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Abstract

Indirect taxes contribute to a sizeable part of government revenues around the
world. Typically there are a few different tax rates, and the goods are partitioned
into classes associated with each rate. The present paper studies how to group the
goods in these few classes. We take as given the number of tax rates and study the
optimal aggregation (or classification) of commodities of the fiscal authority in a
second best setup. The results are illustrated on data from the United Kingdom.

Les impôts indirects forment une part notable des recettes fiscales. D’ordinaire,
on observe un petit nombre de taux différents, et les biens sont répartis en classes
associées à chacun de ces taux. On étudie ici comment grouper les biens au mieux.
Le nombre de taux est supposé fixé de manière exogène, et on résoud le problème
d’agrégation (ou de classement) optimal des biens dans un cadre de second rang.
Les résultats sont illustrés sur des données britanniques.

Keywords: indirect tax, Ramsey, aggregation.
JEL classification numbers: H21, H23



1 Introduction

Indirect taxes contribute to a sizeable part of government revenues around the
world. Typically there is a small number of different tax rates, possibly including
no tax, exemption, and the goods are partitioned into classes associated with each
rate. The present paper studies how to allocate the goods in these few classes.
We take as exogenously given the number of tax rates and study the optimal
aggregation (or classification) of commodities of the fiscal authority in a second
best setup1 under a redistribution motive.

When there are no constraints on the choice of tax rates, the popular Ramsey
rule applies. It is most easily described when there are no cross price elasticities
between goods. Each commodity then can be assigned two numbers: the elasticity
of its demand with respect to price and its social weight, which reflects its relative
usage by the consumers in the population. At a given social weight, the optimal
tax rate is inversely proportional to the price elasticity; given the elasticity, the
optimal tax rate decreases with the social weight.

The relevance of the Ramsey rule is examined here when the government can
only use an a priori given (small) number of tax rates. Such a situation is likely
to occur when there are important costs in the administration of the indirect
tax system, as discussed by Yitzhaki (1979) or Slemrod (1990). Given a social
weight, should the goods with similar price elasticities be lumped together, the
less price elastic group supporting the larger tax rate? Given a price elasticity,
does a similar statement hold for social weights?

The literature is almost silent on the topic. Gordon (1989) analyzes how goods
should be clustered together in a tax reform perspective, starting from a situation
of a uniform tax. In the absence of a redistribution motive, Belan and Gauthier
(2004a) and Belan and Gauthier (2004b) show that the Ramsey rule applies in a
framework with a finite number of goods, for low levels of collected tax.

We consider an economy with a continuum of goods, each of them being
negligible with respect to the total. This allows to abstract from the difficulties
associated with discrete optimization: it is then possible to remove an elementary
commodity from one group and to insert it into another group leaving unchanged
the aggregate tax structure, e.g., the social cost of public funds. In this setup,
an important tool for the analysis is the contribution to aggregate welfare of an
elementary good, seen as a function of its own tax rate, all other rates being kept

1Under strong separability assumptions, indirect taxes are useless in the presence of nonlinear
income taxation, as in Atkinson and Stiglitz (1976) and Mirrlees (1976). We place ourselves in
the more general situation where indirect taxes are not trivial. This is typically the case when
consumers have different tastes (Saez (2002)), for certain types of production functions (Stiglitz
(1982), Naito (1999) or Saez (2004)), if it is possible to evade tax (Boadway, Marchand, and
Pestieau (1994)), in order to correct externalities (Green and Sheshinski (1976)), in presence of
uncertainties (Cremer and Gahvari (1995)), or when the authority implementing direct taxes
is not perfectly coordinated with the one that designs indirect taxes, possibly because the
decisions are taken at different points in time or in space (federal, state or city levels).
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fixed. Indeed, it is only when this function is unimodal, or single-peaked, that
the Ramsey rule, derived from first-order conditions, is sufficient for second best
optimality and can be of some guidance to the grouping problem. In terms of
fundamentals, the single-peakedness assumption is satisfied if both the elasticity
and social weight are non decreasing with the tax rate. However, when the single-
peakedness assumption does not hold, i.e. the contribution of a good to social
welfare displays several modes, the aggregation problem has a global nature. Then
the (local) Ramsey rule becomes irrelevant and the monotonicity properties of
the optimal tax rate with respect to the price elasticity or the social weight of
the commodity are unlikely to hold any longer.

Under single-peakedness, the optimal grouping can be characterized with the
help of the tax rate tR (R for Ramsey) which would maximize social welfare for
any given elementary good, when all the other rates are fixed. Namely, such a rate
would apply to the corresponding good if the social planner could tax it freely,
while the tax rates supported by the remaining commodities are unchanged, set at
the constrained optimum. Then, a natural property is that the optimal grouping
puts this good in one of the groups which are taxed at the rates closest to tR,
either immediately below or above tR. By the Ramsey formula, tR is linked to
the price elasticity and social weight of the good, evaluated at this putative free
optimum. In this sense, the standard rules of thumb seem essentially preserved.

Indeed, in the special case where the price elasticities and social weights do
not vary with the tax rates, single-peakedness holds and a stronger result can be
shown. In the space of commodity characteristics (price elasticity, social weight),
the optimal grouping is associated with nice connected regions. The Ramsey
monotonicity properties are satisfied: given the price elasticity, the tax rate is
non increasing with the social weight; given the social weight, the tax rate is
typically non increasing with the price elasticity.

These results may suggest that single-peakedness is the panacea. However,
even under single-peakedness, there is an important caveat to a blind application
of the Ramsey rule. This rule applies to the local properties of the good at the
putative free optimum tR, and not at the actual observed (constrained) tax rate.
In fact, there are examples in which tax rates are increasing with the (observed)
elasticities at the constrained optimum. More strikingly, it is also possible that
the ranking of tax rates at the constrained optimum be the reverse of that of
unconstrained Ramsey rates.

This analysis is applied to data from the United Kingdom. To this end,
the arguments developed in separable economies are adapted to the case where
separability does not hold. Assuming that the observed taxes are optimal, we
recover the implicit redistributive aims of the government. We find that the social
weights that best fit put most of the weight on the fourth decile of consumption.
For these social weights, the actual commodity groupings do not look far from
optimality. The main departures are Adult clothing and Leisure goods which
could be taxed more heavily than at the standard rate. Also Petrol and diesel
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and Beer should be much less taxed from an equity view point: but it is likely
that other considerations (environment, public health) matter in such cases.

The paper is organized as follows. The bulk of the analysis assumes sepa-
rability between goods. The general framework is laid out in the next section.
Then the standard first-order conditions for optimality and the single-peakedness
assumption are presented when there are no constraints on the number of tax
rates. Sections 4 and 5 derive necessary conditions for optimality for a (small)
given number of tax rates. The following section studies in some detail the case
of constant elasticities. Caveats in the practical application of the optimality
criterion are discussed in section 7. Section 8 indicates how the results can be
applied to the real life non separable economies. The analysis is illustrated on
data from the United Kingdom in the final section.

2 Consumers

The typical consumer in the economy is designated with an index c in C, and
her tastes are represented by an additively separable utility function. Consumer
c maximizes her utility function∫

G

u(xg, g, c)µ(g)dg + m

under her budget constraint∫
G

(1 + tg)xgµ(g)dg + m ≤ wc.

The utility function u, defined over IR+ × G× C, is assumed to be concave and
twice continuously differentiable with respect to consumption xg, xg in IR+, and
continuous with respect to the good g, g in G, and consumer c characteristics.
The sets C and G are subsets of some Euclidean space. The consumption of
numéraire is denoted by m.

The relative importance of the various commodities g is partially captured by
their density µ(g) with respect to the Lebesgue measure. It should be empha-
sized that all commodities are small, their measure is absolutely continuous with
respect to Lebesgue, excluding mass points (see Belan and Gauthier (2004b) for
an analysis when there are a finite number of goods). The units of commodities
are chosen so that all producer prices equal 1. Commodities are taxed linearly
and the tax rate supported by commodity g is denoted tg (tg is a number larger
than −1); when tg is negative, the good in fact is subsidized. Finally, wc is the
exogenous income of consumer c.

The strong separability assumptions imply that the overall maximization is
equivalent to separate maximizations on each quantity of good xg

u(xg, g, c)− (1 + tg)xg,
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with m defined residually through the budget constraint. Under the usual Inada
conditions, the demand (ξg(tg, c))) of commodity g by consumer c is the unique
solution of the first-order condition:

u′x(x, g, c) = 1 + tg.

It is decreasing and twice continuously differentiable with respect to the tax rate.
The indirect utility of consumer c from consuming good g, when she is confronted
to the tax rate tg, is:

vg(tg, c) = u[ξg(tg, c), g, c]− (1 + tg)ξg(tg, c).

The function vg(t, c) is a convex decreasing differentiable function, and satisfies
Roy’s identity

∂v

∂t
= −ξ.

The overall indirect utility of consumer c is∫
G

vg(tg, c)µ(g)dg + wc.

3 Optimal tax schedules

An economy is defined as a probability measure ν on the set C of consumer
characteristics. The aggregate quantities, summed over the set of consumers, are
denoted with capital letters. The aggregate demand for good g is

Xg(tg) =

∫
C

ξg(tg, c)dν(c).

We are interested in the design of indirect taxes. The government takes as
given the market behavior of the consumers. It seeks to maximize the sum of
the utilities of the consumers in the economy, weighted by some a priori weights
α(c), α(c) ≥ 0 for all c, normalized so that∫

C

α(c)dν(c) = 1.

Using the separability of the individual utility functions, the objective of the
government can be written as the sum over the goods of the aggregate indirect
utility functions Vg, i.e., ∫

G

Vg(tg)µ(g)dg,

where

Vg(tg) =

∫
C

α(c)vg(tg, c)dν(c).
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We shall often use the derivative of Vg with respect to the tax rate, which can be
written as

dVg

dtg
(t) = −ag(t)Xg(t),

where

ag(t) =

∫
C

α(c)
ξg(t, c)

Xg(t)
dν(c)

is a positive number which measures the social weight of good g. Namely, it is
large when the agents c with the largest weights α consume relatively more of
the good.

If there is no constraint on rates setting, when fiscal income to be collected is
R, welfare maximization can be written as

max
t

∫
G

Vg(tg)µ(g)dg

under the budget constraint2∫
G

tgXg(tg) µ(g)dg = R.

The Lagrangian function associated with this problem is∫
G

Lg(tg)µ(g)dg,

where the contribution of good g, after division by µ(g), to the welfare objective
is equal to

Lg(tg) = Vg(tg) + λtgXg(tg).

Under regularity conditions, at the optimum, one can interpret the multiplier
associated with the budget constraint λ as the marginal cost of public funds.
If the authority freely chooses the tax rate bearing on good g, the necessary
first-order condition for an interior optimum is

−ag(t)Xg(t) + λ
(
Xg(t) + tX ′

g(t)
)

= 0,

or, dropping the index g to simplify notations,

t

1 + t
=

λ− a

λ

X

−(1 + t)X ′ . (1)

2As often in the literature, we assume a linear technology, such that one unit of numeraire
can be transformed into any bundle of commodities (Xg) with

∫
G

Xgµ(g)dg = 1.
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This corresponds to the celebrated Ramsey rule, in which the tax rate applying
to a consumption good is inversely related to the price elasticity −(1 + t)X ′/X
of the demand for this good3.

Note that a priori the program is not well behaved, since the maximand is
convex in tg. The following assumption, which we shall use repeatedly in the
paper, helps to put in perspective the use of the first-order condition:

Assumption 1 A good g satisfies the single peaked assumption, given the mar-
ginal cost of public funds λ, when the function Lg, defined on (−1, +∞), satisfies
one of the following three properties:

1. It is increasing;

2. It is increasing from −1 to some τg(λ) and decreasing from then on;

3. It is decreasing.

Note that when λ is very large, Lg/λ is approximately equal to the tax receipts,
so that Assumption 1 implies that the Laffer curve is single peaked. In the
normal situation of Assumption 1.2, the Ramsey first-order condition has a unique
solution which characterizes the optimum. The analysis is easily extended when
the solution goes to the boundaries of the tax domain: Under Assumption 1.1
(resp. Assumption 1.3), the optimal tax rate is equal to +∞: the good is made
infinitely expensive (resp. to -1: the good is made free).

One can identify a number of circumstances where the single peaked assump-
tion holds. Since both λ and X are positive, the derivative

L′ = −aX + λ(X + tX ′)

has the same sign as (λ− a)/λ + tX ′/X. In the absence of redistributive motive,
a is equal to 1. Whenever the elasticity of aggregate demand with respect to the
tax rate, tX ′/X, is non increasing in t, L′ at most has one change of sign, and L
is single peaked. This is the case when the price elasticity of demand is constant,
X = A(1 + t)−ε, since tX ′/X = −εt/(1 + t) is decreasing.

3This equation would also hold in a model with endogenous labor supply and non linear
direct taxation, provided that separability extends to leisure as in the following utility function∫

G

u(xg, g, c)µ(g)dg − d(L, c) + m.

As is well known since Atkinson and Stiglitz (1976), indirect taxation may be useless when
(unconstrained) non linear direct taxes are allowed. This is the case when λ = ag for all
consumption goods g, a condition unlikely to be satisfied when the agents do not have the same
tastes, as emphasized in the recent literature, e.g. in Saez (2002).
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In the case of redistribution, a typically varies with t. Single peakedness still
holds if in addition of a decreasing tax elasticity of demand, one assumes that a
increases with t: the larger the tax rate, the larger the social weight of the good,
i.e. the demand for the good of the socially unfavored (rich) agents relatively
decreases in comparison to that of the socially favored (poor) agents.

Still, there are demand functions which do not satisfy Assumption 1. Indeed,
the assumption is not preserved under aggregation: the union of goods for which
Assumption 1 holds individually does not necessarily satisfy the assumption4. For
instance, the union of two goods with constant price elasticity of demand may
lead to a two peaks Lagrangian: with X = A1(1 + t)−ε1 + A2(1 + t)−ε2 , when
the value of λ is away from 1 and the elasticities are enough apart so that the
maximum of each curve occurs in the flat part of the other, the function L has
two different local maxima5 (see Figure 2 below).

4 Optimization with a fixed number of tax rates

The implementation of the tax system is likely to entail fixed costs for each
different tax rate: the associated list of goods has to be defined, the tax rate
has to be enforced. In such a circumstance, the Ramsey rule of the preceding
section would be too costly to implement, and at the optimum there will only be
a finite number of tax rates. In the next three sections, we study the properties
of the optimum when the only implementation restriction is that there is an a
priori given finite number K of different tax rates. We note these tax rates tk,
k = 1, . . . , K, and, without loss of generality, we assume that they are ranked
in increasing order, tk ≤ tk+1 for all k. In some cases, we add the additional
constraint that one of the tax rates is equal to zero, but this feature is inessential
for most of the analysis. Let Gk be the subset of goods which are taxed at rate
tk and G the collection of Gk. The government program becomes:

max
t,G

∑
k∈K

∫
Gk

Vg(tk)µ(g)dg

∑
k∈K

∫
Gk

tkXg(tk) µ(g)dg = R⋃
k∈K

Gk = G.

(2)

The government now has to choose the K tax rates (or possibly K − 1, if one of
them is constrained to be equal to zero) and the partition of the set of commodi-
ties associated with the various tax rates. Formally, this is a more complicated

4The demand function of the aggregate is the sum of the individual demand functions. The
sum of single peaked functions is not single peaked in general (while concavity is preserved by
summation).

5The figure is drawn with λ = 1.25, ε1 = 0.25, A1 = 1.8, ε2 = 4 and A2 = 1.
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problem than the Ramsey problem, since it involves the variables G, to which
the standard Lagrangian methods do not immediately apply6.

However, given the partition G, the problem is standard. Under usual regu-
larity conditions, one can write the Lagrangian and the multiplier λ associated
with the government budget constraint is equal to the derivative of the objective
function with respect to R. When differentiating with respect to the tax rates,
to get the analogue of the Ramsey rule, it is natural to consider the aggregate
commodity Gk, the demand of which is defined as

XGk
(t) =

∫
Gk

Xg(t)µ(g)dg.

The necessary first-order condition associated with tk, first derived in Diamond
(1973), is: ∫

Gk

[−ag(tk)Xg(tk) + λ(Xg(tk) + tkX
′
g(tk))]µ(g)dg = 0,

or
tk

1 + tk
=

λ− aGk

λ

XGk

−(1 + tk)X ′
Gk

. (3)

The social weight of the aggregate good is the average of the social weights of the
individual commodities:

aGk
=

∫
Gk

Xg(tk)µ(g)∫
Gk

Xgµ(g)dg
ag(tk)dg.

6There is no vector space structure on the variables G, and therefore no way to differentiate
with respect to G. A possible device to put a differentiability structure on the set of variables
is to abstract from the economic context and to do as if it were possible to tax parts of good
g at the various available rates. Let πk(g) be the fraction of good g subject to rate tk, where
π= [πk(g), k = 1, . . . ,K], is a vector of positive measurable functions, defined on G, of square
integrable with respect to the measure µ(g)dg. The program then becomes

max
t,π

∑
k∈K

∫
πk(g)Vg(tk)µ(g)dg

∑
k∈K

∫
πk(g)tkXg(tk) µ(g)dg = R

πk(g) ≥ 0,
∑

k

πk(g) = 1.

(2′)

where the variables maximized upon are (t, π) in IRK × LK
2 (G) instead of (t,G). The only

solutions of economic relevance are such that the functions π take only two values, either 0 or
1. It is easy to check that both the function to be maximized and the government revenue are
Fréchet differentiable with respect to the variables (t, π). The standard Lagrangian approach
applies (see D.G Luenberger, Optimization by vector space methods, Wiley 1969, and L.A.
Fernandez, On the Limits of the Lagrange Multiplier Rule, SIAM Review, 39(2), 1997, 292-
297). Here we proceed by hand, without a differentiability structure, by directly examining
small changes in G.
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In the first-order condition, the price elasticity of the demand for the aggregate
good Gk, say εGk

, appears in the last term. Note that εGk
is a weighted sum of

the elementary price elasticities of the goods g in the group:

εGk
=

∫
Xgµ(g)∫

Gk
Xgµ(g)dg

−(1 + tk)X
′
g

Xg

dg,

the weights being proportional to the quantity consumed Xg of good g multiplied
by the density µ(g) of this good.

5 How to tax the goods

The aim of the paper is to study the optimal partition G of the goods. At the
optimum, the goods are taxed at one of the K optimal tax rates, and there is an
associated marginal cost of public funds λ. This cost obviously depends on in-
stitutional constraints: it is different from the marginal cost of public funds that
would prevail if all goods were taxed freely. Consider an individual commodity
g, small with respect to the whole economy. Under the continuum hypothesis, a
change in its tax rate leaves λ unchanged, and a necessary condition for optimal-
ity7 is that good g be attached to the group k such that

Lg(tk) = max
h=1,...,K

Lg(th). (4)

7A formal proof proceeds as follows. Take the optimal partition of goods G∗, given the level
R∗ of public receipts. Consider the program associated with the fixed G∗, when R varies:

maxt

∑
k

∫
G∗

k
Vg(tk)µ(g)dg∑

k

∫
G∗

k
tkXg(tk)µ(g)dg = R.

Let W (R) be the value of the program at a regular point, t∗(R) the optimal tax rates, and Lg

the corresponding Lagrangian. Suppose that, by contradiction, at the point R∗, there is a non-
negligible set of goods which belong to G∗

h while Lg(t∗k(R∗)) > Lg(t∗h(R∗)). By continuity, in an
open neighborhood of R∗, there also is a non-negligible set of goods, say Γ, fixed independently
of R in the neighborhood, such that the inequality holds.

Let ∆(R) =
∫
Γ
[tkXg(tk)− thXg(th)]µ(g)dg, where the expression depends on R through the

tax rates, which are the solutions to the program G∗. If ∆(R∗) is equal to zero, the desired
contradiction is obtained by switching Γ from G∗

h into G∗
k. Otherwise, suppose for instance

that ∆(R∗) > 0, and therefore stays positive in the appropriate neighborhood of R∗ (the
negative case can be treated similarly). Take (any) positive small dR with R′ = R∗ − dR in
the neighborhood. By the continuum assumption on the set of goods, from Lyapunov theorem
(Hildenbrand, p.45), there exists a subset dΓ of Γ such that

dR =
∫

dΓ

[t′kXg(t′k)− t′hXg(t′h)]µ(g)dg,

where the tax rates t′ stand for t∗(R′). The desired contradiction obtains starting from G∗

at R′ by switching dΓ from G∗
h into G∗

k, while keeping the tax rates at their t′ values. By
construction, government revenue is equal to R′+dR = R∗ after the transformation. The value
of the objective is W (R′) +

∫
dΓ

[Vg(t′k)− Vg(t′h)]µ(g)dg, i.e. at the first-order for small dR (the

9



Let tRg be the tax rate that this good would support in the hypothetical situa-
tion where it would be taxed individually. For an interior solution, tRg satisfies the
Ramsey rule (1). A direct consequence of the shape of the function L described
in Assumption 1 is

Lemma 1 Under Assumption 1, at the optimum,

1. If Lg is increasing, good g belongs to the more heavily taxed group K; if it
is decreasing, it belongs to the less taxed group.

2. Otherwise, with tRg the tax rate that maximizes Lg,

(a) if tRg is larger than tK, commodity g supports the maximal rate;

(b) if there exists k, k < K, such that tk ≤ tRg ≤ tk+1, then g is taxed
either at rate tk or at rate tk+1;

(c) if tRg ≤ t1, g is taxed at rate t1.

This lemma can be used to describe interesting features of the optimal groups
of commodities in more economic terms. Let

εg(t) = −
(1 + t)X ′

g(t)

Xg(t)
,

ag(t) =

∫
C

α(c)ξg(t, c)dν(c)

Xg(t)
.

Define the demand elasticity and the social weight at the peak: εR
g = εg(t

R
g )

and aR
g = ag(t

R
g ). When commodity g varies in G, the couple (εR

g , aR
g ) describes

a subset of the positive orthant. It turns out that, under Assumption 1, the
position of (εR

g , aR
g ) in the plan yields some information on the rate at which it

should be taxed.
First consider the efficiency criterion, where ag is identically equal to one

for all g. The monotonicity of the Ramsey formula (1) in elasticities allows to
translate Lemma 1 into:

derivative of W with respect to R at the point R′ is denoted −λ′):

W (R∗) + λ′dR +
∫

dΓ

[Vg(t′k)− Vg(t′h)]µ(g)dg,

or
W (R∗) +

∫
dΓ

[Lg(t′k)− Lg(t′h)]µ(g)dg + (λ′ − λ)dR.

Since the last term is of second order, we have a quantity strictly larger than W (R∗), as desired.
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Figure 1: Plan division with four tax rates

Theorem 1 At an optimum, in the absence of redistribution motive, if the Ram-
sey price elasticity of good g, εR

g , is smaller than ε(GK), good g is taxed at the
maximal rate tK. If εR

g is larger than εG1, good g is untaxed. Otherwise, g is
taxed at one of the k or k + 1 rates such that

εGk
≥ εR

g ≥ εGk+1
.

When the government has a redistributive objective, the social weights of the
commodities typically differ from one. In the plan (ε, a/λ), the goods that satisfy
the first-order Ramsey condition for a given tax rate t belong to a half line, with
intercept equal to 1 and slope −t/(1 + t)

a

λ
= 1− t

1 + t
ε.

Given the optimal tax rates tk, k = 1, . . . , K (in Figure 1, we took four rates,
t = −0.1, 0.2, 0.3 and 0.4), the plan looks like a fan and is divided into K + 1
regions. From Lemma 1 and the first-order condition (1), when a good belongs
to some interior region, at the optimum it is taxed at one of the two rates that
correspond to the boundaries of this region (in the top left region, it is subsidized
at the most favorable rate; in the bottom left, it is taxed at the maximal rate).
Figure 1 also shows the relative roles of the social weight and price elasticity
of the commodity. When the zero rate is observed at the optimum, a good is
subsidized (or taxed) when ag is larger (or smaller) than λ. For ag larger than
λ, smaller price elasticities tend to be associated with larger subsidies. For ag
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Figure 2: A Lagrangian function with two peaks

smaller than λ, smaller price elasticities tend to be associated with larger tax
rates. Without further assumptions, we cannot say more on the shape of the
regions in the (ε, a/λ) space corresponding to a given tax rate. For instance,
given a smaller than λ, the tax rate is not always decreasing with the price
elasticity at the optimum.

In order to highlight how Theorem 1 relies on Assumption 1, one can for
instance consider the demand function X = A1(1+t)−ε1+A2(1+t)−ε2 of the end of
Section 3, with a marginal cost of public funds λ equal to 1.25. The corresponding
Lagrangian Lg has two different peaks, as depicted in Figure 2. The tax rate tRg
which maximizes Lg is between t2 and t3. Still, in the circumstances of the Figure,
the good should be taxed at rate t1, in clear violation of Theorem 1.

6 The case of constant elasticities

It is possible to derive a more precise characterization of the optimal classification
when, for each good, all the consumers’ demands have the same constant price
elasticities.
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6.1 The model and classification criterion

The utility functions which yield demand functions whose price elasticities are
constant are of the form8

u(x, g, c) =


[Ag(c)]

1/εg(c) x1−1/εg(c)

1− 1/εg(c)
for εg(c) > 0, εg(c) 6= 1

Ag(c) ln
x

Ag(c)
for εg(c) = 1.

The associated demand and indirect utility functions are:

ξg(t, c) =
Ag(c)

(1 + t)εg(c)

and

vg(t, c) =


Ag(c)

εg(c)− 1
(1 + t)1−εg(c) for εg(c) > 0, εg(c) 6= 1

−Ag(c)− Ag(c) ln(1 + t) for εg(c) = 1.

We have seen that, for any individual c and good g, the function vg(t, c)+λtξg(t, c)
is single peaked.

We are able to go further in the description of the sales tax under the addi-
tional assumption that, for any given commodity, the price elasticities εg(c) are
identical across consumers: εg(c) = εg. This assumption is a sufficient condition
for the aggregate

Lg(t) =

∫
C

(α(c)vg(t, c) + λtξg(t, c)) dν(c)

to be also single peaked, so that this function satisfies Assumption 1.
Straightforward computations give the contribution of commodity g to social

welfare

Lg(t) =


Ag

(1 + t)−εg

εg − 1
[ag(1 + t) + λt (εg − 1)] for εg > 0, εg 6= 1

Ag

[
ag [− ln (1 + t)− 1] +

λt

1 + t

]
for εg = 1.

(5)

where Ag =
∫

C
Ag(c)dν(c), and ag is the distributional characteristic of commod-

ity g, which here is independent of t

ag =

∫
C

α(c)
Ag(c)

Ag

dν(c).

8Gordon (1989) uses such a setup to numerically compute the optimal tax structure in an
economy with six goods and a single consumer.
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For this specification, one can go further than Theorem 1 and obtain a precise
description of the optimal classification of goods in the different tax groups. Good
g is taxed at rate t′ rather than rate t when

Lg(t
′) > Lg(t).

This inequality is equivalent to

ag

λ
< φ(εg, t, t

′),

where we show in the Appendix that the function φ has the following properties

Lemma 2 1. The function φ(., t, t′) is convex on (0, +∞);

2. When ε goes to infinity, for t′ > t, φ(., t, t′) is asymptote to (1− ε)t/(1+ t).

From Theorem 1, the graph of the function φ in the (ε, a/λ) plan is contained in
the cone delimited by the two lines of equations

1− t

1 + t
ε and 1− t′

1 + t′
ε.

Note that the asymptote to φ has the same slope as the upper boundary of the
cone, which makes φ always decreasing in the cones situated under the horizontal
line of intercept equal to λ, and always increasing in the cones above this line.

Typical pictures of the fan and of the tax groups in the (ε, a) plane appear in
Figures 3 to 5. In Figures 3 and 5, there are three tax rates t1 = 0, t2 = 0.2 and
t3 = 0.4, and λ is equal to 1.5. In Figure 4, the three tax rates are equal to -0.10,
0.30 and 0.40.

6.2 The tax structure

In this simple framework, a good g is characterized with three numbers (Ag, ag, εg),
respectively describing the level of its demand, its social weight and its price elas-
ticity. The previous computations allow us to find how to optimally tax the
goods, given a finite set of tax rates t and a value of the marginal cost of public
funds λ.

A first notable fact is that the levels of demand play no role whatsoever in
the classification, so that for taxation one can work in the two dimensional plane
(ε, a). In this plan, it is important to draw the curves associated with the first-
order condition (3)

tk
1 + tk

=
λ− aGk

λ

1

ε (Gk)
.

These are straight (broken on the Figures) half lines originating at the point of
ordinate λ on the a axis, of slope equal to −λtk/(1 + tk). Theorem 1 tells us

14



price elasticity6420 8 1012 ee

0.4

0.2

0.6

0.8

0.0

1.0

1.2

1.4

= 0.0t1

= 0.2t2

= 0.4t3

λ

social weight

Figure 3: The efficient tax structure

price elasticity

social weight

0

λ

2l

e' e"0 2 4 6 8 10 12 14

Figure 4: Taxes may not be decreasing with elasticity

15



price elasticity40 8 12 16 20

0.4

0.2

0.6

0.8

0.0

1.0

1.2

1.4
λ

social weight

= 0.0t1

λR

= 0.2t2

= 0.4t3

A

B

C

  

 

 

Figure 5: Social weights and classification

that, when commodity g, i.e. the point (εg, ag), belongs to the cone between lines
k and k + 1, good g is taxed either at rate tk or at rate tk+1. From Lemma 2,
inside each cone (k, k + 1), there is a curve of equation a/λ = φ(ε, tk, tk+1) (thick
solid lines on the figures) which partitions the cone into two regions: the goods
above the curve are taxed at the lower rate, those below the curve are taxed at
the upper rate. We therefore have a full characterization of the optimal goods
classification.

For instance, consider the case where all the goods have the same social
weight, equal to 1. There is a unique threshold ek solution to the equation
1/λ = φ(ek, tk, tk+1): all the goods of price elasticity ε between ek and ek+1 are
taxed at rate tk (see Figure 3).

More generally, when ag is not constrained to be equal to 1, we have a partition
of the plane into connected regions. It is easy to see that for fixed elasticity ε,
along vertical lines, the tax rates are decreasing with the social weight, which plays
a leading role in the classification. For a fixed social weight, along a horizontal
line, the situation differs depending on whether a is larger or smaller than λ.
When it is larger (resp. smaller), the goods typically are subsidized (resp. taxed).
When some goods are exempted (0 is among the tax rates), the subsidy (resp.
tax) rates decrease with the price elasticity. When 0 is not among the tax rates,
there is a theoretical case, exemplified on Figure 4, where the tax rate is not
monotone in elasticity: for a slightly smaller than λ, there is a finite interval of
elasticities, say (e′, e′′), for which the goods are subsidized, while the goods in
(0, e′) and in (e′′, +∞) are taxed at the smallest positive rate.
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Remark 1: Good g may be taxed at a higher rate than good g′ at the
unconstrained Ramsey optimum but at a lower rate at the constrained optimum.
This is shown on Figure 5. At the unconstrained optimum, the marginal cost
of public funds λR is usually smaller than in the constrained situation λ. The
points ABC, being aligned on a half line with intercept λR are subject to the
same tax rate at the unconstrained optimum. But A and C are taxed at t2 in
the constrained situation, while B is exempted.

Remark 2: A solution to the full optimum might be obtained through an
algorithm which could run as follows. At even dates, given the good classification,
the program solves for the K optimal tax rates and the marginal cost of public
fund using the Diamond conditions (3) and the government budget constraint.
At odd dates, given λ and the tax rates, the classification of goods is derived
as above. The optimum is a fixed point of this algorithm, which, unfortunately,
since the program is not concave, may have many fixed points, including local
minima.

7 Beware of the Ramsey formula

In the absence of redistribution motive (ag = 1), when there are no constraints
on the number of tax rates, the lower the actual price elasticity of the demand for
a good, the larger the tax rate which it bears, according to the Ramsey formula.
This monotonicity property no longer holds true when the number of available
tax rates is fixed, even when the single peaked assumption is satisfied.

To illustrate, consider a case with two tax rates, say t1 and t2. Then, it is
easy to find examples where there are two goods, g1 and g2, respectively taxed at
t1 and t2, t1 < t2 , at the optimum, such that the actual elasticities computed at
the optimal allocation verify

εg1(t1) < εg2(t2).

Note that the elasticities are computed at the current allocation (and not at the
putative optimal point of Lemma 1).

Here is an example where all the agents have the same preferences. There is
a continuum of goods, indexed with a positive scalar γ. The demand for good γ
is equal to

exp [−(1 + t)γ] ,

so that the price elasticity of demand, when the good is taxed at rate t is

εg = γ(1 + t).

Assumption 1 is satisfied for this good. Simple calculations show that there
exists a threshold γ∗ such that goods with γ smaller than γ∗ are taxed at t2, the
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remainder at t1. The threshold good γ∗ itself, which can be allocated indifferently
to any of the two groups, provides the example we are looking for: its elasticity is
smaller when taxed at t1 than when taxed at t2. Examples are probably harder to
get with types of goods whose price elasticities of demand decrease with the price.
In general, the elasticity, being a local characteristics of demand, is unlikely to
be a reliable guide to the global problem of goods assignments.

8 Non separability

For simplicity, we have assumed until now that the utility functions were sepa-
rable. To bring theory closer to the data, we both have to relax this assumption
and to introduce labor supply together with direct taxes. We sketch the broad
lines of the largely standard argument, without entering into technical issues.

Let the tastes of agent c be represented with the utility function U(x,−L, c),
where x is the consumption of goods, a measurable mapping from the set of
commodities G into IR+, and L is labor supply, a positive number. The typical
consumer maximizes her utility under her budget constraint:∫

G

(1 + tg)x(g)µ(g)dg = wcL− T (wcL),

where wc is before tax wage and T is the possibly non linear tax on income. We
assume that the program has a regular interior solution, with positive consump-
tions of all goods, and that we can use differential calculus9.

Let t be the collection of tax rates (tg) for g in G. The indirect utility function
V (t, T, c) is obtained as usual by plugging the solution into U and depends on the
tax rates t and the income tax schedule T . Under regularity conditions, if ρc is
the marginal utility of income of consumer c (the Lagrange multiplier associated
with the budget constraint), an application of the enveloppe theorem yields:

∂V

∂tg
= −ρcξg(t, T, c),

where ξg(t, T, c) is the demand for good g of consumer c.
The government program can then be written as

max
t,T

∫
C

αcV (t, T, c)dν(c)∫
C

[∫
G

tgξg(t, T, c)µ(g)dg + T (Y (t, T, c))

]
dν(c) = R,

9This assumption holds in the separable case. In general, it requires not too much substitu-
ability between commodities.
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where Y (t, T, c) denotes before tax income of consumer c, when she faces taxes
(t, T ). The Lagrangian of this problem is

L(t, T ) =

∫
C

αcV (t, T, c)dν(c)+λ

{∫
C

[∫
G

tgξg(t, T, c)µ(g)dg + T (Y (t, T, c))

]
dν(c)−R

}
.

Now for a (small) group of goods {g} + dG around g, define τ {g}+dG(t, s) to
be the set of tax rates t′ such that t′γ = tγ for γ not in {g}+ dG and t′γ = s for γ
in {g}+ dG. Adapting the argument of footnote 7, a necessary condition for the
optimality of a partition G associated with tax rates t is that, for all h, for all g
and all small enough dG such that {g}+ dG is in Gh, and for all k

L[τ {g}+dG(t, th), T ] ≥ L[τ {g}+dG(t, tk), T ].

Continuing to reproduce the line of argument of the paper, we are interested in
the tax rate tRg which maximizes L[τ {g}+dG(t, s), T ] over s, for small dG. The
first-order condition for an interior maximum is

0 = −
∫

C

αcρc

∫
{g}+dG

ξ`[τ {g}+dG(t, s), T, c]µ(`)d` dν(c)

+ λ

∫
C

∫
{g}+dG

ξ`[τ g+dG(t, s), T, c]µ(`)d` dν(c)

+ λ

∫
C

[∫
G

t`
∂ξ`[τ {g}+dG(t, s), T, c]

∂s
µ(`)d`

]
dν(c)

+ λ

∫
C

[
T ′{Y [τ {g}+dG(t, s), T, c]}

∂Y [τ {g}+dG(t, s), T, c]

∂s

]
dν(c)

We want to get the limit of the above expression when dG goes to zero, after
division by the weight µ(dG) =

∫
dG

µ(`)d`. The two first terms, as well as the
last one, are easily dealt with. Indeed, define, with some abuse of notation:

ξg[τ g(t, s), T, c] = lim
dG→0

∫
{g}+dG

ξ`[τ {g}+dG(t, s), T, c]

µ(dG)
µ(`)d`,

∂Y [τ g(t, s), T, c]

∂s
= lim

dG→0

1

µ(dG)

∂Y [τ {g}+dG(t, s), T, c]

∂s
.

Also let:

Xg[τ g(t, s), T ] =

∫
C

ξg[τ g(t, s), T, c]dν(c), (6)

and

ag[τ g(t, s), T ] =

∫
C

ξg[τ g(t, s), T, c]

Xg[τ g(t, s), T, c]
αcρcdν(c). (7)
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Then, the two first terms tend to

{−ag[τ g(t, s), T ] + λ} Xg[τ g(t, s), T ],

while the last one can be written as

λ

∫
C

T ′(Y [τ g(t, s), T ])
∂Y [τ g(t, s), T ]

∂s
dν(c).

The third term needs some more care. When taking the limit, one must separate
the own price effect from the substitution effect on other goods:

∂ξg[τ g(t, s), T, c]

∂s
= lim

dG→0

∫
{g}+dG

1

µ(dG)

∂ξ`[τ {g}+dG(t, s), T, c]

∂s
µ(`)d`,

∂ξGk\{g}[τ g(t, s), T, c]

∂s
= lim

dG→0

∫
Gk\{{g}+dG}

1

µ(dG)

∂ξ`[τ {g}+dG(t, s), T, c]

∂s
µ(`)d`.

The former limit is the own price elasticity, while the latter is the average sub-
stitution effect on the commodities10 in the set Gk \ {g}, which only exists when
substitution between commodities is not too ‘large’. Finally, summing up on
agents, define

∂Xg[τ g(t, s), T ]

∂s
=

∫
C

∂ξg[τ g(t, s), T, c]

∂s
dν(c),

and
∂XGk\{g}[τ g(t, s), T ]

∂s
=

∫
C

∂ξGk\{g}[τ g(t, s), T, c]

∂s
dν(c).

With all the above definitions, when all commodities in group Gk are taxed at the
same rate tk, the first-order condition associated with the tax rate tk, following
as before Diamond (1973), is∫

g∈Gk

{
(−ag + λ)Xg + λ

[
tg

∂Xg

∂tg
+

∫
g′ 6=g

tg′
∂Xg′

∂tg
+

∫
C

T ′(Y )
∂Y

∂tg
dν(c)

]}
µ(g)dg = 0.

(8)
The first-order condition verified by tRg = s can be rewritten as

(−ag + λ)Xg + λ

[
s
∂Xg

∂s
+

K∑
k=1

tk
∂XGk\{g}

∂s
+

∫
C

T ′(Y )
∂Y

∂s
dν(c)

]
= 0, (9)

where ag, Xg and the partial derivatives of Xg and XGk\{g} are evaluated at
[τ g(t, s), T ] while Y and its derivative is evaluated at [τ g(t, s), T, c].

10We use the notation Gk \ {{g} + dG} as a short hand for Gk \ [Gk ∩ {{g} + dG}]. Note
that since, by construction, {g}+ dG is contained in a single member of the partition, say Gh,
all the Gk \ {{g}+ dG}’s coincide with Gk, for all k different from h.
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The analysis of Section 5 then can be adapted to this more general setup,
provided Assumption 1 applies to the (newly defined) function Lg. Rewriting the
first-order condition as

ag

λ
− bg = 1− t

1 + t
εg, (10)

where

bg =
1

Xg

[
K∑

k=1

tk
∂XGk\{g}

∂s
+

∫
C

T ′(Y )
∂Y

∂s
dν(c)

]
, (11)

one can draw Figure 1 in the plan (ε, a/λ − b) with a similar interpretation,
provided that the Lagrangian is single peaked (so that the first-order condition
characterizes the optimal tax rate for good g all other rates being kept fixed) and
that the quantities in (10), (ag, εg, bg), all are evaluated at the optimal tax rate.

9 Illustration with data from the United King-

dom

Professor Ian Crawford, from the Institute for Fiscal Studies, has provided us with
uncompensated cross price elasticities for consumption in the UK, grouped into
twenty categories11, homogenous by tax rates, computed along the lines initiated
by Blundell and Robin (1999) (see Appendix). We also have the budget shares
by deciles of consumption expenditures in the population.

A large part of consumption, 49%, is subject to the ‘standard’ (17.5%) tax
rate, and a substantial part, 27%, necessities including basic food, is exempted.
Domestic fuel, 10% of consumption, is taxed at the ‘reduced’ (5%) rate. Tobacco,
alcohol and petrol bear large excise tax rates.

We would like to recover from this data the implicit redistributive weights of
the UK government on the ten population deciles, and to see whether the actual
grouping of commodities fits with the theory developed above. Our strategy bears
on the Diamond first-order conditions (8) for the basic three groups, exempted,
reduced rate and standard rate. The tax rates on alcohol and tobacco on one
side, petrol on the other, are likely to depend on other considerations than mere
redistribution (public health, environmental issues,..), and we do not consider
them at this stage.

Given the observed tax rates, budget shares and price elasticities12, the un-
knowns in (8) are the non negative social weights αcρc and marginal cost of
public funds λ, where ag is linked to the social weights by (7). The equations

11In the analysis, we dropped children clothing, which represent less than 1% of aggregate
consumption expenditure, because the estimated price elasticities are somewhat out of the ball
park.

12In practice, we have to rewrite (8), given the available statistics. We do not know the
income elasticities with respect to indirect tax rates: we take ∂Yc/∂tg = 0. There is a finite
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are homogenous of degree one in (αcρc, λ), so that we only can recover the ratios
αcρc/λ. We minimize the sum of the squares of the three left-hand sides of the
Diamond conditions (8), which yields values for the ratios (αcρc/λ). For the sake
of the presentation, we normalize the sum of αcρc over the deciles to unity, and
compute λ accordingly13. The normalization yields an implicit choice of units: an
increase of aggregate consumption of dC, uniformly distributed, gives dC/10 to
each decile and therefore, for this choice of normalization, increases social welfare
by dC/10: Social welfare is measured in tenths of aggregate consumption. This
procedure gives

λ̂ = 1.16,

and puts αcρc at zero for the second and third decile, as well as for all deciles
from the fifth and above, while

α1ρ1 = 0.04 α4ρ4 = 0.96.

The bulk of the weight is concentrated on the fourth decile. The left-hand sides of
the Diamond conditions are respectively equal to 0.0026 for the exempted goods,
-0.0060 for domestic fuel (the only good taxed at the reduced rate), and to -0.0003
for goods taxed at the standard rate. These numbers are proportional, up to a
positive factor, to the derivatives of the social objective L(t, T ) with respect to
the corresponding tax rates. If one is willing to retain 1.16 as the marginal cost
of public funds, they are equal to the social values of marginal changes of the

number of commodities, so that the equality becomes

∑
g∈Gk

(−ag + λ)Xg + λ
∑
g′∈G

tg′
∂Xg′

∂tg

 = 0.

The consumption, rather than production, price is the numeraire. Using tildas for the variables
measured with the new numeraire:

X̃g = (1 + tg)Xg,

and
1

1 + tg
= 1− t̃g.

After some manipulations, with appropriate definition of the aggregates, (8) becomes

(−aGk
+ λ)(1− t̃k)X̃Gk

+ λ
∑
k′

t̃k′X̃Gk′ ε̃Gk′Gk
= 0.

Finally we work in shares of total consumption, dividing the equalities by total consumption.
13If the allocation were optimal with respect to uniform transfers from the public to the

government, the equality ∑
c

αcρc = λ

would hold. In practice however this constraint appears not to be satisfied by the data.
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Figure 6: The fan for the UK

tax rates, measured as tenths of aggregate consumption. For instance, increasing
by 1 point the standard rate, from 17.5% to 18.5% would induce a social loss of
0.0003× 0.01× 10 = 0.003% of aggregate consumption. The Diamond first-order
conditions therefore are close to be satisfied.

Is the grouping of commodities optimal? Figure 6 allows to approach this
difficult question, building on the previous results in the paper. It plots the
discounted adjusted social weight a/λ−b as a function of the own price elasticity.
From (10), the first-order condition for an individual commodity (supposed to be
small enough, so as to have no influence on the marginal cost of the public fund)
is

a

λ
− b = 1− t̃ε,

where t̃ = t/(1 + t) is the unknown optimal tax rate, computed as a fraction of
the consumption price. We have set a, b and ε at their current observed values14,
so that t̃ is the solution of a linear equation. The graph in the plan (ε, a/λ− b)

14We have done some experimentation with more sophisticated computations for b and ε,
using (11) but maintaining T ′(Y ) equal to zero, and deriving a linear approximation of the
equation around the observed point. In particular we have looked at cases where all the elastic-
ities are constant, equal to their observed values, where demand functions are linear, and at a
couple of other variants, including QAIDS which underlies the empirical estimation. Unsurpris-
ingly, the results are quite sensitive to the specification of the shape of the demand functions:
in particular single peakedness is easily lost, and the Lagrangian may be locally convex at the
observed point. More work is needed in this area.
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shows the half lines corresponding to the current tax rates. The representative
points of eighteen15 commodities are also shown: in fact two points are drawn
for each good, one in large bold type corresponds to the implicit social weights
computed above, the other one in small italic type represents the good location
for a Rawlsian government which would put all the social weight on the first
population decile.

If Assumption 1 holds, optimality requires that the large bold representative
points of all the exempted goods be above the reduced rate half line, the point
associated with ‘Domestic Fuels’ (the only good supporting the reduced rate) be
between the standard rate line and the horizontal, and all the goods bearing the
standard rate be below the reduced rate half line. Given the possible measurement
errors on elasticities, these necessary conditions fare rather well on the graph. The
few violations are not large: rather than being exempted, (some of the) ‘Dairy
products’ should be taxed at the reduced or at the standard rate, and (some of
the) ‘Fruits and Vegetables’ at the standard rate; (some of the) ‘Domestic Fuels’
should be exempted; (some of) ‘Public Transport’ and ‘Food Out’, two goods
complementary with work, should be exempted, instead of being taxed at the
standard rate16. If the government wants to raise more money by creating a
larger tax rate, (some of) ‘Adult Clothing’ and ‘Leisure Goods’ seem to be good
candidates to enter its basis.

There are four specific categories subject to excise taxes. The overall tax
rate on ‘Wine and spirits’, which is not reported on the graph, is optimal purely
on redistributive grounds. All the other goods appear to be taxed more than
the redistributive social objective would recommend, maybe on public health or
environmental protection grounds. The difference is not large for tobacco, but,
according to the figure, beer should be exempted and ‘Petrol and Diesel’ should
be strongly subsidized.

It is also of interest to look at the impact of the redistributive stance of the
government on the diagram. Going from the fourth decile voter just discussed to
a Rawlsian government seems to spread out the figure: goods that are presently
exempted or lightly taxed move up into the subsidy region, above the horizon-
tal line, while goods below the standard rate line appear to move down: more
redistribution through indirect taxes seems to require more dispersion of the tax

15Theory would require partial optimization to compute the first-order conditions at the
optimal tax rate for each considered commodity: for lack of better information, we assume
that the observed elasticities are good enough approximations to be used to compute the graph
coordinates. In the interest of readability, wine and spirits do not appear on the graph: its own
price elasticity is (-)3, much larger than that of the other goods. Its excise rate seems optimal
from the viewpoint adopted here, solely based on redistributive motives: the bold point in fact
lies on the corresponding half line.

16In practice, we do not have access to data on a continuum of goods, contrary to the setup
used in the theoretical part of the paper. We work on (small) aggregates of ‘elementary’,
probably diverse, commodities. The qualifier ‘some of’ designates some of the elementary
commodities composing the aggregate.
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rates.
All things considered, these results look plausible and may be worth indepen-

dent confirmation and further refinement.
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Appendix
Constant elasticity

Under the assumptions of Section 6, one can derive the following results:

Lemma 3 For any commodity g, with price elasticity ε > 0 and distributional
characteristic a, the inequality Lg(t

′) > Lg(t) is equivalent to

a

λ
< φ (ε, t, t′)

where

φ (ε, t, t′) = (1− ε)

[
1 +

1√
(1 + t′) (1 + t)

sinh
(
r ε

2

)
sinh

(
r 1−ε

2

)]
, and r = ln

(
1 + t′

1 + t

)
.

Proof: Using t′(1 + t′)−ε = (1 + t′)1−ε − (1 + t′)−ε, the inequality Lg(t
′) > Lg(t)

rewrites[
(1 + t′)

1−ε − (1 + t)1−ε
] (

a

ε− 1
+ λ

)
1

λ
> (1 + t′)

−ε − (1 + t)−ε .

Note that, for any real number σ,

(1 + t′)
σ − (1 + t)σ = 2 (1 + t)σ/2 (1 + t′)

σ/2
sinh

(σr

2

)
where r is as defined in the Lemma. Thus, we get that Lg(t

′) > Lg(t) is equivalent
to

[(1 + t′) (1 + t)]
1
2 sinh

(
r
1− ε

2

) (
a

ε− 1
+ λ

)
1

λ
+ sinh

(
r
ε

2

)
> 0.

Since sinh
(
r 1−ε

2

)
has the same sign as 1− ε, the last inequality rewrites

a

λ
< φ (ε, t, t′)
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where

φ (ε, t, t′) = (1− ε)

[
1 +

1√
(1 + t′) (1 + t)

sinh
(
r ε

2

)
sinh

(
r 1−ε

2

)]
.

In the particular case ε = 1, it is sufficient to show that a
λ

< φ (1, t, t′) is
equivalent to Lg(t

′) > Lg(t) for ε = 1. Since sinh x is equivalent to x in the
neighborhood of x = 0, we have

φ (1, t, t′) =
1√

(1 + t′) (1 + t)

sinh
(

r
2

)
r
2

=
(1 + t)−1 − (1 + t′)−1

ln (1 + t′)− ln (1 + t)

and Lg(t
′) > Lg(t) is equivalent to

λt′

(1 + t′)
− a ln(1 + t′) >

λt

(1 + t)
− a ln(1 + t)

⇔ λ− λ

(1 + t′)
− a ln(1 + t′) > λ− λ

(1 + t)
− a ln(1 + t)

⇔ λ

[
1

(1 + t)
− 1

(1 + t′)

]
> a [ln(1 + t′)− ln(1 + t)]

Lemma 4 For t′ > t, the function φ(ε, t, t′) is convex in its first argument.

1. Its slope at the origin is

∂φ

∂ε
=

1

t′ − t

[
ln

(
1 + t′

1 + t

)
− (t′ − t)

]
.

2. When ε goes to ∞, φ is equivalent to

(1− ε)
t

1 + t
.

Proof: 1) Using the identity

sinh a cosh b + sinh b cosh a = sinh(a + b),

a direct computation yields

∂φ

∂ε
= −1− 1√

(1 + t′)(1 + t)[sinh (1− ε)r/2]2

[
sinh

(1− ε)r

2
sinh

εr

2
− (1− ε)r

2
sinh

r

2

]
.

The desired formula follows when ε = 0, using the equality
√

(1 + t′)(1 + t) sinh r/2 =
(t′ − t)/2.
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2) One can rewrite

φ(ε, t, t′) = (1− ε)

[
1− 1

1 + t

1− exp(−εr)

1− exp[(1− ε)r]

]
.

When ε goes to infinity, the result follows.
We finally show the convexity of φ with respect to ε, which is derived from the

fact that its second derivative is positive. Indeed differentiating the expression
obtained in 1) for the first derivative gives:

∂2φ

∂ε2
=

r√
(1 + t′)(1 + t)

sinh r/2

[sinh r(1− ε)/2]2

−1 +
(1− ε)r

2

cosh
(1− ε)r

2

sinh
(1− ε)r

2

 .

It is positive since (x/ tanh x) is larger than 1 for all x (the tanh curve is below
the 450 line for positive x, and above for negative x).
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