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Abstract : This paper proposes statistical tools for quantitative evaluation
of the risk due to the presence of some particular contaminants in food. We
focus on the estimation of the probability of the exposure to exceed the so-called
provisional tolerable weekly intake (PTWI), when both consumption data and
contamination data are independently available. A Monte-Carlo approximation of
the plug-in estimator, which may be seen as an incomplete generalized U-statistics,
is investigated. We obtain the asymptotic properties of this estimator and propose
several con�dence intervals, based on two estimators of the asymptotic variance:
(i) a bootstrap type estimator (ii) an approximate jackknife estimator relying on
the Hoe¤ding decomposition of the original U-statistics. As an illustration, we
present an evaluation of the exposure to Ochratoxin A in France.

Résumé : Cet article propose des outils statistiques d�évaluation du risque
d�exposition due à la présence de certains contaminants dans l�alimentation. Nous
cherchons essentiellement à estimer la probabilité que l�exposition dépasse la dose
toxicologique hebdomadaire tolérable, lorsqu�on dispose de données de consomma-
tion et de données de contamination indépendantes. On propose une approxima-
tion de type Monte-Carlo de l�estimateur empirique de cette quantité, s�écrivant
comme une U-statistique généralisée incomplète. Nous en obtenons les propriétés
asymptotiques et nous donnons plusieurs méthodes de construction d�intervalles
de con�ance basées sur deux estimateurs de la variance asymptotique: (i) un es-
timateur de type bootstrap (i) un estimateur de type jackknife reposant sur la
décomposition de Hoe¤ding de la U-statistique de départ. En guise d�illustration,
nous présentons quelques résultats de l�évaluation de l�exposition à l�Ochratoxine
A en France.
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1 Introduction
Food may be naturally contaminated by some chemical components which
may become toxic for the human organism if the total amount ingested
through food consumption exceeds a certain tolerable dose. For example,
Ochratoxin A (OTA) is a natural mycotoxin produced by fungi of the As-
pergillus and Penicillium families, which has been classi�ed as a genotoxic
carcinogen in 1998 by the European Scienti�c Committee for Food. It may
be detected in many products including cereals, grapefruit, dry fruits or veg-
etables, wine, co¤ee, beer, or pork and poultry meat.
An important toxicological concept to measure the medical impact of a

contaminant is the so called Provisional Tolerable Weekly Intake (PTWI)
expressed in terms of nanogram per body weight per week (ng/kgbw/wk
in the following). It is �xed in Europe at 35 ng/kgbw/wk for OTA. This
quantity is the scienti�cally and medically recognized level over which a
permanent excess may be considered as potentially dangerous for the hu-
man health (without any distinction between individuals except their body
weight). Even though its value may not be the same for di¤erent countries,
this quantity generally serves as the basis to decide whether or not there
is a speci�c public health problem related to a particular contaminant and
to plan food regulatory programs. In particular, an important issue is to
evaluate whether the (complete or partial) suppression of the contaminated
products or the reduction of the contamination in some product (for instance
by imposing a maximal limit to certain commercialized items) may have a
signi�cant impact on the global exposure of the individuals.
Our approach in this study will be to evaluate the probability that the

individual exposure over a week exceeds the PTWI. This view is not com-
pletely satisfactory from a medical point of view, because it does not take
into account for the dynamic of the contamination and exposure phenom-
enon. Actually because of the lack of data, the permanent exposure over a
lifetime is di¢ cult to estimate, thus our parameter may rather be interpreted
as the probability of occasional short-term excursions above the PTWI than
a true probability to develop a disease because of the exposure to the con-
taminant. However, it still remains an important indicator: this is actually
the main risk indicator which is currently used in international committee
(see Codex Alimentarius, website). Estimating precisely its value and giving
con�dence intervals is thus of prime importance.
From a statistical point of view, if one could observe in a survey the

global individual exposure de�ned as the quantity of contaminant ingested
on a certain period relative to the body weight of the individual, one could
estimate the mean of global exposure or the probability of the exposure (over
a given period of observation) to exceed the PTWI. Such data are currently
not available since it would involve repeated costly chemical analysis of all
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the products ingested by the individuals. From a practical point of view, the
quantitative evaluation of the global exposure to a contaminant relies both
on data from consumption surveys and analytical data on food contamina-
tion which may be assumed independent at this step. If P food items are
assumed to be contaminated at a random level qp and consumed at levels cp;
for p = 1; :::; P then the exposure is K =

PP
p=1 q

pcp: The purpose is then
to try to evaluate the distribution of K; so as to compute mean, variance
quantiles etc,... A �rst approach which is currently used in practice is what
we call a deterministic approach: it assumes that qp is �xed, typically equal
to the mean or the median of all the analytical observations (which somehow
means that the contamination is highly concentrated around its mean). Such
a method clearly tends to ignore the variability of the contamination which
may be very high. Based on the available data, a second approach is to try
to estimate parametrically each marginal distribution (for each consumption
and contamination) to derive, either by Monte-Carlo simulations or analyti-
cally, an approximation of the distribution of the exposure (see Gauchi and
Leblanc, 2002): such an approach is currently used in many software used
in food risk assessment (see Institute of European Food Studies, website).
We may object that such method does not take into account the structure of
the correlation of the consumptions, since some contaminated products may
be (in economic terms) complementary or substitute. Moreover paramet-
ric �ts to log-normal or exponential distributions which are currently used
tend to eliminate the individuals in the tail of the distribution, which cer-
tainly have the greatest impact in risk evaluation as shown in Tressou et al.
(2002). This method does not either solve the problem of null consumptions
(for some products) which should be taken into account. Estimating the
full multidimensional distribution seems to be an impossible task because of
the high multidimensionality of the problem. Moreover, the problem of the
null consumptions introduces a lot of frontier problems, which makes di¢ -
cult a mixture approach that would consist in putting di¤erent masses on
each consumption basket containing one or several zeros. The most realistic
method actually seems the one based on fully non-parametric Monte Carlo
simulations sometimes called bootstrap method (although it is not really
bootstrap). It consists in independently randomly drawing a large number
B of consumption vectors and contamination values in order to obtain B
exposure values to get an empirical distribution of exposure. Then, an easy
way to evaluate the probability of interest is to consider the frequency of
simulations exceeding the PTWI among the simulated data. The purpose of
this paper is to validate such a method and give some asymptotically correct
methods to construct con�dence intervals. These con�dence intervals (CI)
are useful to statistically compare populations or to measure the impact of
the introduction of a maximum limit (ML) on a particular product.
One should notice that the ideas developed here may also be useful in
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toxicology, environmental research or in other �elds, when there are several
sources of pollution, with rates that may also be random. However to better
�x the main ideas, we decided to keep the framework of food contamination.
The outline of the paper is as follows. In Section 2, we introduce our main

notations and relate our problem to the study of an incomplete generalized U-
statistics; Section 2.2 deals with the asymptotic behavior of this quantity. We
then propose two methods for practical variance estimation: (i) the �rst one
is based on bootstrap techniques (ii) the second method based on jackknife
techniques. Section 3 shows how the Monte-Carlo steps a¤ect the previous
results. In particular, section 3.3 is dedicated to some practical consideration
on the choice of the tuning parameters for accurate variance estimations and
con�dence interval constructions. Results on the OTA risk evaluation are
presented in Section 4.

2 Estimating the probability of the exposure

to exceed the PTWI

2.1 Notations

As explained in our introduction, food risk due to a contaminant will be
evaluated by estimating the probability of exposure to exceed a �xed deter-
ministic level d. To estimate this probability, two types of data are available
if P food items are assumed to be contaminated:

� Contamination data: qpjp is the contamination value obtained for the
jthp analysis of the food item p with jp = 1:::L(p); We assume that
the (qpjp)jp=1:::L(p) are i.i.d. realizations of a random variable Qp with
probability distribution Qp; p = 1; :::; P:

� Normalized consumption data (also called individual contaminated bas-
kets): ci =

�
ci1; :::; c

i
p; :::; c

i
P

�
is the vector of consumptions of individual

i observed during a week, standardized by the respective individual
weights for i = 1; :::; n; we assume that these are i.i.d. realizations of a
multidimensional r.v. C = (C1; :::; CP ) with probability distribution C:

All consumers are supposed to be independent and the consumption and
contaminated data are assumed to be independent. Moreover, contamination
observations for the P food items are generally independent. These assump-
tions are quite reasonable and correspond to what we practically observe in
our data.
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Let D = C �
QP

p=1Qp denote the joint probability distribution of the
consumption and the contamination r.v.�s. The individual exposure D =PP

p=1Q
pCp has a distribution entirely characterized by D: In this framework,

our parameter of interest is a functional of D de�ned by

�d(D) = PD(D > d) = PD(
PX
p=1

QpCp > d):

Let bCn and bQp;L(p) p = 1; :::; P be the empirical probability distribution
functions based on our data that is

bCn = 1

n

nX
i=1

�Ci ; C
i 2 RP

with �Ci(c) = 1 if Ci = c and 0 else,
and bQp;L(p) =

1

L(p)

L(p)X
i=1

�Qpj ;

for p = 1; :::P; with a similar de�nition of �Qpj . The empirical distribution of

D is given by Dn = bCn� QP
p=1

bQp;L(p):
The natural plug-in estimator of �(D) is given by:

�d(Dn) = PDn(
PX
p=1

QpCp > d)

=
1

n�
PQ
p=1

L(p)

nX
i=1

L(1)X
j1=1

:::

L(P )X
jP=1

I

(
PX
p=1

qpjpc
i
p > d

)
:

Recall now the de�nition of a generalized U-statistics

De�nition 2.1 Let (X(j)
1 ; :::; X

(j)
nj ); j = 1; :::;m, be m i.i.d. samples of re-

spective sizes nj respectively independent and identically distributed as P (j); for j =

1; :::;m. Each X(j) with distribution P (j) takes its value on a space Xj: Let

 m be a symmetric kernel of degree (k1; :::; km); that is a measurable function

from �mj=1X
kj
j to R; with  m symmetric (invariant by permutation) on each

block X kj
j , j = 1:::;m. Denote P = �

m
j=1P

(j)kj the product distribution.
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Let � = �(P ) = EP ( m(X(1)
1 ; :::; X

(1)
k1
; :::; X

(m)
1 ; :::; X

(m)
km
)) then the estima-

tor

b� = Un1;n2;:::;nm(X
(1)
1 ; :::; X(1)

n1
; :::; X

(m)
1 ; :::; X(m)

nm )

=

mY
j=1

�
nj
kj

��1 X
(n1;k1)

:::
X

(nm;km)

 m(X
(1)
i1;1
; :::; X

(1)
i1;k1

; :::; X
(m)
im;1

; :::; X
(m)
im;km

) ;

where
P

(n;k) denotes the sum over all subsets 1 � i1 < ::: < ik � n of

f1; :::; ng; is unbiased for � and is called a generalized U-statistic of degree (k1; :::; km).

The quantity �d(Kn) may thus be seen as a generalized U-statistic of
degrees k0 = 1; k1 = 1; :::; kP = 1; with kernel

 (ci; q1; :::; qP ) = I

(
PX
p=1

qpcip > d

)
;

where ci = (cip)p=1;:::;P 2 Rp:
Intuitively, �d(Kn) is the percentage of exceedings of d calculated over

all possible combinations of consumption vectors and contamination values
drawn with replacement. It is thus an unbiased estimator of �d(K):

�d(Kn); will also be denoted by Un;L(1);:::;L(P ):
Results on the asymptotic behavior of generalized U-statistics presented

in Lee (1990) (p. 141), can be generalized under the assumption that the
sample sizes in each independent samples are typically of the same order.
In our framework, this is certainly not the case: in particular, consump-
tion survey are generally based on large population whereas analytical data
are generally obtained thanks to a smaller number of experiences. In the
following paragraph, we show how it is quite easy to obtain the limiting dis-
tribution of our estimator �d(Kn) under reasonable assumptions by using the
well-known Hoe¤ding decomposition.

2.2 Asymptotic behavior of the risk generalized U-

statistic.

In order to determine the asymptotic behavior and variance of this general-
ized U-statistic, we will decompose the generalized U-statistics into a sums
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of gradients. The gradients are constructed as follows. Let

 (1;0;:::;0) =  C(c1; :::; cP )

= E

 
I

(
PX
p=1

QpCp > d

)
j (C1; :::; CP ) = (c1; :::; cP )

!
� �d(K)

= P

 
PX
p=1

Qpcp > d

!
� PK(

PX
p=1

QpCp > d)

be the in�uence function of the U-statistics with respect to C: We de�ne
similarly for j = 1; ::; P :

 (0;0;:::;1;:::;0) =  Qj(q
j)

= E

 
I

(
PX
p=1

QpCp > d

)
jQj = qj

!
� �d(K)

= P

 
PX

p=1;p6=j

QpCp + qjCj > d

!
� PK(

PX
p=1

QpCp > d) ;

which is actually the in�uence function of �d(K); seen as a function ofQj uniquely. These
gradients are referred to gradients of order 1. They give the contributions
due to the di¤erent components of the exposure.
The distributions Qp; p = 1; :::P are supposed not to be all degenerated

(i.e. not reduced to a unique point) in order to ensure that these �rst order
gradients are not all identically zero.
Gradients of superior order are recursively de�ned by

 (j0;j1;:::;jP )(c(j0); q1(j1) ; :::; qP(jP ))

= E

 
I

(
PX
p=1

QpCp > d

)
jC = c(j0); Q1 = q1(j1) ; :::; QP = qP(jP )

!

�
j0X
l0=0

:::

jPX
lP=0

[
PP
p=0 lp]�[

PP
p=0 jp]�1

 (l0;l1;:::;lP )(c(l0); q1(l1) ; qP(lP )) ;

with (j0; j1; :::; jP ) 2 f0; 1gP+1 and the conventions:

1.  (0;0;:::;0)(:) = �d(K)

2. terms with indices (0) do not appear in the expression, so that  (j0;j1;:::;jP )

is a function de�ned on RL; with L = P � j0 +
PP

p=1jp:
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For instance, in the case of j0 = 1; j2; :::; jP�1 = 1; j1 = 0 and jP = 0,

 (1;0;1;:::1;0)(c; q2; :::; qP�1) = E

 
I

(
PX
p=1

QpCp > d

)
jC = c;Q2 = q2; :::; QP�1 = qP�1

!

�
1X

l0=0

1X
l2=0

:::
1X

lP�1=0

[
PP
p=0 lp]�P�2

 (l0;0;l2;:::;lP�1;0)(c(l0); q2(l2) ; qP�1(lP�1))

or case of j0 = 0; j2; :::; jP�1 = 0; j1 = 1 and jP = 1,

 (0;1;0:::0;1)(q1; :::; qP ) = E

 
I

(
PX
p=1

QpCp > d

)
jQ1 = q1; :::; QP = qP

!

�
1X

l1=0

1X
lP=0

l1+lP�1

 (0;l1;0;:::;0;lP )(q1(l1) ; qP(lP )) :

The following proposition is a straightforward extension of Lee (1990)(pp.
38-41).

Proposition 2.1 (Variance of Un;L(1);:::;L(P )) Under the previous assump-

tions, the variance of �d(Kn) can be written:

V
�
Un;L(1);:::;L(P )

�
=

k0X
c0=0

k1X
c1=0

:::

kPX
cP=0

�
k0
c0

�QP
j=1

�
kj
cj

��
n�k0
k0�c0

�QP
j=1

�
L(j)�kj
kj�cj

��
n
k1

�QP
j=1

�
L(j)
kj

� �2c0;c1;:::;cP

=
1X

c0=0

1X
c1=0

:::
1X

cP=0

�
n�1
1�c0

�QP
j=1

�
L(j)�1
1�cj

�
n�

QP
j=1 L(j)

�2c0;c1;:::;cP

=

k0X
c0=0

k1X
c1=0

:::

kPX
cP=0

�
n

c0

��1 PY
j=1

�
L(j)

cj

��1
�2c0;c1;:::;cP ;

with �2c0;c1;:::;cP = V
�
 (c0;c1;:::;cP )

�
and �2c0;c1;:::;cP = Cov ( (S);  (T )) where S

and T are P + 1-tuples having cj indices in common for each j; j = 0; :::; P:

The Hoe¤ding decomposition allows us to get the following central limit
theorem.
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Theorem 2.1 (Asymptotic behavior of Un;L(1);:::;L(P )_version 1) De�ne

N = n+
PX
j=1

L(j) :

if n
N
! � > 0; L(j)

N
! �j > 0 for j = 1; :::; P , and if one of the variances

V( Qj(Qj)) j = 1; :::; P or V( C(C1; :::; CP )) is non zero then

N1=2 (�d(Kn)� �d(K)) �!
N!1

N
�
0; S2

�
;

with

S2 =
1

�
V( C(C1; :::; CP )) +

PX
j=1

1

�j
V( Qj(Qj)):

A convergent estimator of S2 is given by

bS2N = N

n
bS2C + PX

l=1

N

L(l)
bS2Ql ;

with

bS2C = n�1
nX
i=1

0BBB@ 1
PQ
p=1

L(p)

L(1)X
j1=1

:::

L(P )X
jP=1

I

(
PX
p=1

qpjpc
i
p > d

)
� �d(Kn)

1CCCA
2

(1)

and, for l = 1; :::; P ;

bS2Ql = L(l)�1
L(l)X
jl=1

0BBB@ 1

n�
PQ

p=1;p6=l
L(p)

nX
i=1

L(1)X
j1=1

:

L(l�1)X
jl�1=1

L(l+1)X
jl+1=1

::

L(P )X
jP=1

I

(
PX
p=1

qpjpc
i
p > d

)
� �d(K)

1CCCA
2

:

(2)

Proof. The Hoe¤ding decomposition of Un;L(1);:::;L(P ) yields

Un;L(1);:::;L(P ) =

1X
j0=0

1X
j1=0

:::

1X
jP=0

�
1

j0

��
1

j1

�
:::

�
1

jP

�
U
(j0;j1;:::;jP )
n;L(1);:::;L(P ) ;

with

U
(j0;j1;:::;jP )
n;L(1);:::;L(P ) =

�
n

j0

��1�
L(1)

j1

��1
:::

�
L(P )

jP

��1
 (j0;j1;:::;jP ) ;
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which may be rewritten

Un;L(1);:::;L(P ) = �d(K)+U (1;0;:::;0)n;L(1);:::;L(P )+U
(0;1;0;:::;0)
n;L(1);:::;L(P )+:::+U

(0;:::;0;1)
n;L(1);:::;L(P )+Rn;L(1);:::;L(P ):

where Rn;L(1);:::;L(P ) is a controlled remainder term and

U
(1;0;:::;0)
n;L(1);:::;L(P ) =

1

n

nX
i=1

 C(c
i
1; :::; c

i
P )

and, for the (j + 1) th component ,

U
(j+1th)

(0;0;0;1;:::;0)
n;L(1);:::;L(P ) =

1

L(j)

L(j)X
l=1

 Qj(q
j
l ):

Thus, we have

N1=2
�
Un;L(1);:::;L(P ) � �d(K)

�
=

�
N

n

�1=2
n1=2

�
U
(1;0;:::;0)
n;L(1);:::;L(P )

�
+

�
N

L(1)

�1=2
L(1)1=2U

(0;1;0;:::;0)
n;L(1);:::;L(P ) + :::

:::+

�
N

L(P )

�1=2
L(P )1=2U

(0;:::;0;1)
n;L(1);:::;L(P ) +N1=2Rn;L(1);:::;L(P ):

As all gradients may be written as a �nite sum of bounded kernels, all gra-
dients are bounded. Thus the remainder Rn;L(1);:::;L(P ) is a degenerate U-
statistic the moments of which are all �nite. It is thus easy to check using
standard U-statistics results that we have Rn;L(1);:::;L(P ) = OP (N

�1) (see Lee
(1990)).
The linear terms U (:;1;::;0;::)n;L(1);:::;L(P ) are independent and asymptotically nor-

mally distributed by the classical CLT. We have for each component

n1=2
�
U
(1;0;:::;0)
n;L(1);:::;L(P )

�
�!
N!1

N (0;V( C(C1; :::; CP )))

where V( C(C1; :::; CP )) = �21;0;:::;0 = �21;0;:::;0, and, similarly for j = 1; :::; P :

L(j)1=2
�
U
(0;:::;1;:::;0)
n;L(1);:::;L(P )

�
�!
N!1

N
�
0;V( Qj(qj))

�
:

Assuming n
N
! � > 0 ; L(j)

N
! �j > 0; we �nally get

N1=2
�
Un;L(1);:::;L(P ) � �d(K)

�
�!
N!1

N
 
0;
1

�
V( C(C1; :::; CP )) +

PX
j=1

1

�j
V( Qj(qj))

!
:
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Now consider the problem of estimating the asymptotic variance. It is
su¢ cient to estimate respectively S2C and S

2
Ql
. Consider for instance S2C (S

2
Ql

may be treated similarly). We have

V( C(C1; :::; CP )) = �21;0;:::;0 = �21;0;:::;0 = V
�
E
�
 (Ci; Q1; :::; QP )jCi

��
= E

��
E
�
 (Ci; Q1; :::; QP )jCi

�
� E

�
 (Ci; Q1; :::; QP )

��2�
= E

��
E
�
 (Ci; Q1; :::; QP )jCi

�
� �(d)

�2�
: (3)

A convergent estimator of this quantity is given by the plug-in estimator
de�ned by (1). To prove that this is a consistent estimator, develop the
square inside the sum, then each term in this development may be seen as a
generalized U-statistic. Since the corresponding kernels are all bounded, it is
immediate to get by the SLLN that each one converges to the corresponding
expectation, which may be in turn written as (3).
The assumptions of Theorem 2.1 may not be practically satis�ed when

the number of contamination values for a food item, that is one of the L(j);
may be small (due to cost matters). In this case, the assumptions and results
of the preceding theorem can be modi�ed as follows:

Theorem 2.2 (Asymptotic behavior of Un;L(1);:::;L(P )_version 2) De�ne:

N� = min
j=1;P

�
L(j); such that 0 < V( Qj(Qj)) <1

	
:

If ��j = lim(
L(j)
N� ) 2 [1;+1] and lim(N

�

n
) = 0: then:

N�1=2 (�d(Kn)� �d(K)) �!
N!1

N
�
0; S�2

�
with

S�2 =
PX
j=1

1

��j
V( Qj(Qj)):

And the empirical estimator of S�2 is:

bS2N� =
PX
l=1

N�

L(l)
bS2Ql ;

where bS2Ql ; de�ned in (2), is a convergent estimator of V( Qj(Qj)):

Proof. The proof of this theorem uses the same arguments as the proof
of Theorem 2.2 and is thus skipped .
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3 Approximating the estimator by incomplete

U-statistics

3.1 Monte-Carlo approximation and variance estima-

tion

From a practical point of view, it is generally not possible to construct the

generalized U-statistic �d(Kn); since it is the average of � = n
PQ
p=1;

L(p) terms.

We rather use incomplete U-statistic de�ned by:

�d;B(Kn) = U
(DB)
n;L(1);:::;L(P ) = B�1

X
(i;j1;:::;jp)2DB

I

(
PX
p=1

qpjpc
i
p > d

)
;

where DB is a subset of f1; :::; ng � f1; :::; L(1)g � ::: � f1; :::; L(P )g of size
B much smaller than �.
More precisely, DB is de�ned as a random subset of cardinality #DB =

B:selected with replacement, that is:

DB =

8>>>>><>>>>>:

(i; ji1; :::; j
i
P ) 2 f1; :::; ng � f1; :::; L(1)g � :::� f1; :::; L(P )g ;8>>><>>>:

i randomly chosen in f1; :::; ng ;
ji1 randomly chosen in f1; :::; L(1)g ;

...
jiP randomly chosen in f1; :::; L(P )g

9>>>=>>>; such that #DB = B

9>>>>>=>>>>>;
:

Intuitively, it consists in drawing (with replacement) independent sam-
ples of consumption vectors and contamination values in order to obtain B
exposure values. �d;B(Kn) is the percentage of values exceeding d among the
B corresponding calculated values.
This technique damages the variance of the estimator. However, if B is

large enough, the induced distortion is negligible compared to the initial
estimator. Indeed, it can be shown using arguments similar to Lee (1990),
page 193 that

V(�d;B(Kn)) = O

�
1

B

�
+

�
1� 1

B

�
V(�d(Kn)):

More precisely, in the case of random selections with replacement, we have
the following result.

11



Proposition 3.1 We have

V (�d;B(Kn)) =
�21;1;:::;1
B

+

�
1� 1

B

�
V(�d(Kn));

where �21;1;:::;1 = V
�
 (Ci; Q1; :::; QP )

�
:

Proof. The proof is on the same line as Lee (1990) Theorem 4 (i) page
193.
Let

�
i� ; j

i�
1 ; :::; j

i�
P

�
�=1;:::;B

be B elements of DB; then we have:

�d;B(Kn) = B�1
BX
�=1

 
�
ci� ; q1

ji�1
; :::; qP

ji�P

�
:

Denoting  (ci� ; q1
ji�1
; :::; qP

ji�P
) :=  

�
i� ; j

i�
1 ; :::; j

i�
P

�
and de�ning � as the re-

sampling plan consisting in selecting contaminations and consumption at
random with replacement, if Cov� and V�; are respectively the covariance
and variance under �; we get:

V (�d;B(Kn)) = B�2
BX
�=1

BX
� 0=1

cov
h
 
�
i� ; j

i�
1 ; :::; j

i�
P

�
;  
�
i� 0 ; j

i� 0
1 ; :::; j

i� 0
P

�i

= B�2

24 PB
�=1

PB
� 0=1

� 6=� 0
Cov�

h
 
�
i� ; j

i�
1 ; :::; j

i�
P

�
;  
�
i� 0 ; j

i� 0
1 ; :::; j

i� 0
P

�i
+
PB

�=1V�
�
 
�
i� ; j

i�
1 ; :::; j

i�
P

��
35 : (4)

Since the resampling plan is exchangeable (all drawings have the same
probability), for all � 6= � 0; we have:

Cov�

h
 
�
i� ; j

i�
1 ; :::; j

i�
P

�
;  
�
i� 0 ; j

i� 0
1 ; :::; j

i� 0
P

�i
= ��2

X
(i;j1;:::;jP )

X
(i0 ;j01;:::;j0P )

cov
h
 (i; j1; :::; jP ) ;  

�
i
0
; j01; :::; j

0
P

�i
= V((�d(Kn))): (5)

And, for all �; we similarly have:

V�
�
 
�
i� ; j

i�
1 ; :::; j

i�
P

��
= ��1

X
(i;j1;:::;jP )

V ( (i; j1; :::; jP )) = �21;1;:::;1: (6)

Plugging (5) and (6) in (4) ; we get:

V ((�d;B(Kn))) = B�2 �B(B � 1)V((�d(Kn))) +B�21;1;:::;1�
=
�21;1;:::;1
B

+

�
1� 1

B

�
V((�d(Kn))):

12



3.2 Asymptotic behavior

The asymptotic behavior of the incomplete U-statistic �d;B(Kn) depends on
the asymptotic behavior of the associated complete U-statistic �d(Kn) ac-
cording to the chosen hypotheses (see Theorems 2.1 and 2.2). The larger B
is, the nearer the two asymptotic distributions are, as shown in the following
theorem.

Theorem 3.1 Suppose that �d(Kn) has a non degenerate asymptotically nor-

mal distribution, i.e. the variances of the gradients of order 1 are non zero,

then

(i) Framework of Th.2.1;

if lim N
B
= 0;

p
N (�d;B(Kn)� �d(K)) has the same asymptotic distribution

as
p
N (�d(Kn)� �d(K)) :

(ii) Framework of Th.2.2;

if lim N�

B
= 0;

p
N� (�d;B(Kn)� �d(K)) has the same asymptotic distribu-

tion as
p
N� (�d(Kn)� �d(K)) :

Proof. First, notice that as in Lee (1990) page 190, we have:

V (�d;B(Kn)� �d(Kn)) = V (�d;B(Kn))� V (�d(Kn)) : (7)

This can be shown as follows1: by equiprobability of the samples Sj; j =
1; :::�; we have

Cov (�d;B(Kn); �d(Kn)) = B�1
BX
j=1

Cov( (Sj); �d(Kn)) = Cov ( (S); �d(Kn)) ;

where S1; :::; SB are elements of DB and S is any m-tuple of f1; :::; ng �
f1; :::; L(1)g � :::� f1; :::; L(P )g.
Moreover, we have

V (�d(Kn)) = ��1
�X
j=1

Cov(�d(Kn);  (Sj)) = Cov(�d(Kn);  (S))

1We correct here some misprint in proof of Theorem 1 p.190 in Lee (1990).
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and

V (�d;B(Kn)� �d(Kn)) = V (�d;B(Kn)) + V (�d(Kn))� 2Cov (�d;B(Kn); �d(Kn))
= V (�d;B(Kn)) + Cov ( (S); �d(Kn))� 2Cov ( (S); �d(Kn))
= V (�d;B(Kn))� Cov ( (S); �d(Kn))
= V (�d;B(Kn))� V (�d(Kn)) :

Now, to prove (i), it is su¢ cient to show that
p
N (�d;B(Kn)� �d(Kn))

P�!
0.
It follows from equation (7) and Proposition 3.1 that

lim
N�!1

V
hp

N (�d;B(Kn)� �d(Kn))
i
= lim

N�!1
N
�21;1;:::;1 + V (�d(Kn))

B
= 0;

since N
B
�! 0 and the result follows. (ii) may be proved similarly.

For the construction of con�dence intervals, estimators of the asymptotic
variances are needed. However as de�ned in equations (1) and (2) ; the
estimators are not easily computable, since they are also de�ned as a sum of
approximately � terms. The next section proposes some approximations.

3.3 Estimation of the variance and con�dence interval

The estimation of the variance of U-statistics is generally based on jackknife
or bootstrap techniques Lee (1990). These methods are described for unidi-
mensional U-statistics and unidimensional incomplete U-statistics in the case
of random selection with replacement. For generalized U-statistics, the use
of the jackknife method can not be easily transposed to the multidimensional
case. Indeed, in that case, several de�nitions for the �leave one out�may be
possible (coordinate by coordinate or vector by vector). However this method
can be used to estimate the variance of each term in the Hoe¤ding decom-
position. Thanks to Theorem 2.1, it is possible to only consider the terms
related to gradients of order 1. We �rst propose to use a simple bootstrap
estimator of the variance which allows to construct asymptotic con�dence in-
tervals as well as basic percentile con�dence intervals (Efron, 1979). Then we
will develop an approximate jackknife variance estimator that will serve as a
basis for bootstrapping an asymptotically pivotal standardized U-statistics:
these t-percentile methods enjoy much more interesting second order prop-
erties than the �rst one. These methods will be latter empirically compared
in our application.

14



3.3.1 Bootstrap variance estimator and percentile con�dence in-

terval.

Bootstrapping the generalized U-statistics consists in drawing (with replace-
ment) bootstrap samples from the original data and in repeating on this
pseudo-data the calculation of �d;B(Kn) a large number of times (s = 1; :::;M):
Formally, if �d;B(s) denotes the estimator obtained for the sth stage, then the
bootstrap variance is given by:

VBoot =
1

M

MX
s=1

�
�d;B

(s) � �d;B
�2

where �d;B = 1
M

PM
s=1 �d;B

(s): This variance is an asymptotically convergent
estimator of the true variance: justi�cation of this method for U-statistics
(which may be easily transposed to generalized U-statistics) may be found
in Lee (1990) (see Helmers, 1991, for second order properties).
The (1� �)�percentile con�dence interval for this basic bootstrap is�

2�d;B(Kn)� �d;B
[1��=2]; 2�d;B(Kn)� �d;B

[�=2]
�

(8)

where �d;B [�] is the �th observed percentile of
�
�d;B

(s); s = 1; :::;M
	
:

Using the asymptotic normality of �d;B(Kn); an asymptotic (1��)�con�dence
interval (CI) is also given by

�d(K) 2
h
�d;B(Kn)� ��1�=2

p
VBoot

i
where ��1�=2 is the �=2

th quantile of a normal distribution.

3.3.2 Estimation of the variance components by jackknife

Another solution to estimate the asymptotic variance of the generalized
U-statistics is to estimate each component of the two proposed variances
for �d(Kn) by a jackknife method. Indeed these quantities only depend
on V [ C (C1; :::; CP )] and V

�
 Qj(Qj)

�
; j = 1; :::; P: We only give the de-

tails for the estimation of V( C(C1; :::; CP ): To simplify the notation for
the gradient of the generalized U-statistics, we will use the notation U (C)eN =

U
(1;0;:::;0)
n;L(1);:::;L(P ); where we denote eN = (n; L(1); :::; L(P )).

First, remark that as U (C)eN is an unidimensional mean, we have V
�
U
(C)eN
�
=

V( C)
n
. Thus we may compute its jackknife variance estimator given by using

following �leave one out�construction. For this de�ne

U
(C)eN (�i) = 1

n� 1

nX
j=1
i6=j

c C(cj1; :::; cjP );
15



where c C is a convergent estimator for  C; for instance,
c C(cj1; :::; cjP ) = 1

BC

X
(j1;:::jP )2DC

I(
PX
p=1

qjpc
j
p > d)� �d;B(Kn);

whereDBC is a subset of indices in f1; ::; L(1)gx:::xf1; :::; L(P )g of cardinality
#(DBC ) = BC (drawn with replacement). The jackknife variance of the
consumption gradient is now given by

VJack(U (C)eN ) =
n� 1
n

nX
i=1

�
U
(C)eN (�i)� U

(C)eN
�2

with

U
(C)eN =

1

n

nX
i=1

U
(C)eN (�i) = 1

n

nX
j=1

c C(cj1; :::; cjP ):
It follows that V ( C) may be estimated by:

VJack( C) = (n� 1)
nX
i=1

�
U
(C)eN (�i)� U

(C)eN
�2

=
1

(n� 1)

nX
i=1

�c C(ci1; :::; ciP )�  C

�2
with

 C =
1

n

nX
i=1

c C(ci1; :::; ciP ):
We may similarly de�ne the jackknife variance estimators VJack( Qj) for

V( Qj(Qj)), for j = 1; :::P using subsets of cardinality BQj :
Under the hypotheses of Theorem 2.1, an estimator of the asymptotic

variance is then given by

fS2N = N

n
VJack( C) +

PX
l=1

N

L(l)
VJack( Qj):

Similarly for Theorem 2.2, the asymptotic variance is estimated by:

gS2N� =

PX
l=1

N�

L(l)
VJack( Qj):

These variances may be used directly to construct asymptotically (1��)�con�dence
intervals respectively for theorems 2.1 and 2.2,

�d(K) 2

24�d;B(Kn)� ��1�=2
sfS2N

N

35
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and

�d(K) 2

24�d;B(Kn)� ��1�=2
sgS2N�

N�

35 ;
where ��1�=2 is the �=2

th quantile of a normal distribution.
These estimators may be used to bootstrap the standardized U-statistics

to obtain better con�dence intervals (see Hall, 1992). Indeed it is known that
the percentile and asymptotic methods presented before are equivalent in
terms of coverage accuracy. We expect them to be asymptotically correct
up to an error of size O(N�1) for two-sided con�dence intervals, under the
hypotheses of Theorem 2.1. However bootstrapping an asymptotic pivotal
statistic (a pivotal root in the bootstrap literature) may yield substantial
theoretical improvements (see Hall, 1986a). It seems quite reasonable (but
cumbersome to prove) to assume that such results hold in our situation pro-
vided that the size of the subsets used to construct the jackknife variance
estimators are large enough or at least well chosen (see Hall, 1986b). Un-
der reasonable assumptions on the moments of our data, we expect that
the t-percentile con�dence interval is third order correct with an error of
size O(N�2): Because of the complexity of the estimators, we describe the
algorithm used to implement this method in the next paragraph.

3.3.3 Bootstrap after jackknife t-percentile con�dence intervals

In the following, the term VJack denotes indi¤erently
fS2N
N
or

gS2
N�
N� derived from

Theorem 2.1 or Theorem 2.2.

1. Estimation step: Suppose that fCg denotes the set of observed con-
sumptions vectors and fQpg ; p = 1; :::; P the sets of observed contam-
ination values.

(a) Calculate a �rst estimator b� = �d;B(Kn) of �d(K) by selecting with
replacement B consumption vectors in fCg and B contaminations
values in each of the fQpg ; p = 1; :::; P:

(b) Calculate the variance estimator VJack using resampling in fCg and
the fQpg ; p = 1; :::; P of respective sizes BC and BQp ; p = 1; :::; P:

2. Resampling step: Iterate M times, s = 1; :::;M:

Draw a bootstrap sample of consumptions C(s) and contaminations
Q
(s)
p ; p = 1; :::; P with replacement from the initial observations, with

the same corresponding sizes n; L(1); :::; L(P ):
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(a) Calculate on this sample, the incomplete U-Statistic �d;B(s) by
selecting with replacement B consumption vectors in

�
C(s)

	
and

B contamination values in each of the
n
Q
(s)
p

o
; p = 1; :::; P: (in

order to get B exposure levels and to mimic the original estimation
method).

(b) Calculate the corresponding variance estimator V (s)
Jack using resam-

plings in
�
C(s)

	
and the

n
Q
(s)
p

o
; p = 1; :::; P of respective sizes BC

and BQp ; p = 1; :::; P:

(c) Compute the studentized estimator of the risk

t
(s)
� =

�d;B
(s) � b�q
V
(s)
Jack

:

3. The t-percentile con�dence interval is then given byhb� �pVJackt
[1��=2]
� ; b� �pVJackt

[�=2]
�

i
;

where t[�]� is the �th percentile of
n
t
(s)
� ; s = 1; :::;M

o
:

4 Application: Exposure to OTA
As explained in the introduction, this method was developed to quantify
precisely the risk related to OTA exposure. In this application, we partic-
ularly focus on the feasibility of the method and compare all the proposed
con�dence intervals. We also use this method to compare the exposure of
di¤erent sub-populations and to test the impact of a new maximum limit
ML on a speci�c food item. We answer a particular current issue, whether
or not new maximum limits on OTA in wine have an impact on the exposure
to OTA in France.
In this study we use as consumption data, the INCA survey on individ-

ual consumptions of 3003 French consumers (see CREDOC-AFFSA-DGAL,
1999, for details). The contamination analyses have been collected from dif-
ferent French institutions (INRA, DGAL, DGCCRF and ONIVINS for wine).
These analyses are strongly left censored because of the limit of detection

(LoD) and/or quanti�cation of the laboratories. To avoid this problem, we
apply here the generally used treatment that consists in repeating the eval-
uation under three di¤erent speci�cations: the censored values are replaced
by the LoD (case 1), by the LoD divided by two (case 2) or by zero (case 3).
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Table 1 gives a description of these contamination data. We are currently de-
veloping a model using the Kaplan-Meier estimator of the cdf to avoid these
simpli�cations which have a great impact on the �nal risk level evaluation,
as we shall see later.

Table 1: Description of the contamination data

Food item Number of Censored Percentage of Mean (in �g/kg)

group measured values values censored values H1 H2 H3

Wine 996 0.01 72% 0.135 0.131 0.127

Pork and poultry meat 1063 from 0,2 to 0,5 90% 0.313 0.189 0.064

Cereal-based products 75 0,5 or 1 96% 0.611 0.357 0.103

Cereals 241 0,2, 0,5 or 1 59% 0.728 0.609 0.490

Co¤ee 103 from 0,05 to 1 52% 0.984 0.779 0.573

Fruit and vegetable products 103 from 0,01 to 1 56% 0.193 0.149 0.104

Dry fruit and vegetable 82 from 0,05 to 1 87% 0.446 0.287 0.129

Rice, semolina 43 from 0,25 to 1 93% 0.533 0.300 0.067

Beer 2 0,05 or 0,1 100% 0.075 0.038 0.000

Our parameter of interest is here de�ned as the probability for the expo-
sure to exceed the PTWI; which, in Europe, is equal to 35 ng/kgbw/wk.
First, we give a few indications on the size of our data set:

� We consider P = 9 food item groups: Wine, Pork and poultry meat,
Cereal-based products, Cereals, Co¤ee, Fruit and vegetable products,
Dry fruits and vegetables, Rice and semolina, Beer.

� We can build up to n �
9Y
j=1

L(j) ' 4 � 1021 di¤erent exposure values.

It explains why we need to use incomplete U-statistics.

� The convergence rates of Th. 2.1 and Th. 2.2 depend on

N = n+
9X
i=1

L(j) = 3003 + 2708 = 5711
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and

N� = min
j=1;:::;9

�
L(j); such that 0 < V( Qj� (Q

j)) <1
	
= 43;

which is the smallest number of analyses realized for the category �Rice
and Semolina�.

The results are given for di¤erent values of the following tuning parame-
ters :

� B the size of the simulated distributions of the exposure,

� M the number of bootstrap samples,

� BC and the BQj the subsampling size used in the jackknife variance
approximation. For simplicity we have chosen BC = BQj , j = 1; :::; P:

Table 2 gives the estimation of �d(K) and the standard errors obtained
using the two preceding theorems for di¤erent values of B, BC and the BQj :
Table 3 gives the corresponding 95%�con�dence intervals.

Table 2: Comparison of the standard errors for di¤erent values of B, M , BC and BQj , j = 1; :::; P ;

Contaminant: OTA; PTWI = 35 ng/kgbw/wk; Censorship case 1

Parameters Risk Standard errors

B M BC ; BQj
b� p

VJack Th. 2.1
p
VJack Th. 2.2

p
VBoot

5000 200 300 36.9% 1.8% 1.7% 1.7%

10000 200 300 36.2% 1.8% 1.7% 1.8%

3000 200 300 35.3% 1.8% 1.7% 2.0%

5000 200 100 35.8% 2.1% 2.0% 1.7%

5000 200 500 35.8% 1.8% 1.7% 1.8%

5000 400 300 300 1.8% 1.8% 1.7%

Comparing the applications of our two main theorems, we observe that,
even though the standard error from Theorem 2.2 is slightly lower than the
one corresponding to Theorem 2.1, both methods lead to very similar con�-
dence intervals. In order to balance the computation times and the accuracy
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Table 3: Comparison of the con�dence intervals for di¤erent values of B, M , BC and BQj ,j = 1; :::; P ;

Contaminant: OTA; PTWI = 35 ng/kgbw/wk; Censorship case 1.

Parameters Risk 95%-Con�dence interval de�ned in

B M BC ; BQj
�d;B Percentile Asymptotic t-percentile (Th1) t-percentile (Th2)

5000 200 300 36.3% 32.7% 39.7% 32.9% 39.6% 32.6% 39.7% 32.5% 39.7%

10000 200 300 36.0% 32.5% 39.2% 32.5% 39.6% 32.7% 39.4% 32.6% 39.4%

3000 200 300 36.0% 32.1% 39.7% 32.1% 40.0% 32.4% 39.8% 32.4% 39.7%

5000 200 100 36.2% 32.9% 39.3% 32.8% 39.6% 32.9% 40.2% 32.9% 40.1%

5000 200 500 36.2% 32.6% 39.4% 32.6% 39.7% 32.9% 39.7% 32.9% 39.6%

5000 400 300 36.2% 32.4% 39.5% 32.7% 39.7% 32.5% 39.8% 32.5% 39.8%

of the results, the parameter values can be chosen as follows: B = 5000,
M = 200 and BC = BQj = 300;for all j: Reading Table 3 horizontally, we ob-
serve that the con�dence intervals are very close to each other, so that there
is (a posteriori) no real need to use the improved t-percentile method. The
asymptotic and bootstrap percentile con�dence intervals give similar results.
In the following, we will use the second method, see (8) :
Table 4 illustrates the great impact of the censorship treatment, an issue

that will be considered in the future. In any case, the risk related to OTA
exposure is non negligible. Indeed, even if we use the lower bound given in
�Case 3�, the probability to exceed the PTWI is between 9.1% and 15.8%.

Table 4: Comparison of the risk estimators and con�dence intervals for the three censorship treatments;

Contaminant: OTA; PTWI = 35 ng/kgbw/wk; B = 5000, M = 200 and BC = BQj = 300; j = 1; :::; P

Censorship Risk estimator, �d;B 95%-CI

Case 1 36.3% 32.7% 39.7%

Case 2 19.9% 16.1% 23.9%

Case 3 12.5% 9.1% 15.8%

Table 5 focuses on some particular points.
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1. An important application of our results is that they allow to statistically
evaluate the impact of new regulations for instance on the maximum
limit of (contaminant) residual allowed on the market. To give some
insight on the importance of the problem, we consider the particular
case of wine, for which a new European regulation is under study. At
the present time, there is no maximum limit. We brie�y investigate
the impact of imposing a maximum limit for OTA of 1�g/L, which
has recently been suggested. First, repeating the same calculation as
Case 1 of Table 4 without taking into account the wine analyses that
exceed 1�g/L allows to measure the impact of the introduction of a
new ML on OTA in wine (assuming that all the corresponding wine
will be withdrawn from the market). The comparison with Case 1
of Table 4 shows that the impact of such a new norm is negligible.
This is clearly explained by the fact that cereal is the main factor of
contamination. An exhaustive study of this regulation problem will be
given in a forthcoming paper.

2. Considering Case 1 censorship treatment, we evaluate the risk for dif-
ferent sub-populations: it shows in particular, that, on the one hand,
the children are overexposed to OTA compared to older people and, on
the other hand, the women�s risk is lower than the men�s.

Table 5: Impact of new ML on wine, comparison of population;

Contaminant: OTA; PTWI = 35 ng/kgbw/wk; B = 5000, M = 200 and BC = BQj = 300; j = 1; :::; P ;

Assumption/Population Risk 95%-CI

ML = 1�g/L 35.9% 32.5% 40.1%

3-10 years old 79.2% 76.1% 82.8%

over 11 years old 23.3% 19.2% 26.6%

Male 41.4% 37.8% 45.0%

Female 31.5% 27.2% 34.7%

5 Conclusion
In this paper, we explore the asymptotic properties of some incomplete gen-
eralized U-statistics well suited for risk assessment of the exposure to con-
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taminants, when both contamination data and individual consumptions are
available. We show that the estimator of the probability for the exposure
to exceed some safe �xed level is asymptotically gaussian and we derive its
asymptotic variance. We propose several methods for estimating the vari-
ance and we obtain con�dence intervals for the exposure using 1) a standard
bootstrap method (percentile con�dence and asymptotic intervals), a jack-
knife method (for estimating the variance) and 2) a bootstrap after jackknife
procedure (to built t-percentile intervals). These theoretical results are ap-
plied to risk assessment of the exposure to Ochratoxin A (OTA). Some basic
comparisons show that the naive Bootstrap and the percentile method al-
ready give very good con�dence intervals for this estimation problem. The
main conclusion concerning OTA is that the risk is non negligible in France
according to our data. We also show how these results may be used to study
the impact of new acceptable limits on certain products. In particular, it
is shown that the new regulations on the maximum limits of OTA in wine
proposed by the European commission are not su¢ cient to signi�cantly de-
crease the risk of exposure. We also point out that the risk of exposure is
very high for children. This is clearly explained by the fact that cereals are
the main source of contamination for this contaminant.
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