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Small noise asymptotic of the timing jitter in

soliton transmission

Arnaud DEBUSSCHE1 and Eric GAUTIER1,2

Abstract: We consider random perturbations of the focusing cubic one dimen-
sional nonlinear Schrödinger equation. The noises, either additive or multiplicative,
are white in time and colored in space. We study the small noise asymptotic of the
tails of the center and mass of a pulse at a fixed coordinate when the initial datum
is null or a soliton profile. Our main tools are large deviation principles (LDPs)
at the level of paths. Upper and lower bounds are obtained from bounds for the
optimal control problems derived from the rate function of the LDPs. Our results
agree with results from physics which had been obtained with arguments which
seem difficult to fully justify mathematically. Some results are new.

Résumé: Nous étudions des perturbations aléatoires d’équations de Schrödinger
avec nonlinéarité cubique et focalisante en dimension 1. Les bruits, additifs ou mul-
tiplicatifs sont blancs en temps et colorés en espace. Nous étudions l’asymptotique
de petits bruits des queues du centre et de la masse d’un signal en un point pour
des données initiales nulles ou profils de soliton. Nos outils principaux sont des
principes de grandes déviations (PGDs) trajectoriels. Nous obtenons des bornes
supérieures et inférieures à partir de bornes pour les problèmes de contrôle optimal
issus de la fonction de taux des PGDs. Nos résultats concordent avec des résultats
de physique obtenus par des arguments difficiles à justifier mathématiquement.
Plusieurs résultats sont nouveaux.
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1 Introduction

The nonlinear Schrödinger (NLS) equation occurs as a generic model in
many areas of physics and describes the propagation of slowly varying en-
velopes of a wave packet in media with both nonlinear and dispersive re-
sponses. The one-dimensional equation with a cubic focusing nonlinearity
is for example a model in the context of long-haul transmission lines in fiber
optics; see for example [25] for a derivation of the equation in that context.
The variable t stands for the space coordinate and x for some retarded time.
Resulting from a balance between the focusing nonlinearity and the disper-
sive linear part, localized (here in time) waves propagate, they are called
solitons or solitary waves. The functions
√

2Asech(A(x− x0) + 2AΩt) exp
(−i(A2 − Ω2)t + iΩ(x− x0) + iθ0

)
(1.1)

where A > 0 is the amplitude, Ω is the group velocity or angular carrier
frequency, x0 and θ0 are respectively the initial position and phase, are
solitons. In soliton based amplitude-shifted-keyed systems (ASK) commu-
nication systems, solitons are used as information carriers to transmit the
datum 0 or 1. A 1 corresponds to the emission of a soliton at time 0 with
null velocity Ψ0

A(x) =
√

2Asech(Ax). It is produced by a laser beam. At
the far end T of the fiber a receiver records

1
l

∫ l
2

− l
2

|uu0(T, x)|2 dx, u0 = 0 or u0 = Ψ0
A,

[− l
2 , l

2

]
is a window in time; l may be chosen small since the wave uu0 ,

solution of the NLS equation, is localized and remains centered. When the
above quantity is above a threshold Id it is decided that a 1 has been emit-
ted, otherwise it is decided that a 0 has been emitted.

However, it is physically more relevant to consider random perturbations
and then error in transmission may occur. Phenomena such as a fluctuating
dielectric permittivity, a deviating fiber radius or a random initial shape
maybe taken into account in a perturbation term. Moreover noise is some-
how intrinsic to such systems.

To counterbalance for loss in the fiber, regularly spaced amplifiers are
placed along the line and the distance between amplifiers is small compared
to the length of the line. If we suppose that the gain is adjusted to counter-
balance exactly for loss, there remains a spontaneous emission noise. This
could be justified theoretically thanks to Heisenberg’s uncertainty principle.
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This noise could be modeled as a random external force; see for example
[15, 18, 32]. We could formally write the equation as

i
∂uε,u0

∂t
= ∆uε,u0 + |uε,u0 |2uε,u0 +

√
εξ, (1.2)

where ε stands for the small noise amplitude, ξ is a complex Gaussian space-
time noise and u0 is the initial datum. The functions are complex valued.
Note that this equation also appears in the context of anharmonic atomic
chains in the presence of thermal fluctuation; see for example [7].

Other types of amplification among which Raman coupling to thermal
phonon, see [16, 17, 30], and four-wave-mixing, see [16, 31], also lead to
spontaneaous emission of noise. However in this case the noise enters as a
real multiplicative noise. Note that in the case of the Raman amplification
a Raman nonlinear response also appears in the equation and the Raman
effect also contributes to the Kerr effect, i.e. the power law nonlinearity. It
is assumed that the extra Raman nonlinear response may be neglected to a
first approximation in a treatment of the noise effect on the frequency and
thus, by dynamical coupling, on the position of the pulse since it produces
essentially a deterministic shift in frequency. The evolution equation may
be written formally as

i
∂uε,u0

∂t
= ∆uε,u0 + |uε,u0 |2uε,u0 +

√
εuε,u0ξ, (1.3)

in that case the noise ξ is a real Gaussian noise. Note that this model is
also introduced in the context of crystals; see for example [3, 4, 5].

In the presence of noise, the soliton is progressively distorted by the
noise, even though it is small, and with small probability an error in trans-
mission may occur in the sense that 1 is discarded. Also, when the noise is
additive, it may create from nothing a structure that might be mistaken as
a 1.

When a 1 is emitted, it is assumed that two processes are mainly respon-
sible for the loss of the signal: a decrease of the mass

N
(
uε,Ψ0

A(T )
)

=
∥∥∥uε,Ψ0

A(T )
∥∥∥

2

L2

and a diffusion in position, characterized by the center of the pulse

Y
(
uε,Ψ0

A(T )
)

=
∫

R
x

∣∣∣uε,Ψ0
A(T, x)

∣∣∣
2
dx.

The fluctuation of the center results in a shift in the arrival time. It is called
timing jitter. The event that for null initial datum a 1 is detected only
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results from a large fluctuation of the mass.
When the noise is of multiplicative type the mass is invariant and we

shall only focus on the timing jitter.
Considering that the probability of sending a 1 is 1

2 , the bit error rate is
defined as

1
2
P

(
1
l

∫ l
2

− l
2

∣∣∣uε,Ψ0
A(T, x)

∣∣∣
2
dx ≤ Id

)
+

1
2
P

(
1
l

∫ l
2

− l
2

∣∣uε,0(T, x)
∣∣2 dx > Id

)
,

the probabilities that the measured quantities are below or above the thresh-
old are conditional probabilities. Again, in the case of a multiplicative noise
the second conditionnal probability is null. In practical applications, this
bit error rate might be less than 10−9. Moreover it is widely admitted that
the statistics are not Gaussian. Thus a statistical treatment for inference of
the bit error rate requires a theoretical evaluation.

In the physics literature the amplitude of the noise is assumed to be
small. Physical techniques often rely on an adiabatic perturbation theory
where the pulse is approximated by a soliton ansatz with finite fluctuating
collective variables; it requires that the noise is small.

Some articles from physics study the variance of the center; see for ex-
ample of [7, 17, 25]. In the seminal paper [25] of Gordon and Haus it is
obtained that the variance of the center is of the order of T 3 (superdiffusion,
i.e. stronger than that of the Brownian motion which is linear) and that
the fluctuation of the center is connected with a shift in the soliton carrier
frequency. It is assumed that the timing jitter is the most troublesome and
upper limit of the information rate is derived based on a Gaussian assump-
tion. In [17], the only paper from physics we found on noise induced timing
jitter when the noise is multiplicative, a Raman-modified NLS equation is
considered; independent complex additive and real multiplicative noises ap-
pear both in the equation. The contribution of each noise to the variance of
the center is of the order T 3. They however exhibit a different behavior in
the initial amplitude A.

Other articles study the deviation from the Gaussian assumption. Again
using the perturbation theory of solitons, see for example [26, 27], physicists
have obtained that the statistics of the center may be non Gaussian when
there is soliton interaction or filtering, see for example [15, 19, 20, 38, 33].
Otherwise it could be considered as Gaussian in the first order only; see for
example [1, 15, 29]. In [34] as in [25] the model is a juxtaposition of deter-
ministic evolutions with randomly perturbed initial initial data in between
amplifiers. The log of the tails of the amplitude and center are evaluated
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numerically via an importance sampled Monte Carlo estimator. Simulations
are obtained from a distribution where the small probability event is a cen-
tral event; they are weighted by a likelihood ratio weight. It is obtained
that the log of tails of the amplitude only differs significantly from that of
Gaussian tails. Note that we may expect to use the numerical methodology
based on a genealogical particle analysis developed in [8]. In this reference
the importance sampling and Monte Carlo methodologies are compared to
a particle system approach and it is applied to the estimation of probability
of rare events due to polarization-mode dispersion in optical fibers.

In [15, 18, 32], probability density functions (PDF) are examinated. In
[18] the PDF of the joint law of the mass and center at coordinate T , when
the initial datum is a soliton profile, are approximated from a PDF of the
random parameters of a solution described as a soliton with a finite set of
fluctuating parameters. The parameters are assumed to evolve according to
dynamically coupled SDEs. This latter PDF is obtained via a saddle point
approximation of a corresponding finite dimensional Martin-Siggia-Rose ef-
fective action. The complete infinite dimensional effective action, see for
example [28] is not treated. The PDF of the amplitude (a multiple of the
mass with the parametrization) is obtained when the initial datum is null.
The probability of loosing a 1 is numerically evaluated under the assumption
of a very large window. In [15] the Fokker-Planck equation is used to obtain
the PDF of the mass at T . In [32] a similar result is obtained. However the
PDF of the marginal law of the center has not been evaluated.

Note that infinite dimensional effective actions in physics are intimately
related to the rate function of a sample path large deviation principle (LDP).
Paths minimizing the action for certain configurations of the system are
called optimal fluctuations or instantons, see also for example [2, 37]. Note
that in [21], where the large deviations approach is adopted, the problem
of transitions between stable equilibrium configurations (tunnelling) of un-
forced nonlinear heat equations in the limit of small noise is studied. The
most likely transitions are the instantons from quantum mechanics; they are
saddle points of the equilibrium action functional related to the rate func-
tion of the sample path LDP. Exit from neighborhoods of zero for weakly
damped stochastic NLS equations is studied in the article [24].

In the present article we apply sample path LDPs to the study of the
tails of the law of the mass and center of the pulse at the end of the fiber.
We thus study cumulative distribution functions (CDFs) instead of PDFs
but do not study the bulk of the distribution. As we will see, we are not
able to treat mathematically the case of the space-time white noise which
is mainly used in the physical models. We thus restrict ourselves to noises
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that are colored in space. In the case of a noise of additive type we will
consider sequences of noises that mimic the white noise in the limit. The
log of the tails in the limit of small noise are of the order of the opposite
of the infima of a functional derived from the rate functions of the LDPs
divided by the noise amplitude. The infima are optimal control problems.
We give upper and lower bounds using energy inequalities and modulated
solitons. The two bounds mostly differ up to multiplicative constants and
the orders in T and A are compared to that of the physicists.

2 Notations and preliminaries

For p ≥ 1, Lp is the classical Lebesgue space of complex valued functions
on R and W1,p is the associated Sobolev space of Lp functions with first
order derivatives, in the sense of distributions, in Lp. If I is an interval of
R, (E, ‖ · ‖E) a Banach space and r belongs to [1,∞], then Lr(I; E) is the
space of strongly Lebesgue measurable functions f from I into E such that
t → ‖f(t)‖E is in Lr(I). The space L2 with the inner product defined by
(u, v)L2 = Re

∫
R u(x)v(x)dx is a Hilbert space. The Sobolev spaces Hs are

the Hilbert spaces of functions of L2 with partial derivatives up to order s in
L2. When s is fractional it is defined classically via the Fourier transform.
When the functions are real valued we specify it, for example we write
Hs(R,R). The following Hilbert spaces of spatially localized functions

Σ =
{
f ∈ H1 : x 7→ xf(x) ∈ L2

}
,

Σ
1
2 =

{
f ∈ H1 : x 7→

√
|x|f(x) ∈ L2

}

are also introduced and endowed with the norms

‖f‖2
Σ = ‖f‖2

H1 + ‖x 7→ xf(x)‖2
L2 ,

‖f‖2

Σ
1
2

= ‖f‖2
H1 +

∥∥∥x 7→
√
|x|f(x)

∥∥∥
2

L2
.

We denote by ‖Φ‖Lc(A,B) the norm of Φ as a linear continuous operator
from A to B, where A and B are normed vector spaces. We recall that Φ is a
Hilbert-Schmidt operator from H to H̃, where H and H̃ are Hilbert spaces,
if it is a linear continuous operator such that, given a complete orthonormal
system (eH

j )∞j=1 of H,
∑∞

j=1 ‖ΦeH
j ‖2

H̃
< ∞. We will denote by L2(H, H̃) the

space of Hilbert-Schmidt operators from H to H̃ endowed with the norm

‖Φ‖L2(H,H̃) = tr (ΦΦ∗) =
∞∑

j=1

‖ΦeH
j ‖2

H̃
.
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We also recall that a cylindrical Wiener process Wc in a Hilbert space
H is such that for any complete orthonormal system (ej)∞j=1 of H, there
exists a sequence of independent Brownian motions (βj)∞j=1 such that Wc =∑∞

j=1 βjej . This sum does not converge in H but in any Hilbert space U
such that the embedding H ⊂ U is Hilbert-Schmidt. The image of the
process Wc by a linear mapping Φ on H is a well defined process in H when
the mapping is Hilbert-Schmidt on H, i.e. Φ ∈ L2(H) = L2(H, H). Then,
W = ΦWc is such that W (1) is well defined with a covariance operator ΦΦ∗.

We recall that a rate function I is a lower semicontinuous function and
that a good rate function I is a rate function such that for every positive c,
{x : I(x) ≤ c} is a compact set.

Let us now recall some mathematical aspects of the stochastic NLS equa-
tions. The equations, written as SPDEs in the Itô form, are in the additive
case

iduε,u0 − (∆uε,u0 + |uε,u0 |2uε,u0)dt =
√

εdW, (2.1)

and in the multiplicative case

iduε,u0 − (∆uε,u0 + |uε,u0 |2uε,u0)dt =
√

εuε,u0 ◦ dW. (2.2)

The symbol ◦ stands for the Stratonovich product. In the case of equation
(2.2), see [10], the mass

N (uε,u0(t)) = ‖uε,u0(t)‖2
L2 , t > 0

is a conserved quantity. Precise assumptions on Φ such that W = ΦWc are
made below. These equations are supplemented with an initial datum

uε,u0(0) = u0.

In this paper, we consider initial data in Σ ⊂ H1 and work with the solution
constructed in [10]. Since we work with a subcritical non linearity, we could
also consider solutions in L2 with initial data in L2. However, the H1−setting
is preferred in order to be able to consider the spaces Σ and Σ

1
2 and study

the center of the pulse

Y(uε,u0(t)) =
∫

R
x|uε,u0(t, x)|2dx, t > 0,

defined when uε,u0(t) belongs to Σ
1
2 .

We are concerned by weak solutions or equivalently by mild solutions
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which, in the additive case, satisfy

uε,u0(t) = U(t)u0 − i

∫ t

0
U(t− s)(|uε,u0(s)|2uε,u0(s))ds

−i
√

ε

∫ t

0
U(t− s)dW (s)

(2.3)

where (U(t))t∈R stands for the Schrödinger group, U(t) = e−it∆, t ∈ R. The
last term is called the stochastic convolution. In the multiplicative case, the
mild equation is

uε,u0(t) = U(t)u0 − i

∫ t

0
U(t− s)(|uε,u0(s)|2uε,u0(s))ds

−i
√

ε

∫ t

0
U(t− s)uε,u0(s)dW (s)− iε

2

∫ t

0
U(t− s)FΦuε,u0(s)ds

(2.4)
where the stochastic integral is a Itô integral and, given (ej)∞j=1 an ortho-
normal basis of L2, FΦ(x) =

∑∞
j=1(Φej)2(x). The term ε

2FΦ(x) is the Itô
correction.

The noise is the time derivative in the sense of distributions of the Wiener
process W . It corresponds to a white noise in time. A space-time white noise
would correspond to Φ equal to the identity. We cannot handle such rough
noises and make the assumption that the two noises are colored in space.
The basic limitation is that, unlike semi-groups like the Heat semi-group,
the Schrödinger group is an isometry and does not allow smoothing in the
Sobolev spaces based on L2. For instance, in the additive case, it can be
seen that the stochastic convolution is a well defined process with paths in
L2 if and only if Φ is a Hilbert-Schmidt operator on L2.

In fact, we make even stronger assumptions. In the additive case we
assume that W is a Wiener process on Σ. In the multiplicative case, it is
imposed that W is a Wiener process on Hs(R,R) where s satisfies s > 3

2 .
We know that the Cauchy problem is globally well posed in H1; see [10]

for a general discussion on the local well posedness and the global existence
for more general nonlinearities and dimensions. Note that the present deter-
ministic NLS equation is integrable thanks to the inverse scattering method.
We will not use these techniques in the article. Results on the influence of
the noise on the blow-up time, for more general nonlinearities and dimen-
sions are given in [11, 12]. In [6, 14] the ideal white noise and results on the
influence of a noise on the blow-up are studied numerically.

Sample path LDPs for stochastic NLS equations are proved in [22, 23].
These LDPs do not allow to treat the center of the solution and we shall
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consider LDPs in C
(
[0, T ]; Σ

1
2

)
where T is positive (the length of the fiber

line). The rate function of the LDP in the additive case is defined in terms
of the mild solution of the control problem

{
idu

dt = ∆u + |u|2u + Φh,
u(0) = u0 ∈ Σ and h ∈ L2

(
0, T ; L2

)
.

(2.5)

We denote the solution by u = Sa,u0(h). The mapping h → Sa,u0(h) is called
the skeleton and (2.5) the skeleton equation.

In the multiplicative case, the controlled equation is

i
du

dt
= ∆u + |u|2u + uΦh, (2.6)

whose mild solution is denoted by u = Sm,u0(h). The mapping Sm,u0 is
again called the skeleton and (2.6) the skeleton equation.

In this article, when describing properties which hold both in the additive
and multiplicative cases, we use the symbol S(u0, h) to denote either Sa,u0(h)
or Sm,u0(h).

Let us now state the sample path LDPs. The proof is given in the annex.

Theorem 2.1 Assume that Φ belongs to L2(L2, Σ) in the additive case
and Φ ∈ L2(L2, Hs(R,R)) with s > 3/2 in the multiplicative case. As-
sume also that the initial datum u0 is in Σ. Then the solutions of the
stochastic nonlinear Schrödinger equations (2.3) and (2.4) are almost surely
in C([0, T ]; Σ

1
2 ). Moreover, they define C([0, T ]; Σ

1
2 ) random variables and

their laws
(
µuε,u0

)
ε>0

satisfy a LDP of speed ε and good rate function

Iu0(w) =
1
2

inf
h∈L2(0,T ;L2): w=S(u0,h)

‖h‖2
L2(0,T ;L2),

where S(u0, ·) = Sa,u0(·) in the additive case and S(u0, ·) = Sm,u0(·) in the
multiplicative case, and with the convention that inf ∅ = ∞. It means that
for every Borel set B of C

(
[0, T ]; Σ

1
2

)
, we have the lower bound

− inf
w∈Int(B)

Iu0(w) ≤ limε→0ε logP (uε,u0 ∈ B)

and the upper bound

limε→0ε logP (uε,u0 ∈ B) ≤ − inf
w∈B

Iu0(w).
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These sample path LDPs allow for example to evaluate the probability that,
originated from a soliton profile

Ψ0
A(x) =

√
2Asech (Ax) ,

the random solution be significantly different from the deterministic soliton
solution

ΨA(t, x) = Ψ0
A(x) exp

(−iA2t
)
.

Indeed, for T , δ and η positive and ε small enough, the LDP implies that

exp
(
−C1

ε

)
≤ P

(∥∥∥uε,Ψ0
A −ΨA

∥∥∥
C([0,T ];Σ

1
2 )

> δ

)
≤ exp

(
−C2

ε

)
,

where
C1 = inf

w: ‖w−ΨA‖
C([0,T ];Σ

1
2 )

>δ
IΨ0

A(w) + η

and
C2 = inf

w: ‖w−ΨA‖
C([0,T ];Σ

1
2 )
≥δ

IΨ0
A(w)− η.

Recall that, since the rate function is a good rate function, if B is a closed set
and infw∈B IΨ0

A(w) < ∞, then there is an f in B, optimal fluctuation, such
that IΨ0

A(f) = infw∈B IΨ0
A(w). Thus if B does not contain the deterministic

solution then necessarily infw∈B IΨ0
A(w) > 0. Consequently η may be chosen

such that C2 is positive and the above probability of a deviation from the
deterministic path is exponentially small in the small ε limit.

In this article we are interested in estimating the probability of particular
deviations from the deterministic paths. Namely, we wish to study how the
mass and the center of a solution at coordinate T deviate from their value
in the ”frozen” deterministic system (i.e. when ε = 0). In the absence of
noise, the mass is a conserved quantity and for initial data being either 0 or
Ψ0

A the center remains equal to zero.
We know from [22] that we may push forward by continuity the LDP for

the paths to a LDP for the mass at T and obtain a LDP with speed ε and
good rate function for an initial datum u0

Iu0
N (m) =

1
2

inf
h∈L2(0,T ;L2): N(Sa,u0 (h)(T ))=m

{
‖h‖2

L2(0,T ;L2)

}
.

In the case of a multiplicative noise, the mass is a conserved quantity. Thus,
in this case, the mass cannot deviate from the deterministic behavior.
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Similarly, the mapping Y is continuous from Σ
1
2 into R. We may thus

define by direct image the measures
(
µY(uε,u0 (T ))

)
ε>0

for an initial datum
u0 in Σ. We obtain by contraction that they satisfy a LDP of speed ε and
good rate function

Iu0
Y (y) =

1
2

inf
h∈L2(0,T ;L2): Y(S(u0,h)(T ))=y

{
‖h‖2

L2(0,T ;L2)

}
,

the skeleton S is either that of the additive or multiplicative case.

Let us briefly explain our strategy to estimate the probability of some event.
Let us consider for instance the event Dε =

{
Y

(
uε,0(T )

) ∈ [a, b]
}

where [a, b]
is an interval which does not contain 0. We use the LDP to obtain

− inf
y∈(a,b)

I0
Y (y) ≤ limε→0ε logP (Dε) ≤ limε→0ε logP (Dε) ≤ − inf

y∈[a,b]
I0
Y (y).

(2.7)
To estimate the upper bound, we use energy type inequalities. These give
estimates of the minimum L2 norm of the control h required to change the
deterministic behavior and have the center in [a, b] at time T . Namely, we
obtain a constant c such that

if Y (S(u0, h)(T )) ∈ [a, b] then
1
2
‖h‖2

L2(0,T ;L2) ≥ c.

This clearly implies
limε→0ε logP (Dε) ≤ −c.

The second step is to find a particular function h such that Y(S(u0, h)(T )) ∈
(a, b) and c̃ = 1

2‖hJ‖2
L2(0,T ;L2) is as small as possible. Then

−c̃ ≤ limε→0ε logP (Dε) .

In this second step, we are led to solve a control problem.
The difficulty is to have sufficiently sharp energy estimates and to find a

good solution to the control problem so that c and c̃ are as close as possible.
We see below that we are able to do so in some interesting situations and
derive good estimates on such probabilities.

Note also that proceeding as in [22] for the mass, we may prove in the
additive case that infy∈J Iu0

Y (y) < ∞ for every nonempty interval J and any
u0 provided the range of Φ is dense. Indeed, for every real number a, a so-
lution of the form u(t, x) = (1 + atx)u0 satisfies Y (u(T )) = aTπ2

3 . Plugging
this solution into equation (2.5), we find a control such that the solution
reaches any interval at time T . Using the continuity of h 7→ Y (Sa,u0(h)(T ))
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from L2(0, T ; L2) into R and the density of the range of Φ, we obtain
infy∈J Iu0

Y (y) < ∞. This shows that in this case the two extreme bounds in
(2.7) are finite implying that P(Dε) goes to zero exponentially fast when ε
goes to 0.

Remark 2.2 Also, using similar arguments as in [22], we can prove that
for every positive R besides an at most countable set of points, we can replace
lim and lim by lim in the LDP and obtain

limε→0 ε logP (Y (uε,u0(T )) ≥ R)
= − 1

2ε infh∈L2(0,T ;L2): Y(S(u0,h)(T ))≥R

{
‖h‖2

L2(0,T ;L2)

}

limε→0 ε logP (Y (uε,u0(T )) ≤ −R)
= − 1

2ε infh∈L2(0,T ;L2): Y(S(u0,h)(T ))≤−R

{
‖h‖2

L2(0,T ;L2)

}
.

This uses the fact that a monotone and bounded function is continuous al-
most everywhere.

We end this section with some remarks which will be useful in the devel-
opment of our method when we consider the center of the solution. Let us
consider an initial datum is Ψ0

A. The probability of tail events of the center
are related to the behavior of Y

(
S(Ψ0

A, h)
)
. If h 6= 0, S(Ψ0

A, h)(t) 6= ΨA

and the center may move. An equation for the motion of the center is given
in [39] in the case of an external potential. The first step consists in mul-
tiplying the controlled PDE by −ixu, taking the real part, and integrating
by part the term involving the Laplace operator. We then obtain for the
controlled PDE associated to the multiplicative case

[
Y

(
Sm,Ψ0

A(h)(t)
)]′

= 2Re

(
i

∫

R
Sm,Ψ0

A(h)(t, x)∂xSm,Ψ0
A(h)(t, x)dx

)
,

(2.8)
while in the additive case we obtain

[
Y

(
Sa,Ψ0

A(h)(t)
)]′

= 2Re
(
i
∫
R Sa,Ψ0

A(h)(t, x)∂xSa,Ψ0
A(h)(t, x)dx

)

−2Re
(
i
∫
R xSa,Ψ0

A(h)(t, x) (Φh) (t, x)dx
)

.

(2.9)
The quantity

P(u) = 2Re

(
i

∫

R
u(x)∂xu(x)dx

)
, u ∈ H1.
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on the right hand side of (2.8) and (2.9) is usually called the momentum.
As a consequence of (2.8) we see that in the multiplicative case, the

center of the solution of the control problem cannot move unless its phase
depends on the space variable. For instance, if the control is chosen so that
the solution Sa,Ψ0

A(h)(t) is a modulated soliton of type (1.1) with varying
amplitude and group velocity,

Sa,Ψ0
A(h)(t) =

√
2A(t)sech(A(t)(x− x0) + 2A(t)Ω(t)t)

exp
(−i(A(t)2 − Ω(t)2)t + iΩ(t)(x− x0) + iθ0

)

we have the well known identity
[
Y

(
Sm,Ψ0

A(h)(t)
)]′

= −2Ω(t)N(Sm,Ψ0
A(h)(t)) = −8Ω(t)A(t).

It will be convenient to choose controlled solutions of the form above. Since
the initial datum is Ψ0

A, we necessarily have Ω(0) = 0, hence Ω cannot be
chosen constant. We will see that it is sufficient to have a constant amplitude
A in order to get sharp bounds. Thus we will use modulated solitons as
solutions of the controlled problem with constant amplitude when studying
the motion of the center.

The first idea to find a control giving a solution whose center or mass
verify some desired property is to take the above modulated soliton and plug
it into the skeleton equation. This gives an explicit form of the control in
terms of the various parameters. Then, we compute the space-time L2 norm
of this control. We obtain a function of the parameters which we can try
to minimize thanks to the calculus of variations. This approach is not easy
to perform, the function to minimize has a complicated form and is often
singular. Thus, we also have chosen a simpler approach which consists in
finding directly controls giving solutions with the desired properties. Note
however that the calculus of variations approach has allowed us to guess the
form of the modulated soliton we should choose.

Let us consider the following controlled nonlinear Schrödinger equation

i
du

dt
= ∆u + |u|2u + λ(t)xu (2.10)

with initial datum Ψ0
A. The function λ is taken in L1(0, T ;R). This corre-

sponds to the multiplicative skeleton equation with Φh = λ(t)x or to the ad-
ditive one with Φh = λ(t)xu. We use well known transformation to compute
explicitly the solution of (2.10) which we denote by ΨA,λ. We first may check

that the functions v1 and v2 defined by v1(t, x) = exp
(
i
(∫ t

0 λ(s)ds
)

x
)

u(t, x)
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and v2(t, x) = exp
(
−i

∫ t
0

(∫ s
0 λ(τ)dτ

)2
ds

)
v1(t, x) (gauge transform) satisfy

the PDEs

i
∂v1

∂t
=

∂2v1

∂x2
+ |v1|2v1 −

(∫ t

0
λ(s)ds

)2

v1 − 2i

(∫ t

0
λ(s)ds

)
∂v1

∂x

and

i

(
∂v2

∂t
+ 2

(∫ t

0
λ(s)ds

)
∂v2

∂x

)
=

∂2v2

∂x2
+ |v2|2v2

with initial datum Ψ0
A. We conclude using the methods of characteristics

that v3 defined by

v3(t, x) = v2

(
t, x + 2

∫ t

0

∫ s

0
λ(u)duds

)

is a solution of the usual NLS equation with initial datum Ψ0
A. Thus we

obtain that v3(t, x) = ΨA(t, x) and that the solution of the Cauchy problem
associated to (2.10) is

ΨA,λ(t, x) =
√

2Asech
(
A

(
x− 2

∫ t
0

∫ s
0 λ(τ)dτds

))

exp
[
−iA2t + i

∫ t
0

(∫ s
0 λ(τ)dτ

)2
ds− ix

∫ t
0 λ(s)ds + 2i

(∫ t
0 λ(s)ds

)(∫ t
0

∫ s
0 λ(τ)dτds

)]
.

We obtain a modulated soliton with group velocity given by Ω(t) =
∫ t
0 λ(s)ds.

In the additive case, it is possible to obtain a control such that the solution
has same center and group velocity and such that the space-time L2 norm of
the control is simpler to compute. It is obtained thanks to the observation
that using the gauge transform the solution of the Cauchy problem

{
idv
dt = ∆v + |v|2v + λ(t)

(
x− 2

∫ t
0

∫ s
0 λ(τ)dτds

)
v

v(0) = Ψ0
A,

(2.11)

is given by

Ψ̃A,λ(t, x) = exp
(

2i

∫ t

0
λ(s)

∫ s

0

∫ τ

0
λ(σ)dσdτds

)
ΨA,λ(t, x).

Remark 2.3 Note that, for the controls chosen above, relation (2.8) holds
also in the additive case. Thus the second term in (2.9) which, at first glance,
could be useful to act on the center is in fact useless.

Also, it could be thought that the choice of more complicated group veloc-
ities could be useful. We have tried to consider a space dependent group ve-
locity but the calculus of variations approach shows that optimality is reached
when it does not depend on space.
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3 Tails of the the mass and center with additive
noise

In the case of an additive noise, both the mass and center may deviate from
the deterministic behavior and result in error in transmission.

We shall study tails and thus the probability of a deviation from the
mean. The constant R will quantify this deviation. We are not really inter-
ested in large R. In practice R may be assumed to be in (0, 4). But, since
ε goes to zero and the factor in the exponential should be multiplied by 1

ε
while R is of order 1. It results in very unlikely events. These significant
excursions of the mass and position are exactly large deviation events.

Moreover another parameter is particularly interesting. It is T the length
of the fiber optical line. It is assumed to be large. For example we could
think of a fiber optical line between Europe and America.

We first recall the results obtained in [22] for the tails of mass of the
pulse at the end of the line. The initial datum may be u0 = 0 or u0 = Ψ
where Ψ(x) =

√
2sech(x). We could consider a soliton profile with any

amplitude A as well but for simplicity, we consider the case A = 1. However
we consider the parameter A for the timing jitter in order to compare with
results from physics.

Let us begin with upper bounds of the tails. As already mentioned, they
are obtained thanks to energy estimates. For the second bound we consider
the case of the emission of a signal. In that case only a decrease of the mass
is troublesome and causes in error in transmission. Thus the bound given
only accounts for a significant decrease of the mass.

Proposition 3.1 For every positive T and R (R in (0, 4) for the second
inequality) and every operator Φ in L2(L2, H1), the following inequalities
hold

limε→0ε logP
(
N

(
uε,0(T )

) ≥ R
) ≤ − R

8T‖Φ‖2
Lc(L2,L2)

,

limε→0ε logP
(
N

(
uε,Ψ(T )

)− 4 < −R
) ≤ − R2

2T‖Φ‖2
Lc(L2,L2)

(4 + R)2
.

Proof. We only give a sketch of the proof. Details can be found in [22].
We treat the first inequality. The proof for the second inequality is similar.
Multiplying by −iu the equation

i
du

dt
−∆u− λ|u|2u = Φh,
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integrating over time and space and taking the real part gives, for t ∈ [0, T ],

‖Sa,0(h)(t)‖2
L2 − ‖u0‖2

L2 = 2Re

(
−i

∫ t

0

∫

R

(
(Φh)(s, x)Sa,0(h)(s, x)

)
dxds

)
.

(3.1)
We first integrate once more with respect to t ∈ [0, T ] and use the Cauchy-
Schwarz inequality to obtain

(∫ T

0
‖Sa,0(h)(s)‖2

L2ds

)1/2

≤ 2T‖Φ‖Lc(L2,L2)

(∫ T

0
‖h(s)‖2

L2ds

)1/2

.

Then, taking t = T in (3.1), using again the Cauchy-Schwarz inequality and
the above bound, we deduce

‖Sa,0(h)(T )‖2
L2 ≤ 4T‖Φ‖2

Lc(L2,L2)

∫ T

0
‖h(s)‖2

L2ds.

It follows

I0
N (m) =

1
2

inf
h∈L2(0,T ;L2): N(Sa,0(h)(T ))=m

{
‖h‖2

L2(0,T ;L2)

}

≥ x

8T‖Φ‖2
Lc(L2,L2)

.

Now, by the LDP on the mass, we have

limε→0ε logP
(
N

(
uε,0(T )

) ≥ R
) ≤ − inf

x∈[R,∞]
Iu0
N (m)

and the result follows. ¤

Let us now consider lower bounds. We use modulated solitons as solu-
tions of the controlled equation. We have found that it is sufficient that only
the amplitude is varying. We take the solution of (2.5) of the form

√
2A(t) exp

(
−i

∫ t

0
A2(s)ds

)
sech(A(t)x). (3.2)

The singular Euler-Lagrange equation given by the calculus of variations
when minimizing the energy of the controls giving such solutions has allowed
to guess a good parametrization when the initial datum is either 0 or Ψ.
Define the following sets of time dependent functions, depending on a set of
parameters D,

A1
D=

{
A : [0, T ] → R, there exists R̃ ∈ D such that A(t) = R̃

(
t

2T

)2 }
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and

A2
D =

{
A : [0, T ] → R, there exists R̃ ∈ D such that

A(t) =
(
8− R̃− 4

√
4− R̃

)(
t

2T

)2

+
(
−4 + 2

√
4− R̃

) t

2T
+ 1

}
.

Modulated amplitude taken in A1
D or A2

D set are associated to controls in
the set

Ci
D =

{
h ∈ L2(0, T ; L2), there exists A ∈ Ai

D

h(t, x) = i
A′(t)
A(t)

ΨA(t, x)− i
√

2A′(t) exp
(
−i

∫ t

0
A2(s)ds

)
A(t)x

sinh
cosh2 (A(t)x)

}

where i = 1 or i = 2.
We have the following proposition whose proof follows from the lower

bound of the LDP for the mass. The proof is given in [22]. It uses that the
infimum of the rate function is smaller than the infimum on the smaller sets
of controls C1

D and C2
D corresponding to well-chosen modulated amplitudes.

The assumptions can easily be fulfilled. They are made to be as close as
possible to the space-time white noise considered in physics that we are not
able to treat mathematically.

Proposition 3.2 Let T and R be positive numbers (R in (0, 4) for the sec-
ond inequality), take D dense in [R, R + 1] and a sequence of operators
(Φn)n∈N in L2

(
L2,L2

)
such that for every h ∈ C1

D we have Φnh converges
to h in L1

(
0, T ; L2

)
. Then we obtain

limn→∞,ε→0ε logP
(
N

(
uε,0,n(T )

) ≥ R
) ≥ −R(12 + π2)

18T
.

Replacing in the above C1
D by C2

D we obtain

limn→∞,ε→0ε logP
(
N

(
uε,Ψ,n(T )

)− 4 < −R
) ≥ −2(8−R− 4

√
4−R)(12 + π2)

36T
.

The exponent n is there to recall that Φ is replaced by Φn,

Note that the result in Proposition 3.1 depends on Φ only through its norm
as a bounded operator in L2. It is not difficult to see that there exists
sequences of operators (Φn)n∈N satisfying the assumptions of Proposition
3.2, i.e. which are Hilbert-Schmidt from L2 to Σ and Φn approximates the
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identity on the good set of controls, and are uniformly bounded as operators
on L2 by a constant independent on T . For such sequences of operators, the
upper and lower bounds given above agree up to constants in their behavior
in large T .

It is obtained in [18], for the ideal white noise and using the heuristic
arguments recalled in the introduction, that the probability density function
of the amplitude of the pulse at coordinate T when the initial datum is
null is asymptotically that of an exponential law of parameter εT

2 . The
amplitude is a constant times the mass for the modulated soliton solutions
considered [18]. Integrating this density over [R2 ,∞) and taking into account
the different normalisation, we obtain limε→0 ε logP

(
N

(
uε,0(T )

) ≥ R
)

=
−R

T . It is in between our two bounds and very close to our lower bound.
A surprising fact is that, we obtain our result by parameterizing only the
amplitude whereas in [18] a much more general parametrization is used.
Both bounds exhibit the right behavior in R and T . Moreover, the order in
R confirms physical and numerical results that the law is not Gaussian. On a
log scale the order in R is that of tails of an exponential law. In such a case
the Gaussian approximation leads to incorrect tails and error estimates.

Let us now comment on our results in the case of a soliton as initial
datum. In [18], the error probability when the size of the measurement
window is of the order of the coordinate T is obtained. It is given by
limε→0 ε logP

(
N

(
uε,Ψ(T )

)− 4 < −R
)

= − c(R)
T , with a constant c(R). It

exhibits the same behavior in T as in our calculations. The discussion on
the behavior with respect to R is less clear. Our bounds are not of the same
order. In [15, 32] the PDF of the mass at coordinate T for a soliton profile
as initial datum is not Gaussian. The numerical simulations in [34] also
exhibit a significant difference between the log of the tails of the amplitude
and that of a Gaussian law. Our lower bound indicates that again the tails
are larger than Gaussian tails. Thus we give a rigorous proof of the fact
that a Gaussian approximation is incorrect.

Finally, it is natural to obtain that the tails of the mass are increasing
functions of T since the higher is T , the less energy is needed to form a
signal whose mass gets above a fixed threshold at T . Replacing above by
under, the same holds in the case of a soliton as initial datum.

Remark 3.3 The H1 setting is not required here. We could as well work
with L2 solutions and a LDP in L2. However, it is required to work in H1

for the study of the center below.

We now estimate the tails of the center. As for the mass, the rate is hard
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to handle since it involves an optimal control problem for controlled NLS
equations. We again deduce the asymptotic of the tails from the LDP look-
ing at upper and lower bounds. We consider that the initial datum is Ψ0

A

since only in this case the timing jitter might be troublesome.

Let us begin with an upper bound. It is deduced from the equation of
motion of the center in the controlled NLS equation (2.9).

Proposition 3.4 For every positive T , A and R and every operator Φ in
L2

(
L2, Σ

)
, the following inequality holds

limε→0ε logP
(
Y

(
uε,Ψ0

A(T )
)
≥ R

)
≤ − R2

8T (2T + 1)2
(
4A + R

2T+1

)
‖Φ‖2

Lc(L2,Σ)

.

Proof. Differentiating the momentum of the solution with respect to time
and replacing the time derivative of the solution with the corresponding
terms of the equation we obtain

[
P

(
Sa,Ψ0

A(h)(t)
)]′

= 4Re

∫

R
Sa,Ψ0

A(h)(t, x)
(
∂xΦh

)
(t, x)dx.

Indeed by successive integration by parts all terms cancel besides the one
involving the forcing term. Since Y

(
Ψ0

A

)
= 0 and P

(
Ψ0

A

)
= 0, thanks to

(2.9), we obtain the identity

Y(Sa,Ψ0
A(h)(t)) = 4Re

(∫ t
0

∫ s
0

∫
R Sa,Ψ0

A(h)(σ, x) (∂xΦh) (σ, x)dxdσds
)

−2Re
(
i
∫ t
0

∫
R xSa,Ψ0

A(h)(s, x) (Φh) (s, x)dxds
)

.

From this identity it follows that the controls h in the minimizing set of the
LDP applied to the event we consider necessarily satisfy

R ≤ Y
(
Sa,Ψ0

A(h)(T )
)
≤ 4T‖Φ‖Lc(L2,H1)‖h‖L2(0,T ;L2)‖Sa,Ψ0

A(h)‖L2(0,T ;L2)

+2‖Φ‖Lc(L2,Σ)‖h‖L2(0,T ;L2)‖Sa,Ψ0
A(h)‖L2(0,T ;L2).

Moreover, arguing as in the proof of Proposition 3.1, see also [22],

‖Sa,Ψ0
A(h)‖L2(0,T ;L2) ≤ T‖Φ‖Lc(L2,L2)‖h‖L2(0,T ;L2)(

1 +
√

1 + 4A
T‖Φ‖2Lc(L2,L2)

‖h‖2
L2(0,T ;L2)

)
.

A lower bound on 1
2‖h‖2

L2(0,T ;L2) follows easily since the function x 7→
x

(
1 +

√
1 + 4

x

)
is increasing on R∗+. The result follows. ¤
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A lower bound is obtained considering controls suggested at the end
of Section 2 and minimizing on the smaller set of controls. We define the
following set of control for A, T positive and D a subset of (0,∞)

HD
A,T = {h ∈ L2(0, T ; L2), h(t, x) = λ(t)

(
x− 2

∫ t
0

∫ s
0 λ(τ)dτds

)
Ψ̃A,λ(t, x),

with λ(t) = 3R̃(T−t)
8AT 3 , R̃ ∈ D}

Proposition 3.5 Let T , A and R be positive. Assume that, for a dense set
D of [R, R + 1], (Φn)n∈N is a sequence of operators in L2

(
L2, Σ

)
such that

for any h in HD
T,A, Φnh converges to h in L1(0, T ; Σ). Then we have the

following inequality where the n in the exponent recalls that Φ is replaced by
Φn,

limn→∞,ε→0ε logP
(
Y

(
uε,Ψ0

A,n(T )
)
≥ R

)
≥ − π2R2

128T 3A3
.

Proof. By the LDP for the center Y, we know that for a fixed n a lower
bound is given by

− inf
y>R

I
Ψ0

A
Y,n(y)

where

I
Ψ0

A
Y,n(y)=

1
2

inf
h∈L2(0,T ;L2): Y

�
S

a,Ψ0
A

,n
(h)(T )

�
=y

{
‖h‖2

L2(0,T ;L2)

}
.

Again, the n is there to recall that in the skeleton equation, Φ is replaced by
Φn. To minorize this quantity, we first treat the case Φ = I. Note that the
stochastic equation has no meaning in this case but the skeleton equation
has a well defined solution provided h ∈ L2(0, T ; L2). We denote by Sa,Ψ0

A
WN

the skeleton when Φ = I. It is not difficult to see that Sa,Ψ0
A

WN (h) belongs to
L∞ ([0, T ]; Σ) when h belong to L1(0, T ; Σ). A standard argument to prove
this is to compute the second derivative with respect to time of the variance
V(u) =

∫
R x2|u(t, x)|2dx when u = Sa,Ψ0

A
WN (h). It is also standard to prove

that, for each t, the mapping h → Sa,Ψ0
A

WN (h)(t) is weakly continuous from
L1(0, T ; Σ) to Σ and strongly continuous from L1(0, T ; Σ) to H1 . Therefore,
since Y is weakly continuous on Σ, thanks to our assumptions, we know
that for h ∈ HD

T,A

Y
(
Sa,Ψ0

A,n(h)(T )
)

= Y
(
Sa,Ψ0

A
WN (Φnh)(T )

)
→ Y

(
Sa,Ψ0

A
WN (h)(T )

)
when n →∞.

(3.3)
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Let H̃T,A be the same set of controls as above but where λ is only assumed
to belong to L2(0, T ;R)

H̃T,A = {h ∈ L2(0, T ; L2), h(t, x) = λ(t)
(
x− 2

∫ t
0

∫ s
0 λ(τ)dτds

)
Ψ̃A,λ(t, x),

λ ∈ L2(0, T ;R)}.
Clearly,

inf
h∈L2(0,T ;L2): Y

�
S

a,Ψ0
A

WN (h)(T )

�
≥R̃

‖h‖2
L2(0,T ;L2)

≤ inf
h∈H̃T,A: Y

�
S

a,Ψ0
A

WN (h)(T )

�
≥R̃

‖h‖2
L2(0,T ;L2)

= inf
λ∈L2(0,T ;R),

R T
0

R t
0 λ(s)dsdt≥ R̃

8A

π2

3A

∫ T

0
λ2(t)dt

Note that the contraint
∫ T
0

∫ t
0 λ(s)dsdt ≥ R̃

8A , is not a boundary condition
as in the usual calculus of variations. To solve this minimization problem,
we use the quantity LT,A,R̃(λ) defined by

LT,A,R̃(λ) =
π2

3A

∫ T

0
λ2(t)dt− γ

∫ T

0

∫ t

0
λ(s)dsdt,

where γ belongs to R. We then impose that our guess λ∗
T,A,R̃

is a critical

point of LT,A,R̃(λ) and that it satisfies the constraint
∫ T
0

∫ t
0 λ(s)dsdt = R̃

8A .
We obtain

λ∗
T,A,R̃

(t) =
3R̃(T − t)

8AT 3
.

We do not claim that the minimization problem is solved, we simply write

inf
λ∈L1(0,T ;R),

R T
0

R t
0 λ(s)dsdt≥ R̃

8A

π2

3A

∫ T

0
λ2(t)dt

≤ π2

3A

∫ T

0
λ∗

T,A,R̃
(t)dt =

π2R̃2

64A3T 3

Let us set

h∗
R̃
(t, x) = λ∗

T,A,R̃
(t)

(
x− 2

∫ t

0

∫ s

0
λ∗

T,A,R̃
(τ)dτds

)
Ψ̃A,λ∗

T,A,R̃
(t, x).

By (3.3), we have for R̃ ∈ D,

Y
(
Sa,Ψ0

A,n(h∗
R̃
)(T )

)
→ Y

(
Sa,Ψ0

A
WN (h∗

R̃
)(T )

)
when n →∞.
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Therefore, for n large enough,

Y
(
Sa,Ψ0

A,n(h∗
R̃
)(T )

)
> R.

We deduce

inf
x>R

I
Ψ0

A
Y,n(x) ≤ π2R̃2

64A3T 3
.

Since this is true for R̃ in a dense set of [R, R + 1] we deduce the result. ¤

The upper and lower bounds given in Proposition 3.4 and 3.5 are in
perfect agreement in their behavior with respect to R and to T when T is
large. Indeed, for T large, the upper bound in Proposition 3.4 is close to

R2

128T 3A‖Φ‖Lc(L2,Σ)
. However, we have to be careful before doing such a com-

parison. Indeed, the bounds can be compared only if we are able to consider
a sequence of operators (Φn)n∈N satisfying the assumptions of Proposition
3.5 and such that ‖Φn‖Lc(L2,Σ) is bounded uniformly in n.

It seems possible to construct such a sequence. For instance we may
choose Φ̃ in L2(L2, Σ) such that Φ̃k = k for k in KA, the closure in L2 of
the vector space spanned by {(x− a)sech (A(x− b)) , a ∈ [0, 1], b ∈ [0, 1]}.
We believe that KA is embedded in Σ in a Hilbert-Schmidt way. For T and
A sufficiently large and D ⊂ [R, R + 1], each h in the set HD

A,T is such that
h(t) ∈ KA for t ∈ [0, T ], thus Φ̃h = h and we can take Φn = Φ̃ in Proposition
3.5. In this case, the two bounds are comparable and are of the same order
in R and T . Note that ‖Φn‖Lc(L2,Σ) is independent on R and T .

In fact, many such sequences probably exist. Therefore, it seems that
the bounds can be compared in many circumstances. Roughly speaking,
the fact that this can be done means that we are treating noises which are
sufficiently localized around the soliton Ψ0

A.
If the sequence (Φn)n∈N converges pointwise to the identity, i.e. if we

wish to understand what happens in the white noise limit, then this localiza-
tion assumption does not hold. In this case, the lower bound is meaningful
whereas the upper bound converges to zero and provides no information.

The comparison of the behavior of the bounds with respect to A is less
clear. The two bounds seem contradictory for large A. This is due to the fact
that it is not possible to choose a sequence of operators (Φn)n∈N satisfying
the assumptions of Proposition 3.5 and such that ‖Φn‖Lc(L2,Σ) is uniformly
bounded with respect to A. Indeed such a sequence necessarily satisfies

‖h‖L1(0,T ;Σ) ≤ limn→∞‖Φn‖Lc(L2,Σ)‖h‖L1(0,T ;L2)
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for any h ∈ HD
T,A. It is easily seen that for A and T sufficiently large, the

ratio of ‖h‖L1(0,T ;Σ) and ‖h‖L1(0,T ;L2) is of the order A.
In fact this shows that the upper bound in Proposition 3.4 is always

larger than a constant times R2

T 3A3 for a sequence satisfying the assumptions
of Proposition 3.5. Thus there is no contradiction.

We can probably go further. Indeed, there may exist sequences of opera-
tors satisfying the assumptions of Proposition 3.5 and such that ‖Φn‖Lc(L2,Σ) ≤
cA for some constant c. In this case the bounds are of the same order with
respect to A, R and T . An example could be constructed in the same way
as above. It suffices to take Φn equal to the identity on KA and zero on a
complementary space. Indeed, it can be shown that ‖h‖Σ ≤ cA‖h‖L2 for
some constant c.

Therefore, the two bounds are also comparable in their behavior with
respect to A under a localization assumption on the noise.

Let us now compare our result with the results obtained in the physics
literature. First, we note that we obtain that on a log scale the tails are
equivalent to Gaussian tails. This is indeed the kind of result obtained by
arguments from the physical theory of perturbation of solitons.

Remark 3.6 We are missing the pre exponential factors to conclude whether
or not the tails are Gaussian. We could think of using sharp Laplace asymp-
totics to obtain these factors.

Now, suppose the law were indeed Gaussian, then the asymptotic of the
tails may be written in terms of the variance. By doing so, we find that the
variance of the timing jitter is of the order T 3. It agrees perfectly with the
initial results of [25]. Also the order in both A and T seems to agree perfectly
with the orders of the contribution of the additive noise to the variance of
the timing jitter in equation (3.18) in [17]. Note however that in [25, 29],
where the model is instead a juxtaposition of deterministic evolutions with
random initial data in between amplifiers, the order in A seems to be − c

A .
We end this section noticing that our result confirms the fact that, in

the presence of additive noise, the timing jitter is more troublesome than
the fluctuation of the mass when we consider the problem of losing a signal.
Indeed we have found that the error probability due to timing jitter is of the
order of exp

(
− c1(R)

εT 3

)
and an error probability due to the fluctuation of the

mass is of the order of exp
(
− c2(R)

εT

)
which is clearly negligible compared to

the first for large T . Recall that T represents the length of a fiber optical
line and is thus assumed to be very large.
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Remark 3.7 From an engineering point of view it is possible to exponen-
tially reduce the probability of undesired deviations of the center by intro-
ducing inline control elements; see for example [18]. We could also use
ideas given in [36] and optimize on such external fields for a limited cost
or penalty functional. The new optimal control problem requires then double
optimization.

Remark 3.8 Note that the methodology developed herein could also be ap-
plied to the determination of the small noise asymptotic of the tails of the
position of an isolated vortex, defined by

∮ ∇ arg u(t, x) · dl, in a Bose con-
densates or superfluid Helium as in [35]. There the physical perturbation
approach along with the Fokker-Planck equation are used. The small noise
acts as the small temperature.

4 Tails of the center in the multiplicative case

In the case of the multiplicative noise, the mass is a conserved quantity and
we restrict our attention to the case of the law of the center of the pulse
when the initial datum is the soliton profile Ψ0

A.

Again, let us begin with upper bounds obtained from an equation for
the motion of the center in the controlled NLS equation.

From relation (2.8) and integration by parts, we obtain the equation in
[39],

[
Y(Sm,Ψ0

A(h)(t))
]′′

= 2
∫

R
|Sm,Ψ0

A(h)(t, x)|2 (∂xΦh) (t, x)dx. (4.1)

We may thus deduce the next proposition.

Proposition 4.1 For every positive T , A and R and every operator Φ in
L2

(
L2, Hs(R,R)

)
, where s > 3

2 the following inequality holds

limε→0ε logP
(
Y

(
uε,Ψ0

A(T )
)
≥ R

)
≤ −

(
3
16

)2 R2

2A2T 3‖Φ‖2
Lc(L2,W1,∞(R,R))

.

Proof. From equation (4.1), the fact that Y
(
Sm,Ψ0

A(h)
)′

(0) = P(Ψ0
A) =

0, that for such values of s the injection of Hs(R,R) into W1,∞(R,R) is
continuous and that the mass is conserved and thus remains equal to 4 we
obtain that

Y
(
Sm,Ψ0

A(h)(t)
)′

≤ 8A‖Φ‖Lc(L2,W1,∞(R,R))‖h‖L1(0,t;L2)

≤ 8A
√

t‖Φ‖Lc(L2,W1,∞(R,R))‖h‖L2(0,T ;L2)
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Then, since Y
(
Ψ0

A

)
= 0, we obtain integrating the above inequality that

R ≤ Y
(
Sm,Ψ0

A(h)(T )
)
≤ 16AT

3
2

3
‖Φ‖Lc(L2,W1,∞(R,R))‖h‖L2(0,T ;L2)

and the conclusion follows. ¤

Let us consider now lower bounds. We need to find controls which have
the desired effect on the center. We have seen that in the additive case, good
controls are given by functions in HD

A,T . Recalling the transformations on
the equation made at the end of Section 2, we can equivalently take controls
of the form λ(t)xΨA,λ which correspond to the solution ΨA,λ. Thus, in the
multiplicative case, a good control is given by h(t, x) = λ(t)x. Unfortunately
these controls do not belong to the range of Φ nor to L2

(
0, T ; L2

)
and are

not admissible.
We have tried to approximate these controls by admissible ones. Since

the control is multiplied by ΨA,λ in the equation, it seems that it has no effect
outside a set centered around the center of ΨA,λ and that we could replace
λ(t)x by a truncation. We have not been able to get any information by such
arguments. We have tried several other choices of control corresponding to
various modulated solitons especially with a phase nonlinear in x. They
never yielded the right order of the lower bound with respect to A or T . We
therefore impose a new assumption that Φ takes its values in Hs(R,R) ⊕
xL1(0, T ;R). In other words we consider the slightly different equation

idũε,u0 =
(
∆ũε,u0 + |ũε,u0 |2ũε,u0

)
dt + ũε,u0 ◦ √εdW (t) +

√
εxũε,u0 ◦ dβ(t)

(4.2)
where β is a standard Brownian motion independant of W and the corre-
sponding controlled PDE

i d
dt S̃

u0(h1, h2) = ∆S̃u0(h1, h2) + |S̃u0(h1, h2)|2S̃u0(h1, h2)
+S̃u0(h1, h2)Φh1 + xS̃u0(h1, h2)h2

where h1 belongs to L2
(
0, T ; L2

)
and h2 belongs to L2(0, T ;R), the initial

datum is u0 and in the sequel u0 = Ψ0
A. We may guess by successive

applications of the Itô formula, multiplying ũε,u0 by the random phase term
exp (ix

√
εβ(t)), and similar transformations as in Section 2 (stochastic gauge

transform, stochastic methods of characteristics...) that we should consider
the function

exp
(

ix
√

εβ(t)− iε

∫ t

0
β2(s)ds

)
ũε,u0

(
t, x + 2

√
ε

∫ t

0
β(s)ds

)
.
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It indeed satisfies equation (2.2) with same initial datum. We deduce that

ũε,u0(t, x) =
exp

(
−ix

√
εβ(t) + iε

∫ t
0 β2(s)ds + 2iεβ(t)

∫ t
0 β(s)ds

)
uε,u0

(
t, x− 2

√
ε
∫ t
0 β(s)ds

)
.

A similar computation shows that

S̃u0(h1, h2)(t, x) = exp
(
−ix

√
ε
∫ t
0 h2(s)ds + i

∫ t
0

(∫ s
0 h2(u)du

)2
ds

+2i
∫ t
0 h2(s)ds

∫ t
0

∫ s
0 h2(u)duds

)
Sm,u0(h1)

(
t, x− 2

∫ t
0

∫ s
0 h2(u)du

)
.

The functions ũε,u0 and S̃u0(h1, h2) are well defined functions of L2 (0, T ; Σ)
and we may compute their centers. We obtain a lower bound of the asymp-
totic of the tails of the center of the new solutions.

Proposition 4.2 For every positive T , A and R and every operator Φ in
L2

(
L2, Hs(R,R)

)
where s > 3

2 the following inequality holds

limε→0ε logP
(
Y

(
uε,Ψ0

A(T )
)
≥ R

)
≥ − 3R2

128A2T 3
.

Proof. Consider the mapping F from C
(
[0, T ]; Σ

1
2

)
× C([0, T ];R) into R

such that

F (u, b) =
∫

R
|x|

∣∣∣∣u
(

T, x− 2
∫ T

0
b(s)ds

)∣∣∣∣
2

dx.

Take u and u′ in C
(
[0, T ]; Σ

1
2

)
and b and b′ in C ([0, T ];R), then by the

triangle and inverse triangle inequalities and the change of variables we
obtain

|F (u, b)− F (u′, b′)|
≤ ∫

R

∣∣∣
∣∣∣x + 2

∫ T
0 b(s)ds

∣∣∣−
∣∣∣x + 2

∫ T
0 b′(s)ds

∣∣∣
∣∣∣ |u(T, x)|2dx

+
∣∣∣
∫
R

∣∣∣x + 2
∫ T
0 b′(s)ds

∣∣∣
(|u(T, x)|2 − |u′(T, x)|2) dx

∣∣∣
≤ 2

∣∣∣
∫ T
0 b(s)ds− ∫ T

0 b′(s)ds
∣∣∣
∫
R |u(T, x)|2dx

+
∫
R |x| ||u(T, x)| − |u′(T, x)|| (|u(T, x)|+ |u′(T, x)|) dx

+2
∣∣∣
∫ T
0 b′(s)ds

∣∣∣
∫
R ||u(T, x)| − |u′(T, x)|| (|u(T, x)|+ |u′(T, x)|) dx

we conclude from the inverse triangle and Hölder inequalities that F is
continuous. We may then push forward the LDP for the paths of uε,Ψ0

A and
of the Brownian motion by the mapping F using a slight modification of the
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result of exercise 4.2.7 of [9] and obtain a LDP for the laws of Y
(
ũε,Ψ0

A(T )
)

which is that of F
(
uε,Ψ0

A ,
√

εβ
)

of speed ε and good rate function defined
as a function of the rate function of the original solutions and of the rate
function Iβ of the sample path LDP for the Brownian motion

Ĩ
Ψ0

A
Y (x) = inf(u,b): F (u,b)=x (Iu0(u) + Iβ(b))

≤ 1
2 inf

(h1,h2): F
�
S

m,Ψ0
A (h1),

R ·
0 h2(s)ds

�
=x

{
‖h1‖2

L2(0,T ;L2) + ‖h2‖2
L2(0,T ;R)

}

≤ 1
2 inf

(h1,h2): Y
�
S̃

Ψ0
A (h1,h2)(T )

�
=x

{
‖h1‖2

L2(0,T ;L2) + ‖h2‖2
L2(0,T ;R)

}
.

Thus considering solely controls of the from (0, h2), we minimize in h2 for γ
in R, ∫ T

0
h2

2(t)dt− γ

∫ T

0

∫ t

0
h2(s)ds,

where we impose that

Y (ΨA,h2(T )) = 8A

∫ T

0

∫ t

0
h2(s)ds = R̃ > R.

The conclusion follows. ¤

Remark 4.3 We may check that Y
(
uε,Ψ0

A

)
= Y

(
ũε,Ψ0

A

)
− 8

√
ε
∫ T
0 β(s)ds

and that
∫ T
0 β(s)ds is a centered Gaussian random variable with variance

T 3

3 .

The corresponding upper bound for this modified stochastic NLS equation
is

limε→0ε logP
(
Y

(
uε,Ψ0

A(T )
)
≥ R

)
≤ −

(
3
16

)2 R2

A2T 3
(
‖Φ‖2

Lc(L2,W1,∞(R,R))
∨ 1

) .

Note that the lower bound do not require to consider a sequence of operators
(Φn)n∈N and we may indeed compare the upper and lower bounds. They are
of the same order in T and in A. Note also that, as in the additive case, we
obtain that on a log scale the tails are equivalently that of Gaussian tails.
Also, our tails are of the order in T that we expect from the contribution
of the multiplicative noise to the variance of the timing jitter in equation
(3.18) in [17].

However, concerning the amplitude, it is not of the order of − c
A4 as
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we would expect from [17]. This is probably due to the fact that we have
considered a colored noise with a term x d

dtβ that grows linearly in time
(the x variable). We have explained that, otherwise, we fail to obtain a
lower bound. We have obtained, that for large A, and thus for even more
localized in time solitons, the tails of the center in the additive noise are
larger than that in the multiplicative noise. Note that it is predicted in
[17] that the quantum Raman noise is a dominant source of fluctuations in
phase and arrival time for sub-picosecond solitons and that on the other
hand for longer solitons, Raman effects are reduced compared to the usual
Gordon-Haus jitter. It seems at first glance to be in contradiction with our
results but their result is obtained for A = 1 and time corresponds to the
typical pulse duration considered for scaling purposes in order to obtain the
NLS equation; also our order in A differs from theirs.

5 Annex - proof of Theorem 2.1

We denote herein by V(f) =
∫
R |x|2|f(x)|2dx the variance defined for f in

Σ.
Let us start with the additive case. We denote by vu0(z) the solution of

{
idv
dt = ∆v + λ|v − iz|2σ(v − iz)

u(0) = u0 ∈ Σ
,

where z belongs to X(T,2σ+2,Σ) = C([0, T ]; Σ) ∩ Lr
(
0, T ;W1,2σ+2

)
and r is

such that 2
r = 1

2 − 1
2σ+2 . We also denote by Gu0 the mapping

z 7→ vu0(z)− iz,

it is such that uε,u0 = Gu0(
√

εZ) where Z is the stochastic convolution
defined by Z(t) =

∫ t
0 U(t− s)dW (s).

We can check from similar arguments as those of the proof of Proposition
1 in [22] that the stochastic convolution is a X(T,2σ+2,Σ) random variable
whose law µZ is a centered Gaussian measure. Let z belong to X(T,2σ+2,Σ),
take s < t < T , the triangle along with the Hölder inequalities then allow
to compute

∣∣∫
R |x|

(|Gu0(z)(t, x)|2 − |Gu0(z)(s, x)|2) dx
∣∣

≤ ∫
R |x|(|Gu0(z)(t, x)|+ |Gu0(z)(s, x)|)|(|Gu0(z)(t, x)| − |Gu0(z)(s, x)|)|dx

≤ ‖Gu0(z)(t)− Gu0(z)(s)‖L2

√
V(|Gu0(z)(t)|+ |Gu0(z)(s)|)

≤ 2
√

2‖Gu0(z)(t)− Gu0(z)(s)‖L2

×
(√

V(vu0(z)(t)) +
√

V(vu0(z)(s)) +
√

V(z(t)) +
√

V(z(s))
)

.
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The application of the Gronwall inequality in the proof of Proposition 3.5 in
[11], along with the Sobolev injection allow to prove that Gu0(z) belongs to
C([0, T ]; Σ

1
2 ). The computation above also shows that the mapping Gu0 is

continuous from X(T,2σ+2,Σ) to C([0, T ]; Σ
1
2 ). The general result on LDP for

Gaussian measures gives the LDP for the measures µZε , the direct images
of µZ under the transformation x 7→ √

εx on X(T,2σ+2,Σ). We conclude with
the contraction principle.

In the multiplicative case, it is also required to revisit the proof of the
LDP in [23]. Note that in the following when Φh is replaced by ∂f

∂t where f
belongs to H1

0 (0, T ; Hs(R,R)) which is the subspace of C ([0, T ]; Hs(R,R)) of
functions null at time 0, square integrable in time and with square integrable
in time time derivative. The skeleton is then denoted by S̃m,u0(f).
We may check using the above calculation and the fact that for every t ∈
[0, T ], S̃m,u0(f)(t) belongs to Σ that

V
(
S̃m,u0(f)(t)

)
≤

(
4‖S̃m,u0(f)(t)‖2

C([0,T ];H1) + V(u0)
)

eT ,

see the arguments of the proof of Proposition 3.2 in [12] used for the skeleton,
that the skeleton is continuous from the sets of levels of the rate function of
the Wiener process less or equal to a positive constant, with the topology
induced by that of C ([0, T ]; Hs(R,R)), to C

(
[0, T ]; Σ

1
2

)
. The only difference

in the proof of Proposition 4.1 in [23], the Azencott lemma (also called
Freidlin-Wentzell inequality or almost continuity of the Itô map) is in step
2. It is the reduction to estimates on the stochastic convolution. We use

V
(
vε,ũ0(t)

) ≤
(
4‖vε,ũ0(t)‖2

C([0,T ];H1) + V(ũ0)
)

eT ,

see the proof of Proposition 3.2 in [12], where vε,ũ0 satisfies vε,ũ0(0) = ũ0

and

idvε,ũ0 =
(

∆vε,ũ0 + λ|vε,ũ0 |2σvε,ũ0 +
∂f

∂t
vε,ũ0 − iε

2
FΦvε,ũ0

)
dt +

√
εvε,ũ0dWε,

f(·) =
∫ ·
0 Φh(s)ds, Wε(t) = W (t) − 1√

ε

∫ t
0

∂f
∂s ds = W (t) − 1√

ε

∫ t
0 Φh(s)ds,

FΦ(x) =
∑∞

j=1 (Φej(x))2 and (ej)∞j=1 is any complete orthonormal system
of L2. The bound remains the same as in [12] because of the cancela-
tion of the extra term in the application of the Itô formula and the can-
celation of the Itô-Stratonovich correction with the second order Itô cor-
rection term when the Itô formula is applied to the truncated variance
Vr(v) =

∫
R exp(−r|x|2)|x|2|v(x)|2dx. ¤
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Remark 5.1 Uniform LDPs hold (uniform with respect to initial data in
balls) in the Freidlin-Wentzell formulation or compact sets in the present
formulation with lim and lim. More general nonlinearities and dimensions
and the case where blow-up may occur could be considered. It is still possible
to state the result in spaces of exploding paths with a projective limit topology
accounting for the various integrability. Uniformity could be useful since in
optical experiments the initial pulse is a laser output and it is known up to
a certain level of uncertainty.
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