Frydman (1984), must be made. It may appear that Lni = nii(with nii 6= 0), whih means that no transition from state i to any otherdistint state is observed. This ase arises when the number ni of individualspermanently observed in state i is equal to the number ni(0) of individualsinitially present in state i (if ni(0) 6= 0). Then the estimation problem hastwo solutions:� si=1 and mii is non-identi�able (see equations (101) and (103)),� si = 0 and mii = 1. 34



The �rst solution orresponds to a pure model of �stayers� in state i,the seond to a time-homogeneous Markov hain in whih state i is absorb-ing. The mover-stayer model, as a mixture of two Markov hains, is notappropriate any more for state i. When this ase appears in the appliedwork, we propose to hoose the solution si = 0 and mii = 1, espeiallyfor omputing the estimated marginal probabilities of the form Pr[XkT = i℄,k = 0; : : :; L; i = 1; : : :;K. The analytial expression of the estimated asymp-toti ovariane matrix for ML estimators M and bs an be alulated usingseond derivatives of expression (99).3.2.2 Bayesian inferene for the ontinuous-time mover-stayermodelThe mover-stayer model in ontinuous-time is a mixture of two indepen-dent Markov hains; the �rst one denoted fX1t ; t 2 IR+g has a degeneratetransition matrix equal to the identity matrix I; the seond one denotedfX2t ; t 2 IR+g has a non-degenerate transition matrix M(s; t), 0 � s � t,verifying over any interval of length T :M(0; T ) = exp(QT ); T 2 IR+ (105)Setting M(0; kT ) = kmi;j(0; kT )k, we get:P (0; kT ) = diag(s)+diag(1IK�s)fexp(QT )gK ; T � 0; k = 1; : : :; L (106)where s = (s1; : : :; sK)0, (1IK � s) = (1 � s1; : : :; 1 � sK)0, and diag(x) isa diagonal matrix with vetor x on the main diagonal. From the disrete-time ML estimators of stayers' proportions s and of the transition probabilitymatrixM(0; T ), it is then possible to obtain the ML estimator of the intensitymatrix Q by resolving equation (105) (see subsetion 2.1 above). But, due tothe possible problem of non-embeddability of the matrix M(0; T ), it ouldbe better to adopt a bayesian approah, as the one proposed by Fougère andKamionka (2003). This approah is summarized below.3.2.2.1 De�nitions To write the likelihood-funtion and the expetedvalue under the posterior of some funtion of parameters, additional notationis needed. Let MK be the spae of K �K stohasti matries:MK = fM =k mij k : mij � 0; 8i; j 2 E and KXj=1mij = 1; 8 i 2 Eg:35



Clearly, the transition probability matrix M(0; T ) belongs to MK . Let�(M; s) be a prior mapping MK � [0; 1℄ into IR (the uniform prior will beused in the appliation). �(M; s) is de�ned for M 2MK and for a vetor ofmixing measures s = fsi ; i 2 Eg 2 [0; 1℄K . [0; 1℄K denotes the artesianprodut of K opies of [0; 1℄: Let us denote IQ the spae of intensity matries:IQ = fQ =k qij k : qij � 0; i; j 2 E; i 6= j and qii � 0;8i 2 Eg:IfM(0; T ) is embeddable, there exists at least one matrix Q 2 IQ de�nedby the equation M(0; T ) = exp(QT ), where T is the number of time unitsbetween observations. Let M�K the spae of embeddable stohasti matries:M�K = f M(0; T ) 2 MK : 9 Q 2 IQ; exp(QT ) =M(0; T )g:IfDK =MK�[0; 1℄K represents the parameters spae for the model, thenthe spae D�K =M�K� [0; 1℄K denotes the set of embeddable parameters andD�K � DK . As it was shown in subsetion 2.1, the solution to M(0; T ) =exp(QT ) may not be unique: this is the aliasing problem.Let us onsider now the set of matries Q(k) 2 IQ, solutions of the equa-tion Q(k) = log(M(0; T ))=T , for k = 1 ; : : :; B(M). B(M) is the numberof ontinuous-time underlying proesses orresponding to the disrete-timeMarkov hain represented by M(0; T ) 2 MK . We have B(M) 2 IN andB(M) = 0 if M =2 M�K . Denote Q(k)(M) the intensity matrix that orre-sponds to the k�th solution of log(M), k = 1; : : :; B(M). Q(k)(M); 1 � k �B(M), is a funtion de�ned for M 2 M�K , Q(k)(M) 2 Q. Let h(k)(M) bea probability density funtion indued by a prior probability distribution onthe k�th solution of the equation M(0; T ) = exp(QT ) when M 2 M�K . Byde�nition, h(k)(M) veri�es PB(M)k=1 h(k)(M) = 1.Let g(Q; s) be a funtion de�ned for (Q; s) 2 IQ � [0; 1℄K . This funtionis suh that the evaluation of its moments (in partiular, the posterior meanand the posterior standard deviation) is a question of interest. Thus, theposterior probability that the transition probability matrixM is embeddablehas the form:Pr[(M; s) 2 D�K j (N;n)℄ = ZD�K L(M; s;N;n)�(M; s) d(M; s)ZDK L(M; s;N;n)�(M; s) d(M; s) (107)3.2.2.2 Likelihood and importane funtions The likelihood funtionL � L(M; s;N;n) up to the initial distribution of the proess fX(t); t � 0g36



is L / KYi=1Li (108)where:Li = [ si + (1� si)� fexp(QT )gLii ℄ni � (1� si)ni(0)�ni�fexp(QT )gnii�Lniii KYk 6=i;k=1 fexp(QT )gnikik ; (109)fexp(QT )gi;k denoting the entry (i; k) of the K � K matrix exp(QT ). IfPr[M 2M�K j N;n℄ > 0, thenE[g(Q; s) j (N;n); (M; s) 2 D�K ℄ (110)= ZD�K B(M)Xk=1 h(k)(M) g(Q(k)(M); s) L(M; s;N;n) �(M; s) d(M; s)ZDK L(M; s;N;n) �(M; s) d(M; s)In order to evaluate the integrals inside expressions (107) and (110), anadaptation of the Monte-Carlo method may be used beause an analytialexpression for Q(k)(M) or B(M) when K � 3 has not been found yet. LetI(M; s) be a probability density funtion de�ned for (M; s) 2 DK . I(M; s)is the importane funtion from whih a sequene fMi; sig of parameters willbe drawn. We suppose that I(M; s) > 0 and that �(M; s) and g(Q; s) arebounded above.Let J(M) a funtion de�ned for M 2MK :J(M) = � 1 if M 2M�K0 otherwiseThen limI! +1 IXi=1 J(Mi) L(Mi; si;N;n) �(Mi; si)=I(Mi; si)IXi=1L(Mi; si;N;n) �(Mi; si)=I(Mi; si) (111)a:s= Pr[(M; s) 2 D�K j N;n℄37



and E[g(Q; s) j N;n; (M; s) 2 D�K ℄ a:s=limI!+1 IXi=1 B(M)Xk=1 h(k)(Mi) g[Q(k)(Mi); si℄J(Mi) L(Mi; si;N;n) �(Mi; si)I(Mi; si)IXi=1 J(Mi) L(Mi; si;N;n) �(Mi; si)=I(Mi; si) (112)where Pr[(M; s) 2 D�K j N;n℄ is the probability under the posterior that thedisrete-time Mover-Stayer model is embeddable with the ontinuous-timeone, and E[g(Q; s) j N;n; (M; s) 2 D�K ℄ de�nes the posterior moments ofthe parameters' funtion of interest.For a better onvergene of estimators (111) and (112), I(M; s) shouldbe onentrated on the part of DK where L(M; s;N;n) is nonnegligible.For that purpose, if �(M; s) is not onentrated on some part of the setDK (that's the ase when � is uniform), I(M; s) an be taken proportionalto the likelihood L(M; s;N;n). Beause drawing (M; s) from L(M; s;N;n)is di�ult, Fougère and Kamionka (2003) hoose a normal expansion forL(M; s;N;n) with mean the ML estimator (M; bs) and with ovariane ma-trix the inverse of the information matrix estimated at (M; bs).When g(Q; s) and �(M; s) are bounded above, the onvergene of theestimator (112) is obtained almost surely. When the funtion g(Q; s) doesnot verify this property (for instane, if we are interested in the estimationof qij), the onvergene of the expression (112) relies on the existene of theposterior mean: E[g(Q; s) j (M; s) 2 D�K ;N;n℄.The ovariane matrix V assoiated to L(M; s;N;n) is blok diagonalwith bloks onsisting of matries Vi, i = 1; : : :;K, de�ned as:Vi(M; s) = �E "�2Log(Li(M; s;N;n))��k��l #�1 = Ri(M; s)�1 (113)with �k; �l = �mi;j ; i; j 2 Esi ; i 2 E where Ri(M; s) is the i�th diagonal blok ofthe information matrix R(M; s) assoiated to L(M; s;N;n). Then a sequeneof draws f(Mk; sk)gk=1;: : :;I an be generated aording to the density of amultivariate normal distribution with mean (M; s) and ovariane matrixV (M; s) = R(M; s)�1. If we suppose that Vi� = PiP 0i is the Choleski'sdeomposition of the matrix Vi� obtained by dropping the last row andolumn of matrix Vi , and if yk � N(0K ; IK), then38



zk = Pi yk +0BBB� simi1...miK�11CCCA � N(0BBB� simi1...miK�11CCCA ; Vi�) (114)Finally, we an obtain miK by setting miK = 1 � PK�1j=1 mi;j. Insidethe proedure, si, (mi;1; : : :;mi;K), and Vi are estimated by their MLE, re-spetively ŝi, (m̂i;1; : : :; m̂i;K), and V̂i. For more details, see Fougère andKamionka (2003).3.2.2.3 - Limiting probability distribution and mobility indiesThe mobility of movers an be appreiated by examination of the mobil-ity indies for ontinuous-time Markov proesses proposed by Geweke et al.(1986b). For the movers proess with intensity matrix Q, four indies ofmobility an be onsidered:M1(Q) = � log[det(M(0; T ))℄=K = �tr(Q)=KM2(Q) = KXi=1�(m)i KXj=1 qij j i� j jM3(Q) = � KXj=1�(m)j qijM4(Q) = �<e[log(�2)℄ (115)
where:� �(m)i is the equilibrium probability in state i for the movers, given byequation Q0�(m)i = 0, with �Ki=1�(m)i = 1,� the eigenvalues of the matrix M(0; T ) denoted by �1; : : :; �K , are or-dered so that j �1 j� : : : �j �K j,� <e denotes the real part of the logarithm of the eigenvalue �2.We an also de�ne the equilibrium (or limiting) probability distributionfor the mixed �mover-stayer� proess fXt; t 2 IR+g. For state i, the limitingprobability, denoted �i, is given by:�i = si�i + �(m)i KXj=1 (1� sj)�j ; i 2 E (116)where: 39



� � = f�i; i 2 Eg is the initial probability distribution (i.e. at the date0) for the proess fXt; t 2 IR+g,� and �(m)i is the limiting probability of �movers� in state i.It is easily veri�ed that, for a purely markovian proess (one for whihsi = 0; 8i 2 E), the formula (116) beomes �i = �(m)i . The mobility indies(115) and the limiting distribution (116) an be estimated using formula(112) and taking respetively g(Q; s) = Mk(Q) (1 � k � 4), or g(Q; s) = �.
3.2.2.4 Bayesian inferene using Gibbs sampling The likelihood fun-tion of the sample X an be writtenL(Xjs;M;X0)= NYn=1 2Xk=1L(X(n)js;M;Xo(n); zn=k) Pr[zn=kjs;M;Xo(n)℄where L is the onditional ontribution of the individual n given the initialstate Xo(n) and the unobserved heterogeneity type zn. zn is an unobservedindiator taking the value 1 if the individual is a stayer or the value 2 if theindividual is a mover.The prior density on the parameter � = (s;M) is assumed to be theprodut of the onjugate densities �1(s) and �2(M), where�1(M) = KYj=1 �(aj + bj)�(aj)�(bj)saj�1j (1� sj)bj�1is the Dirihlet distribution with parameters aj > 0, bj > 0, j = 1; :::;K,and �2(M) = KYi=1 �( KXk=1�ik)KYk=1�(�ik) KYi;j=1m�ij�1ijis the matrix beta distribution with parameter �ij > 0, i; j = 1; : : :;K.The onditional distribution of the unobserved type zn is thuszn j �;X(n) � B(1; p(X(n); �)) (117)40



wherep(Xn; �) = L(X(n) j s;M;Xo(n); zn = 1) Pr[zn = 1 j s;M;Xo(n)℄2Xi=1L(X(n) j s;M;Xo(n); zn = i) Pr[zn = i j s;M;Xo(n)℄Combining the prior and the sample informations we obtain thatsj j X;Z � Dirihlet aj + NXn=1 i(n)j (2� zn); bj + NXn=1 i(n)j (zn � 1)! (118)M j X;Z � Matrix beta �ik + NXn=1(zn � 1)N (n)ik ; i; k = 1; : : :;K! (119)The Gibbs sampling algorithm runs like this:Initialization: Fix an initial value �(0) = (s(0);M (0)).Update from �(m) to �(m+1) by doing :1 - Generate Z(m) aording to the onditional distribution (117), given� = �(m) and X;2 - Generate �(m+1) = (s(m+1);M (m+1)) using the onditional distribution(118) and (119), given Z = Z(m) and X.Under general regularity onditions and form large enough, the resultingrandom variable �(m) is distributed aording to the stationary posteriordistribution �(� j X). Draws from the stationary posterior distribution�(� j X) may be used to obtain posterior estimates of � using an expressionsimilar to the one given by equation (112) (see Fougère and Kamionka, 2003).Step one of the algorithm orresponds to a data augmentation step (see,Robert and Casella, 2002).4 Conluding remarksThis hapter has introdued redued-form models and statistial methodsallowing to analyse longitudinal panel data on individual labor market tran-sitions. The �rst setion gave a very general presentation of methods on-erning ontinuous-time observations, while the seond setion foused onthe treatment of disrete-time observations for ontinuous-time disrete-stateproesses.Obviously, our survey did not intend to over exhaustively a ontinu-ously and rapidly growing literature. Among subjets treated in this �eld41
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