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Abstract: Exit from a neighborhood of zero for weakly damped stochastic
nonlinear Schrödinger equations is studied. The small noise is either complex
and of additive type or real and of multiplicative type. It is white in time and
colored in space. The neighborhood is either in L2 or in H1. The small noise
asymptotic of both the first exit times and the exit points are characterized.

Résumé: Nous étudions la sortie d’un voisinage de zéro pour des équations
de Schrödinger non linéaires stochastiques faiblement amorties. Le petit
bruit est complexe et additif ou réel et multiplicatif. Il est blanc en temps
et coloré en espace. Le voisinage est un voisinage dans L2 ou dans H1. Nous
caractérisons l’asymptotique des temps et points de sortie.
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1 Introduction

The study of the first exit time from a neighborhood of an asymptotically
stable equilibrium point, the exit place determination or the transition be-
tween two equilibrium points in randomly perturbed dynamical systems is
important in several areas of physics among which statistical and quantum
mechanics, the natural sciences, financial macro economics... The problem
is relevant in nonlinear optics; see for example [20]. We shall consider the
case of weakly damped nonlinear Schrödinger equations. It is a model in
nonlinear optics, hydrodynamics, biology, field theory, Fermi-Pasta-Ulam
chains of atoms...

For a fixed noise amplitude and for diffusions, the first exit time and
the distribution of the exit points on the boundary of the domain can be
characterized respectively by the Dirichlet and Poisson equations. However,
when the dimension is larger than one, we may seldom solve explicitly these
equations and large deviation techniques are precious tools when the noise
is assumed to be small; see for example [12, 15]. The techniques used in the
physics literature is often called optimal fluctuations or instanton formalism
and are closely related to the large deviations.

An energy then characterizes the transition between two states and the
exit from a neighborhood of an asymptotically stable equilibrium point. The
energy is derived from the rate function of the sample path large deviation
principle (LDP). The paths that minimize this energy are the most likely ex-
iting paths or transitions and when the infimum is unique the system shows
an almost deterministic behavior. Note that the first order of the probability
are that of the Boltzman theory and the amplitude of the small noise acts as
the temperature. The deterministic dynamics is sometimes interpreted as
the evolution at temperature 0 and the small noise as the small temperature
nonequilibrium case. In the pioneering article [13], a nonlinear heat equa-
tion perturbed by a small noise of additive type is considered. Transitions in
that case are the instantons of quantum mechanics. Also in [22], predictions
for a noisy exit problem are confirmed both numerically and experimentally.

We will consider weakly damped nonlinear Schrödinger equations in Rd.
Equations are perturbed by a small noise. The noise is white in time and
of additive or multiplicative type. We define it as the time derivative in the
sense of distributions of a Hilbert space-valued Wiener process W . The two
types of noises are physically relevant; see for example [9]. When the noise
is of additive type, the Hilbert space is L2 or H1, spaces of complex valued
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functions. The evolution equation is then

iduε,u0 = (∆uε,u0 + λ|uε,u0 |2σuε,u0 − iαuε,u0)dt +
√

εdW, (1.1)

where α and ε are positive and u0 is an initial datum in L2 (respectively H1).
When the noise is of multiplicative type, the Hilbert space is the Sobolev
space based on L2 of real valued functions Hs

R for s > d
2 +1 and the product

is a Stratonovich product. In that case the equation may be written

iduε,u0 = (∆uε,u0 + λ|uε,u0 |2σuε,u0 − iαuε,u0)dt +
√

εuε,u0 ◦ dW. (1.2)

The Wiener process W is always assumed to be colored in space since the
linear group does not have global regularizing properties and is an isometry
on the Sobolev spaces based on L2. The power σ in the nonlinearity satisfies
σ < 2

d and thus solutions do not exhibit blow-up.
In [17] and [18] we have proved sample paths LDPs for the two types of

noises but without damping and deduced the asymptotic of the tails of the
blow-up times. In [17] we also deduced the tails of the mass, defined later,
of the pulse at the end of a fiber optical line. We have thus evaluated the
error probabilities in optical soliton transmission when the receiver records
the signal on an infinite time interval. In [9] we have applied the LDP to
the problem of the diffusion in position of the soliton and studied the tails
of the random position. Our results are in perfect agreement with results
from physics obtained via heuristic arguments. The damping term in the
drift here is often physically relevant but small and neglected in the models.
For example in [9], in the case of an additive noise, we have considered that
the gain of the amplifiers is adjusted to compensate exactly for loss and that
there remains only a spontaneous emission noise.

The flow in the equations above has Hamiltonian, gradient and random
components. The mass

N (u) =
∫

Rd

|u|2 dx

characterizes the gradient component. The Hamiltonian denoted by H(u),
defined for functions in H1, has a kinetic and a potential term, it may be
written

H (u) =
1
2

∫

Rd

|∇u|2 dx− λ

2σ + 2

∫

Rd

|u|2σ+2 dx.

Note that the vector fields associated to the mass and Hamiltonian are
orthogonal. Recall that the mass and Hamiltonian are invariant quantities
of the equation without noise and damping. Other quantities like the linear
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or angular momentum are also invariant for nonlinear Schrödinger equations.
We could rewrite, for example equation (1.1) as

duε,u0 =
(

δH (uε,u0)
δuε,u0

− α

2
δN (uε,u0)

δuε,u0

)
dt− i

√
εdW.

Without noise solutions are uniformly attracted to zero in L2 and in H1.
We will prove that because of noise, the behavior is completely different.
Though for finite times the probabilities of large excursions off neighbor-
hoods of zero go to zero exponentially fast with ε, if we wait long enough,
the time scale is exponential, such large fluctuations occur and exit from a
neighborhood of zero takes place. In the L2 case, we only consider noises of
additive type where, because of noise, mass is injected or pumped randomly
in the system. It would also be possible to treat rather general multiplica-
tive noises as long as noise allows injection of mass. In H1 we consider the
two types of noises.

We use large deviation techniques to prove the corresponding result in
our infinite dimensional setting. In [14], the case of a space variable in a
unidimensional torus is treated for a particular SPDE and the regularizing
property of the Heat semi-group is a central tool. Let us stress that the
Schrödinger linear group is an isometry on every Sobolev space based on
L2. In [2], the neighborhood is defined for a strong topology of β-Hölder
functions and is relatively compact for a weaker topology, the space variable
is again in a bounded subset of Rd. Note also that one particular difficulty
in infinite dimensions, along with compactness, is that the linear group is
strongly and not uniformly continuous. In this article the neighborhood is
not relatively compact, we work on the all space Rd, the nonlinearity is lo-
cally Lipschitz only in H1 for d = 1.

However, there remain difficult problems from the control of nonlinear
PDEs to prove for example that the upper and lower bounds on the exit
time are equal. Also, it seems formally that, in the case of a noise of ad-
ditive type which is white in time and in space, the escape off levels of the
Hamiltonian less than a constant is intimately related to the solitary waves.
We will not address these last issues in the present article.

2 Preliminaries

Throughout the paper the following notations will be used.
The set of positive integers and positive real numbers are denoted by N∗

and R∗+. For p ∈ N∗, Lp is the Lebesgue space of complex valued functions.
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For k in N∗, Wk,p is the Sobolev space of Lp functions with partial derivatives
up to level k, in the sense of distributions, in Lp. For p = 2 and s in R∗+, Hs

is the Sobolev space of tempered distributions v of Fourier transform v̂ such
that (1+ |ξ|2)s/2v̂ belongs to L2. We denote the spaces by Lp

R, Wk,p
R and Hs

R
when the functions are real-valued. The space L2 is endowed with the inner
product (u, v)L2 = Re

∫
Rd u(x)v(x)dx. If I is an interval of R, (E, ‖ · ‖E) a

Banach space and r belongs to [1,∞], then Lr(I; E) is the space of strongly
Lebesgue measurable functions f from I into E such that t → ‖f(t)‖E is in
Lr(I).

The space of linear continuous operators from B into B̃, where B and
B̃ are Banach spaces is Lc

(
B, B̃

)
. When B = H and B̃ = H̃ are Hilbert

spaces, such an operator is Hilbert-Schmidt when
∑

j∈N ‖ΦeH
j ‖2

H̃
< ∞ for

every (ej)j∈N complete orthonormal system of H. The set of such operators
is denoted by L2(H, H̃), or Ls,r

2 when H = Hs and H̃ = Hr. When H = Hs
R

and H̃ = Hr
R, we denote it by Ls,r

2,R. When s = 0 or r = 0 the Hilbert space
is L2 or L2

R.
We also denote by B0

ρ and S0
ρ respectively the open ball and the sphere

centered at 0 of radius ρ in L2. We denote these by B1
ρ and S1

ρ in H1. We will
denote by N 0 (A, ρ) the ρ−neighborhood of a set A in L2 and N 1 (A, ρ) the
neighborhood in H1. In the following we impose that compact sets satisfy
the Hausdorff property.

We will use in Lemma 3.5 the integrability of the Schrödinger linear
group which is related to the dispersive property. Recall that (r(p), p) is an
admissible pair if p is such that 2 ≤ p < 2d

d−2 when d > 2 (2 ≤ p < ∞ when

d = 2 and 2 ≤ p ≤ ∞ when d = 1) and r(p) satisfies 2
r(p) = d

(
1
2 − 1

p

)
.

For every (r(p), p) admissible pair and T positive, we define the Banach
spaces

Y (T,p) = C
(
[0, T ]; L2

) ∩ Lr(p) (0, T ; Lp) ,

and
X(T,p) = C

(
[0, T ]; H1

) ∩ Lr(p)
(
0, T ;W1,p

)
,

where the norms are the maximum of the norms in the two intersected
Banach spaces. The Schrödinger linear group is denoted by (U(t))t≥0; it is
defined on L2 or on H1. Let us recall the Strichartz inequalities, see [1],
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(i) There exists C positive such that for u0 in L2, T positive and
(r(p), p) admissible pair,

‖U(t)u0‖Y (T,p) ≤ C ‖u0‖L2 ,

(ii) For every T positive, (r(p), p) and (r(q), q) admissible pairs, s and ρ
such that 1

s + 1
r(q) = 1 and 1

ρ + 1
q = 1, there exists C positive such

that for f in Ls (0, T ; Lρ),

∥∥∫ ·
0 U(· − s)f(s)ds

∥∥
Y (T,p) ≤ C‖f‖Ls(0,T ;Lρ).

Similar inequalities hold when the group is acting on H1, replacing L2 by
H1, Y (T,p) by X(T,p) and Ls (0, T ; Lρ) by Ls

(
0, T ;W1,ρ

)
.

It is known that, in the Hilbert space setting, only direct images of
uncorrelated space wise Wiener processes by Hilbert-Schmidt operators are
well defined. However, when the semi-group has regularizing properties,
the semi-group may act as a Hilbert-Schmidt operator and a white in space
noise may be considered. It is not possible here since the Schrödinger group
is an isometry on the Sobolev spaces based on L2. The Wiener process W
is thus defined as ΦWc, where Wc is a cylindrical Wiener process on L2 and
Φ is Hilbert-Schmidt. Then ΦΦ∗ is the correlation operator of W (1), it has
finite trace.

We consider the following Cauchy problems
{

iduε,u0 = (∆uε,u0 + λ|uε,u0 |2σuε,u0 − iαuε,u0)dt +
√

εdW,
uε,u0(0) = u0

(2.1)

with u0 in L2 and Φ in L0,0
2 or u0 in H1 and Φ in L0,1

2 , and
{

iduε,u0 = (∆uε,u0 + λ|uε,u0 |2σuε,u0 − iαuε,u0)dt +
√

εuε,u0 ◦ dW,
uε,u0(0) = u0

(2.2)
with u0 in H1 and Φ in L0,s

2,R where s > d
2 + 1. When the noise is of multi-

plicative type, we may write the equation in terms of a Itô product,

iduε,u0 = (∆uε,u0 + λ|uε,u0 |2σuε,u0 − iαuε,u0 − iε

2
uε,u0FΦ)dt +

√
εuε,u0dW,

where FΦ(x) =
∑

j∈N (Φej(x))2 for x in Rd and (ej)j∈N a complete ortho-
normal system of L2. We consider mild solutions; for example the mild
solutions of (2.1) satisfies

uε,u0(t) = U(t)u0 − iλ
∫ t
0 U(t− s)(|uε,u0(s)|2σuε,u0(s)− iαuε,u0(s))ds

−i
√

ε
∫ t
0 U(t− s)dW (s), t > 0.
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The Cauchy problems are globally well posed in L2 and H1 with the same
arguments as in [6].

The main tools in this article are the sample paths LDPs for the solutions
of the three Cauchy problems. They are uniform in the initial data. Unlike
in [9, 17, 18] we use a Freidlin-Wentzell type formulation of the upper and
lower bounds of the LDPs. Indeed it seems that the restriction that initial
data be in compact sets in [18] is a real limitation in particular for stochastic
NLS equations. Indeed the linear Schrödinger group is not compact due to
the lack of smoothing effect and to the fact that we work on the whole space
Rd. This limitation disappears when we work with the Freidlin-Wentzell
type formulation; we may now obtain bounds for initial data in balls of
L2 (respectively H1) for ε small enough. Note that it is well known that in
metric spaces and for non uniform LDPs the two formulations are equivalent.
A proof will be given and we will stress, in the multiplicative case, on the
slight differences with the proof of the result in [18].

We denote by S(u0, h) the skeleton of equation (2.1) or (2.2), i.e. the
mild solution of the controlled equation

{
i
(

du
dt + αu

)
= ∆u + λ|u|2σu + Φh,

u(0) = u0

where u0 belongs to L2 or H1 in the additive case and the mild solution of
{

i
(

du
dt + αu

)
= ∆u + λ|u|2σu + uΦh,

u(0) = u0

where u0 belongs to H1 in the multiplicative case.
The rate functions of the LDPs are always defined as

Iu0
T (w) =

1
2

inf
h∈L2(0,T ;L2): S(u0,h)=w

∫ T

0
‖h(s)‖2

L2ds.

We denote for T and a positive by Ku0
T (a) =

(
Iu0
T

)−1 ([0, a]) the levels of the
rate function less or equal to a

Ku0
T (a) =

{
w ∈ C

(
[0, T ]; L2

)
: w = S(u0, h),

1
2

∫ T

0
‖h(s)‖2

L2ds ≤ a

}
.

We also denote by dC([0,T ];L2) the usual distance between sets of C
(
[0, T ]; L2

)

and by dC([0,T ];H1) the distance between sets of C
(
[0, T ]; H1

)
.

We also denote by S̃(u0, f) the skeleton of equation (2.2) where we re-
place Φh by ∂f

∂t where f belongs to H1
0 (0, T ; Hs

R), the subspace of C ([0, T ]; Hs
R)
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of square integrable in time and with square integrable in time time deriva-
tive functions, null at t = 0. Also Ca denotes the set
{

f ∈ H1
0 (0, T ; Hs

R) :
∂f

∂t
∈ imΦ, IW

T (f) =
1
2

∥∥∥∥Φ−1
|(kerΦ)⊥

∂f

∂t

∥∥∥∥
2

L2(0,T ;L2)

≤ a

}

and A(d) the set [2,∞) when d = 1 or d = 2 and
[
2, 2(3d−1)

3(d−1)

)
when d ≥ 3.

The above IW
T is the good rate function of the LDP for the Wiener process.

The uniform LDP with the Freidlin-Wentzell formulation that we will need
in the remaining is then as follows. In the additive case we consider the L2

and H1 case while in the multiplicative case we only consider the H1 case
because we will not need a L2 result. Indeed in the case of the multiplicative
noise the L2 norm remains invariant.

Theorem 2.1 In the additive case and in L2 we have:
for every a, ρ, T , δ and γ positive,
(i) there exists ε0 positive such that for every ε in (0, ε0), u0 such that

‖u0‖L2 ≤ ρ and ã in (0, a],

P
(
dC([0,T ];L2)

(
uε,u0 ,Ku0

T (ã)
) ≥ δ

)
< exp

(
− ã− γ

ε

)
,

(ii) there exists ε0 positive such that for every ε in (0, ε0), u0 such that
‖u0‖L2 ≤ ρ and w in Ku0

T (a),

P
(
‖uε,u0 − w‖C([0,T ];L2) < δ

)
> exp

(
−Iu0

T (w) + γ

ε

)
.

In H1, the result holds for additive and multiplicative noises replacing in the
above ‖u0‖L2 by ‖u0‖H1 and C

(
[0, T ]; L2

)
by C

(
[0, T ]; H1

)
.

Note that the extra condition
For every a positive and K compact in L2, the set KK

T (a) =
⋃

u0∈K Ku0
T (a)

is a compact subset of C
(
[0, T ]; L2

)
often appears to be part of a uniform LDP. It will not be used in the fol-
lowing. The proof of this result is given in the annex.

3 Exit from a domain of attraction in L2

In this section we only consider the case of an additive noise. Recall that
for the real multiplicative noise the mass is decreasing and thus exit is im-
possible.
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We may easily check that the mass N (S(u0, 0)) of the solution of the
deterministic equation satisfies

N (S(u0, 0)(t)) = N (u0) exp (−2αt) . (3.1)

With noise though, the mass fluctuates around the deterministic decay. Re-
call how the Itô formula applies to the fluctuation of the mass, see [6] for a
proof,

N (uε,u0(t))−N (u0) = −2
√

εIm
∫
Rd

∫ t
0 uε,u0dWdx

−2α ‖uε,u0‖2
L2(0,t;L2) + εt‖Φ‖2

L0,0
2

.
(3.2)

Assume that D is a bounded measurable subset of L2 containing 0 in its
interior and invariant by the deterministic flow, i.e.

∀u0 ∈ D, ∀t ≥ 0, S(u0, 0)(t) ∈ D;

it may be an open ball. There exists R positive such that D ⊂ BR.
We define by

τ ε,u0 = inf {t ≥ 0 : uε,u0(t) ∈ Dc}
the first exit time of the process uε,u0 off the domain D.

An easy information on the exit time is obtained as follows. The expecta-
tion of an integration via the Duhamel formula of the Itô decomposition, the
process uε,u0 being stopped at the first exit time, gives E [exp (−2ατ ε,u0)] =
1 − 2αR

ε‖Φ‖2
L0,0

2

. Without damping we obtain E [τ ε,u0 ] = R
ε‖Φ‖2

L0,0
2

. To get more

precise information for small noises we use LDP techniques.
Let us introduce

e = inf
{
I0
T (w) : w(T ) ∈ D

c
, T > 0

}
.

When ρ is positive and small enough, we set

eρ = inf
{
Iu0
T (w) : ‖u0‖L2 ≤ ρ, w(T ) ∈ (D−ρ)

c , T > 0
}

,

where D−ρ = D \ N 0 (∂D, ρ) and ∂D is the the boundary of ∂D in L2. We
define then

e = lim
ρ→0

eρ.

We shall denote in this section by ‖Φ‖c the norm of Φ as a bounded operator
on L2. Let us start with the following lemma.

Lemma 3.1 0 < e ≤ e.
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Proof. It is clear that e ≤ e. Let us check that e > 0. Let d denote the
positive distance between 0 and ∂D. Take ρ small such that the distance
between B0

ρ and (D−ρ)
c is larger than d

2 . Multiplying the evolution equation
by −iS(u0, h), taking the real part, integrating over space and using the
Duhamel formula we obtain

N (S(u0, h)(T ))− exp (−2αT )N (u0)
= 2

∫ T
0 exp (−2α(T − s))Im

(∫
Rd S (u0, h)Φhdxds

)
.

If S(u0, h)(T ) ∈ (D−ρ)
c and correspond to the first escape off D then

d
2 ≤ 2‖Φ‖c

∫ T
0 exp (−2α(T − s)) ‖S(u0, h)(s)‖L2 ‖h(s)‖L2ds

≤ 2R‖Φ‖c

(∫ T
0 exp (−4α(T − s)) ds

) 1
2 ‖h‖L2(0,T ;L2),

thus
αd2

8R2‖Φ‖2
c

≤ 1
2
‖h‖2

L2(0,T ;L2),

and the result follows. ¤

Note that we would expect e and e to be equal. We should prove that,
for a fixed level of energy, we may find ρ arbitrarily small and a control
of energy less than the fixed level such that the controlled solution goes
from 0 to u0 in B0

ρ in finite time. We should also find a second control of
energy smaller than the fixed level such that the controlled solution goes
from ∂D−ρ to D

c in finite time. Note that control arguments for nonlinear
Schrödinger equations where the control enters the equation as an external
force or potential are used in [7, 8] in the study of the blow-up time for
stochastic nonlinear Schrödinger equations. Here it seems more intricate
and the arguments of [7, 8] do not seem to apply. If these two bounds were
indeed equal, they would also correspond to

E(D) = 1
2 inf

{
‖h‖2

L2(0,∞;L2) : ∃T > 0 : S(0, h)(T ) ∈ ∂D
}

= infv∈∂D V (0, v)

where the quasi-potential is defined as

V (u0, uf ) = inf
{
I0
T (w) : w ∈ C

(
R+; L2

)
, w(0) = u0, w(T ) = uf , T > 0

}
.

We shall prove in this section the two following results. The first theorem
characterizes the first exit time from the domain.



Exit from a neighborhood of 0 for weakly damped SNLS equations 10

Theorem 3.2 For every u0 in D and δ positive, there exists L positive such
that

limε→0ε logP
(

τ ε,u0 /∈
(

exp
(

e− δ

ε

)
, exp

(
e + δ

ε

)))
≤ −L, (3.3)

and for every u0 in D,

e ≤ limε→0ε logE (τ ε,u0) ≤ limε→0ε logE (τ ε,u0) ≤ e. (3.4)

Moreover, for every δ positive, there exists L positive such that

limε→0ε log sup
u0∈D

P
(

τ ε,u0 ≥ exp
(

e + δ

ε

))
≤ −L, (3.5)

and
limε→0ε log sup

u0∈D
E (τ ε,u0) ≤ e. (3.6)

The second theorem characterizes formally the exit points. We shall define
for ρ positive small enough, N a closed subset of ∂D

eN,ρ = inf
{
Iu0
T (w) : ‖u0‖L2 ≤ ρ, w(T ) ∈ (

D \ N 0 (N, ρ)
)c

, T > 0
}

.

We then define
eN = lim

ρ→0
eN,ρ.

Note that eρ ≤ eN,ρ and thus e ≤ eN .

Theorem 3.3 If eN > e, then for every u0 in D, there exists L positive
such that

limε→0ε logP (uε,u0 (τ ε,u0) ∈ N) ≤ −L.

Thus the probability of an escape off D via points of N such that eρ ≤ eN,ρ

goes to zero exponentially fast with ε. Suppose that we were able to solve the
previous control problem, then as noise goes to zero, the probability of an
exit via closed subsets of ∂D where the quasi-potential is not minimal goes
to zero. As the expected exit time is finite, an exit occurs almost surely. It
is exponentially more likely that it occurs via infima of the quasi-potential.
When there are several infima the exit measure is a probability measure
on ∂D. When there exists only one infimum we may state the following
corollary.
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Corollary 3.4 Assume that v∗ in ∂D is such that for every δ positive and
N = {v ∈ ∂D : ‖v − v∗‖L2 ≥ δ} we have eN > e then

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : limε→0ε logP (‖uε,u0 (τ ε,u0)− v∗‖L2 ≥ δ) ≤ −L.

We need to prove a few lemmas before proving the two theorems.
Let us define

σε,u0
ρ = inf

{
t ≥ 0 : uε,u0(t) ∈ B0

ρ ∪Dc
}

,

where B0
ρ ⊂ D.

Lemma 3.5 For every ρ and L positive with B0
ρ ⊂ D, there exists T and

ε0 positive such that for every u0 in D and ε in (0, ε0),

P
(
σε,u0

ρ > T
) ≤ exp

(
−L

ε

)
.

Proof. The result is straightforward if u0 belongs to B0
ρ . Suppose now that

u0 belongs to D \ B0
ρ . From equation (3.1), the bounded subsets of L2 are

uniformly attracted to zero by the flow of the deterministic equation. Thus
there exists a positive time T1 such that for every u1 in the ρ

8−neighborhood
of D \ B0

ρ and t ≥ T1, S (u1, 0) (t) ∈ B0
ρ
8
. We shall choose ρ < 8 and follow

three steps.

Step 1: Let us first recall why there exists M ′ = M ′(T1, R, σ, α) such
that

sup
u1∈N 0(D\B0

ρ , ρ
8 )
‖S(u1, 0)‖Y (T1,2σ+2) ≤ M ′. (3.7)

From the Strichartz inequalities, there exists C positive such that

‖S(u1, 0)‖Y (t,2σ+2) ≤ C ‖u1‖L2 + C
∥∥∥|S(u1, 0)|2σ+1

∥∥∥
Lγ′ (0,t;Ls′ )

+Cα ‖S (u1, 0)‖L1(0,t;L2)

where γ′ and s′ are such that 1
γ′ + 1

r(p̃) = 1 and 1
s′ + 1

p̃ = 1 and (r(p̃), p̃) is
an admissible pair. Note that the first term is smaller than C(R +1). From
the Hölder inequality, setting

2σ

2σ + 2
+

1
2σ + 2

=
1
s′

,
2σ

ω
+

1
r(2σ + 2)

=
1
γ′

,

we can write
∥∥∥|S(u1, 0)|2σ+1

∥∥∥
Lγ′ (0,t;Ls′ )

≤ C ‖S(u1, 0)‖Lr(2σ+2)(0,t;L2σ+2) ‖S(u1, 0)‖2σ
Lω(0,t;L2σ+2) .
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It is easy to check that since σ < 2
d , we have ω < r(2σ + 2). Thus it follows

that

‖S(u1, 0)‖Y (t,2σ+2) ≤ C(R+1)+Ct
ωr(2σ+2)

r(2σ+2)−ω ‖S(u1, 0)‖2σ+1
Y (t,2σ+2)+Cα

√
t ‖S(u1, 0)‖Y (t,2σ+2) .

The function x 7→ C(R+1)+Ct
ωr(2σ+2)

r(2σ+2)−ω x2σ+1 +Cα
√

tx−x is positive on a
neighborhood of zero. For t0 = t0(R, σ, α) small enough, the function has at
least one zero. Also, the function goes to ∞ as x goes to ∞. Thus, denoting
by M(R, σ) the first zero of the above function, we obtain by a classical
argument that ‖S(u1, 0)‖Y (t0,2σ+2) ≤ M(R, σ) for every u1 inN 0

(
D \B0

ρ , ρ
8

)
.

Also, as for every t in [0, T ], S(u1, 0)(t) belongs to N 0
(
D \B0

ρ , ρ
8

)
, repeating

the previous argument, u1 is replaced by S(u1, 0)(t0) and so on, we obtain

sup
u1∈N 0(D\B0

ρ , ρ
8 )
‖S(u1, 0)‖Y (T1,p) ≤ M ′,

where M ′ =
⌈

T1
t0

⌉
M proving (3.7).

Step2: Let us now prove that for T large enough, to be defined later,
and larger than T1, we have

Tρ =
{

w ∈ C
(
[0, T ]; L2

)
: ∀t ∈ [0, T ], w(t) ∈ N 0

(
D \B0

ρ ,
ρ

8

)}
⊂ Ku0

T (2L)c.

(3.8)
Since Ku0

T (2L) is included in the image of S(u0, ·) it suffices to consider w
in Tρ such that w = S(u0, h) for some h in L2(0, T ; L2). Take h such that
S(u0, h) belongs to Tρ we have

‖S(u0, h)− S(u0, 0)‖C([0,T1];L2) ≥ ‖S(u0, h)(T1)− S(u0, 0)(T1)‖L2 ≥ 3ρ

4
,

but also, necessarily, for the admissible pair (r(2σ + 2), 2σ + 2),

‖S(u0, h)− S(u0, 0)‖Y (T1,2σ+2) ≥ 3ρ

4
. (3.9)

Denote by SM ′+1 the skeleton corresponding to the following control problem
{

i
(

du
dt + αu

)
= ∆u + λθ

(‖u‖
Y (t,2σ+2)

M ′+1

)
|u|2σu + Φh,

u(0) = u1

where θ is a C∞ function with compact support, such that θ(x) = 0 if x ≥ 2
and θ(x) = 1 if 0 ≤ x ≤ 1. Then (3.9) implies that

∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)
∥∥∥

Y (T1,2σ+2)
≥ 3ρ

4
.
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We shall now split the interval [0, T1] in many parts. We shall denote here
by Y s,t,2σ+2 for s < t the space Y t,2σ+2 on the interval [s, t]. Applying the
Strichartz inequalities on a small interval [0, t] with the computations in the
proof of Lemma 3.3 in [5], we obtain
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (t,2σ+2)

≤ Cα
√

t
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (t,2σ+2)

+CM ′+1t
1− dσ

2

∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)
∥∥∥

Y (t,2σ+2)
+ C

√
t‖Φ‖c‖h‖L2(0,t;L2)

where CM ′+1 is a constant which depends on M ′ + 1. Take t1 small enough

such that CM ′+1t
1−σd

2
1 + Cα

√
t1 ≤ 1

2 . We obtain then
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (t1,2σ+2)

≤ 2C
√

t1‖Φ‖c‖h‖L2(0,t1;L2).

In the case where 2t1 < T1, let us see how such inequality propagates
on [t1, 2t1]. We now have two different initial data SM ′+1(u0, h) (t1) and
SM ′+1(u0, 0) (t1). We obtain similarly
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (t1,2t1,2σ+2)

≤ 2C
√

t1‖Φ‖c‖h‖L2(0,t1;L2) + 2
∥∥∥SM ′+1(u0, h) (t1)− SM ′+1(u0, 0) (t1)

∥∥∥
H1

≤ 2C
√

t1‖Φ‖c‖h‖L2(0,T1;L2) + 2
∥∥∥SM ′+1(u0, h) (t1)− SM ′+1(u0, 0) (t1)

∥∥∥
Y (0,t1,2σ+2)

.

Then iterating on each interval of the form [kt1, (k+1)t1] for k in
{

1, ...,
⌊

T1
t1
− 1

⌋}
,

the remaining term can be treated similarly, and using the triangle inequality
we obtain that
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (T1,2σ+2)

≤ 2
l

T1
t1

m
+1

C
√

t1‖Φ‖c‖h‖L2(0,t1;L2).

We may then conclude that

1
2
‖h‖2

L2(0,T1;L2) ≥ M ′′

where M ′′ = ρ2

8C(t1,T1)‖Φ‖2c and C (t1, T1) is a constant which depends only

on t1 and T1. Note that we have used for later purposes that 3ρ
2 > ρ

2 .

Similarly replacing [0, T1] by [T1, 2T1] and u0 respectively by S (u0, h) (T1)
and S (u0, 0) (T1) in (3.9), the inequality still holds true. Thus thanks to the
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inverse triangle inequality we obtain on [T1, 2T1]
∥∥∥SM ′+1(u0, h)− SM ′+1(u0, 0)

∥∥∥
Y (T1,2T1,2σ+2)

=
∥∥∥SM ′+1

(
SM ′+1(u0, h)(T1), h

)
− SM ′+1

(
SM ′+1(u0, 0)(T1), 0

)∥∥∥
Y (0,T1,2σ+2)

≥ 3ρ
4

Thus from the inverse triangle inequality along with the fact that for both
SM ′+1(u0, h)(T1) and SM ′+1(u0, 0)(T1) as initial data the deterministic so-
lutions belong to the ball B0

ρ
8
, we obtain

∥∥∥SM ′+1
(
SM ′+1(u0, h)(T1), h

)
− SM ′+1

(
SM ′+1(u0, h)(T1), 0

)∥∥∥
Y (0,T1,2σ+2)

≥ ρ

2
.

We finally obtain the same lower bound

1
2
‖h‖2

L2(T1,2T1;L2) ≥ M ′′

as before.
Iterating the argument we obtain if T > 2T1,

1
2
‖h‖2

L2(0,2T1;L2) =
1
2
‖h‖2

L2(0,T1;L2) +
1
2
‖h‖2

L2(T1,2T1;L2) ≥ 2M ′′.

Thus for j positive and T > jT1, we obtain, iterating the above argument,
that

1
2
‖h‖2

L2(0,jT1;L2) ≥ jM ′′.

The result (3.8) is obtained for T = jT1 where j is such that jM ′′ > 2L.

Step 3: We may now conclude from the (i) of Theorem 2.1 since,

P (σε,u0
ρ > T ) = P

(∀t ∈ [0, T ], uε,u0(t) ∈ D \B0
ρ

)
= P

(
dC([0,T ];L2)

(
uε,u0 , T c

ρ

)
> ρ

8

)
,

≤ P (
dC([0,T ];L2)

(
uε,u0 ,Ku0

T (2L)
) ≥ ρ

8

)
,

taking a = 2L, ρ = R where D ⊂ BR, δ = ρ
8 and γ = L.

Note that if ρ ≥ 8, we should replace R + 1 by R + ρ
8 and M ′ + 1 by

M ′ + ρ
8 . Anyway, we will use the lemma for small ρ. ¤

Lemma 3.6 For every ρ positive such that B0
ρ ⊂ D and u0 in D, there

exists L positive such that

limε→0ε logP
(
uε,u0

(
σε,u0

ρ

) ∈ ∂D
) ≤ −L
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Proof. Take ρ positive satisfying the assumptions of the lemma and take
u0 in D. When u0 belongs to B0

ρ the result is straightforward. Suppose now
that u0 belongs to D \B0

ρ . Let T be defined as

T = inf
{

t ≥ 0 : S (u0, 0) (t) ∈ B0
ρ
2

}
,

then since S (u0, 0) ([0, T ]) is a compact subset of D, the distance d between
S (u0, 0) ([0, T ]) and Dc is well defined and positive. The conclusion follows
then from the fact that

P
(
uε,u0

(
σε,u0

ρ

) ∈ ∂D
) ≤ P

(
‖uε,u0 − S (u0, 0)‖C([0,T ];L2) ≥

ρ ∧ d

2

)
,

the LDP and the fact that, from the compactness of the sets Ku0
T (a) for a

positive, we have

inf
h∈L2(0,T ;L2): ‖S(u0,h)−S(u0,0)‖C([0,T ];L2)≥

ρ∧d
2

‖h‖2
L2(0,T ;L2) > 0.

We have used the fact that the upper bound of the LDP in the Freidlin-
Wentzell formulation implies the classical upper bound. Note that this is a
well known result for non uniform LDPs. Indeed we do not need a uniform
LDP in this proof. ¤

The following lemma replaces Lemma 5.7.23 in [12]. Indeed, the case of a
stochastic PDE is more intricate than that of a SDE since the linear group
is only strongly and not uniformly continuous. However, it is possible to
prove that the group on L2 when acting on bounded sets of H1 is uniformly
continuous. We shall proceed in a different manner and thus we will not
loose in regularity. Indeed, the Schrödinger group does not have regularizing
properties and we would obtain a weaker result with extra assumptions on
Φ and the initial data.

Lemma 3.7 For every ρ and L positive such that B0
2ρ ⊂ D, there exists

T (L, ρ) < ∞ such that

limε→0ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
(N (uε,u0(t))−N (u0)) ≥ 3ρ2

)
≤ −L

Proof. Take L and ρ positive. Note that for every ε in (0, ε0) where ε0 =
ρ2

‖Φ‖2
L0,0

2

, for T (L, ρ) ≤ 1 we have εT (L, ρ)‖Φ‖2
L0,0

2

< ρ2. Thus from equation
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(3.2), we know that it is enough to prove that there exists T (L, ρ) ≤ 1 such
that for ε1 small enough, ε1 < ε0, and all ε < ε0,

ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]

(
−2
√

εIm

∫

Rd

∫ t

0
uε,u0,τdWdx

)
≥ 2ρ2

)
≤ −L,

where uε,u0,τ is the process uε,u0 stopped at τ ε,u0

S0
2ρ

, the first time when uε,u0

hits S0
2ρ. Setting Z(t) = Im

∫
Rd

∫ t
0 uε,u0,τdWdx, it is enough to show that

ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
|Z(t)| ≥ ρ2

√
ε

)
≤ −L,

and thus to show exponential tail estimates for the process Z(t). Our proof
now follows closely that of [23][Theorem 2.1]. We introduce the function
fl(x) =

√
1 + lx2, where l is a positive parameter. We now apply the Itô

formula to fl(Z(t)) and the process decomposes into 1+El(t)+Rl(t) where

El(t) =
∫ t

0

2lZ(t)√
1 + lZ(t)2

dZ(t)− 1
2

∫ t

0

(
2lZ(t)√
1 + lZ(t)2

)2

d < Z >t,

and

Rl(t) =
1
2

∫ t

0

(
2lZ(t)√
1 + lZ(t)2

)2

d < Z >t +
∫ t

0

l

(1 + lZ(t)2)
3
2

d < Z >t .

Moreover, given (ej)j∈N a complete orthonormal system of L2,

< Z(t) >=
∫ t

0

∑

j∈N
(uε,u0,τ ,−iΦej)

2
L2 (s)ds,

we prove with the Hölder inequality that |Rl(t)| ≤ 12lρ2‖Φ‖2
L0,0

2

t, for every

u0 in D. We may thus write

P
(
supt∈[0,T (L,ρ)] |Z(t)| ≥ ρ2√

ε

)

= P
(
supt∈[0,T (L,ρ)] exp (fl(Z(t))) ≥ exp

(
fl

(
ρ2√

ε

)))

≤ P
(
supt∈[0,T (L,ρ)] exp (El(t)) ≥ exp

(
fl

(
ρ2√

ε

)
− 1− 12lρ2‖Φ‖2

L0,0
2

T (L, ρ)
))

.
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The Novikov condition is also satisfied and El(t) is such that (exp (El(t)))t∈R+

is a uniformly integrable martingale. The exponential tail estimates follow
from the Doob inequality optimizing on the parameter l. We may then write

sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
|Z(t)| ≥ ρ2

√
ε

)
≤ 3 exp


− ρ2

48ε‖Φ‖2
L0,0

2

T (L, ρ)


 .

We now conclude setting T (L, ρ) = ρ2

50‖Φ‖2
L0,0

2

L
and choosing ε1 < ε0 small

enough. ¤

Proof of Theorem 3.2. Let us first prove (3.6) and deduce (3.5). Fix δ
positive and choose h and T1 such that S(0, h)(T1) ∈ D

c and

I0
T1

(S(0, h)) =
1
2
‖h‖2

L2(0,T ;L2) ≤ e +
δ

5
.

Let d0 denote the positive distance between S(0, h) (T1) and D. With similar
arguments as in [6] or with a truncation argument we may prove that the
skeleton is continuous with respect to the initial datum for the L2 topology.
Thus there exists ρ positive, a function of h which has been fixed, such that
if u0 belongs to B0

ρ then

‖S (u0, h)− S(0, h)‖C([0,T1];L2) <
d0

2
.

We may assume that ρ is such that B0
ρ ⊂ D. From the triangle inequality

and the (ii) of Theorem 2.1, there exists ε1 positive such that for all ε in
(0, ε1) and u0 in B0

ρ ,

P (τ ε,u0 < T1) ≥ P
(
‖uε,u0 − S(0, h)‖C([0,T1];L2) < d0

)

≥ P
(
‖uε,u0 − S (u0, h)‖C([0,T1];L2) < d0

2

)

≥ exp
(
− I

u0
T1

(S(u0,h))+ δ
5

ε

)
.

From Lemma 3.5, there exists T2 and ε2 positive such that for all ε in (0, ε2),

inf
u0∈D

P
(
σε,u0

ρ ≤ T2

) ≥ 1
2
.
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Thus, for T = T1 + T2, from the strong Markov property we obtain that for
all ε < ε3 < ε1 ∧ ε2.

q = infu0∈D P (τ ε,u0 ≤ T ) ≥ infu0∈D P (σε,u0
ρ ≤ T2) infu0∈B0

ρ
P (τ ε,u0 ≤ T1)

≥ 1
2 exp

(
− I

u0
T1

(S(u0,h))+ δ
5

ε

)

≥ exp
(
− I

u0
T1

(S(u0,h))+ 2δ
5

ε

)
.

Thus, for any k ≥ 1, we have

P (τ ε,u0 > (k + 1)T ) = [1− P (τ ε,u0 ≤ (k + 1)T |τ ε,u0 > kT )]P (τ ε,u0 > kT )
≤ (1− q)P (τ ε,u0 > kT )
≤ (1− q)k.

We may now compute, since Iu0
T1

(S (u0, h)) = I0
T1

(S (0, h)) = 1
2‖h‖2

L2(0,T ;L2)

supu0∈D E (τ ε,u0) = supu0∈D

∫∞
0 P (τ ε,u0 > t) dt

≤ T [1 +
∑∞

k=1 supx∈D P (τ ε,u0 > kT )]
≤ T

q

≤ T exp
(

e+ 3δ
5

ε

)
.

It implies that there exists ε4 small enough such that for ε in (0, ε4),

sup
u0∈D

E (τ ε,u0) ≤ exp

(
e + 4δ

5

ε

)
. (3.10)

Thus the Chebychev inequality gives that

sup
u0∈D

P
(

τ ε,u0 ≥ exp
(

e + δ

ε

))
≤ exp

(
−e + δ

ε

)
sup

u0∈D
E (τ ε,u0) ,

in other words

sup
u0∈D

P
(

τ ε,u0 ≥ exp
(

e + δ

ε

))
≤ exp

(
− δ

5ε

)
. (3.11)

Relations (3.10) and (3.11) imply (3.6) and (3.5).

Let us now prove the lower bound on τ ε,u0 . Take δ positive. Remind
that we have proved that e > 0. Take ρ positive small enough such that
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e − δ
4 ≤ eρ and B0

2ρ ⊂ D. We define the following sequences of stopping
times, θ0 = 0 and for k in N,

τk = inf
{
t ≥ θk : uε,u0(t) ∈ B0

ρ ∪Dc
}

,

θk+1 = inf
{
t > τk : uε,u0(t) ∈ S0

2ρ

}
,

where θk+1 = ∞ if uε,u0(τk) ∈ ∂D. Fix T1 = T
(
e− 3δ

4 , ρ
)

given in Lemma
3.7. We know that there exists ε1 positive such that for all ε in (0, ε1), for
all k ≥ 1 and u0 in D,

P (θk − τk−1 ≤ T1) ≤ exp

(
−e− 3δ

4

ε

)
.

For u0 in D and an m in N∗, we have

P (τ ε,u0 ≤ mT1) ≤ P (τ ε,u0 = τ0) +
∑m

k=1 P (τ ε,u0 = τk)
+P (∃k ∈ {1, ..., m} : θk − τk−1 ≤ T1)

= P (τ ε,u0 = τ0) +
∑m

k=1 P (τ ε,u0 = τk)
+

∑m
k=1 P (θk − τk−1 ≤ T1) .

(3.12)

In other words the escape before mT1 can occur either as an escape without
passing in the small ball B0

ρ (if u0 belongs to D \ B0
ρ) or as an escape with

k in {1, ...m} significant fluctuations off B0
ρ , i.e. crossing S0

2ρ, or at least
one of the m first transitions between S0

ρ and S0
2ρ happens in less than T1.

The latter is known to be arbitrarily small. Let us prove that the remaining
probabilities are small enough for small ε.
For every k ≥ 1 and T2 positive, we may write

P (τ ε,u0 = τk) ≤ P (τ ε,u0 ≤ T2; τ ε,u0 = τk) + P
(
σε,u0

ρ > T2

)
.

Fix T2 as in Lemma 3.5 with L = e− 3δ
4 . Thus there exists ε2 small enough

such that for ε in (0, ε2),

P
(
σε,u0

ρ > T2

) ≤ exp

(
−e− 3δ

4

ε

)
.

Also, from the (i) of Theorem 2.1, we obtain that there exists ε3 positive
such that for every u1 in B0

ρ and ε in (0, ε3),

P (τ ε,u1 ≤ T2) ≤ P
(
dC([0,T2];L2)

(
uε,u1 , Ku1

T2

(
eρ − δ

4

)) ≥ ρ
)

≤ exp
(
− eρ− δ

2
ε

)

≤ exp
(
− e− 3δ

4
ε

)
.
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Thus the above bound holds for P (τ ε,u0 ≤ T2; τ ε,u0 = τk) replacing u1 by
uε,u0 (τk−1) since as k ≥ 1, uε,u0 (τk−1) belongs to B0

ρ and τk − τk−1 ≤ T2

and using the Markov property. The inequality (3.12) gives that for all ε in
(0, ε0) where ε0 = ε1 ∧ ε2 ∧ ε3,

P (τ ε,u0 ≤ mT1) ≤ P
(
uε,u0

(
σε,u0

ρ

) ∈ ∂D
)

+ 3m exp

(
−e− 3δ

4

ε

)
.

Fix m =
⌈

1
T1

exp
(

e−δ
ε

)⌉
, then for all ε in (0, ε0),

P
(
τ ε,u0 ≤ exp

(
e−δ

ε

))
≤ P (τ ε,u0 ≤ mT1)

≤ P (uε,u0 (σε,u0
ρ ) ∈ ∂D) + 3

T1
exp

(− δ
4ε

)
.

We may now conclude with Lemma 3.6 and obtain the expected lower bound
on E (τ ε,u0) from the Chebychev inequality. ¤

Proof of Theorem 3.3. Let N be closed subset of ∂D. When eN = ∞
we shall replace in the proof that follows eN by an increasing sequence of
positive numbers. Take δ such that 0 < δ <

eN−e
3 , ρ positive such that

eN − δ
3 ≤ eN,ρ and B0

2ρ ⊂ D. Define the same sequences of stopping times
(τk)k∈N and (θk)k∈N as in the proof of Theorem 3.2.
Take L = eN −δ and T1 and T2 = T (L, ρ) as in Lemma 3.5 and 3.7. Thanks
to Lemma 3.5 and the uniform LDP, with a computation similar to the one
following inequality (3.12), we obtain that for ε0 small enough and ε ≤ ε0,

supu0∈S0
2ρ
P (uε,u0 (σε,u0

ρ ) ∈ N)
≤ supu0∈S0

2ρ
P (uε,u0 (σε,u0

ρ ) ∈ N, σε,u0
ρ ≤ T1) + supu0∈S0

2ρ
P (σε,u0

ρ > T1)

≤ supu0∈B0
2ρ
P

(
dC([0,T1];L2)

(
uε,u0 ,Ku0

T1

(
eN,ρ − δ

3

)) ≥ ρ
)

+supu0∈D P (σε,u0
ρ > T1)

≤ 2 exp
(
− eN−δ

ε

)
.

Possibly choosing ε0 smaller, we may assume that for every positive integer
l and every ε ≤ ε0,

supu0∈D P (τl ≤ lT2) ≤ l supu0∈S0
ρ
P

(
supt∈[0,T2] (N (uε,u0(t))−N (u0)) ≥ ρ

)

≤ l exp
(
− eN−δ

ε

)
.
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Thus if u0 belongs to B0
ρ

P (uε,u0 (τ ε,u0) ∈ N) ≤ P (τ ε,u0 > τl) +
∑l

k=1 P (uε,u0 (τ ε,u0) ∈ N, τ ε,u0 = τk)
≤ P (τ ε,u0 > lT2) + P (τl ≤ lT2)

+l supu0∈S0
2ρ
P (uε,u0 (σε,u0

ρ ) ∈ N)

≤ P (τ ε,u0 > lT2) + 3l exp
(
− eN−δ

ε

)
.

Take now l =
⌈

1
T2

exp
(

e+δ
ε

)⌉
and use the upper bound (3.11), possibly

choosing ε0 smaller, we obtain that for ε ≤ ε0

supu0∈B0
ρ
P (uε,u0 (τ ε,u0) ∈ N) ≤ exp

(− δ
5ε

)
+ 4

T2
exp

(
− eN−e+2δ

ε

)

≤ exp
(− δ

5ε

)
+ 4

T2
exp

(− δ
ε

)
.

Finally, when u0 is any function in D, we conclude thanks to

P (uε,u0 (τ ε,u0) ∈ N) ≤ P (
uε,u0

(
σε,u0

ρ

) ∈ ∂D
)

+ sup
u0∈B0

ρ

P (uε,u0 (τ ε,u0) ∈ N)

and to Lemma 3.6. ¤

Remark 3.8 Note that it has been proposed in [24] to introduce control
elements in order to reduce or enhance exponentially the expected exit time
or to act on the exiting points, for a limited cost. We may then think of
optimizing on such external fields. However the problem is computationally
involved since the optimal control problem requires double optimisation.

4 Exit from a domain of attraction in H1

We now consider a measurable bounded subset D of H1 invariant by the flow
of the deterministic equation; D and R are such that D ⊂ B1

R. We consider
both (2.1) and (2.2) where the noise is either of additive or of multiplicative
type. In this section we are interested in both the fluctuation of the L2 norm
and that of the L2 norm of the gradient. The Hamiltonian and a modified
Hamiltonian will thus be of particular interest. We shall first distinguish the
case where the nonlinearity is defocusing (λ = −1) where the Hamiltonian
takes non negative values from the case where the nonlinearity is focusing
(λ = 1) where the Hamiltonian may take negative values.

We may prove, see for example [19], that

d
dt

H (S(u0, 0)(t)) + 2αΨ (S(u0, 0)) = 0,
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where S(u0, 0) is the solution of the deterministic weakly damped nonlinear
Schrödinger equation with initial datum u0 in H1 and

Ψ (S(u0, 0)) =
1
2
‖∇S(u0, 0)‖2

L2 − λ

2

∫

Rd

|S(u0, 0)(x)|2σ+2 dx.

Thus, when the nonlinearity is defocusing we have

0 ≤ H (S(u0, 0)(t)) ≤ H (u0) exp (−2αt) . (4.1)

As it is done in [11], we shall consider in the focusing case a modified
Hamiltonian denoted by H̃(u) defined for u in H1 by

H̃(u) = H(u) + β(σ, d)C ‖u‖2+ 4σ
2−σd

L2

where the constant C is that of the third inequality in the following sequence
of inequalities where we use the Gagliardo-Nirenberg inequality

1
2σ + 2

‖u‖2σ+2
L2σ+2 ≤ C‖u‖2σ+2−σd

L2 ‖∇u‖σd
L2 ≤ 1

4
‖∇u‖2

L2 + C‖u‖2+ 4σ
2−σd

L2 ,

and β(σ, d) = 2σ(2−σd)
(σ+2)(2−σd)+2σ(4σ+3) ∨ 2. When evaluated at the deterministic

solution, the modified Hamiltonian satisfies

0 ≤ H̃ (S(u0, 0)(t)) ≤ H̃ (u0) exp
(
−2α

3(σ + 1)
4σ + 3

t

)
. (4.2)

Also, when the nonlinearity is defocusing we now have, for every β positive,

0 ≤ H̃ (S(u0, 0)(t)) ≤ H̃ (u0) exp (−2αt) . (4.3)

From the Sobolev inequalities, for ρ positive, the sets

H̃ρ =
{

u ∈ H1 : H̃(u) = ρ
}

= H̃−1 ({ρ}) , ρ > 0

are closed subsets of H1 and

H̃<ρ =
{

u ∈ H1 : H̃(u) < ρ
}

= H̃−1 ([0, ρ)) ρ > 0

are open subsets of H1.
Also, H̃ is such that

1
2
‖∇u‖2

L2 + βC‖u‖2+ 4σ
2−σd

L2 ≤ H̃(u) ≤ 3
4
‖∇u‖2

L2 + (β + 1)C‖u‖2+ 4σ
2−σd

L2 (4.4)
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when the nonlinearity is defocusing and

1
4
‖∇u‖2

L2 + C‖u‖2+ 4σ
2−σd

L2 ≤ H̃(u) ≤ 1
2
‖∇u‖2

L2 + β(σ, d)C‖u‖2+ 4σ
2−σd

L2 (4.5)

when it is focusing. Thus the sets H̃<ρ for ρ positive are bounded in H1 and
a bounded set in H1 is bounded for H̃.

We will no longer distinguish the focusing and defocusing cases and will
take the same value of β, i.e. β(σ, d). Also to simplify the notations we will
sometimes drop the dependence of the solution in ε and u0.

The fluctuation of H̃ (uε,u0(t)) is of particular interest. We have the
following result when the noise is of additive type.

Proposition 4.1 When u denotes the solution of equation (2.1), (ej)j∈N a
complete orthonormal system of L2, the following decomposition holds

H̃ (u(t)) = H̃ (u0)

−2α
∫ t
0 Ψ (u(s)) ds− 2βC

(
1 + 2σ

2−σd

)
α

∫ t
0 ‖u(s)‖2+ 4σ

2−σd

L2 ds

+
√

ε
(
Im

∫
Rd

∫ t
0 ∇u(s)∇dW (s)dx− λIm

∫
Rd

∫ t
0 |u(s)|2σ u(s)dW (s)dx

+2βC
(
1 + 2σ

2−σd

)
Im

∫
Rd

∫ t
0 ‖u(s)‖

4σ
2−σd

L2 u(s)dW (s)dx

)

−λε
2

∑
j∈N

∫ t
0

∫
Rd

[
|u(s)|2σ |Φej |2 + 2σ |u(s)|2σ−2 (Re(u(s)Φej))2

]
dxds

+ ε
2‖∇Φ‖2

L0,0
2

t + εβC
(
1 + 2σ

2−σd

)
‖Φ‖2

L0,0
2

∫ t
0 ‖u(s)‖

4σ
2−σd

L2 ds

+εβC 4σ
2−σd

(
1 + 2σ

2−σd

)∑
j∈N

∫ t
0 ‖u(s)‖2( 2σ

2−σd
−1)

L2

(
Re

∫
Rd u(s)Φejdx

)2
ds

Proof. The result follows from the Itô formula. The main difficulty is in
justifying the computations. We may proceed as in [6]. ¤

Also, when the noise is of multiplicative type we obtain the following
proposition.

Proposition 4.2 When u denotes the solution of equation (2.1), (ej)j∈N a
complete orthonormal system of L2, the following decomposition holds

H̃ (u(t)) = H̃ (u0)

−2α
∫ t
0 Ψ (u(s)) ds− 2βC

(
1 + 2σ

2−σd

)
α

∫ t
0 ‖u(s)‖2+ 4σ

2−σd

L2 ds

+
√

εIm
∫
Rd

∫ t
0 u(s)∇u(s)∇dW (s)dx

+ ε
2

∑
j∈N

∫ t
0

∫
Rd |u(s)|2|∇Φej |2dxds.
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The first exit time τ ε,u0 from the domain D in H1 is defined as in Section
2. Note that the domain D may be a domain of attraction of the form H̃<a

where a is positive. We also define

e = inf
{
I0
T (w) : w(T ) ∈ D

c
, T > 0

}
,

and for ρ positive small enough

eρ = inf
{

Iu0
T (w) : H̃ (u0) ≤ ρ, w(T ) ∈ (D−ρ)

c , T > 0
}

,

where D−ρ = D \ N 1 (∂D, ρ). Then we set

e = lim
ρ→0

eρ.

Also, for ρ positive small enough, N a closed subset of the boundary of D,
we define

eN,ρ = inf
{

Iu0
T (w) : H̃ (u0) ≤ ρ, w(T ) ∈ (

D \ N 1 (N, ρ)
)c

, T > 0
}

and
eN = lim

ρ→0
eN,ρ.

We finally also introduce

σε,u0
ρ = inf

{
t ≥ 0 : uε,u0(t) ∈ H̃<ρ ∪Dc

}
,

where H̃<ρ ⊂ D.
Again we have the following inequalities.

Lemma 4.3 0 < e ≤ e.

Proof. We only have to prove the first inequality. Integrating the equation
describing the evolution of H̃ (S (u0, h) (t)) via the Duhamel formula where
the skeleton is that of the equation with an additive noise we obtain

H̃ (S(u0, h)(T ))− exp
(
−2α3(σ+1)

4σ+3 T
)
H̃ (u0)

≤ ∫ T
0 exp

(
−2α3(σ+1)

4σ+3 (T − s)
) [

Im
∫
Rd

(∇S(u0, h)∇Φh
)
(s, x)dx

−λIm
∫
Rd

(|S(u0, h)|2σS(u0, h)Φh
)
(s, x)dx

−2Cβ
(
1 + 2σ

2−σd

)
Im

∫
Rd

(
S (u0, h) Φh

)
(s, x)dx

]
ds,

with a focusing or defocusing nonlinearity. Let d denote the positive distance
between 0 and ∂D. Take ρ such that the distance between B1

ρ and (D−ρ)
c is
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larger than d
2 . We then have, from the fact that the Sobolev injection from

H1 into L2σ+2,

d
2 ≤

∫ T
0 exp

(
−2α3(σ+1)

4σ+3 (T − s)
) [

R‖Φ‖Lc(L2,H1)‖h‖L2

+CR2σ+1‖Φ‖Lc(L2,H1)‖h‖L2

+2Cβ
(
1 + 2σ

2−σd

)
R‖Φ‖Lc(L2,L2)‖h‖L2

]
ds,

We conclude as in Lemma 3.1 and use that from the choice of β the com-
plementary of a ball is included in the complementary of a set H̃<a. In the
case of the skeleton of the equation with a multiplicative noise, it is enough
to replace the term in bracket in the right hand side of the above formula
by Im

∫
Rd

(
∇S (u0, h)S (u0, h)∇Φh

)
(s, x)dx. Recall that we can proceed

as in the additive case since we have imposed that Φ belongs to L0,s
2,R where

s > d
2 + 1, in particular Φ belongs to Lc

(
L2,W1,∞)

. ¤

The theorems of Section 2 still hold for a domain of attraction in H1 and
a noise of additive and multiplicative type.

Theorem 4.4 For every u0 in D and δ positive, there exists L positive such
that

limε→0ε logP
(

τ ε,u0 /∈
(

exp
(

e− δ

ε

)
, exp

(
e + δ

ε

)))
≤ −L, (4.6)

and for every u0 in D,

e ≤ limε→0ε logE (τ ε,u0) ≤ limε→0ε logE (τ ε,u0) ≤ e. (4.7)

Moreover, for every δ positive, there exists L positive such that

limε→0ε log sup
u0∈D

P
(

τ ε,u0 ≥ exp
(

e + δ

ε

))
≤ −L, (4.8)

and
limε→0ε log sup

u0∈D
E (τ ε,u0) ≤ e. (4.9)

Theorem 4.5 If eN > e, then for every u0 in D, there exists L positive
such that

limε→0ε logP (uε,u0 (τ ε,u0) ∈ N) ≤ −L.

Again we may deduce the corollary
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Corollary 4.6 Assume that v∗ in ∂D is such that for every δ positive and
N = {v ∈ ∂D : ‖v − v∗‖L2 ≥ δ} we have eN > e then

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : limε→0ε logP (‖uε,u0 (τ ε,u0)− v∗‖L2 ≥ δ) ≤ −L.

The proof of these results still relies on three lemmas and the uniform LDP.
Let us now state the lemmas for both a noise of additive and of multiplicative
type.

Lemma 4.7 For every ρ and L positive with H̃<ρ ⊂ D, there exists T and
ε0 positive such that for every u0 in D and ε in (0, ε0),

P
(
σε,u0

ρ > T
) ≤ exp

(
−L

ε

)
.

Proof. We proceed as in the proof of Lemma 3.5.
Let d denote the positive distance between 0 and D \ H̃<ρ. Take α positive
such that αρ < d. The domain D is uniformly attracted to 0, thus there
exists a time T1 such that for every initial datum u1 in N 1

(
D \ H̃<ρ,

αρ
8

)
,

for t ≥ T1, S (u1, 0) (t) belongs to B1
αρ
8

.
We could also prove, see [6], that there exists a constant M ′ which de-

pends on T1, R, σ and α such that

sup
u1∈N 1(D\H̃<ρ, αρ

8 )
‖S (u1, 0)‖X(T1,2σ+2) ≤ M ′. (4.10)

The Step 2, corresponding to that of Lemma 3.5, in the proof in the
additive case uses the truncation argument, upper bounds similar to that
in [6] derived from the Strichartz inequalities on smaller intervals; we shall
also replace in the proof of Lemma 3.5 ρ

8 by αρ
8 .

In Step 2 for the multiplicative case, we also introduce the truncation in
front of the term uΦh in the controlled PDE.

The end of the proof is identical to that of Lemma 3.5, the LDP is the
LDP in C

(
[0, T ]; H1

)
, for additive or multiplicative noises. ¤

Lemma 4.8 For every ρ positive such that H̃ρ ⊂ D and u0 in D, there
exists L positive such that

limε→0ε logP
(
uε,u0

(
σε,u0

ρ

) ∈ ∂D
) ≤ −L

Proof. It is the same proof as for Lemma 3.6. We only have to replace B0
ρ
2

by any ball in H1 centered at 0 and included in H̃<ρ and use the LDP in
C

(
[0, T ]; H1

)
. ¤
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Lemma 4.9 For every ρ and L positive such that H̃2ρ ⊂ D, there exists
T (L, ρ) < ∞ such that

limε→0ε log sup
u0∈H̃ρ

P

(
sup

t∈[0,T (L,ρ)]

(
H̃ (uε,u0(t))− H̃ (u0)

)
≥ ρ

)
≤ −L

Proof. Integrating the Itô differential relation using the Duhamel formula
allows to get rid of the drift term that is not originated from the bracket.
Indeed, the event

{
sup

t∈[0,T (L,ρ)]

(
H̃ (uε,u0(t))− H̃ (u0)

)
≥ ρ

}

is included in
{

sup
t∈[0,T (L,ρ)]

(
H̃ (uε,u0(t))− exp

(
−2α

(
3(σ + 1)
4σ + 3

)
T (L, ρ)

)
H̃ (u0)

)
≥ ρ

}
.

Then, setting c(σ) = 3(σ+1)
4σ+3 and m(σ, d) = 1+ 2σ

2−σd , dropping the exponents
ε and u0 to have more concise formulas, we obtain in the additive case

H̃ (u(t))− exp (−2αc(σ)t) H̃ (u0)
≤ √

ε
(
Im

∫
Rd

∫ t
0 exp (−2αc(σ)(t− s))∇u(s)∇dW (s)dx

−λIm
∫
Rd

∫ t
0 exp (−2αc(σ)(t− s)) |u(s)|2σ u(s)dW (s)dx

+2βCm(σ, d)Im
∫
Rd

∫ t
0 exp (−2αc(σ)(t− s)) ‖u(s)‖

4σ
2−σd

L2 u(s)dW (s)dx

)

−λε
2

∑
j∈N

∫ t
0 exp (−2αc(σ)(t− s))

∫
Rd

[
|u(s)|2σ |Φej |2

+ 2σ |u(s)|2σ−2 (Re(u(s)Φej))2
]
dxds

+ ε
4αc(σ) (1− exp (−2αc(σ)t)) ‖∇Φ‖2

L0,0
2

+εβCm(σ, d)‖Φ‖2
L0,0

2

∫ t
0 exp (−2αc(σ)(t− s)) ‖u(s)‖

4σ
2−σd

L2 ds

+εβC 4σ
2−σdm(σ, d)

∑
j∈N

∫ t
0 exp (−2αc(σ)(t− s)) ‖u(s)‖2( 2σ

2−σd
−1)

L2

(
Re

∫
Rd u(s)Φejdx

)2
ds.

We again use a localization argument and replace the process u by the
process uτ stopped at the first exit time off H̃<2ρ. We use (4.4) and (4.5)
and obtain

‖uτ‖2
H1 ≤ 8ρ +

(
2ρ

Cσ

) 1

1+ 2σ
2−σd .
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We denote the right hand side of the above by b(ρ, σ, d).
From the Hölder inequality along with the Sobolev injection of H1 into L2σ+2

we obtain the following upper bound for the drift

ε
4αc(σ)

[
(1 + 2σ)c(1, 2σ + 2)2σ+2‖Φ‖2

L0,1
2

b(ρ, σ, d)2σ + ‖∇Φ‖2
L0,0

2

]

+ εβC
2αc(σ)m(σ, d)

(
1 + 4σ

2−σd

)
‖Φ‖2

L0,0
2

b(ρ, σ, d)
4σ

2−σd

where we denote by c(1, 2σ + 2) the norm of the continuous injection of H1

into L2σ+2.
Thus, choosing ε small enough, it is enough to show the result for the sto-
chastic integral remplacing ρ by ρ

2 . Also it is enough to show the result for
each of the three stochastic integrals replacing ρ

2 by ρ
6 . With the same one

parameter families and similar computations as in the proof of Lemma 3.7,
we know that it is enough to obtain upper bounds of the brackets of the
stochastic integrals

Z1(t) = Im
∫
Rd

∫ t
0 exp (2αc(σ)s)∇uτ (s)∇dW (s)dx

Z2(t) = Im
∫
Rd

∫ t
0 exp (2αc(σ)s) |uτ (s)|2σ uτ (s)dW (s)dx

Z3(t) = 2βCm(σ, d)Im
∫
Rd

∫ t
0 exp (2αc(σ)s) ‖uτ (s)‖

4σ
2−σd

L2 uτ (s)dW (s)dx.

We then obtain

d < Z1 >t≤ exp (4αc(σ)t)
∑

j∈N (∇uτ (t),−i∇Φej)
2
L2 dt

d < Z2 >t≤ exp (4αc(σ)t)
∑

j∈N
(|uτ (t)|2σuτ (t),−iΦej

)2

L2 dt

d < Z3 >t≤ 4β2C2m(σ, d)2 exp (4αc(σ)t) ‖uτ (t)‖
8σ

2−σd

L2

∑
j∈N (uτ (t),−iΦej)

2
L2 dt.

Using the Hölder inequality and, for Z2, the continuous Sobolev injection of
H1 into L2σ+2 we obtain

d < Z1 >t≤ exp (4αc(σ)t) ‖Φ‖2
L0,1

2

b(ρ, σ, d)dt

d < Z2 >t≤ exp (4αc(σ)t) c(1, 2σ + 2)2(2σ+2)‖Φ‖2
L0,1

2

b(ρ, σ, d)2σ+1dt

d < Z3 >t≤ 4β2C2m(σ, d)2 exp (4αc(σ)t) b(ρ, σ, d)(1+ 4σ
2−σd)‖Φ‖2

L0,1
2

dt.

We can then bound each of the three remainders
(
Ri

l(t)
)
i=1,2,3

similar to

that of Lemma 3.7 using the inequality Ri
l(t) ≤ 3l

∫ t
0 d < Zi >t.

We conclude that it is possible to choose T (L, ρ) equal to

1
4αc(σ) log


 αc(σ)ρ2

90b(ρ,σ,d)‖Φ‖2
L0,1

2

max

�
1,c(1,2σ+2)2(2σ+1)b(ρ,σ,d)2σ,4β2C2m(σ,d)2b(ρ,σ,d)

4σ
2−σd

�


 .
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When the noise is of multiplicative type we obtain

H̃ (u(t))− exp (−2αc(σ)t) H̃ (u0)
≤ √

εIm
∫
Rd

∫ t
0 exp (−2αc(σ)(t− s))u(s)∇u(s)∇dW (s)dx

+ ε
2

∑
j∈N

∫ t
0 exp (−2αc(σ)(t− s))

∫
Rd |u(s)|2|∇Φej |2dxds.

Again we use a localization argument and consider the process u stopped
at the exit off H̃2ρ. As Φ is Hilbert-Schmidt from L2 into Hs

R, the second
term of the right hand side is less than ε

4αc(σ)‖Φ‖2
L0,s

2

b(ρ, σ, d) and for ε small

enough, it is enough to prove the result for the stochastic integral replacing
ρ by ρ

2 . We know that it is enough to obtain an upper bound of the bracket
of

Z(t) = Im

∫

Rd

∫ t

0
exp (2αc(σ)s) uτ (s)∇uτ (s)∇dW (s)dx.

We obtain

d < Z >t≤ exp (4αc(σ)t)
∑

j∈N
(∇uτ (t),−iuτ (t)∇Φej)

2
L2 dt.

Denoting by c(s,∞) the norm of the Sobolev injection of Hs
R into W1,∞

R we
deduce that

d < Z >t≤ exp (4αc(σ)t) c(s,∞)2‖Φ‖2
L0,s

2

b(ρ, σ, d)2dt.

Finally, we conclude that we may choose

T (L, ρ) =
1

4αc(σ)
log


 αc(σ)ρ2

10b(ρ, σ, d)2c(s,∞)2‖Φ‖2
L0,s

2

L


 .

¤
We may now prove Theorem 4.6 and 4.7.

Here are some of the specific aspects of the proof of Theorem 4.6.
Proof of Theorem 4.6. There is no difference in the proof of the upper
bound on τ ε,u0 . Let us thus focus on the lower bound. Take δ positive.
Since e > 0, we now choose ρ positive such that e − δ

4 ≤ eρ, H̃2ρ ⊂ D and
H̃2ρ ⊂ Dc−ρ. We define the sequences of stopping times θ0 = 0 and for k in
N,

τk = inf
{

t ≥ θk : uε,u0(t) ∈ H̃<ρ ∪Dc
}

,

θk+1 = inf
{

t > τk : uε,u0(t) ∈ H̃2ρ

}
,
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where θk+1 = ∞ if uε,u0(τk) ∈ ∂D. Let us fix T1 = T
(
e− 3δ

4 , ρ
)

given by
Lemma 4.9. We now use that for u0 in D and m a positive integer,

P (τ ε,u0 ≤ mT1) ≤ P (τ ε,u0 = τ0) +
∑m

k=1 P (τ ε,u0 = τk)
+

∑m
k=1 P (θk − τk−1 ≤ T1)

(4.11)

and conclude as in the proof of Theorem 3.2. ¤

We may also check that the proof of Theorem 3.3 also applies to prove
Theorem 4.5, the LDPs are those in H1 and the sequences of stopping times
are those defined above.

Again the control argument to prove that e = e seems difficult. We may
however apply in the H1 case the Sobolev injection in order to treat the
nonlinearity.

Let us now make an interesting comment. Assume that we are able to
prove Theorem 4.4 with e = e at least for an additive noise. The exit points
are then characterized by the infimum of the quasi potential on the boundary
of the domain of attraction. Under assumptions such that Φ commutes with
the Laplacian and that Φ does not change the phase, we have an explicit
expression of the quasi potential since the vector-field in the drift is the sum
of a gradient vector-field and a vector-field which is orthogonal to the first
one, see for example [14, 15]. These assumptions on Φ are such that we can
mimick the computations for the ideal white noise. The quasipotential is

proportional to NH(u) =
∥∥∥∥
(
Φ|kerΦ⊥

)−1
u

∥∥∥∥
2

L2

. Indeed, the rate function of

the LDP applied to u, for T positive, may be written for γ in R,

Iu0
T (u)

= 1
2

∫ T
0

∥∥∥∥
((

Φ|kerΦ⊥
)−1 (

i∂u
∂t + iα(1− γ)u + iαγu−∆u− λ|u|2σu

))
(s)

∥∥∥∥
2

L2

ds

= 1
2

∫ T
0

∥∥∥∥
((

Φ|kerΦ⊥
)−1 (

i∂u
∂t + iα(1− γ)u−∆u− λ|u|2σu

))
(s)

∥∥∥∥
2

L2

ds

+αγ
2 [NH(u(T ))−NH(u0)] + α2

(
γ2

2 + (1− γ)γ
) ∫ T

0 NH(u(s))ds.

The last term is equal to zero if and only if γ = 2 or γ = 0. When γ = 2 we
obtain

V (0, uf ) = inf

{
1
2

∫ T
0

∥∥∥∥
((

Φ|kerΦ⊥
)−1 (

∂u
∂t − αu + i∆u + iλ|u|2σu

))
(s)

∥∥∥∥
2

L2

ds

+αNH(uf ) : u(0) = 0, u(T ) = uf , T > 0}
≥ αNH(uf ).
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In order to prove the converse inequality, we should prove that there exists a
sequence of functions satisfying the boundary conditions such that the first
term is arbitrarily small; it is another control problem. Assume that we are
able to solve it, then the quasi potential is indeed proportional to the mass.

Suppose now that the domain of attraction is a set of the form H̃<ρ for ρ
positive. Exit points are points of the level set H̃ρ that minimize NH . Since
NH is also the square of the norm of the reproducing kernel Hilbert space
of the law of W (1), or because Φ is Hilbert-Schmidt, we know that infima
do exist. Also because they satisfy H̃<ρ(u) = ρ they are different from 0.
Note that in the ideal white noise case infima do not exist and the infimum
is 0. By a standard minimization argument we deduce that the exit points
satisfy for some ω in R,
(((

Φ|kerΦ⊥
)−1

)∗ (
Φ|kerΦ⊥

)−1
+ ω2βC‖u‖

4σ
2−σd

L2

)
u = ω

(
∆u + λ|u|2σu

)
.

The case where ω = 0 corresponds to u = 0; we may thus assume that ω 6= 0.
When Φ = I and λ = 1, this equation has solutions which are solitary waves
profiles.

If we could approximate the white noise in a suitable sense and justify
all of the above rigorously, it would give an important information on the
dynamical behavior of the solutions of the nonlinear equation under the
influence of a noise. Indeed, it would give an indication that the energy
injected by the noise organizes and creates solitary waves. Note that such
behavior has been observed numerically in [10] on the Korteweg-de Vries
equation.

5 Annex - proof of Theorem 2.1

The following lemma proves to be at the core of the proof of the uniform
LDPs. It is often called Azencott lemma or Freidlin-Wentzell inequality.
The differences with the result of [18] are that here the initial data are the
same for the random process and the skeleton and that the ”for every ρ
positive” stands before ”there exists ε0 and γ positive”. We shall only stress
on the differences in the proof.

Lemma 5.1 For every a, L, T , δ and ρ positive, f in Ca, p in A(d), there
exists ε0 and γ positive such that for every ε in (0, ε0), ‖u0‖H1 ≤ ρ,

ε logP
(∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

≥ δ; ‖√εW − f‖C([0,T ];Hs
R) < γ

)
≤ −L.
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Proof. There are still three steps in the proof of this result. The first step
is a change of measure to center the process around f . It uses the Girsanov
theorem and is the same as in [18].
The second step is a reduction to estimates for the stochastic convolution.
It strongly involves the Strichartz inequalities but it is slightly different than
in [18]. The truncation argument has to hold for all ‖u0‖H1 ≤ ρ. Thus we
use the fact that there exists M = M(T, ρ, σ) positive such that

sup
u1∈B1

ρ

∥∥∥S̃(u1, f)
∥∥∥

X(T,p)
≤ M.

The proof of this fact follows from the computations in [6], we will recall
the arguments in L2 in the proof of Lemma 3.5. The result in H1 will again
be used in the proof of Lemma 4.7. As the initial data are the same for the
random process and the skeleton, the remaining of the argument does not
require restrictions on ρ.
The third step corresponds to estimates for the stochastic convolution. It is
the same as in [18].
Note that the extra damping term in the drift is treated easily thanks to
the Strichartz inequalities. ¤

We shall now prove Theorem 2.1.
Proof of Theorem 2.1. Let us start with the case of an additive noise.
Recall that, in that case, the mild solution of the stochastic equation could
be written as a function of the perturbation in the convolution form. Let
vu0(Z) denote the solution of

{
i∂v

∂t −
(
∆v + |v − iZ|2σ(v − iZ)− iα(v − iZ)

)
= 0,

v(0) = u0,

or equivalently a fixed point of the functional FZ such that

FZ(v)(t) = U(t)u0 − iλ
∫ t
0 U(t− s)

(|(v − iZ)(s)|2σ(v − iZ)(s)
)
ds

−α
∫ t
0 U(t− s)(v − iZ)(s)ds,

where Z belongs to C
(
[0, T ]; L2

)
(respectively C

(
[0, T ]; H1

)
). If uε,u0 is

defined as uε,u0 = vu0 (Zε) − iZε where Zε is the stochastic convolution
Zε(t) =

√
ε
∫ t
0 U(t− s)dW (s) then uε,u0 is a solution of the stochastic equa-

tion. Consequently, if G (·, u0) denotes the mapping from C
(
[0, T ]; L2

)
(re-

spectively C
(
[0, T ]; H1

)
) to C

(
[0, T ]; L2

)
(respectively C

(
[0, T ]; H1

)
) defined

by G (Z, u0) = vu0(Z)− iZ, we obtain uε,u0 = G (Zε, u0). We may also check
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with arguments similar to that of [6, 17], involving the Strichartz inequali-
ties that the mapping G is equicontinuous in its first arguments for second
arguments in bounded sets of L2 (respectively H1). The result now follows
from Proposition 5 in [25].

Let us now consider the case of a multiplicative noise. Initial data belong
to H1 and we consider paths in H1. The proof is very close to that in [18].

The main tool is again the Azencott lemma or almost continuity of the
Itô map. We need the slightly different result from that in [18].
Let us see how the above lemma implies (i) and (ii).

We start with the upper bound (i). Take a, ρ, T and δ positive. Take
L > a. For ã in (0, a], we denote by

Au0
ã =

{
v ∈ C

(
[0, T ]; H1

)
: dC([0,T ];H1)

(
v, Ku0

T (ã)
) ≥ δ

}
.

Note that we have Au0
a ⊂ Au0

ã and Cã ⊂ Ca. Take ã ∈ (0, a] and f such that
IW
T (f) < ã.

We shall now apply the Azencott lemma and choose p = 2. We obtain
ερ,f,δ and γρ,f,δ positive such that for every ε ≤ ερ,f,δ and u0 such that
‖u0‖H1 ≤ ρ,

ε logP
(∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

≥ δ;
∥∥√εW − f

∥∥
C([0,T ];Hs

R)
< γρ,f,δ

)
≤ −L.

Let us denote by Oρ,f,δ the set Oρ,f,δ = BC([0,T ];Hs
R)(f, γρ,f,δ). The family

(Oρ,f,δ)f∈Ca
is a covering by open sets of the compact set Ca, thus there

exists a finite sub-covering of the form
⋃N

i=1 Oρ,fi,δ. We can now write

P
(
uε,u0 ∈ Au0

ã

) ≤ P
({

uε,u0 ∈ Au0
ã

} ∩
{√

εW ∈ ⋃N
i=1 Oρ,fi,δ

})

+P
(√

εW /∈ ⋃N
i=1 Oρ,fi,δ

)

≤ ∑N
i=1 P

({
uε,u0 ∈ Au0

ã

} ∩ {√εW ∈ Oρ,fi,δ}
)

+P (
√

εW /∈ Ca)
≤ ∑N

i=1 P
({∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

≥ δ
}
∩ {√εW ∈ Oρ,fi,δ}

)

+exp
(−a

ε

)
,

for ε ≤ ε0 for some ε0 positive. We used that

dC([0,T ];H1)

(
S̃(u0, f), Au0

ã

)
≥ δ,

which is a consequence of the definition of the sets Au0
ã .

As a consequence, for ε ≤ ε0 ∧ (mini=1,..,N εu0,fi) we obtain for u0 in B1
ρ ,

P
(
uε,u0 ∈ Au0

ã

) ≤ N exp
(
−L

ε

)
+ exp

(
−a

ε

)
,
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and for ε1 small enough, for every ε ∈ (0, ε1),

ε logP
(
uε,u0 ∈ Au0

ã

) ≤ ε log 2 + (ε log N − L) ∨ (−a).

If ε1 is also chosen such that ε1 < γ
log(2) ∧ L−a

log(N) we obtain

ε logP
(
uε,u0 ∈ Au0

ã

) ≤ −ã− γ,

which holds for every u0 such that ‖u0‖H1 ≤ ρ.
We consider now the lower bound (ii). Take a, ρ, T and δ positive. The

continuity of S̃(u0, ·), to be proved as in [18], along with the compactness
of Ca give that for u0 such that ‖u0‖H1 ≤ ρ and w in Ku0

T (a), there exists
f such that w = S̃(u0, f) and Iu0

T (w) = IW
T (f). Take L > Iu0(w). Choose

ερ,f,δ positive and Oρ,f,δ, the ball centered at f of radius γρ,f,δ defined as
previously, such that for every ε ≤ ερ,f,δ and u0 such that ‖u0‖H1 ≤ ρ,

ε logP
(∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

≥ δ;
∥∥√εW − f

∥∥
C([0,T ];Hs

R)
< γρ,f,δ

)
≤ −L.

We obtain

exp
(
− IW

T (f)
ε

)
≤ P (

√
εW ∈ Oρ,f,δ)

≤ P
({∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

≥ δ
}
∩ {√εW ∈ Oρ,f,δ}

)

+P
(∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

< δ
)

.

Thus, for ε ≤ ερ,f,δ, for every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w) ≤ ε log 2 +
(
ε logP

(∥∥∥uε,u0 − S̃(u0, f)
∥∥∥

X(T,p)
< δ

))
∨ (−L)

and for ε1 small enough and such that ε1 log(2) < γ, for every ε positive
such that ε < ε1, for every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w)− γ ≤ ε logP
(∥∥∥uε,u0 − S̃(u0, f)

∥∥∥
X(T,p)

< δ
)

.

It ends the proof of (i) and (ii). ¤
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