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Abstract : In this paper an attempt is made to present how renewal
properties of Harris recurrent Markov chains or of specific extensions of the
latter may be practically used for statistical inference in various settings.
In the regenerative case, procedures can be implemented from data blocks
corresponding to consecutive observed regeneration times for the chain. The
main idea for extending the application of these statistical techniques to gen-
eral Harris chains X consists in generating first a sequence of approximate
renewal times for a regenerative extension of X from data X1, ..., Xn and the
parameters of a minorization condition satisfied by its transition probability
kernel. Numerous applications of this estimation principle may be consid-
ered in both the stationary and nonstationary (including the null recurrent
case) frameworks. This article deals with some important procedures based
on (approximate) regeneration data blocks, from both practical and theo-
retical viewpoints, for the following topics: mean and variance estimation,
confidence intervals, U -statistics, Bootstrap, robust estimation and statisti-
cal study of extreme values.

Abstract : Dans cet article, nous montrons comment les propriétés de
renouvellement des châınes de Markov peuvent être utilisées pratiquement
dans différents problèmes statistiques. Dans le cas regénératif, les procédures
statistiques usuelles peuvent être implémentées à partir des blocks d’observati-
-ons correspondant aux temps de regénération successifs de la châıne. L’idée
principale dans le cas de châınes générales Harris récurrentes consiste à
générer une approximation des temps de renouvellement d’une extension
regénérative de la châıne. De nombreuses applications de ce principe sont
considérées dans cet article. En particulier, nous étudions théoriquement
et pratiquement des procédures basées sur des blocs de données (pseudo)
regénératifs dans les cas suivants : estimation de moyennes et de variances,
intervalles de confiance pour des U-statistiques, estimation par bootstrap,
estimation robuste et étude des valeurs extrêmes dans un cadre Markovien.

1Keywords : Variance estimation, U-statistics, Extreme values, Confidence intervals,
Bootstrap, Markov Chain, Regenerative Processes, Nummelin splitting technique.
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1 Introduction

1.1 On describing Markov chains via Renewal processes

Renewal theory plays a key role in the analysis of the asymptotic structure
of many kinds of stochastic processes, and especially in the development
of asymptotic properties of general irreducible Markov chains. The under-
lying ground consists in the fact that limit theorems proved for sums of
independent random vectors may be easily extended to regenerative random
processes, that is to say random processes that may be decomposed at ran-
dom times, called regeneration times, into a sequence of mutually indepen-
dent blocks of observations, namely regeneration cycles (see Smith (1955)).
The method based on this principle is traditionally called the regenerative
method. Harris chains that possess an atom, i.e. a Harris set on which the
transition probability kernel is constant, are special cases of regenerative pro-
cesses and so directly fall into the range of application of the regenerative
method (Markov chains with discrete state space as well as many markovian
models widely used in operational research for modeling storage or queuing
systems are remarkable examples of atomic chains). The theory developed
in Nummelin (1978) (and in parallel the closely related concepts introduced
in Athreya & Ney (1978)) showed that general Markov chains could all be
considered as regenerative in a broader sense (i.e. in the sense of the exis-
tence of a theoretical regenerative extension for the chain, see § 2.3), as soon
as the Harris recurrence property is satisfied. Hence this theory made the
regenerative method applicable to the whole class of Harris Markov chains
and allowed to carry over many limit theorems to Harris chains such as LLN,
CLT, LIL or Edgeworth expansions.

In many cases, parameters of interest for a Harris Markov chain may
be thus expressed in terms of regeneration cycles. While, for atomic Markov
chains, statistical inference procedures may be then based on a random num-
ber of observed regeneration data blocks, in the general Harris recurrent case
the regeneration times are theoretical and their occurrence cannot be de-
termined by examination of the data only. Although the Nummelin split-
ting technique for constructing regeneration times has been introduced as a
theoretical tool for proving probabilistic results such as limit theorems or
probability and moment inequalities in the markovian framework, this arti-
cle aims to show that it is nevertheless possible to make a practical use of
the latter for extending regeneration-based statistical tools. Our proposal
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consists in an empirical method for building approximatively a realization
drawn from a Nummelin extension of the chain with a regeneration set and
then recovering ”approximate regeneration data blocks”. As will be shown
further, though the implementation of the latter method requires some prior
knowledge about the behaviour of the chain and crucially relies on the com-
putation of a consistent estimate of its transition kernel, this methodology
allows for numerous statistical applications.

We finally point out that, alternatively to regeneration-based statistical
methods, inference techniques based on data (moving) blocks of fixed length
may also be used in our markovian framework. But as will be shown through-
out the article, such blocking techniques, introduced for dealing with general
time series (in the weakly dependent setting) are less powerful, when ap-
plied to Harris Markov chains, than the methods we promote here, which are
specifically tailored for (pseudo) regenerative processes.

1.2 Outline

The outline of the paper is as follows. In section 2, notations are set out and
key concepts of the Markov chain theory as well as some basic notions about
the regenerative method and the Nummelin splitting technique are recalled.
Section 3 presents and discusses how to practically construct (approximate)
regeneration data blocks, on which statistical procedures we investigate fur-
ther are based. Sections 4 and 5 mainly survey results established at length
in Bertail & Clémençon (2004a,b,c,d). More precisely, the problem of estima-
ting additive functionals of the stationary distribution in the Harris positive
recurrent case is considered in section 4. Estimators based on the (pseudo)
regenerative blocks, as well as estimates of their asymptotic variance are ex-
hibited, and limit theorems describing the asymptotic behaviour of their bias
and their sampling distribution are also displayed. Section 5 is devoted to
the study of a specific resampling procedure, which crucially relies on the
(approximate) regeneration data blocks. Results proving the asymptotic va-
lidity of this particular bootstrap procedure (and its optimality regarding to
second order properties in the atomic case) are stated. Section 6 shows how
to extend some of the results of sections 4 and 5 to V and U -statistics. A
specific notion of robustness for statistics based on the (approximate) regen-
erative blocks is introduced and investigated in section 7. And asymptotic
properties of some regeneration-based statistics related to the extremal be-
haviour of Markov chains are studied in section 8 in the regenerative case
only. Finally, some concluding remarks are collected in section 9 and further
lines of research are sketched.
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2 Theoretical background

2.1 Notation and definitions

We now set out the notations and recall a few definitions concerning the
communication structure and the stochastic stability of Markov chains (for
further detail, refer to Revuz (1984) or Meyn & Tweedie (1996)). Let
X = (Xn)n∈N be an aperiodic irreducible Markov chain on a countably gener-
ated state space (E, E), with transition probability Π, and initial probability
distribution ν. For any B ∈ E and any n ∈ N, we thus have

X0 ∼ ν and P(Xn+1 ∈ B | X0, ..., Xn) = Π(Xn, B) a.s. .

In what follows, Pν (respectively Px for x in E) will denote the proba-
bility measure on the underlying probability space such that X0 ∼ ν (resp.
X0 = x), Eν (.) the Pν-expectation (resp. Ex (.) the Px-expectation), I{A}
will denote the indicator function of the event A and ⇒ the convergence in
distribution.

For completeness, recall the following notions. The first one formalizes the
idea of communicating structure between specific subsets, while the second
one considers the set of time points at which such communication may occur.

• The chain is irreducible if there exists a σ-finite measure ψ such that
for all set B ∈ E , when ψ(B) > 0, the chain visits B with strictly
positive probability, no matter what the starting point.

• Assuming ψ-irreducibility, there is d′ ∈ N∗ and disjoints sets D1, ....,
Dd′ (Dd′+1 = D1) weighted by ψ such that ψ(E\ ∪16i6d′ Di) = 0 and
∀x ∈ Di, Π(x,Di+1) = 1. The g.c.d. d of such integers is the period of
the chain, which is said aperiodic if d = 1.

A measurable set B is Harris recurrent for the chain if for any x ∈ B,
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1. The chain is said Harris recurrent if it

is ψ-irreducible and every measurable set B such that ψ(B) > 0 is Harris
recurrent. When the chain is Harris recurrent, we have the property that
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1 for any x ∈ E and any B ∈ E such that

ψ(B) > 0.
A probability measure µ on E is said invariant for the chain when µΠ = µ,

where µΠ(dy) =
∫

x∈E
µ(dx)Π (x, dy). An irreducible chain is said positive

recurrent when it admits an invariant probability (it is then unique).
Now we recall some basics concerning the regenerative method and its

application to the analysis of the behaviour of general Harris chains via the
Nummelin splitting technique (refer to Nummelin (1984) for further detail).
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2.2 Markov chains with an atom

Assume that the chain is ψ-irreducible and possesses an accessible atom, that
is to say a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all x,
y in A. Denote by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A,
by τA(j) = inf {n > τA(j − 1), Xn ∈ A} for j ≥ 2 the successive return times
to A and by EA (.) the expectation conditioned on X0 ∈ A. Assume further
that the chain is Harris recurrent, the probability of returning infinitely often
to the atom A is thus equal to one, no matter what the starting point. Then,
it follows from the strong Markov property that, for any initial distribution
ν, the sample paths of the chain may be divided into i.i.d. blocks of random
length corresponding to consecutive visits to A:

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

taking their values in the torus T = ∪∞n=1E
n. The sequence (τA(j))j>1 defines

successive times at which the chain forgets its past, called regeneration times.
We point out that the class of atomic Markov chains contains not only chains
with a countable state space (for the latter, any recurrent state is an acces-
sible atom), but also many specific Markov models arising from the field of
operational research (see Asmussen (1987) for regenerative models involved
in queuing theory, as well as the examples given in § 4.3). When an accessible
atom exists, the stochastic stability properties of the chain amount to prop-
erties concerning the speed of return time to the atom only. For instance,
in this framework, the following result, known as Kac’s theorem, holds (cf
Theorem 10.2.2 in Meyn & Tweedie (1996)).

Theorem 2.1 The chain X is positive recurrent iff EA(τA) < ∞. The

(unique) invariant probability distribution µ is then the Pitman’s occupation

measure given by

µ(B) = EA(

τA∑
i=1

I{Xi ∈ B})/EA(τA), for all B ∈ E .

For atomic chains, limit theorems can be derived from the application
of the corresponding results to the i.i.d. blocks (Bn)n>1. One may refer
for example to Meyn & Tweedie (1996) for the LLN, CLT, LIL, Bolthausen
(1980) for the Berry-Esseen theorem, Malinovskii (1985, 87, 89) and Bertail
& Clémençon (2004a) for other refinements of the CLT. The same technique
can also be applied to establish moment and probability inequalities, which
are not asymptotic results (see Clémençon (2001)). As mentioned above,
these results are established from hypotheses related to the distribution of
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the Bn’s. The following assumptions shall be involved throughout the article.
Let κ > 0, f : E → R be a measurable function and ν be a probability
distribution on (E, E).

Regularity conditions:

H0(κ) : EA(τκ
A) < ∞,

H0(κ, ν) : Eν(τ
κ
A) < ∞.

Block-moment conditions:

H1(κ, f) : EA((

τA∑
i=1

|f(Xi)|)κ) < ∞,

H1(κ, ν, f) : Eν((

τA∑
i=1

|f(Xi)|)κ) < ∞.

Remark 2.1 We point out that conditions H0(κ) and H1(κ, f) do not de-

pend on the accessible atom chosen : if they hold for a given accessible atom

A, they are also fulfilled for any other accessible atom (see Chapter 11 in

Meyn & Tweedie (1996)). Besides, the relationship between the ”block mo-

ment” conditions and the rate of decay of mixing coefficients has been inves-

tigated in Bolthausen (1982): for instance, H0(κ) (as well as H1(κ, f) when

f is bounded) is typically fulfilled as soon as the strong mixing coefficients

sequence decreases at an arithmetic rate n−ρ, for some ρ > κ− 1.

2.3 General Harris recurrent chains

2.3.1 The Nummelin splitting technique

We now recall the splitting technique introduced in Nummelin (1978) for
extending the probabilistic structure of the chain in order to construct an
artificial regeneration set in the general Harris recurrent case. It relies on
the crucial notion of small set. Recall that, for a Markov chain valued in a
state space (E, E) with transition probability Π, a set S ∈ E is said to be
small if there exist m ∈ N∗, δ > 0 and a probability measure Γ supported by
S such that, for all x ∈ S, B ∈ E ,

Πm(x,B) ≥ δΓ(B), (1)
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denoting by Πm the m-th iterate of Π. When this holds, we say that the
chain satisfies the minorization condition M(m, S, δ, Γ). We emphasize that
accessible small sets always exist for ψ-irreducible chains: any set B ∈ E such
that ψ(B) > 0 actually contains such a set (cf Jain & Jamison (1967)). Now
let us precise how to construct the atomic chain onto which the initial chain X
is embedded, from a set on which an iterate Πm of the transition probability
is uniformly bounded below. Suppose that X satisfiesM = M(m, S, δ, Γ) for
S ∈ E such that ψ(S) > 0. Even if it entails replacing the chain (Xn)n∈N by
the chain

(
(Xnm, ..., Xn(m+1)−1

)
)n∈N, we suppose m = 1. The sample space is

expanded so as to define a sequence (Yn)n∈N of independent Bernoulli r.v.’s
with parameter δ by defining the joint distribution Pν,M whose construction
relies on the following randomization of the transition probability Π each
time the chain hits S (note that it happens a.s. since the chain is Harris
recurrent and ψ(S) > 0). If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is
distributed according to Γ,

• if Yn = 0, (which happens with probability 1− δ), then Xn+1 is drawn
from (1− δ)−1(Π(Xn+1, .)− δΓ(.)).

Set Berδ(β) = δβ+(1−δ)(1−β) for β ∈ {0, 1}. We now have constructed a
bivariate chain XM = ((Xn, Yn))n∈N , called the split chain, taking its values
in E × {0, 1} with transition kernel ΠM defined by

• for any x /∈ S, B ∈ E , β and β′ in {0, 1} ,

ΠM ((x, β) , B × {β′}) = Π (x, B)× Berδ(β
′),

• for any x ∈ S, B ∈ E , β′ in {0, 1} ,

ΠM ((x, 1) , B × {β′}) = Γ(B)× Berδ(β
′),

ΠM ((x, 0) , B × {β′}) = (1− δ)−1(Π (x,B)− δΓ(B))× Berδ(β
′).

2.3.2 Basic assumptions

The whole point of the construction consists in the fact that S × {1} is
an atom for the split chain XM, which inherits all the communication and
stochastic stability properties from X (irreducibility, Harris recurrence,...),
in particular (for the case m = 1 here) the blocks constructed for the split
chain are independent. Hence the splitting method enables to extend the
regenerative method, and so to establish all of the results known for atomic
chains, to general Harris chains. It should be noticed that if the chain X
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satisfies M(m,S, δ, Γ) for m > 1, the resulting blocks are not independent
anymore but 1-dependent, a form of dependence which may be also easily
handled. For simplicity ’s sake, we suppose in what follows that condition
M is fulfilled with m = 1, we shall also omit the subscript M and abusively
denote by Pν the extensions of the underlying probability we consider. The
following assumptions, involving the speed of return to the small set S shall
be used throughout the article. Let κ > 0, f : E → R be a measurable
function and ν be a probability measure on (E, E).

Regularity conditions:

H′
0(κ) : sup

x∈S
Ex(τ

κ
S ) < ∞,

H′
0(κ, ν) : Eν(τ

κ
S ) < ∞.

Block-moment conditions:

H′
1(κ, f) : sup

x∈S
Ex((

τS∑
i=1

|f(Xi)|)κ) < ∞,

H′
1(κ, f, ν) : Eν((

τS∑
i=1

|f(Xi)|)κ) < ∞.

Remark 2.2 It is noteworthy that assumptions H′
0(κ) and H′

1(κ, f) do not

depend on the choice of the small set S (if they are checked for some accessible

small set S, they are fulfilled for all accessible small sets cf § 11.1 in Meyn

& Tweedie (1996)). Note also that in the case when H′
0(κ) (resp., H′

0(κ,

ν)) is satisfied, H′
1(κ, f) (resp., H′

1(κ, f, ν)) is fulfilled for any bounded f .

Moreover, recall that positive recurrence, conditions H′
1(κ) and H′

1(κ, f) may

be practically checked by using test functions methods (cf

Kalashnikov (1978), Tjøstheim (1990)). In particular, it is well known

that such block moment assumptions may be replaced by drift criteria of Lya-

pounov’s type (refer to Chapter 11 in Meyn & Tweedie (1996) for further

details on such conditions and many illustrating examples, see also Douc et

al. (2004)).

We recall finally that such assumptions on the initial chain classically
imply the desired conditions for the split chain: as soon as X fulfills H′

0(κ)
(resp., H′

0(κ, ν), H′
1(κ, f), H′

1(κ, f, ν)), XM satisfies H0(κ) (resp., H0(κ, ν),
H1(κ, f), H1(κ, f, ν)).
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2.3.3 The distribution of (Y1, ..., Yn) conditioned on (X1, ..., Xn+1).

As will be shown in the next section, the statistical methodology for Harris
chains we propose is based on approximating the conditional distribution
of the binary sequence (Y1, ..., Yn) given X(n+1) = (X1, ..., Xn+1). We thus
precise the latter. Let us assume further that the family of the conditional
distributions {Π(x, dy)}x∈E and the initial distribution ν are dominated by
a σ-finite measure λ of reference, so that ν(dy) = f(y)λ(dy) and Π(x, dy) =
p(x, y)λ(dy), for all x ∈ E. Notice that the minorization condition entails
that Γ is absolutely continuous with respect to λ too, and that

p(x, y) ≥ δγ(y), λ(dy) a.s. (2)

for any x ∈ S, with Γ(dy) = γ(y)dy. The distribution of Y (n) = (Y1, ...,
Yn) conditionally to X(n+1) = (x1, ..., xn+1) is then the tensor product of
Bernoulli distributions given by: for all β(n) = (β1, ..., βn) ∈ {0, 1}n , x(n+1) =
(x1, ..., xn+1) ∈ En+1,

Pν

(
Y (n) = β(n) | X(n+1) = x(n+1)

)
=

n∏
i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

with, for 1 6 i 6 n,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ, if xi /∈ S,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) =
δγ(xi+1)

p(xi, xi+1)
, if xi ∈ S.

Roughly speaking, conditioned on X(n+1), from i = 1 to n, Yi is drawn
from the Bernoulli distribution with parameter δ, unless X has hit the small
set S at time i: in this case Yi is drawn from the Bernoulli distribution
with parameter δγ(Xi+1)/p(Xi, Xi+1). We denote by L(n)(p, S, δ, γ, x(n+1))
this probability distribution.

3 Dividing the sample path into (approximate)

regeneration cycles

In the preceding section, we recalled the Nummelin approach for the theoret-
ical construction of regeneration times in the Harris framework. Here we now
consider the problem of approximating these random times from data sets in
practice and propose a basic preprocessing technique, on which estimation
methods we shall discuss further are based.
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3.1 Regenerative case

Let us suppose we observed a trajectory X1, ..., Xn of length n drawn from the
chain X. In the regenerative case, when an atom A for the chain is a priori
known, regeneration blocks are naturally obtained by simply examining the
data, as follows.

Algorithm 1 (Regeneration blocks construction)

1. Count the number of visits ln =
∑n

i=1 I{Xi ∈ A} to A up to time n.

2. Divide the observed trajectory X(n) = (X1, ...., Xn) into ln + 1 blocks
corresponding to the pieces of the sample path between consecutive visits
to the atom A,

B0 = (X1, ..., XτA(1)), B1 = (XτA(1)+1, ..., XτA(2)), ...,

Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)), B(n)
ln

= (XτA(ln)+1, ..., Xn),

with the convention B(n)
ln

= ∅ when τA(ln) = n.

3. Drop the first block B0, as well as the last one B(n)
ln

, when non-regenerative
(i.e. when τA(ln) < n).

The regeneration blocks construction is illustrated by Fig. 1 in the case
of a random walk on the half line R+ with {0} as an atom.

3.2 General Harris case

3.2.1 The principle

Suppose now that observations X1, ..., Xn+1 are drawn from a Harris chain
X satisfying the assumptions of § 2.3.3 (refer to the latter paragraph for
the notations). If we were able to generate binary data Y1, ..., Yn, so that
XM (n) = ((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM de-
scribed in § 2.3, then we could apply the regeneration blocks construction
procedure to the sample path XM (n). In that case the resulting blocks
are still independent since the split chain is atomic. Unfortunately, knowl-
edge of the transition density p(x, y) for (x, y) ∈ S2 is required to draw
practically the Yi’s this way. We propose a method relying on a prelimi-
nary estimation of the ”nuisance parameter” p(x, y). More precisely, it con-
sists in approximating the splitting construction by computing an estima-
tor pn(x, y) of p(x, y) using data X1, ..., Xn+1, and to generate a random
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Figure 1 : Dividing the trajectory of a random walk on the half line into

regeneration data blocks corresponding to successive visits to A = 0

vector (Ŷ1, ..., Ŷn) conditionally to X(n+1) = (X1, ..., Xn+1), from distribu-
tion L(n)(pn, S, δ, γ, X(n+1)), which approximates in some sense the condi-
tional distribution L(n)(p, S, δ, γ,X(n+1)) of (Y1, ..., Yn) for given X(n+1). Our
method, which we call approximate regeneration blocks construction (ARB
construction in abbreviated form) amounts then to apply the regeneration

blocks construction procedure to the data ((X1, Ŷ1), ..., (Xn, Ŷn)) as if they
were drawn from the atomic chain XM. In spite of the necessary consistent
transition density estimation step, we shall show in the sequel that many
statistical procedures, that would be consistent in the ideal case when they
would be based on the regeneration blocks, remain asymptotically valid when
implemented from the approximate data blocks. For given parameters (δ, S,
γ) (see § 3.2.2 for a data driven choice of these parameters), the approximate
regeneration blocks are constructed as follows.

Algorithm 2 (Approximate regeneration blocks construction)

1. From the data X(n+1) = (X1, ..., Xn+1), compute an estimate pn(x, y)
of the transition density such that pn(x, y) ≥ δγ(y), λ(dy) a.s., and
pn(Xi, Xi+1) > 0, 1 6 i 6 n.

2. Conditioned on X(n+1), draw a binary vector (Ŷ1, ..., Ŷn) from the dis-
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tribution estimate L(n)(pn, S, δ, γ, X(n+1)). It is sufficient in practice

to draw the Ŷi’s at time points i when the chain visits the set S (i.e.
when Xi ∈ S), since at these times and at these times only the split

chain may regenerate. At such a time point i, draw Ŷi according to the
Bernoulli distribution with parameter δγ(Xi+1)/pn(Xi, Xi+1)).

3. Count the number of visits l̂n =
∑n

i=1 I{Xi ∈ S, Ŷi = 1) to the set

AM = S×{1} up to time n and divide the trajectory X(n+1) into l̂n +1
approximate regeneration blocks corresponding to the successive visits
of (X, Ŷ ) to AM,

B̂0 = (X1, ..., XbτAM(1)), B̂1 = (XbτAM (1)+1, ..., XbτAM(2)), ...,

B̂bln−1 = (XbτAM(bln−1)+1, ..., XbτAM (bln)), B̂(n)
ln

= (XbτAM(bln)+1, ..., Xn+1),

where τ̂AM(1) = inf{n > 1, Xn ∈ S, Ŷn = 1} and τ̂AM(j +1) = inf{n >

τ̂AM(j), Xn ∈ S, Ŷn = 1} for j > 1.

4. Drop the first block B̂0 and the last one B̂(n)
ln

when τ̂AM(l̂n) < n.

Such a division of the sample path is illustrated by Fig. 2 below: from
a practical viewpoint the trajectory may only be cut when hitting the small
set. At such a point, drawing a Bernoulli r.v. with the estimated parameter
indicates whether one should cut here the time series trajectory or not. Of
course, due to the dependence induced by the estimated transition density,
the resulting blocks are not i.i.d. but, as will be shown later, are close (in
some sense) to the one of the true regeneration blocks (which are i.i.d.),
provided that the transition estimator is consistent (see assumption H2 in
§1.4.2)

3.2.2 Practical choice of the minorization condition parameters

Because the construction above is highly dependent on the minorization con-
dition parameters chosen, we now discuss how to select the latter with a
data-driven technique so as to construct enough blocks for computing mean-
ingful statistics. As a matter of fact, the rates of convergence of the statistics
we shall study in the sequel increase as the mean number of regenerative (or
pseudo-regenerative) blocks, which depends on the size of the small set cho-
sen (or more exactly, on how often the chain visits the latter in a trajectory
of finite length) and how sharp is the lower bound in the minorization con-
dition: the larger the size of the small set is, the smaller the uniform lower
bound for the transition density. This leads us to the following trade-off.
Roughly speaking, for a given realization of the trajectory, as one increases
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Figure 2: ARB construction for an AR(1) simulated time-series

the size of the small set S used for the data blocks construction, one nat-
urally increases the number of points of the trajectory that are candidates
for determining a block (i.e. a cut in the trajectory), but one also decreases
the probability of cutting the trajectory (since the uniform lower bound for
{p(x, y)}(x,y)∈S2 then decreases). This gives an insight into the fact that
better numerical results for statistical procedures based on the ARB con-
struction may be obtained in practice for some specific choices of the small
set, likely for choices corresponding to a maximum expected number of data
blocks given the trajectory, that is

Nn(S) = Eν(
n∑

i=1

I{Xi ∈ S, Yi = 1} |X(n+1)).

Hence, when no prior information about the structure of the chain is avail-
able, here is a practical data-driven method for selecting the minorization
condition parameters in the case when the chain takes real values. Consider
a collection S of borelian sets S (typically compact intervals) and denote by
US(dy) = γS(y).λ(dy) the uniform distribution on S, where γS(y) = I{y ∈
S}/λ(S) and λ is the Lebesgue measure on R. Now, for any S ∈ S, set δ(S) =
λ(S). inf(x,y)∈S2 p(x, y). We have for any x, y in S, p(x, y) ≥ δ(S)γS(y). In the
case when δ(S) > 0, the ideal criterion to optimize may be then expressed as

Nn(S) =
δ(S)

λ(S)

n∑
i=1

I{(Xi, Xi+1) ∈ S2}
p(Xi, Xi+1)

. (3)

However, as the transition kernel p(x, y) and its minimum over S2 are un-
known, a practical empirical criterion is obtained by replacing p(x, y) by
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an estimate pn(x, y) and δ(S) by a lower bound δn(S) for λ(S).pn(x, y)
over S2 in expression (3). Once pn(x, y) is computed, calculate δn(S) =
λ(S). inf(x,y)∈S2 pn(x, y) and maximize thus the empirical criterion over S ∈ S

N̂n(S) =
δn(S)

λ(S)

n∑
i=1

I{(Xi, Xi+1) ∈ S2}
pn(Xi, Xi+1)

. (4)

More specifically, one may easily check at hand on many examples of real
valued chains (see § 4.3 for instance), that any compact interval Vx0(ε) =
[x0 − ε, x0 + ε] for some well chosen x0 ∈ R and ε > 0 small enough, is a
small set, choosing γ as the density of the uniform distribution on Vx0(ε).
For practical purpose, one may fix x0 and perform the optimization over
ε > 0 only (see Bertail & Clémençon (2004c)) but both x0 and ε may be
considered as tuning parameters. A possible numerically feasible selection
rule could rely then on searching for (x0, ε) on a given pre-selected grid G =
{(x0(k), ε(l)), 1 6 k 6 K, 1 6 l 6 L} such that inf(x,y)∈Vx0 (ε)2 pn(x, y) > 0
for any (x0, ε) ∈ G.

Algorithm 3 (ARB construction with empirical choice of the small set)

1. Compute an estimator pn(x, y) of p(x, y).

2. For any (x0, ε) ∈ G, compute the estimated expected number of pseudo-
regenerations:

N̂n(x0, ε) =
δn(x0, ε)

2ε

n∑
i=1

I{(Xi, Xi+1) ∈ Vx0(ε)
2}

pn(Xi, Xi+1)
,

with δn(x0, ε) = 2ε. inf(x,y)∈Vx0 (ε)2 pn(x, y).

3. Pick (x∗0, ε
∗) in G maximizing N̂n(x0, ε) over G, corresponding to the

set S∗ = [x∗0−ε∗, x∗0+ε∗] and the minorization constant δ∗n = δn(x∗0, ε
∗).

4. Apply Algorithm 2 for ARB construction using S∗, δ∗n and pn.

Remark 3.1 Numerous consistent estimators of the transition density of

Harris chains have been proposed in the literature. Refer to Roussas (1969,

91a, 91b), Rosenblatt (1970), Birgé (1983), Doukhan & Ghindès (1983),

Prakasa Rao (1983), Athreya & Atuncar (1998) or Clémençon (2000) for

instance in positive recurrent cases, Karlsen & Tjøstheim (2001) in specific

null recurrent cases.
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Figure 3 : Illustration of Algorithm 3 : ARB construction with empirical

choice of the small set.

This method is illustrated by Fig. 3 in the case of an AR(1) model:

Xi+1 = αXi + εi+1, i ∈ N, with εi
i.i.d.∼ N (0, 1), α = 0.95 and X0 = 0,

for a trajectory of length n = 200. Taking x0 = 0 and letting ε grow, the
expected number regeneration blocks is maximum for ε∗ close to 0.9. The true
minimum value of p(x, y) over the corresponding square is actually δ = 0.118.
The first graphic in this panel shows the Nadaraya-Watson estimator

pn(x, y) =

∑n
i=1 K(h−1(x−Xi))K(h−1(y −Xi+1))∑n

i=1 K(h−1(x−Xi))
,

computed from the gaussian kernel K(x) = (2π)−1 exp(−x2/2) with an opti-

mal bandwidth h of order n−1/5. The second one plots N̂n(ε) as a function of
ε. The next one indicates the set S∗ corresponding to our empirical selection
rule, while the last one displays the ”optimal” ARB construction.

Note finally that other approaches may be considered for determining
practically small sets and establishing accurate minorization conditions, which
conditions do not necessarily involve uniform distributions besides. Refer for
instance to Roberts & Rosenthal (1996) for Markov diffusion processes.
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3.2.3 A two-split version of the ARB construction

When carrying out the theoretical study of statistical methods based on the
ARB construction, one must deal with difficult problems arising from the
dependence structure in the set of the resulting data blocks, due to the pre-
liminary estimation step. Such difficulties are somehow similar as the ones
that one traditionally faces in a semiparametric framework, even in the i.i.d.
setting. The first step of semiparametric methodologies usually consists in a
preliminary estimation of some infinite dimensional nuisance parameter (typ-
ically a density function or a nonparametric curve), on which the remaining
(parametric) steps of the procedure are based. For handling theoretical dif-
ficulties related to this dependence problem, a well known method, called
the splitting trick, amounts to split the data set into two parts, the first sub-
set being used for estimating the nuisance parameter, while the parameter
of interest is then estimated from the other subset (using the preliminary
estimate). An analogous principle may be implemented in our framework
using an additional split of the data in the ”middle of the trajectory”, for
ensuring that a regeneration at least occurs in between with an overwhelm-
ing probability (so as to get two independent data subsets, see step 2 in the
algorithm below). For this reason, we consider the following variant of the
ARB construction. Let 1 < m < n, 1 6 p < n−m.

Algorithm 4 (two-split ARB construction)

1. From the data X(n+1) = (X1, ..., Xn+1), keep only the first m obser-
vations X(m) for computing an estimate pm(x, y) of p(x, y) such that
pm(x, y) ≥ δγ(y), λ(dy) a.s. and pm(Xi, Xi+1) > 0, 1 6 i 6 n− 1.

2. Drop the observations between time m+1 and time m∗ = m+p (under
standard assumptions, the split chain regenerates once at least between
these times with large probability).

3. From remaining observations X(m∗,n) = (Xm∗+1, ..., Xn) and estimate
pm, apply steps 2-4 of Algorithm 2 (respectively of Algorithm 3).

This procedure is similar to the 2-split method proposed in Schick (2001),
except that here the number of deleted observations is arbitrary and easier to
interpret in terms of regeneration. Of course, the more often the split chain
regenerates, the smaller p may be chosen. And the main problem consists in
picking m = mn so that mn →∞ as n →∞ for the estimate of the transition
kernel to be accurate enough, while keeping enough observation n−m∗ for the
block construction step: one typically chooses m = o(n) as n →∞. Further
assumptions are required for investigating precisely how to select m. In
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Bertail & Clémençon (2004d), a choice based on the rate of convergence αm of
the estimator pm(x, y) (for the MSE when error is measured by the sup-norm
over S×S, see assumptionH2 in § 4.2) is proposed: when considering smooth
markovian models for instance, estimators with rate αm = m−1 log(m) may
be exhibited and one shows that m = n2/3 is then an optimal choice (up to
a log(n)). However, one may argue, as in the semiparametric case, that this
methodology is motivated by our limitations in the analysis of asymptotic
properties of the estimators only, whereas from a practical viewpoint it may
deteriorate the finite sample performance of the initial algorithm. To our
own experience, it is actually better to construct the estimate p(x, y) from
the whole trajectory and the interest of Algorithm 4 is mainly theoretical.

4 Mean and variance estimation

In this section, we suppose that the chain X is positive recurrent with un-
known stationary probability µ and consider the problem of estimating an
additive functional of type µ(f) =

∫
f(x)µ(dx) = Eµ(f(X1)), where f is a

µ-integrable real valued function defined on the state space (E, E). Estima-
tion of additive functionals of type Eµ(F (X1, ..., Xk)), for fixed k > 1, may
be investigated in a similar fashion. We set f(x) = f(x)− µ(f).

4.1 Regenerative case

Here we assume further that X admits an a priori known accessible atom
A. As in the i.i.d. setting, a natural estimator of µ(f) is the sample mean
statistic,

µ′n(f) = n−1

n∑
i=1

f(Xi). (5)

When the chain is stationary (i.e. when ν = µ), the estimator µ′n(f) is zero-
bias. However, its bias is significant in all other cases, mainly because of

the presence of the first and last (non-regenerative) data blocks B0 and B(n)
ln

(see Proposition 4.1 below). Besides, by virtue of Theorem 2.1, µ(f) may be
expressed as the mean of the f(Xi)’s over a regeneration cycle (renormalized
by the mean length of a regeneration cycle)

µ(f) = EA(τA)−1EA(

τA∑
i=1

f(Xi)).

Because the bias due to the first block depends on the unknown initial distri-
bution (see Proposition 1 below) and thus can not be consistently estimated,
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we suggest to introduce the following estimators of the mean µ(f). Define
the sample mean based on the observations (eventually) collected after the
first regeneration time only by

µ̃n(f) = (n− τA)−1

n∑
i=1+τA

f(Xi)

with the convention µ̃n(f) = 0, when τA > n, as well as the sample mean
based on the observations collected between the first and last regeneration
times before n by

µn(f) = (τA(ln)− τA)−1

τA(ln)∑
i=1+τA

f(Xi)

with ln =
∑n

i=1 I{Xi ∈ A} and the convention µn(f) = 0, when ln 6 1
(observe that, by Markov’s inequality, Pν(ln 6 1) = O(n−1) as n → ∞, as
soon as H0(1, ν) and H0(2) are fulfilled).

Let us introduce some additional notation for the block sums (resp. the
block lengths), that shall be used here and throughout. For j > 1, n > 1, set

L0 = τA, Lj = τA(j + 1)− τA(j), L
(n)
ln

= n− τA(ln)

f(B0) =

τA∑
i=1

f(Xi), f(Bj) =

τA(j+1)∑

i=1+τA(j)

f(Xi), f(B(n)
ln

) =
n∑

i=1+τA(ln)

f(Xi).

With these notations, the estimators above may be rewritten as

µ′n(f) =
f(B0) +

∑ln
j=1 f(Bj) + f(B(n)

ln
)

L0 +
∑ln

j=1 Lj + L
(n)
ln

,

µ̃n(f) =

∑ln
j=1 f(Bj) + f(B(n)

ln
)

∑ln
j=1 Lj + L

(n)
ln

, µn(f) =

∑ln
j=1 f(Bj)∑ln

j=1 Lj

.

Let µn(f) designs any of the three estimators µ′n(f), µ̃n(f) or µn(f). If X
fulfills conditions H0(2), H0(2, ν), H1(f, 2, A), H1(f, 2, ν) then the following
CLT holds under Pν (cf Theorem 17.2.2 in Meyn & Tweedie (1996))

n1/2σ−1(f)(µn(f)− µ(f)) ⇒ N (0, 1) , as n →∞,

with a normalizing constant

σ2(f) = µ (A)EA((

τA∑
i=1

f(Xi)− µ(f)τA)2). (6)
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From this expression we propose the following estimator of the asymptotic
variance, adopting the usual convention regarding to empty summation,

σ2
n(f) = n−1

ln−1∑
j=1

(f(Bj)− µn(f)Lj)
2. (7)

Notice that the first and last data blocks are not involved in its construction.
We could have proposed estimators involving different estimates of µ(f),
but as will be seen later, it is preferable to consider an estimator based on
regeneration blocks only. The following quantities shall be involved in the
statistical analysis below. Define

α = EA(τA), β = EA(τA

τA∑
i=1

f(Xi)) = CovA(τA,

τA∑
i=1

f(Xi)),

ϕν = Eν(

τA∑
i=1

f(Xi)), γ = α−1EA(

τA∑
i=1

(τA − i)f(Xi)).

We also introduce the following technical conditions.

(C1) (Cramer condition)

lim
t→∞

| EA(exp(it

τA∑
i=1

f(Xi))) |< 1.

(C2) (Cramer condition)

lim
t→∞

| EA(exp(it(

τA∑
i=1

f(Xi))
2)) |< 1.

(C3) There exists N > 1 such that the N-fold convoluted density g∗N is

bounded, denoting by g the density of the (
∑τA(2)

i=1+τA(1) f(Xi) − α−1β)2’s.

(C4) There exists N > 1 such that the N-fold convoluted density G∗N is

bounded, denoting by G the density of the (
∑τA(2)

i=1+τA(1) f(Xi))
2’s.

These two conditions are automatically satisfied if
∑τA(2)

i=1+τA(1) f(Xi) has
a bounded density.

The result below is a straightforward extension of Theorem 1 in Mali-
novskii (1985) (see also Proposition 3.1 in Bertail & Clémençon (2004a)).
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Proposition 4.1 Suppose that H0(4), H0(2, ν), H1(4, f), H1(2, ν, f) and

Cramer condition (C1) are satisfied by the chain. Then, as n →∞, we have

Eν(µ
′
n(f)) = µ(f) + (ϕν + γ − β/α)n−1 + O(n−3/2), (8)

Eν(µ̃n(f)) = µ(f) + (γ − β/α)n−1 + O(n−3/2), (9)

Eν(µn(f)) = µ(f)− (β/α)n−1 + O(n−3/2). (10)

If the Cramer condition (C2) is also fulfilled, then

Eν(σ
2
n(f)) = σ2(f) + O(n−1), as n →∞, (11)

and we have the following CLT under Pν,

n1/2(σ2
n(f)− σ2(f)) ⇒ N (0, ξ2(f)), as n →∞, (12)

with ξ2(f) = µ(A)V arA((
∑τA

i=1 f(Xi))
2 − 2α−1β

∑τA

i=1 f(Xi)).

Proof. The proof of (8)-(11) is given in Bertail & Clémençon (2004a)
and the linearization of σ2

n(f) follows from their Lemma 6.3

σ2
n(f) = n−1

ln−1∑
j=1

g(Bj) + rn, (13)

with g(Bj) = f(Bj)
2−2α−1βf(Bj), for j > 1, and for some η1 > 0, Pν(nrn >

η1 log(n)) = O(n−1), as n →∞. We thus have, as n →∞,

n1/2(σ2
n(f)− σ2(f)) = (ln/n)1/2l−1/2

n

ln−1∑
j=1

(g(Bj)− E(g(Bj)) + oPν (1),

and (13) is established with the same argument as for Theorem 17.3.6 in
Meyn & Tweedie (1996), as soon as V ar(g(Bj)) < ∞, that is ensured by
assumption H1(4, f).

Remark 4.1 We emphasize that in a non i.i.d. setting, it is generally diffi-

cult to construct an accurate (positive) estimator of the asymptotic variance.

When no structural assumption, except stationarity and square integrability,

is made on the underlying process X, a possible method, currently used in
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practice, is based on so-called blocking techniques. Indeed under some appro-

priate mixing conditions (which ensure that the following series converge), it

can be shown that the variance of n−1/2µ′n(f) may be written

V ar(n−1/2µ′n(f)) = Γ(0) + 2
n∑

t=1

(1− t/n)Γ(t)

and converges to

σ2(f) =
∞∑

t=∞
Γ(t) = 2πg(0),

where g(w) = (2π)−1
∑∞

t=−∞ Γ(t) cos(wt) and (Γ(t))t>0 denote respectively

the spectral density and the autocovariance sequence of the discrete-time

stationary process X. Most of the estimators of σ2(f) that have been pro-

posed in the literature (such as the Bartlett spectral density estimator, the

moving-block jackknife/subsampling variance estimator, the overlapping or

non-overlapping batch means estimator) may be seen as variants of the basic

moving-block bootstrap estimator(see Künsch (1989), Liu and Singh(1992))

σ̂2
M,n =

M

Q

Q∑
i=1

(µi,M,L − µn(f))2, (14)

where µi,M,L = M−1
∑L(i−1)+M

t=L(i−1)+1 f(Xt) is the mean of f on the i-th data block

(XL(i−1)+1, . . . , XL(i−1)+M). Here, the size M of the blocks and the amount L

of ‘lag’ or overlap between each block are deterministic (eventually depending

on n) and Q = [n−M
L

] + 1, denoting by [·] the integer part, is the number of

blocks that may be constructed from the sample X1, ..., Xn. In the case when

L = M , there is no overlap between block i and block i + 1 (as the original

solution considered by Hall (1985), Carlstein (1986)), whereas the case L = 1

corresponds to maximum overlap (see Politis & Romano (1992), Politis et

al. (2000) for a survey). Under suitable regularity conditions (mixing and

moments conditions), it can be shown that if M → ∞ with M/n → 0 and
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L/M → a ∈ [0, 1] as n →∞, then we have

E(σ̂2
M,n)− σ2(f) = O(1/M) + O(

√
M/n), (15)

V ar(σ̂2
M,n) = 2c

M

n
σ4(f) + o(M/n), (16)

as n → ∞, where c is a constant depending on a, taking its smallest value

(namely c = 2/3) for a = 0. This result shows that the bias of such esti-

mators may be very large. Indeed, by optimizing in M we find the optimal

choice M ∼ n1/3, for which we have E(σ̂2
M,n) − σ2(f) = O(n−1/3). Vari-

ous extrapolation and jackknife techniques or kernel smoothing methods have

been suggested to get rid of this large bias (refer to Politis & Romano (1992),

Götze & Künsch (1996), Bertail (1997) and Bertail & Politis (2001)). The

latter somehow amount to make use of Rosenblatt smoothing kernels of or-

der higher than two (taking some negative values) for estimating the spectral

density at 0. However, the main drawback in using these estimators is that

they take negative values for some n, and lead consequently to face problems,

when dealing with studentized statistics.

In our specific Markovian framework, the estimate σ2
n(f) in the atomic

case (or latter σ̂2
n(f) in the general case) is much more natural and allows

to avoid these problems. This is particularly important when the matter is to

establish Edgeworth expansions at orders higher than two in such a non i.i.d.

setting. As a matter of fact, the bias of the variance may completely cancel

the accuracy provided by higher order Edgeworth expansions (but also the one

of its Bootstrap approximation) in the studentized case, given its explicit role

in such expansions (see Götze & Künsch (1996)).

From Proposition 4.1, we immediately derive that

tn = n1/2σ−1
n (f)(µn(f)− µ(f)) ⇒ N (0, 1) , as n →∞,

so that asymptotic confidence intervals for µ(f) are immediately available in
the atomic case. This result also shows that using estimators µ̃n(f) or µn(f)
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instead of µ′n(f) allows to eliminate the only quantity depending on the initial
distribution ν in the first order term of the bias, which may be interesting
for estimation purpose and is crucial when the matter is to deal with an
estimator of which variance or sampling distribution may be approximated
by a resampling procedure in a nonstationary setting (given the impossi-
bility to approximate the distribution of the ”first block sum”

∑τA

i=1 f(Xi)
from one single realization of X starting from ν). For these estimators, it
is actually possible to implement specific Bootstrap methodologies, for con-
structing second order correct confidence intervals for instance (see Bertail
& Clémençon (2004b, c) and section 5). Regarding to this, it should be no-
ticed that Edgeworth expansions (E.E. in abbreviated form) may be obtained
using the regenerative method by partitioning the state space according to
all possible values for the number ln regeneration times before n and for the
sizes of the first and last block as in Malinovskii (1987). Bertail & Clémençon
(2004a) proved the validity of an E.E. in the studentized case, of which form
is recalled below. Notice that actually (C3) corresponding to their v) in
Proposition 3.1 in Bertail & Clémençon (2004a) is not needed in the un-
studentized case. Let Φ(x) denote the distribution function of the standard
normal distribution and set φ(x) = dΦ(x)/dx.

Theorem 4.2 Let b(f) = limn→∞ n(µn(f)− µ(f)) be the asymptotic bias of

µn(f). Under conditions H0(4), H0(2, ν) H1(4, f), H1(2, ν, f), (C1), we

have the following E.E.,

sup
x∈R

|Pν

(
n1/2σ(f)−1(µn(f)− µ(f)) ≤ x

)− E(2)
n (x)| = O(n−1), as n →∞,

with

E(2)
n (x) = Φ(x)− n−1/2k3(f)

6
(x2 − 1)φ(x)− n−1/2b(f)φ(x), (17)

k3(f) = α−1(M3,A − 3β

σ(f)
), M3,A =

EA((
∑τA

i=1 f(Xi))
3)

σ(f)3
. (18)

A similar limit result holds for the studentized statistic under the further

hypothesis that (C2), (C3), H0(s) and H1(s, f) are fulfilled with s = 8 + ε

for some ε > 0:

sup
x∈R

|Pν(n
1/2σ−1

n (f)(µn(f)− µ(f)) ≤ x)− F (2)
n (x)| = O(n−1 log(n)), (19)
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as n →∞, with

F (2)
n (x) = Φ(x) + n−1/2 1

6
k3(f)(2x2 + 1)φ(x)− n−1/2b(f)φ(x).

When µn(f) = µn(f), under C4), O(n−1 log(n)) may be replaced by O(n−1).

This theorem may serve for building accurate confidence intervals for µ(f)
(by E.E. inversion as in Abramovitz & Singh (1983) or Hall (1983)). It also
paves the way for studying precisely specific bootstrap methods, as in Bertail
& Clémençon (2004c). It should be noted that the skewness k3(f) is the sum
of two terms: the third moment of the recentered block sums and a correlation
term between the block sums and the block lengths. The coefficients involved
in the E.E. may be directly estimated from the regenerative blocks. Once
again by straightforward CLT arguments, we have the following result.

Proposition 4.3 For s > 1, under H1(f, 2s), H1(f, 2, ν), H0(2s) and

H0(2, ν), then Ms,A = EA((
∑τA

i=1 f(Xi))
s) is well-defined and we have

µ̂s,n = n−1

ln−1∑
i=1

(f(Bj)− µn(f)Lj)
s = α−1Ms,A + OPν (n

−1/2), as n →∞.

4.2 Positive recurrent case

We now turn to the general positive recurrent case (refer to § 2.3 for assump-
tions and notation). It is noteworthy that, though they may be expressed
using the parameters of the minorization conditionM, the constants involved
in the CLT are independent from these latter. In particular the mean and
the asymptotic variance may be written as

µ(f) = EAM(τAM)−1EAM(

τAM∑
i=1

f(Xi)),

σ2(f) = EAM(τAM)−1EAM((

τAM∑
i=1

f(Xi))
2),

where τAM = inf{n > 1, (Xn, Yn) ∈ S×{1}} and EAM(.) denotes the expec-
tation conditionally to (X0, Y0) ∈ AM = S × {1}. However, one cannot use
the estimators of µ(f) and σ2(f) defined in the atomic setting, applied to the
split chain, since the times when the latter regenerates are unobserved. We
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thus consider the following estimators based on the approximate regeneration
times (i.e. times i when (Xi, Ŷi) ∈ S × {1}), as constructed in § 3.2,

µ̂n(f) = n̂−1
AM

bln−1∑
j=1

f(B̂j) and σ̂2
n(f) = n̂−1

AM

bln−1∑
j=1

{f(B̂j)− µ̂n(f)L̂j}2,

with, for j > 1,

f(B̂j) =

bτAM(j+1)∑

i=1+bτAM(j)

f(Xi), L̂j = τ̂AM(j + 1)− τ̂AM(j),

n̂
AM

= τ̂AM(l̂n)− τ̂AM(1) =

bln−1∑
j=1

L̂j.

By convention, µ̂n(f) = 0 and σ̂2
n(f) = 0 (resp. n̂

AM
= 0), when l̂n 6 1

(resp., when l̂n = 0). Since the ARB construction involves the use of an
estimate pn(x, y) of the transition kernel p(x, y), we consider conditions on
the rate of convergence of this estimator. For a sequence of nonnegative real
numbers (αn)n∈N converging to 0 as n →∞,

H2 : p(x, y) is estimated by pn(x, y) at the rate αn for the MSE when
error is measured by the L∞ loss over S × S:

Eν( sup
(x,y)∈S×S

|pn(x, y)− p(x, y)|2) = O(αn), as n →∞.

See Remark 3.1 for references concerning the construction and the study of
transition density estimators for positive recurrent chains, estimation rates
are usually established under various smoothness assumptions on the density
of the joint distribution µ(dx)Π(x, dy) and the one of µ(dx). For instance,
under classical Hölder constraints of order s, the typical rate for the risk in
this setup is αn ∼ (ln n/n)s/(s+1) (refer to Clémençon (2000)).

H3 : The ”minorizing” density γ is such that infx∈S γ(x) > 0.

H4 : The transition density p(x, y) and its estimate pn(x, y) are bounded
by a constant R < ∞ over S2.

Some asymptotic properties of these statistics based on the approximate
regeneration data blocks are stated in the following theorem (their proof is
omitted since it immediately follows from the argument of Theorem 3.2 and
Lemma 5.3 in Bertail & Clémençon (2004c)),
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Theorem 4.4 If assumptionsH′
0(2, ν),H′

0(8),H′
1(f, 2, ν),H′

1(f, 8),H2, H3

and H4 are satisfied by X, as well as conditions (C1) and (C2) by the split

chain, we have, as n →∞,

Eν(µ̂n(f)) = µ(f)− β/α n−1 + O(n−1α1/2
n ),

Eν(σ̂
2
n(f)) = σ2(f) + O(αn ∨ n−1),

and if αn = o(n−1/2),then

n1/2(σ̂2
n(f)− σ2(f)) ⇒ N (0, ξ2(f))

where α, β and ξ2(f) are the quantities related to the split chain defined in

Proposition 4.1 .

Remark 4.2 The condition αn = o(n−1/2) as n → ∞ may be ensured by

smoothness conditions satisfied by the transition kernel p(x, y): under Hölder

constraints of order s such rates are achieved as soon as s > 1, that is a

rather weak assumption.

We also define the pseudo-regeneration based standardized (resp., studen-
tized) sample mean by

ς̂n = n1/2σ−1(f)(µ̂n(f)− µ(f)),

t̂n = n̂1/2
AM

σ̂n(f)−1(µ̂n(f)− µ(f)).

The following theorem straightforwardly results from Theorem 4.4.

Theorem 4.5 Under the assumptions of Theorem 4.4, we have as n →∞

ς̂n ⇒ N (0, 1) and t̂n ⇒ N (0, 1).

This shows that from pseudo-regeneration blocks one may easily construct
a consistent estimator of the asymptotic variance σ2(f) and asymptotic con-
fidence intervals for µ(f) in the general positive recurrent case (see Section
5 for more accurate confidence intervals based on a regenerative bootstrap
method). In Bertail & Clémençon (2004a), an E.E. is proved for the stu-
dentized statistic t̂n. The main problem consists in handling computational
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difficulties induced by the dependence structure, that results from the pre-
liminary estimation of the transition density. For partly solving this prob-
lem, one may use Algorithm 4, involving the 2-split trick. Under smooth-
ness assumptions for the transition kernel (which are often fulfilled in prac-
tice), Bertail & Clémençon (2004d) established the validity of the E.E. up to
O(n−5/6 log(n)), stated in the result below.

Theorem 4.6 Suppose that (C1) is satisfied by the split chain, and that

H′
0(κ, ν), H′

1(κ, f, ν), H′
0(κ), H′

1(κ, f) with κ > 6, H2, H3 and H4 are

fulfilled. Let mn and pn be integer sequences tending to ∞ as n → ∞, such

that n1/γ ≤ pn ≤ mn and mn = o(n) as n → ∞. Then, the following

limit result holds for the pseudo-regeneration based standardized sample mean

obtained via Algorithm 4

sup
x∈R

|Pν (ς̂n ≤ x)− E(2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn), as n →∞,

and if in addition the preceding assumptions with κ > 8 and C4) are satisfied,

we also have

sup
x∈R

|Pν(t̂n ≤ x)− F (2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn), as n →∞,

where E
(2)
n (x) and F

(2)
n (x) are the expansions defined in Theorem 4.2 related

to the split chain. In particular, if αmn = mn log(mn), by picking mn = n2/3,

these E.E. hold up to O(n−5/6 log(n)).

The conditions stipulated in this result are weaker than the conditions
ensuring that the Moving Block Bootstrap is second order correct. More
precisely, they are satisfied for a wide range of Markov chains, including non-
stationary cases and chains with polynomial decay of α−mixing coefficients
(cf remark 2.1) that do not fall into the validity framework of the MBB
methodology. In particular it is worth noticing that these conditions are
weaker than Götze & Hipp (1983)’s conditions (in a strong mixing setting).

As stated in the following proposition, the coefficients involved in the
E.E.’s above may be estimated from the approximate regeneration blocks.
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Proposition 4.7 Under H′
0(2s, ν), H′

1(2s, ν, f), H′
0(2s∨ 8), H′

1(2s∨ 8, f)

with s ≥ 2, H2, H3 and H4, the expectation Ms,AM = EAM((
∑τAM

i=1 f(Xi))
s)

is well-defined and we have, as n →∞,

µ̂s,n = n−1

ln−1∑
i=1

(f(B̂j)− µ̂n(f)L̂j)
s = EAM(τAM)−1Ms,AM + OPν (α

1/2
mn

).

4.3 Some illustrative examples

Here we give some examples with the aim to illustrate the wide range of
applications of the results previously stated.

Example 1 : countable Markov chains. Let X be a general irreducible
chain with a countable state space E. For such a chain, any recurrent state
a ∈ E is naturally an accessible atom and conditions involved in the limit
results presented in § 4.1 may be easily checked at hand. Consider for instance
Cramer condition (C1). Denote by Π the transition matrix and set A = {a}.
Assuming that f is µ-centered. We have, for any k ∈ N∗:

∣∣∣EA(eit
PτA

j=1 f(Xj))
∣∣∣ =

∣∣∣∣∣
∞∑

l=1

EA(eit
Pl

j=1 f(Xj)|τA = l)PA(τA = l)

∣∣∣∣∣
6

∣∣∣EA(eit
Pk

j=1 f(Xj)|τA = k)
∣∣∣PA(τA = k) + 1− PA(τA = k).

It follows that showing that (C1) holds may boil down to showing the partial
conditional Cramer condition

lim
t→∞

∣∣∣EA(eit
Pk

j=1 f(Xj)|τA = k)
∣∣∣ < 1,

for some k > 0 such that PA(τA = k) > 0. In particular, similarly to the
i.i.d. case, this condition then holds, as soon as the set {f(x)}x∈E is not a
point lattice (i.e. it is not a regular grid). We point out that the expression
obtained in Example 1 of Bertail & Clémençon (2004b) is clearly incorrect
(it does not hold at t = 0): given that ∀t ∈ R,

EA(eit
PτA

j=1 f(Xj)) =
∞∑

l=1

∑

x1 6=a,...,xl−1 6=a

eit
Pl

j=1 f(xj)π(a, x1)π(x1, x2)...π(xl−1, a),

(C1) does not hold when f maps the state space to a point lattice.
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Example 2 : modulated random walk on R+. Consider the model

X0 = 0 and Xn+1 = (Xn + Wn)+ for n ∈ N, (20)

where x+ = max(x, 0), (Xn) and (Wn) are sequences of r.v.’s such that,
for all n ∈ N, the distribution of Wn conditionally to X0, ..., Xn is given by
U(Xn, .) where U(x,w) is a transition kernel from R+ to R. Then, Xn is a
Markov chain on R+ with transition probability kernel Π(x, dy) given by

Π(x, {0}) = U(x, ]−∞, − x]),

Π(x, ]y, ∞[) = U(x, ]y − x, ∞[),

for all x > 0. Observe that the chain Π is δ0-irreducible when U(x, .) has
infinite left tail for all x > 0 and that {0} is then an accessible atom for X.
The chain is shown to be positive recurrent iff there exists b > 0 and a test
function V : R+ → [0, ∞] such that V (0) < ∞ and the drift condition below
holds for all x > 0

∫
Π(x, dy)V (y)− V (x) 6 −1 + bI{x = 0},

(see in Meyn & Tweedie (1996). The times at which X reaches the value 0
are thus regeneration times, and allow to define regeneration blocks dividing
the sample path, as shown in Fig. 1. Such a modulated random walk (for
which, at each step n, the increasing Wn depends on the actual state Xn = x),
provides a model for various systems, such as the popular content-dependent
storage process studied in Harrison & Resnick (1976) (see also Brockwell
et al. (1982)) or the work-modulated single server queue in the context of
queuing systems (cf Browne & Sigman (1992)). For such atomic chains with
continuous state space (refer to Meyn & Tweedie (1996), Feller (1968, 71) and
Asmussen (1987) for other examples of such chains), one may easily check
conditions used in § 3.1 in many cases. One may show for instance that
(C1) is fulfilled as soon as there exists k > 1 such that 0 < PA(τA = k) < 1

and the distribution of
∑k

i=1 f(Xi) conditioned on X0 ∈ A and τA = k
is absolutely continuous. For the regenerative model described above, this
sufficient condition is fulfilled with k = 2, f(x) = x and A = {0}, when it
is assumed for instance that U(x, dy) is absolutely continuous for all x > 0
and ∅ 6=suppU(0, dy) ∩ R∗+ 6= R∗+.

Example 3: nonlinear time series. Consider the heteroskedastic au-
toregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N,

where m : R→ R and σ : R→ R∗+ are measurable functions, (εn)n∈N is a
i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n ∈ N, εn+1
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is independent from the Xk’s, k 6 n with E(εn+1) = 0 and E(ε2
n+1) = 1.

The transition kernel density of the chain is given by p(x, y) = σ(x)−1g((y−
m(x))/σ(x)), (x, y) ∈ R2. Assume further that g, m and σ are continuous
functions and there exists x0 ∈ R such that p(x0, x0) > 0. Then, the transition
density is uniformly bounded from below over some neighborhood Vx0(ε)

2 =
[x0 − ε, x0 + ε]2 of (x0, x0) in R2 : there exists δ = δ(ε) ∈]0, 1[ such that,

inf
(x,y)∈V 2

x0

p(x, y) > δ(2ε)−1. (21)

We thus showed that the chain X satisfies the minorization condition
M(1, Vx0(ε), δ,UVx0 (ε)). Furthermore, block-moment conditions for such time
series model may be checked via the practical conditions developed in Douc
et al. (2004) (see their example 3).

5 Regenerative block-bootstrap

Athreya & Fuh (1989) and Datta & McCormick (1993) proposed a specific
bootstrap methodology for atomic Harris positive recurrent Markov chains,
which exploits the renewal properties of the latter. The main idea underly-
ing this method consists in resampling a deterministic number of data blocks
corresponding to regeneration cycles. However, because of some inadequate
standardization, the regeneration-based bootstrap method proposed in Datta
& McCormick (1993) is not second order correct when applied to the sample
mean problem (its rate is OP(n

−1/2) in the stationary case). Prolongating this
work, Bertail & Clémençon (2004b) have shown how to modify suitably this
resampling procedure to make it second order correct up to OP(n

−1 log(n)) in
the unstudentized case (i.e. when the variance is known) when the chain is
stationary. However this Bootstrap method remains of limited interest from
a practical viewpoint, given the necessary modifications (standardization and
recentering) and the restrictive stationary framework required to obtain the
second order accuracy: it fails to be second order correct in the nonsta-
tionary case, as a careful examination of the second order properties of the
sample mean statistic of a positive recurrent chain based on its E.E. shows
(cf Malinovskii (1987), Bertail & Clémençon (2004a)).

A powerful alternative, namely the Regenerative Block-Bootstrap (RBB),
have been thus proposed and studied in Bertail & Clémençon (2004c), that
consists in imitating further the renewal structure of the chain by resampling
regeneration data blocks, until the length of the reconstructed Bootstrap se-
ries is larger than the length n of the original data series, so as to approximate
the distribution of the (random) number of regeneration blocks in a series
of length n and remove some bias terms (see section 4). Here we survey the
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asymptotic validity of the RBB for the studentized mean by an adequate es-
timator of the asymptotic variance. This is the useful version for confidence
intervals but also for practical use of the Bootstrap (cf Hall (1992)) and for
a broad class of Markov chains (including chains with strong mixing coeffi-
cients decreasing at a polynomial rate), the accuracy reached by the RBB is
proved to be of order OP(n

−1) both for the standardized and the studentized
sample mean. The rate obtained is thus comparable to the optimal rate of
the Bootstrap distribution in the i.i.d. case, contrary to the Moving Block
Bootstrap (cf Götze & Künsch (1996), Lahiri (2003)). The proof relies on the
E.E. for the studentized sample mean stated in § 4.1 (see Theorems 4.2, 4.6).
In Bertail & Clémençon (2004c) a straightforward extension of the RBB pro-
cedure to general Harris chains based on the ARB construction (see § 3.1) is
also proposed (it is called Approximate Regenerative Block-Bootstrap, ARBB
in abbreviated form). Although it is based on the approximate regenerative
blocks, it is shown to be still second order correct when the estimate pn used
in the ARB algorithm is consistent. We also emphasize that the principles
underlying the (A)RBB may be applied to any (eventually continuous time)
regenerative process (and not necessarily markovian) or with a regenerative
extension that may be approximated (see Thorisson (2000)).

5.1 The (approximate) regenerative block-bootstrap al-

gorithm.

Once true or approximate regeneration blocks B̂1, ..., B̂bln−1 are obtained
(by implementing Algorithm 1, 2, 3 or 4 ), the (approximate) regenerative
block-bootstrap algorithm for computing an estimate of the sample distri-
bution of some statistic Tn = T (B̂1, ..., B̂bln−1) with standardization Sn =

S(B̂1, ..., B̂bln−1) is performed in 3 steps as follows.

Algorithm 5 (Approximate) Regenerative Block-Bootstrap

1. Draw sequentially bootstrap data blocks B∗1, ..., B∗k independently from

the empirical distribution L̂n = (l̂n−1)−1
∑bln−1

j=1 δ bBj
of the initial blocks

B̂1, ..., B̂bln−1, until the length of the bootstrap data series l∗(k) =∑k
j=1 l(B∗j ) is larger than n. Let l∗n = inf{k > 1, l∗(k) > n}.

2. From the bootstrap data blocks generated at step 1, reconstruct a
pseudo-trajectory by binding the blocks together, getting the recon-
structed (A)RBB sample path

X∗(n) = (B∗1, ...,B∗l∗n−1).
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Then compute the (A)RBB statistic and its (A)RBB standardization

T ∗
n = T (X∗(n)) and S∗n = S(X∗(n)).

3. The (A)RBB distribution is then given by

H(A)RBB(x) = P∗(S∗−1
n (T ∗

n − Tn) 6 x),

where P∗ denotes the conditional probability given the original data.

Remark 5.1 A Monte-Carlo approximation to H(A)RBB(x) may be straight-

forwardly computed by repeating independently N times this algorithm.

5.2 Atomic case: second order accuracy of the RBB

In the case of the sample mean, the bootstrap counterparts of the estimators
µn(f) and σ2

n(f) considered in § 4.1 (using the notation therein) are

µ∗n(f) = n∗−1
A

l∗n−1∑
j=1

f(B∗j ) and σ∗2n (f) = n∗−1
A

l∗n−1∑
j=1

{
f(B∗j )− µ∗n(f)l(B∗j )

}2
,

(22)

with n∗A =
∑l∗n−1

j=1 l(B∗j ). Let us consider the RBB distribution estimates of
the unstandardized and studentized sample means

HU
RBB(x) = P∗(n1/2

A σn(f)−1{µ∗n(f)− µn(f)} ≤ x),

HS
RBB(x) = P∗(n∗−1/2

A σ∗−1
n (f){µ∗n(f)− µn(f)} ≤ x).

The following theorem established in Bertail & Clémençon (2004b) shows
the RBB is asymptotically valid for the sample mean. Moreover it ensures
that the RBB attains the optimal rate of the i.i.d. Bootstrap. The proof
of this result crucially relies on the E.E. given in Malinovskii (1987) in the
standardized case and its extension to the studentized case proved in Bertail
& Clémençon (2004a).

Theorem 5.1 Suppose that (C1) is satisfied. Under H′
0(2, ν), H′

1(2, f, ν),

H′
0(κ) and H1(κ, f) with κ > 6, the RBB distribution estimate for the un-

standardized sample mean is second order accurate in the sense that

∆U
n = sup

x∈R
|HU

RBB(x)−HU
ν (x)| = OPν (n

−1), as n →∞,
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with HU
ν (x) = Pν(n

1/2
A σ−1

f {µn(f) − µ(f)} ≤ x). And if in addition (C4),

H′
0(κ) and H1(κ, f) are checked with κ > 8, the RBB distribution estimate

for the standardized sample mean is also 2nd order correct

∆S
n = sup

x∈R
|HS

RBB(x)−HS
ν (x)| = OPν (n

−1), as n →∞,

with HS
ν (x) = Pν(n

1/2
A σ−1

n (f){µn(f)− µ(f)} ≤ x).

5.3 Asymptotic validity of the ARBB for general chains

The ARBB counterparts of the statistics µ̂n(f) and σ̂2
n(f) considered in § 4.2

(using the notation therein) may be expressed as

µ∗n(f) = n∗−1
AM

l∗n−1∑
j=1

f(B∗j )

and

σ∗2n (f) = n∗−1
AM

l∗n−1∑
j=1

{
f(B∗j )− µ∗n(f)l(B∗j )

}2
,

denoting by n∗
AM

=
∑l∗n−1

j=1 l(B∗j ) the length of the ARBB data series. De-

fine the ARBB versions of the pseudo-regeneration based unstudentized and
studentized sample means (cf § 4.2) by

ς̂∗n = n1/2
AM

µ∗n(f)− µ̂n(f)

σ̂n(f)
and t̂∗n = n∗1/2

AM

µ∗n(f)− µ̂n(f)

σ∗n(f)
.

The unstandardized and studentized version of the ARBB distribution esti-
mates are then given by

HU
ARBB(x) = P∗(ς̂∗n ≤ x | X(n+1)) and HS

ARBB(x) = P∗(t̂∗n ≤ x | X(n+1)).

This is the same construction as in the atomic case, except that one uses the
approximate regeneration blocks instead of the exact regenerative ones (cf
Theorem 3.3 in Bertail & Clémençon (2004c)).

Theorem 5.2 Under the hypotheses of Theorem 4.2, we have the following

convergence results in distribution under Pν

∆U
n = sup

x∈R
|HU

ARBB(x)−HU
ν (x)| → 0, as n →∞,

∆S
n = sup

x∈R
|HS

ARBB(x)−HS
ν (x)| → 0, as n →∞.
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5.4 Second order properties of the ARBB using the

2-split trick

To bypass the technical difficulties related to the dependence problem in-
duced by the preliminary step estimation, assume now that the pseudo regen-
erative blocks are constructed according to Algorithm 4 (possibly including
the selection rule for the small set of Algorithm 3). It is then easier (at the
price of a small loss in the 2nd order term) to get second order results both
in the case of standardized and studentized statistics, as stated below (refer
to Bertail & Clémençon (2004c) for the technical proof).

Theorem 5.3 Suppose that (C1) and (C4) are satisfied by the split chain.

Under assumptions H′
0(κ, ν), H′

1(κ, f, ν), H′
0(f, κ), H′

1(f, κ) with κ > 6,

H2, H3 and H4, we have the second order validity of the ARBB distribution

both in the standardized and unstandardized case up to order

∆U
n = OPν (n

−1/2α1/2
mn
∨ n−1/2n−1mn}), as n →∞.

And if in addition these assumptions hold with k > 8, we have

∆S
n = OPν (n

−1/2α1/2
mn
∨ n−1/2n−1mn), as n →∞

In particular if αm = m log(m), by choosing mn = n2/3, the ARBB is second

order correct up to O(n−5/6 log(n)).

It is worth noticing that the rate that can be attained by the 2-split
trick variant of the ARBB for such chains is faster than the optimal rate the
MBB may achieve, which is typically of order O(n−3/4) under very strong
assumptions (see Götze & Künsch (1996), Lahiri (2003)). Other variants of
the bootstrap (sieve bootstrap) for time-series may also yield (at least prac-
tically) very accurate approximation (see Bühlmann (2002), (1997)). When
some specific non-linear structure is assumed for the chain (see our example
3), nonparametric method estimation and residual based resampling meth-
ods may also be used : see for instance Franke et al. (2002). However to our
knowledge, no rate of convergence is explicitly available for these bootstrap
techniques. An empirical comparison of all these recent methods would be
certainly of great help but is beyond the scope of this paper.
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6 Some extensions to U-statistics

We now turn to extend some of the asymptotic results stated in sections 4
and 5 for sample mean statistics to a wider class of functionals and shall con-
sider statistics of the form

∑
16i6=j6n U(Xi, Xj). For the sake of simplicity,

we confined the study to U -statistics of degree 2, in the real case only. As
will be shown below, asymptotic validity of inference procedures based on
such statistics does not straightforwardly follow from results established in
the previous sections, even for atomic chains. Furthermore, whereas asymp-
totic validity of the (approximate) regenerative block-bootstrap for these
functionals may be easily obtained, establishing its second order validity and
give precise rate is much more difficult from a technical viewpoint and is left
to a further study. Besides, arguments presented in the sequel may be easily
adapted to V -statistics

∑
16i, j6n U(Xi, Xj).

6.1 Regenerative case

Given a trajectory X(n) = (X1, ..., Xn) of a Harris positive atomic Markov
chain with stationary probability law µ (refer to § 2.2 for assumptions and
notation), we shall consider in the following U -statistics of the form

Tn =
1

n(n− 1)

∑

16i6=j6n

U(Xi, Xj), (23)

where U : E2 → R is a kernel of degree 2. Even if it entails introducing
the symmetrized version of Tn, it is assumed throughout the section that the
kernel U(x, y) is symmetric. Although such statistics have been mainly used
and studied in the case of i.i.d. observations, in dependent settings such as
ours, these statistics are also of interest, as shown by the following examples.

• In the case when the chain takes real values and is positive recurrent
with stationary distribution µ, the variance of the stationary distribution
s2 = Eµ((X − Eµ(X))2), if well defined (note that it differs in general from
the asymptotic variance of the mean statistic studied in § 4.1), may be con-
sistently estimated under adequate block moment conditions by

ŝ2
n =

1

n− 1

n∑
i=1

(Xi − µn)2 =
1

n(n− 1)

∑

16i6=j6n

(Xi −Xj)
2/2,

where µn = n−1
∑n

i=1 Xi, which is a U -statistic of degree 2 with symmetric
kernel U(x, y) = (x− y)2/2.

• In the case when the chain takes its values in the multidimensional
space Rp, endowed with some norm ||. ||, many statistics of interest may be
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written as a U -statistic of the form

Un =
1

n(n− 1)

∑

16i 6=j6n

H(||Xi −Xj||),

where H : R → R is some measurable function. And in the particular case
when p = 2, for some fixed t in R2 and some smooth function h, statistics of
type

Un =
1

n(n− 1)

∑

16i6=j6n

h(t, Xi, Xj)

arise in the study of the correlation dimension for dynamic systems (see
Borovkova et al. (1999)). Depth statistical functions for spatial data are also
particular examples of such statistics (cf Serfling & Zuo (2000)).

In what follows, the parameter of interest is

µ(U) =

∫

(x,y)∈E2

U(x, y)µ(dx)µ(dy), (24)

which quantity we assume to be finite. As in the case of i.i.d. observations, a
natural estimator of µ(U) in our markovian setting is Tn. We shall now study
its consistency properties and exhibit an adequate sequence of renormalizing
constants for the latter, by using the regeneration blocks construction once
again. For later use, define ωU : T2 → R by

ωU(x(k), y(l)) =
k∑

i=1

l∑
j=1

U(xi, yj),

for any x(k) = (x1, ..., xk), y(l) = (y1, ..., yl) in the torus T = ∪∞n=1E
n and

observe that ωU is symmetric, as U .

”Regeneration-based Hoeffding’s decomposition” By the represen-
tation of µ as a Pitman’s occupation measure (cf Theorem 2.1), we have

µ(U) = α−2EA(

τA(1)∑
i=1

τA(2)∑

l=τA(1)+1

U(Xi, Xj))

= α−2E(ωU(Bl,Bk)),

for any integers k, l such that k 6= l. In the case of U -statistics based
on dependent data, the classical (orthogonal) Hoeffding decomposition (cf
Serfling (1981)) does not hold anymore. Nevertheless, we may apply the
underlying projection principle for establishing the asymptotic normality of
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Tn by approximatively rewriting it as a U -statistic of degree 2 computed on
the regenerative blocks only, in a fashion very similar to the Bernstein blocks
technique for strongly mixing random fields (cf Doukhan (1994)), as follows.
As a matter of fact, the estimator Tn may be decomposed as

Tn =
(ln − 1)(ln − 2)

n(n− 1)
Uln−1 + T (0)

n + T (n)
n + ∆n, (25)

where,

UL =
2

L(L− 1)

∑

16k<l6L

ωU(Bk,Bl),

T (0)
n =

2

n(n− 1)

∑

16k6ln−1

ωU(Bk,B0), T (n)
n =

2

n(n− 1)

∑

06k6ln−1

ωU(Bk,B(n)
ln

),

∆n =
1

n(n− 1)
{

ln−1∑

k=0

ωU(Bk,Bk) + ωU(B(n)
ln

,B(n)
ln

)−
n∑

i=1

U(Xi, Xi)}.

Observe that the ”block diagonal part” of Tn, namely ∆n, may be straight-

forwardly shown to converge Pν- a.s. to 0 as n →∞, as well as T
(0)
n and T

(1)
n

by using the same arguments as the ones used in § 4.1 for dealing with sam-
ple means, under obvious block moment conditions (see conditions (ii)-(iii)
below). And, since ln/n → α−1 Pν- a.s. as n → ∞, asymptotic proper-
ties of Tn may be derived from the ones of Uln−1, which statistic depends
on the regeneration blocks only. The key point relies in the fact that the
theory of U -statistics based on i.i.d. data may be straightforwardly adapted
to functionals of the i.i.d. regeneration blocks of the form

∑
k<l ωU(Bk,Bl).

Hence, the asymptotic behaviour of the U -statistic UL as L →∞ essentially
depends on the properties of the linear and quadratic terms appearing in the
following variant of Hoeffding’s decomposition. For k, l > 1, define

ω̃U(Bk,Bl) =

τA(k+1)∑

i=τA(k)+1

τA(l+1)∑

j=τA(l)+1

{U(Xi, Xj)− µ(U)}.

(notice that E(ω̃U(Bk,Bl)) = 0 when k 6= l) and for L > 1 write the expansion

UL − µ(U) =
2

L

L∑

k=1

ω
(1)
U (Bk) +

2

L(L− 1)

∑

16k<l6L

ω
(2)
U (Bk,Bl), (26)

where, for any b1 = (x1, ..., xl) ∈ T,

ω
(1)
U (b1) = E(ω̃U(B1,B2)|B1 = b1) = EA(

l∑
i=1

τA∑
j=1

ω̃U(xi, Xj))
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is the linear term (see also our definition of the influence function of the
parameter E(ω(B1,B2)) in section 7) and for all b1, b2 in T,

ω
(2)
U (b1, b2) = ω̃U(b1, b2)− ω̃

(1)
U (b1)− ω̃

(1)
U (b2)

is the quadratic degenerate term (gradient of order 2). Notice that by using
the Pitman’s occupation measure representation of µ, we have as well, for
any b1 = (x1, ..., xl) ∈ T,

(EAτA)−1ω
(1)
U (b1) =

l∑
i=1

Eµ(ω̃U(xi, X1)).

For resampling purposes, we also introduce the U -statistic based on the
data between the first regeneration time and the last one only:

T̃n =
2

ñ(ñ− 1)

∑

1+τA6i<j6τA(ln)

U(Xi, Xj),

with ñ = τA(ln)− τA and T̃n = 0 when ln 6 1 by convention.

Asymptotic normality and asymptotic validity of the RBB Now
suppose that the following conditions, which are involved in the next result,
are fulfilled by the chain.

(i) (Non degeneracy of the U-statistic)

0 < σ2
U = E(ω

(1)
U (B1)

2) < ∞.

(ii) (Block-moment conditions: linear part) For some s > 2,

E(ω
(1)
|U |(B1)

s) < ∞ and Eν(ω
(1)
|U |(B0)

2) < ∞.

(iii) (Block-moment conditions: quadratic part) For some s > 2,

E|ω|U |(B1,B2)|s < ∞ and E|ω|U |(B1,B1)|s < ∞,

Eν |ω|U |(B0,B1)|2 < ∞ and Eν |ω|U |(B0,B0)|2 < ∞.

By construction, under (ii)-(iii) we have the crucial orthogonality prop-
erty:

Cov(ω
(1)
U (B1), ω

(2)
U (B1,B2)) = 0. (27)

Now a slight modification of the argument given in Hoeffding (1948) allows to
prove straightforwardly that

√
L(UL − µ(U)) is asymptotically normal with

zero mean and variance 4σ2
U . Furthermore, by adapting the classical CLT
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argument for sample means of Markov chains (refer to in Meyn & Tweedie
(1996) for instance) and using (27) and ln/n → α−1 Pν-a.s. as n → ∞,
one deduces that

√
n(Tn − µ(U)) ⇒ N (0, Σ2) as n → ∞ under Pν , with

Σ2 = 4α−3σ2
U .

Besides, estimating the normalizing constant is important (for construct-
ing confidence intervals or bootstrap counterparts for instance). So we define
the natural estimator σ2

U, ln−1 of σ2
U based on the (asymptotically i.i.d.) ln−1

regeneration data blocks by

σ2
U, L = (L− 1)(L− 2)−2

L∑

k=1

[(L− 1)−1

L∑

l=1,k 6=l

ωU(Bk,Bl)− UL]2,

for L > 1. The estimate σ2
U, L is a simple transposition of the jackknife esti-

mator considered in Callaert & Veraverbeke (1981) to our setting and may be
easily shown to be strongly consistent (by adapting the SLLN for U -statistics
to this specific functional of the i.i.d regeneration blocks). Furthermore, we
derive that Σ2

n → Σ2 Pν-a.s., as n →∞, where

Σ2
n = 4(ln/n)3σ2

U, ln−1.

We also consider the regenerative block-bootstrap counterparts T ∗
n and Σ∗2

n

of T̃n and Σ2
n respectively, constructed via Algorithm 5 :

T ∗
n =

2

n∗(n∗ − 1)

∑
16i<j6n∗

U(X∗
i , X∗

j ),

Σ∗2
n = 4(l∗n/n∗)3σ∗2U, l∗n−1,

where n∗ denotes the length of the RBB data series X∗(n) = (X1, ..., Xn∗)
constructed from the l∗n − 1 bootstrap data blocks, and

σ∗2U, l∗n−1 = (l∗n − 2)(l∗n − 3)−2

l∗n−1∑

k=1

[(l∗n − 2)−1

l∗n−1∑

l=1,k 6=l

ωU(B∗k,B∗l )− U∗
l∗n−1]

2, (28)

U∗
l∗n−1 =

2

(l∗n − 1)(l∗n − 2)

∑

16k<l6l∗n−1

ωU(B∗k,B∗l ).

We may then state the following result.

Theorem 6.1 If conditions (i)-(iii) are fulfilled with s = 4, then we have

the CLT under Pν

√
n(Tn − µ(U))/Σn ⇒ N (0, 1), as n →∞.
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This limit result also holds for T̃n, as well as the asymptotic validity of the

RBB distribution: as n →∞,

sup
x∈R

|P∗(
√

n∗(T ∗
n − T̃n))/Σ∗

n ≤ x)− Pν(
√

n(T̃n − µ(U))/Σn ≤ x)| Pν→ 0.

Whereas proving the asymptotic validity of the RBB for U -statistics un-
der these assumptions is straightforward (its second order accuracy up to
o(n−1/2) seems also quite easy to prove by simply adapting the argument

used by Helmers (1991) under appropriate Cramer condition on ω
(1)
U (B1) and

block-moment assumptions), establishing an exact rate, O(n−1) for instance
as in the case of sample mean statistics, is much more difficult. Even if
one tries to reproduce the argument in Bertail & Clémençon (2004a) con-
sisting in partitioning the underlying probability space according to every
possible realization of the regeneration times sequence between 0 and n, the
problem boils down to control the asymptotic behaviour of the distribution

P(
∑

16i6=j6m ω
(2)
U (Bi,Bj)/σ

2
U, m 6 y,

∑m
j=1 Lj = l) as m → ∞, which is a

highly difficult technical task̇ (due to the lattice component).

Remark 6.1 We point out that the approach developed here to deal with the

statistic UL naturally applies to more general functionals of the regeneration

blocks
∑

k<l ω(Bk,Bl), with ω : T2 → R being some measurable function.

For instance, the estimator of the asymptotic variance σ̂2
n(f) proposed in §

4.1 could be derived from such a functional, that may be seen as a U-statistic

based on observation blocks with kernel ω(Bk,Bl) = (f(Bk)− f(Bl))
2/2.

6.2 General case

Suppose now that the observed trajectory X(n+1) = (X1, ..., Xn+1) is drawn
from a general Harris positive chain with stationary probability µ (see § 2.2
for assumptions and notation). Using the split chain, we have the represen-
tation of the parameter µ(U) :

µ(U) = EAM(τAM)−2EAM(ωU(B1,B2)).

Using the pseudo-blocks B̂l, 1 6 l 6 l̂n − 1, as constructed in § 3.2, we
consider the sequence of renormalizing constants for Tn :

Σ̂2
n = 4(l̂n/n)3σ̂2

U, bln−1
, (29)
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with

σ̂2
U, bln−1

= (l̂n − 2)(l̂n − 3)−2

bln−1∑

k=1

[(l̂n − 2)−1

bln−1∑

l=1,k 6=l

ωU(B̂k, B̂l)− Ûbln−1]
2,

Ûbln−1 =
2

(l̂n − 1)(l̂n − 2)

∑

16k<l6bln−1

ωU(B̂k, B̂l).

We also introduce the U -statistic computed from the first approximate re-
generation time and the last one:

T̂n =
2

n̂(n̂− 1)

∑

1+bτA(1)6i<j6bτA(ln)

U(Xi, Xj),

with n̂ = τ̂A(l̂n)− τ̂A(1). Let us define the bootstrap counterparts T ∗
n and Σ∗

n

of T̂n and Σ̂2
n constructed from the pseudo-blocks via Algorithm 5. Although

approximate blocks are used here instead of the (unknown) regenerative ones
Bl, 1 6 l 6 ln − 1, asymptotic normality still holds under appropriate as-
sumptions, as shown by the theorem below, which we state in the only case
when the kernel U is bounded (with the aim to make the proof simpler).

Theorem 6.2 Suppose that the kernel U(x, y) is bounded and that H2, H3,

H4 are fulfilled, as well as (i)-(iii) for s = 4. Then we have as n →∞,

Σ̂2
n → Σ2 = 4EAM(τAM)−3EAM(ω

(1)
U (B1)

2), in Pν-pr.

Moreover as n →∞, under Pν we have the convergence in distribution

n1/2Σ̂−1
n (T̂n − µ(U)) ⇒ N (0, 1),

as well as the asymptotic validity of the ARBB counterpart

sup
x∈R

|P∗(
√

n∗(T ∗
n − T̂n))/Σ∗

n ≤ x)− Pν(
√

n(T̂n − µ(U))/Σ̂n ≤ x)| Pν→
n→∞

0.

Proof. By applying the results of § 6.1 to the split chain, we get
that the variance of the limiting (normal) distribution of

√
n(Tn − µ(U)) is

Σ2 = 4EAM(τAM)−3EAM(ω
(1)
U (B1)

2). The key point of the proof consists in

considering an appropriate coupling between (Xi, Yi)16i6n and (Xi, Ŷi)16i6n

(or equivalently between the sequence of the ”true” regeneration times be-
tween 0 and n and the sequence of approximate ones), so as to control the
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deviation between functionals constructed from the regeneration blocks and
their counterparts based on the approximate ones. The coupling considered
here is the same as the one used in the proof of Theorem 3.1 in Bertail &
Clémençon (2004c) (refer to the latter article for a detailed construction). We
shall now evaluate how σ̂2

U, bln−1
differs from σ2

U, ln−1, its counterpart based on

the ”true” regeneration blocks. Observe first that

Tn =
n̂(n̂− 1)

n(n− 1)
T̂n + T̂ (0)

n + T̂ (n)
n + ∆̂n,

where

T̂ (0)
n =

2

n(n− 1)

∑

16k6bln−1

ωU(B̂k, B̂0), T̂ (n)
n =

2

n(n− 1)

∑

06k6ln−1

ωU(B̂k, B̂(n)
bln ),

∆̂n =
1

n(n− 1)
{
bln−1∑

k=0

ωU(B̂k, B̂k) + ωU(B̂(n)
bln , B̂(n)

bln )−
n∑

i=1

U(Xi, Xi)}.

Now following line by line the proof of lemma 5.2 in Bertail & Clémençon

(2004c), we obtain that, as n →∞, n̂/n− 1 = OPν (1), ∆̂n −∆n, T̂
(0)
n − T̂

(0)
n

and T̂
(n)
n − T̂

(n)
n are OPν (n

−1). It follows thus that T̂n = Tn + oPν (n
−1/2)

as n → ∞, and
√

n(T̂n − µ(U)) is asymptotically normal with variance Σ2.
The same limit results is straightforwardly available then for the Bootstrap
version by standard regenerative arguments. Furthermore, by Lemma 5.3 in

Bertail & Clémençon (2004c) we have | l̂n/n− ln/n |= OPν (α
1/2
n ) as n →∞,

and thus l̂n/n → EAM(τAM)−1 in Pν-pr. as n →∞. It then follows by simple

(especially when U is bounded) but tedious calculations that Σ̂2
n − Σ2

n =
Dn + oPν (1) as n →∞, with

Dn = 4(ln/n)3[l̂−1
n

bln−1∑
i=1

{ 1

l̂n − 2

bln−1∑

j=1,j 6=i

ωU(B̂i, B̂j)}2

− l−1
n

ln−1∑
i=1

{ 1

ln − 2

ln−1∑

j=1,j 6=i

ωU(Bi,Bj)}2].

Now set ĝn(B̂i) = (l̂n − 2)−1
∑bln−1

j=1,j 6=i ωU(B̂i, B̂j) for i ∈ {1, ..., l̂n − 1} and

gn(Bi) = (ln − 2)−1
∑ln−1

j=1,j 6=i ωU(Bi,Bj) for i ∈ {1, ..., l̂n − 1}. By standard
arguments on U -statistics (see for instance Helmers (1991) and the references
therein) and using once again lemma 5.1 and 5.2 in Bertail & Clémençon

(2004b), we have uniformly in i ∈ {1, ..., l̂n − 1} (resp. in i ∈ {1, ..., l̂n − 1}),
ĝn(B̂i) = ω

(1)
U (B̂i) + oPν (1) (resp. gn(Bi) = ω

(1)
U (Bi) + oPν (1)) as n → ∞.

Such uniform bounds are facilitated by the boundedness assumption on U ,
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but one may expect that with refined computations the same results could
be established for unbounded kernels.

It follows that as n →∞,

∆n = 4(ln/n)3[l̂−1
n

bln−1∑
i=1

{ω(1)
U (B̂i)}2 − l−1

n

ln−1∑
i=1

{ω(1)
U (Bi)}2] + oPν (1).

The first term in the right hand side is also oPν (1) by lemma 5.2 in Bertail
& Clémençon (2004c). The proof of the asymptotic validity of the Boot-
strap version is established by following the preceding lines: it may be easily
checked by first linearizing and following the proof of Theorem 3.3 in Bertail
& Clémençon (2004c). As in the i.i.d case, this asymptotic result essentially
boils down then to check that the empirical moments converge to the the-
oretical ones. This can be done by adapting standard SLLN arguments for
U -statistics.

7 Robust functional parameter estimation

Extending the notion of influence function and/or robustness to the frame-
work of general time series is a difficult task (see Künsch (1984) or Martin
& Yohai (1986)). Such concepts are important not only to detect ”outliers”
among the data or influential observations but also to generalize the impor-
tant notion of efficient estimation in semiparametric frameworks (see the
recent discussion in Bickel & Kwon (2001) for instance). In the markovian
setting, a recent proposal based on martingale approximation has been made
by Müller et al. (2001). Here we propose an alternative definition of the
influence function based on the (approximate) regeneration blocks construc-
tion, which is easier to manipulate and immediately leads to central limit
and convolution theorems.

7.1 Defining the influence function on the torus

The leitmotiv of this paper is that most parameters of interest related to
Harris chains are functionals of the distribution L of the regenerative blocks
(observe that L is a distribution on the torus T = ∪n>1E

n), namely the
distribution of (X1, ...., XτA

) conditioned on X0 ∈ A when the chain possesses
an atom A, or the distribution of (X1, ...., XτAM

) conditioned on (X0, Y0) ∈
AM in the general case when one considers the split chain (refer to section
2 for assumptions and notation, here we shall omit the subscript A and M
in what follows to make the notation simpler). In view of Theorem 2.1,
this is obviously true in the positive recurrent case for any functional of the
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stationary law µ. But, more generally, the probability distribution Pν of the
Markov chain X starting from ν may be decomposed as follows :

Pν((Xn)n>1) = Lν((X1, ...., XτA(1)
))

∞∏

k=1

L((X1+τA(k), ...., XτA(k+1))),

denoting by Lν the distribution of (X1, ...., XτA
) conditioned on X0 ∼ ν.

Thus any functional of the law of (Xn)n>1 may be seen as a functional of (Lν ,
L). However, pointing out that the distribution of Lν cannot be estimated
in most cases encountered in practice, only functionals of L are of practical
interest. The object of this subsection is to propose the following definition
of the influence function for such functionals. Let PT denote the set of all
probability measures on the torus T and for any b ∈ T, set L(b) = k if b ∈ Ek,
k > 1. We then have the following natural definition, that straightforwardly
extends the classical notion of influence function in the i.i.d. case, with the
important novelty that distributions on the torus are considered here.

Definition 7.1 Let T : PT → R be a functional on PT. If for L in PT,
t−1(T ((1 − t)L + tδb) − T (L)) has a finite limit as t → 0 for any b ∈ T,

then the influence function T (1) of the functional T is well defined, and by

definition one has for all b in T,

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)

t
. (30)

7.2 Some examples

The relevance of this definition is illustrated through the following examples,
which aim to show how easy it is to adapt known calculations of influence
function on R to this framework.

a) Suppose that X is positive recurrent with stationary distribution µ. Let
f : E → R be µ-integrable and consider the parameter µ0(f) = Eµ(f(X)).
Denote by B a r.v. valued in T with distribution L and observe that µ0(f) =

EL (f(B))/EL (L(B)) = T (L) (recall the notation f(b) =
∑L(b)

i=1 f(bi) for any
b ∈ T). A classical calculation for the influence function of ratios yields then

T (1)(b,L) =
d

dt
(T ((1− t)L+ tb)|t=0 =

f(b)− µ(f)L(b)

EL (L(B))

Notice that EL(T (1)(B,L)) = 0.
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b) Let θ be the unique solution of the equation: Eµ(ψ(X, θ)) = 0, where
ψ : R2 → R is C2. Observing that it may be rewritten as EL(ψ(B, θ)) = 0,
a similar calculation to the one used in the i.i.d. setting (if differentiating
inside the expectation is authorized) gives in this case

T
(1)
ψ (b,L) = − ψ(b, θ)

EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ
)
.

By definition of θ, we naturally have EL(T (1)
ψ (B,L)) = 0.

c) Assuming that the chain takes real values and its stationary law µ has
zero mean and finite variance, let ρ be the correlation coefficient between
consecutive observations under the stationary distribution:

ρ =
Eµ(XnXn+1)

Eµ(X2
n)

=
EA(

∑τA

n=1 XnXn+1)

EA(
∑τA

n=1 X2
n)

.

For all b in T, the influence function is

T (1)
ρ (b,L) =

∑L(b)
i=1 bi(bi+1 − ρbi)

EA(
∑τA

t=1 X2
t )

,

and one may check that EL(T (1)
ρ (B,L)) = 0.

d) It is now possible to reinterpret the results obtained for U -statistics
in section 6. With the notation above, the parameter of interest may be
rewritten

µ(U) = EL (L(B))−2EL×L(U(B1,B2)),

yielding the influence function: ∀b ∈ T,

µ(1)(b,L) = 2EL (L(B))−2EL(ω̃U(B1,B2)|B1 = b).

7.3 Main results

In order to lighten the notation, the study is restricted to the case when
X takes real values, i.e. E ⊂ R, but straightforwardly extends to a more
general framework. Given an observed trajectory of length n, natural em-
pirical estimates of parameters T (L) are of course the plug-in estimators
T (Ln) based on the empirical distribution of the observed regeneration blocks

Ln = (ln − 1)−1
∑ln−1

j=1 δBj
∈ PT in the atomic case, which is defined as soon

as ln > 2 (notice that Pν(ln 6 1) = O(n−1) as n →∞, if H0(1, ν) and H0(2)
are satisfied). For measuring the closeness between Ln and L, consider the
bounded Lipschitz type metric on PT

dBL(L,L′) = sup
f∈Lip1

T

{
∫

f(b)L(db)−
∫

f(b)L′(db)}, (31)
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for any L, L′ in PT, denoting by Lip1
T the set of functions F : T→ R of type

F (b) =
∑L(b)

i=1 f(bi), b ∈ T, where f : E → R is such that supx∈E |f(x)| 6 1
and is 1-Lipschitz. Other metrics (of Zolotarev type for instance, cf Rachev
& Ruschendorf (1998)) may be considered. In the general Harris case (refer
to § 3.2 for notation), the influence function based on the atom of the split
chain, as well as the empirical distribution of the (unobserved) regeneration
blocks have to be approximated to be of practical interest. Once again, we
shall use the approximate regeneration blocks B̂1, ..., B̂bln−1 (using Algorithm
2, 3 ) in the general case and consider

L̂n = (l̂n − 1)

bln−1∑
j=1

δ bBj
,

when l̂n > 2. The following theorem provides an asymptotic bound for the
error committed by replacing the empirical distribution Ln of the ”true”
regeneration blocks by L̂n, when measured by dBL.

Theorem 7.2 Under H′
0(4),H′

0(4, ν),H2, H3 and H4, we have

dBL(Ln, L̂n) = O(α1/2
n ), as n →∞.

And if in addition dBL(Ln,L) = O(n−1/2) as n →∞, then

dBL(Ln, L̂n) = O(α1/2
n n−1/2), as n →∞.

Proof. With no loss of generality, we assume the Xi’s centered. From

lemma 5.3 in Bertail & Clémençon (2004c), we have ln/l̂n− 1 = OPν (α
1/2
n ) as

n →∞. Besides, writing

dBL(Ln, L̂n) ≤ (
ln − 1

l̂n − 1
− 1) sup

f∈Lip1
T

| 1

ln − 1

ln−1∑
j=1

f(Bj)|

+
n

l̂n − 1
sup

f∈Lip1
T

|n−1

ln−1∑
j=1

f(Bj)− n−1

bln−1∑
j=1

f(B̂j)|, (32)

and observing that supf∈Lip1
T
|(ln − 1)−1

∑ln−1
j=1 f(Bj)| 6 1, we get that

the first term in the right hand side is OPν (α
1/2
n ) as n → ∞. Now as

supx∈E |f(x)| 6 1, we have

|n−1(
ln∑

j=1

f(Bj)−
bln∑

j=1

f(B̂j))| ≤ n−1(|τ̂AM(1)−τAM(1)|+ |τ̂AM(ln)− τ̂AM(ln)|),
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and from lemma 5.1 in by Bertail & Clémençon (2004b), the term in the
right hand side is oPν (n

−1) as n →∞. We thus get

dBL(Ln, L̂n) ≤ α1/2
n dBL(Ln,L) + oPν (n

−1), as n →∞.

And this completes the proof.
Given the metric on PT defined by dBL, we consider now the Fréchet

differentiability for functionals T : PT → R.

Definition 7.3 We say that T is Fréchet-differentiable at L0 ∈ PT, if there

exists a linear operator DT
(1)
L0

and a function ε(1)(.,L0): R→ R, continuous

at 0 with ε(1)(0,L0) = 0, such that:

∀L ∈ PT, T (L)− T (L0) = D(1)TL0(L − L0) + R(1)(L,L0),

with R(1)(L,L0) = dBL(L,L0)ε
(1)(dBL(L,L0),L0). Moreover, T is said to

have a canonical gradient (or influence function) T (1)(.,L0), if one has the

following representation for DT
(1)
L0

:

∀L ∈ PT, DT
(1)
L0

(L − L0) =

∫

T
T (1)(b,L0)L(db).

Now it is easy to see that from this notion of differentiability on the
torus one may directly derive CLT’s, provided the distance d(Ln,L) may be
controlled.

Theorem 7.4 In the regenerative case, if T : PT → R is Fréchet differen-

tiable at L and dBL(Ln,L) = OPν (n
−1/2) (or R(1)(Ln,L) = oPν (n

−1/2)) as

n →∞, and if EA(τA) < ∞ and 0 < V arA(T (1)(B1,L)) < ∞ then under Pν,

n1/2(T (Ln)− T (L)) ⇒ N (0,EA(τA)V arA(T (1)(B1,L)), as n →∞.

In the general Harris case, if the split chain satisfies the assumptions above

(with A replaced by AM), under the assumptions of Theorem 7.2, as n →∞
we have under Pν ,

n1/2(T (L̂n)− T (L)) ⇒ N (0,EAM(τAM)V arAM(T (1)(B1,L)).
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The proof is straightforward and left to the reader. Observe that if one

renormalizes by l
1/2
n instead of renormalizing by n1/2 in the atomic case (resp.,

by l̂
1/2
n in the general case), the asymptotic distribution would be simply

N (0, V arA(T (1)(B1,L)) (resp., V arAM(T (1)(B1,L)), which depends on the
atom chosen (resp. on the parameters of condition M).

Then going back to the preceding examples, we straightforwardly deduce
the following results.

a) Noticing that n1/2/l
1/2
n → EA(τA)1/2 Pν- a.s. as n → ∞, we immedi-

ately get that under Pν , as n →∞,

n1/2(µn(f)− µ(f)) ⇒ N (0,EA(τA)−1V arA(

τA∑
i=1

(f(Xi)− µ(f)).

b) In a similar fashion, under smoothness assumptions ensuring Fréchet

differentiability, the M -estimator θ̂n being the (unique) solution of the block-
estimating equation

τA(ln)∑
i=τA+1

ψ(Xi, θ) =
ln∑

j=1

τA(j+1)∑

i=τA(j)+1

ψ(Xi, θ) = 0,

we formally obtain that, if EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ
) 6= 0 and θ is the true value of

the parameter, then under Pν , as n →∞,

n1/2(θ̂n − θ) ⇒ N (0, [
EA(

∑τA

i=1
∂ψ(Xi,θ)

∂θ
)

EA(τA)
]−2V arA(

∑τA

i=1 ψ(Xi, θ))

EA(τA)
).

Observe that both factors in the variance are independent from the atom A
chosen. It is worth noticing that, by writing the asymptotic variance in this
way, as a function of the distribution of the blocks, a consistent estimator for
the latter is readily available, from the (approximate) regeneration blocks.
Examples c) and d) may be treated similarly.

Remark 7.1 The concepts developed here may also serve as a tool for ro-

bustness purpose, for deciding whether a specific data block has an important

influence on the value of some given estimate or not, and/or whether it may

be considered as ”outlier”. The concept of robustness we introduce is related

to blocks of observations, instead of individual observations. Heuristically,

one may consider that, given the regenerative dependency structure of the
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process, a single suspiciously outlying value at some time point n may have a

strong impact on the trajectory, until the (split) chain regenerates again, so

that not only this particular observation but the whole ”contaminated” seg-

ment of observations should be eventually removed. Roughly stated, it turns

out that examining (approximate) regeneration blocks as we propose before,

allows to identify more accurately outlying data in the sample path, as well as

their nature (in the time series context, different type of outliers may occur,

such as additive or innovative outliers). By comparing the data blocks (their

length, as well as the values of the functional of interest on these blocks) this

way, one may detect the ones to remove eventually from further computa-

tions.

8 Some extreme values statistics

We now turn to statistics related to the extremal behaviour of functionals
of type f(Xn) in the atomic positive Harris recurrent case, where f : (E,
E) → R is a given measurable function. More precisely, we shall focus on
the limiting distribution of the maximum Mn(f) = max16i6n f(Xi) over a
trajectory of length n, in the case when the chain X possesses an accessible
atom A (see Asmussen (1998) and the references therein for various examples
of such processes X in the area of queuing systems and a theoretical study
of the tail properties of Mn(f) in this setting).

8.1 Submaxima over regeneration blocks

For j > 1, we define the ”submaximum” over the j-th cycle of the sample
path:

ζj(f) = max
1+τA(j)6i6τA(j+1)

f(Xi).

The ζj(f)’s are i.i.d. r.v.’s with common d.f. Gf (x) = P(ζ1(f) 6 x). The
following result established by Rootzén (1988) shows that the limiting dis-
tribution of the sample maximum of f(X) is entirely determined by the tail
behaviour of the df Gf and relies on the crucial observation that the maxi-
mum value Mn(f) = max16i6n f(Xi) over a trajectory of length n, may be
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expressed in terms of ”submaxima” over regeneration blocks as follows

Mn(f) = max(ζ0(f), max
16j6ln−1

ζj(f), ζ
(n)
ln

(f)),

where ζ0(f) = max16i6τA
f(Xi) and ζ

(n)
ln

(f) = max1+τA(ln)6i6n f(Xi) denote
the maxima over the non regenerative data blocks, and with the usual con-
vention that the maximum over an empty set equals −∞.

Proposition 8.1 (Rootzén, 1988) Let α = EA(τA) be the mean return time

to the atom A. Under the assumption (A1) that the first (non-regenerative)

block does not affect the extremal behaviour, i.e. Pν(ζ0(f) > max16k6l ζk(f)) →
0 as l →∞, we have

sup
x∈R

| Pν(Mn(f) 6 x)−Gf (x)n/α |→ 0, as n →∞. (33)

Hence, as soon as condition (A1) is fulfilled, the asymptotic behaviour
of the sample maximum may be deduced from the tail properties of Gf .
In particular, the limiting distribution of Mn(f) (for a suitable normaliza-
tion) is the extreme df Hξ(x) of shape parameter ξ ∈ R (with Hξ(x) =
exp(−x−1/ξ)I{x > 0} when ξ > 0, H0(x) = exp(− exp(−x)) and Hξ(x) =
exp(−(−x)−1/ξ)I{x < 0} if ξ < 0) iff Gf belongs to the maximum domain
of attraction MDA(Hξ) of the latter df (refer to Resnick (1987) for basics in
extreme value theory). Thus, when Gf ∈ MDA(Hξ), there are sequences of
norming constants an and bn such that Gf (anx + bn)n → Hξ(x) as n → ∞,
we then have Pν(Mn(f) 6 a′nx + bn) → Hξ(x) as n →∞, with a′n = an/α

ξ.

8.2 Tail estimation based on submaxima over regener-

ation blocks

In the case when assumption (A1) holds, one may straightforwardly derive
from (33) estimates of Hf, n(x) = Pν(Mn(f) 6 x) as n → ∞ based on the
observation of a random number of submaxima ζj(f) over a sample path, as
proposed in Glynn & Zeevi (2000):

Ĥf, n, l(x) = (Ĝf, n(x))l,

with 1 6 l 6 ln and denoting by Ĝf, n(x) = 1
ln−1

∑ln−1
i=1 I{ζj(f) 6 x} the

empirical df of the ζj(f)’s (with Ĝf, n(x) = 0 by convention when ln 6
1). We have the following limit result (see also Proposition 3.6 in Glynn
& Zeevi (2000) for a different formulation, stipulating the observation of a
deterministic number of regeneration cycles).
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Proposition 8.2 Let (un) be such that n(1−Gf (un))/α → η < ∞ as n →
∞. Suppose that assumptions H0(1, ν) and (A1) holds, then Hf, n(un) →
exp(−η) as η →∞. And let Nn ∈ N such that Nn/n2 → 0 as n →∞, then

we have

Ĥf, Nn, ln(un)/Hf, n(un) → 1 in Pν- probability, as n →∞. (34)

Moreover if Nn/n
2+ρ → ∞ as n → ∞ for some ρ > 0, this limit result

also holds Pν- a.s. .

Proof. First, the convergence Hf, n(un) → exp(−η) as η → ∞ straight-
forwardly follows from Proposition 8.1. Now we shall show that ln(1 −
Ĝf, Nn(un)) → η in Pν- pr. as n →∞. As ln/n → α−1 Pν- a.s. as n →∞ by
the SLLN, it thus suffices to prove that

n(Gf (un)− Ĝf, Nn(un)) → 0 in Pν − pr . as n →∞. (35)

Write

n(Gf (un)− Ĝf, Nn(un)) =
Nn

lNn − 1

n

Nn

lNn−1∑
j=1

{I{ζj(f) 6 un} −Gf (un)},

and observe that Nn/(lNn − 1) → α, Pν- a.s. as n →∞ by the SLLN again.
Besides, from the argument of Theorem 15 in Clémençon (2001), we easily
derive that there exist constants C1 and C2 such that for all ε > 0, n ∈ N

Pν




∣∣∣∣∣∣

lNn−1∑
j=1

{I{ζj(f) 6 un} −Gf (un)}
∣∣∣∣∣∣
> ε


 6 C1 exp(−C2ε

2/Nn)

+ Pν (τA > Nn) .

From this bound, one immediately establishes (35 ). And in the case
when Nn = n2+ρ for some ρ > 0, Borel-Cantelli’s lemma, combined with the
latter bound shows that the convergence also takes place Pν-almost surely.

This result indicates that observation of a trajectory of length Nn, with
n2 = o(Nn) as n → ∞, is required for estimating consistently the extremal
behaviour of the chain over a trajectory of length n. As shall be shown below,
it is nevertheless possible to estimate the tail of the sample maximum Mn(f)
from the observation of a sample path of length n only, when assuming some
type of behaviour for the latter, namely under maximum domain of attraction
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hypotheses. As a matter of fact, if one assume that Gf ∈ MDA(Hξ) for some
ξ ∈ R, of which sign is a priori known, one may implement classical inference
procedures (refer to § 6.4 in Embrechts et al. (1999) for instance) from the
observed submaxima ζ1(f), ..., ζln−1(f) for estimating the shape parameter ξ
of the extremal distribution, as well as the norming constants an and bn. We
now illustrate this point in the Fréchet case (i.e. when ξ > 0), through the
example of the Hill inference method.

8.3 Heavy-tailed stationary distribution

As shown in Rootzén (1988), when the chain takes real values, assumption
(A1) is checked for f(x) = x (for this specific choice, we write Mn(f) = Mn,
Gf = G, and ζj(f) = ζj in what follows) in the particular case when the
chain is stationary, i.e. when ν = µ. Moreover, it is known that when the
chain is positive recurrent there exists some index θ, namely the extremal
index of the sequence X = (Xn)n∈N (see Leadbetter & Rootzén (1988) for
instance), such that

Pµ(Mn 6 x) ∼
n→∞

Fµ(x)nθ, (36)

denoting by Fµ(x) = µ(] −∞, x]) = αEA(
∑τA

i=1 I{Xi 6 x}) the stationary
df. In this case, as remarked in Rootzén (1988), if (un) is such that n(1 −
G(un))/α → η < ∞, we deduce from Proposition 8.1 and (36) that

θ = lim
n→∞

PA(max16i6τA
Xi > un)

EA(
∑τA

i=1 I{Xi > un}) .

We may then propose a natural estimate of the extremal index θ based on
the observation of a trajectory of length N ,

θ̂N =

∑lN−1
j=1 I{ζj > un}∑N
i=1 I{Xi > un}

,

which may be shown to be consistent (resp., strongly consistent) under Pµ

when N = Nn is such that Nn/n2 →∞ (resp. Nn/n2+ρ →∞ for some ρ > 0)
as n →∞ and H0(2) is fulfilled by reproducing the argument of Proposition
9.2. And Proposition 8.1 combined with (36) also entails that for all ξ in R,

G ∈ MDA(Hξ) ⇔ Fµ ∈ MDA(Hξ).

8.4 Regeneration-based Hill estimator

This crucial equivalence holds in particular in the Fréchet case, i.e. for ξ > 0.
Recall that assuming that a df F belongs to MDA(Hξ) classically amounts
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then to suppose that it satisfies the tail regularity condition

1− F (x) = L(x)x−a,

where a = ξ−1 and L is a slowly varying function, i.e. a function L such that
L(tx)/L(x) → 1 as x →∞ for any t > 0 (cf Theorem 8.13.2 in Bingham et
al. (1987)). Since the seminal contribution of Hill (1975), numerous papers
have been devoted to the development and the study of statistical methods
in the i.i.d. setting for estimating the tail index a > 0 of a regularly varying
df. Various inference methods, mainly based on an increasing sequence of
upper order statistics, have been proposed for dealing with this estimation
problem, among which the popular Hill estimator, relying on a conditional
maximum likelihood approach. More precisely, based on i.i.d. observations
X1, ...., Xn drawn from F , the Hill estimator is given by

HX
k, n = (k−1

k∑
i=1

ln
X(i)

X(k+1)

)−1, (37)

where X(i) denotes the i-th largest order statistic of the sample X(n) =
(X1, ..., Xn), 1 6 i 6 n, 1 6 k < n . Strong consistency (cf Deheuvels
et al. (1988)) of this estimate has been established when k = kn → ∞ at
a suitable rate, namely for kn = o(n) and ln ln n = o(kn) as n → ∞, as
well as asymptotic normality (see Goldie (1991)) under further conditions
on F and kn,

√
kn(HX

kn,n − a) ⇒ N (0, a2), as n → ∞. Now let us de-
fine the regeneration-based Hill estimator from the observation of the ln − 1
submaxima ζ1, ..., ζln−1, denoting by ξ(j) the j-th largest submaximum,

ân, k = Hζ
k, ln−1 = (k−1

k∑
i=1

ln
ζ(i)

ζ(k+1)

)−1.

Given that ln →∞, Pν- a.s. as n →∞, results established in the case of i.i.d.
observations straightforwardly extend to our setting (for comparison purpose,
see Resnick & Starica (1995) for properties of the classical Hill estimate in
dependent settings).

Proposition 8.3 Suppose that Fµ ∈ MDA(Ha−1) with a > 0. Let (kn) be

an increasing sequence of integers such that kn 6 n for all n, kn = o(n) and

ln ln n = o(kn) as n → ∞. Then the regeneration-based Hill estimator is

strongly consistent

ân, kln−1
→ a, Pν- a.s., as n →∞.
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Under the further assumption that Fµ satisfies the Von Mises condition and

that kn is chosen accordingly (cf Goldie (1991)), it is moreover asymptotically

normal in the sense that

√
kln−1(ân, kln−1

− a) ⇒ N (0, a2) under Pν , as n →∞.

9 Concluding remarks

Although we are far from having covered the unifying theme of statistics
based on (pseudo-) regeneration for Harris Markov chains, an exhaustive
treatment of the possible applications of this methodology being naturally
beyond the scope of the present survey article, we endeavour to present here
enough material to illustrate the power of this method. Most of the results
reviewed in this paper are very recent (or new) and this line of research is
still in development. Now we conclude by making a few remarks raising
several open questions among the topics we focused on, and emphasizing the
potential gain that the regeneration-based statistical method could provide
in further applications.

• We point out that establishing sharper rates for the 2nd order accuracy
of the ARBB when applied to sample mean statistics in the general Harris
case presents considerable technical difficulties (at least to us). However, one
might expect that this problem could be successfully addressed by refining
some of the (rather loose) bounds put forward in the proof. Furthermore, as
previously indicated, extending the argument to U -statistics requires to prove
preliminary non-uniform limit theorems for U -statistics of random vectors
with a lattice component.

• In numerous applications it is relevant to consider null recurrent (even-
tually regenerative) chains: such chains frequently arise in queuing/network
systems, related to teletraffic data for instance (see Resnick (1997) or Glynn
& Whitt (1995) for example), with heavy-tailed cycle lengths. Hence, ex-
ploring the theoretical properties of the (A)RBB for these specific time se-
ries provides thus another subject of further research: as shown by Karlsen
& Tjøstheim (1998), consistent estimates of the transition kernel, as well as
rates of convergence for the latter, may still be exhibited for β-recurrent null
chains (i.e. chains for which the return time to an atom is in the domain
of attraction of a stable law with β ∈]0, 1[ being the stable index), so that
extending the asymptotic validity of the (A)RBB distribution in this case
seems conceivable.

• Turning to the statistical study of extremes now (which matters in in-
surance and finance applications for instance), a thorough investigation of
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the asymptotic behaviour of extreme value statistics based on the approx-
imate regeneration blocks remains to be carried out in the general Harris
case.

We finally mention ongoing work on empirical likelihood estimation in
the markovian setting, for which methods based on (pseudo-) regeneration
blocks are expected to provide significant results.

References

[1] Abramovitz L., Singh K.(1985). Edgeworth Corrected Pivotal Statistics
and the Bootstrap, Ann. Stat., 13 ,116-132.

[2] Asmussen, S. (1987). Applied Probabilities and Queues. Wiley.

[3] Asmussen, S. (1998). Extremal Value Theory for Queues Via Cycle Max-
ima. Extremes, 1, No 2, 137-168.

[4] Athreya, K.B., Atuncar, G.S. (1998). Kernel estimation for real-valued
Markov chains. Sankhya, 60, series A, No 1, 1-17.

[5] Athreya, K.B., Fuh, C.D. (1989). Bootstrapping Markov chains: count-
able case. Tech. Rep. B-89-7, Institute of Statistical Science, Academia
Sinica, Taipei, Taiwan, ROC.

[6] Athreya, K.B., Ney, P. (1978). A new approach to the limit theory of
recurrent Markov chains. Trans. Amer. Math. Soc., 245, 493-501.

[7] Bertail, P. (1997). Second order properties of an extrapolated bootstrap
without replacement: the i.i.d. and the strong mixing cases, Bernoulli, 3,
149-179.
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