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Abstract : This paper introduces a speci..c Bootstrap method for positive
recurrent Markov chains, based on the regenerative method and the Nummelin
splitting technique. The main idea underlying this construction consists in gener-
ating a sequence of approximate pseudo-renewal times for a Harris chain X from
data X1, ..., X,, and the parameters of a minorization condition satis..ed by its
transition probability kernel and then applying a variant of the methodology pro-
posed by Datta & McCormick (1993) for bootstrapping additive functionals of type
n~t > f(X;)when the chain possesses an atom. We prove that, in the atomic
case, our method inherits the accuracy of the Bootstrap in the i.i.d. case up to
Op(n~1) under weak conditions. In the general (non necessarily) stationary case,
asymptotic validity for this resampling procedure is established, provided that a
consistent estimator of the transition kernel may be computed. The second order
validity (up to a rate close to Op(n~—1)for regular stationary Markov Chains) is

obtained in the stationary case. Applications to speci..c Markovian models are
discussed, together with some simulation results.

Résumeé: Cet article étudie une méthode de Bootstrap spéci..que pour les
chaines de Markov Harris récurrente positive, basée sur les propriétés de regénéra-
tion et la technique de découpage introduite par Nummelin. L’idée principale
sous-jacente a cette construction est 1) de générer une sequence de temps de re-
nouvellement approché pour la chaine, a partir d’observation X, ..., X,, et de
la connaissance des parametres d’une condition de minoration satisfaite par la
densité de transition 2) d’appliquer une variante de la méthodologie proposée
par Datta et McCormick (1993) pour bootstrapper des fonctionnelles additives
de chaines de Markov atomiques. Nous montrons que, dans le cas atomique, notre
méthode hérite des propriétés au second ordre du bootstrap i.i.d, jusqu’a I'ordre
Op(n~tlog(n)) sous des conditions faibles. Dans le cas général, nous montrons
la validité asymptotique de la procedure, sous I’hypothese de I'existence d’un es-
timateur adéquat du noyau de transition . Nous discutons des applications a des
modeles spéci..ques et présentons quelques résultats de simulations.
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1 Introduction

Many researchers have been working on transposing the naive Bootstrap
method (Efron, 1979) introduced in the i.i.d. setting to a dependent setting.
In most situations, stationary time series or homogeneous random ..elds are
considered. The now well known idea of the moving-block bootstrap (MBB)
is to resample (overlapping or disjoint) blocks of observations to capture the
dependence structure of the observations (refer to Lahiri (2003) for a recent
survey and exhaustive references). However, as noticed by many authors, the
results obtained by using such an approach are not completely satisfactory for
the following reasons. First, the MBB approach usually requires stationarity
for the observations and generally fails in a general nonstationary frame-
work. Secondly, the asymptotic behaviour of the MBB distribution crucially
depends on the estimation of the bias and of the asymptotic variance of the
statistic of interest, which makes it di€¢cult to apply in practice (see Gotze
& Kinsch (1996), Lahiri (2003)). From a theoretical viewpoint, the rate of
convergence of the MBB distribution is slower than the one of the Bootstrap
in the i.i.d. case: at best it is of order Op(n~%**) under restrictive conditions,
stipulating the ..niteness of moments at any order and an exponential rate
for the decay of the strong mixing coe@cients, while the Bootstrap achieves
Op(n~') in the i.i.d. setting. Finally, the choice of the size of the blocks is
a key point to get an accurate estimation. In some very particular case (the
sample mean or functions of the sample mean, for which the Bootstrap may
appear of lesser use), it is possible to give some indications concerning the
adequate size of the blocks (see Gotze & Kinsch (1996), Lahiri (2003)), but
this practical problem still remains open in the general case.

Recently, several authors have been interested in bootstrapping some par-
ticular types of Markov chain. On the one hand, if a Markovian model is a
priori speci..ed (for instance an ARMA model or a nonlinear model with a
..nite number of lags and i.i.d residuals, such as a GARCH model), the prob-
lem reduces then to the random sampling of estimated centered residuals in
the stationary case. The properties of such a semiparametric Bootstrap are
well understood since Bose (1988) (see the references therein). In the same
spirit, Franke et al (2002) proposed a residual resampling scheme based on
a preliminary nonparametric estimation of the linking function in nonlinear
autoregressive models, that is asymptotically justi..ed. Based on residual re-
sampling ideas, Buhlmann (1997) also considered a sieve bootstrap method
based on the approximation of time series by some AR(p) model with a large
p, eventually depending on n. This kind of Bootstrap, which presents promis-
ing results and good practical performance at the same time, is well suited
to linear stationary time series rather than to general Markov chains. On
the other hand, most of the recent works on the Bootstrap for Markov chains
(refer to Horowitz (2003) for a comprehensive surwey) follows the proposal



of Rajarshi (1990) in the case of ..nite state chains and Datta & McCormick
(1995), which uses a nonparametric estimate of the transition probability in
the Bootstrap procedure, so as to mimic the markovian underlying structure
of the chain. Paparoditis & Politis (2002) have introduced a local Markov
Bootstrap, which avoids the use of an explicit (smooth) nonparametric es-
timate of the transition kernel by using a local resampling scheme, but is
nevertheless based on an implicit estimation of the transition probability. Un-
fortunately, the results obtained in that direction are weakened by the form
of the hypotheses made on the chains or models considered (see Horowitz
(2003)).

In this paper, we focus on a method originating from Athreya & Fuh
(1989) and Datta & McCormick (1993), which exploits the renewal properties
of Markov chains when a (recurrent) state is in..nitely often visited. The main
idea underlying this method consists in resampling a deterministic number
of data blocks corresponding to regeneration cycles. However, because of
some inadequate standardization, the regeneration-based bootstrap method
proposed in Datta & McCormick (1993) is not second order correct (its rate
is Op(n=1/2)). Bertail & Clémengon (2003) have proposed a modi..cation of
the procedure introduced by Datta & McCormick (1993), which is second
order correct up to Op(n~'log(n)) in the unstudentized case (i.e. when the
variance is known) when the chain is stationary. However, this method fails to
be second order correct in the nonstationary case, as a careful examination
of the second order properties of the sample mean statistic of a positive
recurrent chain based on its Edgeworth expansion (see Malinovskii (1987),
Bertail & Clémencon (2004)) shows. Our proposal consists here in imitating
the renewal structure of the chain by sampling regeneration data blocks, until
the length of the reconstructed Bootstrap series is larger than the length n of
the original data series, so as to approximate the distribution of the (random)
number of regeneration blocks in a series of length n» and remove some bias
terms. In this paper we study in particular the higher order properties of this
resampling method, which we call the regenerative block-bootstrap (RBB), for
suitably standardized functionals. We also show how these results may be
extended to the much broader class of Harris Markov chains. Our proposal
is based on a practical use of the splitting technique introduced in Nummelin
(1978) and an empirical method to build approximatively a realization drawn
from an extension of the chain with a regeneration set.

The outline of the paper is as follows. In section 2, notations are set
out and a few de..nitions concerning the communication structure and the
stochastic stability of Markov chains are given. We then consider the par-
ticular case of Markov chains with an atom (also called Markov models with
regeneration times, which ..nd many applications in the ..eld of operational
research for modeling queuing/storage systems, see Asmussen (1987) and
Feller (1971)). We demonstrate here the power of our method for suitably



standardized statistics: the RBB has in particular an uniform rate of con-
vergence of order Op(n™!), that is the optimal rate in the i.i.d case. Unlike
the MMB, there is no need in the RBB procedure to choose the size of the
blocks, which are entirely determined by the data. Besides, the second order
accuracy of the RBB holds under weak conditions (stipulating a polynomial
rate for the decay of the strong mixing coe@cients only). In section 3, some
basics about the regenerative method and the Nummelin splitting technique
are recalled. We then extend our bootstrap methodology to general positive
recurrent chains. We establish the asymptotic validity of this procedure, even
in a nonstationary framework, that is clearly more suitable for many applica-
tions. Its second order validity is only shown in the unstudentized stationary
case, up to a rate close to the one in the i.i.d setting. The technical study
of the second order properties of this method and of the optimal rate that
may be attained in the studentized case will be carried out at length in a
forthcoming article. Here we mainly focus on the case of the sample mean
in the positive recurrent case, but the ideas set out in this paper may be
straightforwardly extended to much more general functionals and even to
the null recurrent case, when speci..c models are considered. These results
are illustrated by some examples and simulation results in section 4. And
technical proofs are detailed in section 5.

2 Bootstrapping Markov chains with an atom

2.1 Notation and de..nitions

Wk shall introduce some notation that will be needed throughout the paper
(see Revuz (1984) for further detail on key notions of the Markov chain
theory). Let X = (X,,),y be an aperiodic ¢-irreducible Markov chain on a
countably generated state space (E, £), with transition probability II, and
initial probability distribution . Thus for any B € £ and n € N, we have

XO ~ UV and P(Xn+1 € B | Xo, "'7X7’L) = H(Xn, B) a.s..

In what follows, P, (respectively P, for = in E) will denote the probability
measure on the underlying probability space such that X, ~ v (resp. Xp =
z), E,(.) the P,-expectation (resp. E.(.) the P,-expectation), and I{A}
will denote the indicator function of the event A.

Assume that the chain is ¥ -irreducible and possesses an accessible atom,
that is to say a measurable set A such that for all z, y in A:

(z,.) = I(y,.) and $(A) > 0.



Denote by 74 = 74(1) = inf{n>1, X,, € A} the hitting time on A, by
T4(j) = 1inf {n >71a(j — 1), X,, € A} for j > 2, the successive return times
to A, and by E 4 (.) the expectation conditionally to X, € A. Assume further
that the chain is Harris recurrent, hence the probability of returning in..nitely
often to the atom A is equal to one, no matter the starting point: Vx € E,
P, (14 < o0) =1. Then, it follows from the strong Markov property that, for
any initial distribution v, the sample paths of the chain may be divided into
i.i.d. blocks of random length corresponding to consecutive visits to A

B = (XTA(1)+1, e XTA(Q)) sy Bj= (XTA(j)+17 e XTA(j—H)) e

taking their values in the torus 7' = Up2 E™. The sequence (74(j)),., de..nes
successive times at which the chain forgets its past, such random times are
called regeneration times. When an accessible atom exists, the stochastic
stability properties of the chain amount to properties concerning the speed
of return time to the atom only. For instance, in this framework, the chain X
is positive recurrent ia E4(74) < oo (this result is known as Kac’s theorem,
see Theorem 10.2.2 in Meyn & Tweedie (1996)). In such a case the unique
invariant probability distribution 4 is the occupation measure given by:

TA

EA>_I{X; € B}).

=1

VB e &, u(B) Ealra)
For such chains, limit theorems can be derived from the application of
the corresponding results to the i.i.d. blocks (B,),-:(see Smith (1955) for
an introduction to the regenerative method). One may refer to Meyn &
Tweedie (1996) for the LLN, CLT, LIL, Bolthausen (1980) for the Berry-
Esseen theorem, and Malinovskii (1987, 89) for other re..nements of the CLT.
The same technique can also be applied to establish moment and probability
inequalities, which are not asymptotic results (cf Clémencon (2001)).

2.2 Preliminary remarks

Let X = (Xy,.., X,) be observations drawn from a Markov chain X
valued in a state space E equipped with a countably generated o-..eld &,
with unknown transition probability IT and initial probability distribution
v. Assume further that the chain X is positive recurrent with unknown
stationary probability ;+ and admits an a priori known accessible atom A
(see Example 1 in section 4 for a practical case). In the following we denote
by i, = > 1, I{X; € A} the number of successive visits to the atom, giving
rise to /,, + 1 data blocks

Bo= (X1,..., Xry)), Bi = (Xry()415 -y Xra(2)s -,
Blnfl = (XTA(lnfl)%»ly (XX X‘I'A(ln)); B(n) = (XTA(ln)+17 ) Xn)7

ln



with the convention Bl(:) = () when 74(I,) = n. We denote by I(B;) =
T4(7 + 1) — 74(j), 7 = 1, the lengths of the regeneration blocks (note that
E(I(B;)) = Ea(ra) = p(A)~" for j > 1).

Let f : £ — R be a p-integrable function and consider the estima-
tor 72,(f) = n~t >, f(X;) of the unknown mean y(f) = E.(f(X1)) con-
structed from the whole data segment X (™. In Bertail & Clémencon (2004)
(see Proposition 3.1) it is shown that in the case when the chain is not sta-
tionary (i.e. when the initial distribution v dizers from p), the ..rst data
block B, induces a signi..cant bias, which cannot be estimated from a sin-
gle realization X (™ of the chain starting from v. It is thus impossible to
approximate the second order properties of such a statistic in the nonsta-
tionary case by using a resampling method. Hence, when the matter is to
consider estimators, for which one can obtain accurate bootstrap distribu-
tion estimates, it is preferable to construct them using the data collected
from the ..rst regeneration time (i.e. the ..rst visit to A), so as to get rid of
the ..rst order term induced by By in the bias. The last (non regenerative)
data block B ) induces a ..rst order term in the bias too. And although it
seems p053|ble to estimate accurately its sampling distribution, we shall con-
sider in what follows statistics based on the observations XTA( =) = (By, ...,
By, —1) collected between the ..rst and last visits to the atom only (the use
of B(”) would make the resampling method we introduce below slightly more
complex on the one hand, and would make its technical study much more
di¢cult on the other hand). In the case of the estimation of u(f), this
prevails to consider the sample mean statistic based on the data segment
(Xrst1yooos X)) tin(f) = (Ta(ln) —74) "1 320" £(X) with the convention
that u,(f) = 0 when [,, < 2. In the case of p,(f) an appropriate standard-
ization S, = S, (X72") has been exhibited in Bertail & Clémencon (2004)
(see § 2.4.1 below).

2.3 The regenerative block-bootstrap algorithm

Although asymptotic results are only stated for the case of the sample mean
in this paper, we present here a valid algorithm for general statistics T,
for which there exists an adequate standardisation S,, : this covers the case
of nondegenerate U -statistics as well as the case of dicerentiable functionals.
For the reasons mentioned abowve, both the statistic 7,, and the estimate of its
asymptotic variance we shall consider are constructed from the regenerative
data blocks By, ...., B;,_; only (see Bertail & Clémengon (2004) for other
types of standardization). We are thus interested in estimating accurately its
sampling distribution under P,, say HI(;Z)(:U) = P,(S, (T, — 0) < z). Given
a speci..ed parameter b,, controlling the maximum length of the bootstrap



data segment (a typical choice in practice is b, = n), the RBB procedure is
performed in four steps as follows.

1

Count the number of visits /,, to the atom A up to time n. And divide
the observed sample path X™ = (X, ..., X,)) into I, + 1 blocks, B,
By, ..., By, 1, Bl(:) valued in the torus 7' = U;2, E™, corresponding to
the pieces of the sample path between consecutive visits to the atom
A. Drop the ..rst and last (nonregenerative) blocks.

Draw sequentially bootstrap data blocks 37, ..., B, independently
from the empirical distribution £, = (I, — 1)"" 37" 8s, of the blocks
{B;}1<j<t,-1 conditioned on X ™, until the length I*(k) = S5, 1(B?,,)
of the bootstrap data series is larger than b,. Let ! = inf{k > 1,
I*(k) > by}

From the bootstrap data blocks generated at step 2, reconstruct a
pseudo-trajectory of size b,, by binding the blocks together

X0 = (B s By -
And compute the RBB statistic based on the bootstrap data blocks

o = T, (X)) =T (B oo Bl 1)

n,bn 1,n

If S, = S(Bu,..., B, —1) is an appropriate standardization of the original
statistic 7;,, compute

Sty = Sa(X;) = S(Bf o Bl _10)-

The RBB distribution is then given by

Hppp(x) = PX(S:,H(T: T,) <z |XM)

n,bn n,by

where P*(. | X(™) denotes the conditional probability given X (™.

Remark 2.1 In the next sections, the maximum length for the bootstrap
series is chosen to be b, = n. As will be shown below, the RBB is then
second order correct for regular functionals. However, in the i.i.d. case, it
is known that subsampling (i.e. choosing b, = o(n) in our case) without
replacement may yield a general second-order asymptotic validity at the cost
of some e¢ciency : see Bertail (1997) and Politis, Romano & Wolf (2000) for a
recent survey. The study of the properties of such a regenerative subsampling
distribution estimate goes beyond the scope of this paper and will be the
subject of further investigation.



Remark 2.2 One may naturally compute a Monte-Carlo approximation
to Hrpp(x) by repeating independently the procedure above B times.

Remark 2.3 We point out that the RBB dizers from the regeneration-
based bootstrap proposed by Datta & McCormick (1993), which is not sec-
ond order correct up to Op(n~'/2), (and from its modi..ed version in Bertail
& Clémencon (2003) too) in which the number of resampled blocks is held
.Xed to [, — 1, conditionally to the sample. By generating this way a ran-
dom number [* — 1 of bootstrap regenerative blocks, we get a data series
that somehow mimics the renewal properties of the chain, although it is not
markovian. Consequently, the usual properties of the i.i.d. Bootstrap cannot
be directly used for studying the RBB method, contrary to the regeneration-
based bootstrap studied in Bertail & Clémencgon (2003).

Remark 2.4 We also emphasize that the principles underlying the RBB
may be applied to any (eventually continuous time) regenerative process (and
not necessarily markovian).

2.4 Second order accuracy of the RBB

Pursuing the work of Datta & McCormick (1993) in which the regeneration-
based bootstrap is introduced, Bertail & Clémencon (2003) showed that a
suitably modi..ed version of their bootstrap methodology is second order
order correct up to Op(n~'log(n)) for the unstudentized mean, in the sta-
tionary case only. We study here the asymptotic validity of the RBB for
the mean standardized by an adequate estimator of the asymptotic variance.
This is the useful version for con..dence intervals but also for practical use of
the Bootstrap (refer to Hall (1992)). Since we know from Bertail (1997) that
extrapolating subsampling distribution (or m out of n bootstrap distribution)
yields second order correctness (at least up to op(n~Y/2)) in an automatic way
under quite weak conditions, it is also of theoretical and practical importance
to determine accurately the rate of convergence (see Gotze & Kiinsch (1996)
for the case of the MBB). We prove that for a broad class of Markov chains
(including chains with strong mixing coe¢cients decreasing at a polynomial
rate), the accuracy reached by the RBB is of order Op(n~1) for the unstan-
dardized sample mean as well as for the studentized sample mean. The rate
obtained is thus similar to the optimal rate of the Bootstrap distribution in
the i.i.d. case, contrary to the MBB (see Gotze & Kiinsch (1996)). The proof
relies on the E.E. for the studentized sample mean established in Bertail &
Clémencon (2004), which result mainly derives from the methods used in
Malinovskii (1987) to obtain the E.E. for the unstandardized sample mean
(see also Malinovskii (1987, 1989) and Bolthausen (1980)).



2.4.1 Further notations and preliminary remarks
W set

In—1 TA(5+1)
na=7alla) —7a(l) =) _U(B;j)and f(B))= Y  f(Xi), foranyj>
j=1 1=1+74(j)
With these notations, we may write
In—1
pn(f) = p(f) = ny' Z{f n(f)}-

By virtue of the strong Markov property, {f(B;) — I(B;) u(f)};>1 are i.i.d.
r.v.’s with mean 0 and variance

= B({f(B;) = U(B;) n(f)}?) @)

In the following, we also set

a = Ex(ta) and 3 = cov(l(B)), f(B;) —U(B;) u(f)})-

Under the assumption that the expectations Ea((>_;2, f(X:i))?), Ea(73),
E, (02, 1f(X:)|) and E,(74) are ..nite, the CLT holds (see Theorem 17.2.
in Meyn & Tweedie (1996)). We have as n — oo

n 2 (pn(f) = u(f)) — N(0,0%) in distribution under P,

with the asymptotic variance 0 = a~'o%.

For the MBB, the choice of the standardization, the bias it induces and
the de..nition of its Bootstrap counterpart are key points to obtain the sec-
ond order validity of the method. In our regenerative setting, we avoid this
problem with the RBB, since the following estimate of the asymptotic vari-
ance o} = a~'o} based on the expression (1) may be naturally constructed
using the regeneration times

Ip—1

—nAIZ{f ()UB))}*.

First order properties of this estimator are studied in Bertail & Clémencon
(2004). A straightforward application of the SLLN for positive recurrent
Markov chains shows it is strongly consistent. Under some further regularity
conditions, Bertail & Clémengon (2004) have also shown that its bias is of
order O(n~') and it is asymptotically normal. As will be shown below, this
standardization does not weaken the performance of the RBB, while the
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standardization of the MBB distribution in the strong mixing case is the
main barrier to achieve good performance (as shown by Gotze & Kuinsch
(1996)). Moreover, in opposition to the MBB, the Bootstrap counterparts
in the studentized case may be de..ned straightforwardly in our regenerative

setting. With n’ = > " [(B%), we de..ne

Ir—1 Iy—1

1 (f) = n' ZfB* ) and o?2(f) = n% Z{fB* AUBHY.

2.4.2 Main asymptotic result
We now state the asymptotic validity of the RBB in the atomic case.

Theorem 2.1 Assume that the chain X ful..lls the following conditions,

(i) (Cramer condition) |llz'_m | Ex(exp(it(SA {F(X) — (£ < 1.
t|—o0

(i) (Nondegeneracy of the asymptotic variance) UJ% > 0.

(i1i) (’Block moment conditions™) For some integer s > 2,
TA
Ea(7) < 00, E4()_|f(X0)])* < oc.
i=1
(iv) (’Block moment conditions” for the initial law v)
TA
E,(73) <00, B, 1f(X))?* < 0.

(v) (Boundedness of the N -fold convolution of the joint density)

There exists NV € N* such that the N-fold convoluted density G*¥ is bounded,
denoting by G the density of the (f(B;) — I(B;)u(f))*’s.

Then, under assumptions (i)-(iv) with s = 6 + ¢, the RBB distribution es-
timate for the unstandardized sample mean is second order accurate in the
following sense

A, =sup |Hppp(r) — H) (2)] = Op,(n™"), as n — o0,
zeR

with HYpp(z) = P o7 {ui(f) — m(f)} < = | X™) and HY(z) =
P,(n{? o7 Y (f) — p(f)} < ).



Under the assumptions (i)-(v) with s = 8 + ¢, the RBB distribution esti-

mate for the studentized sample mean is also second order correct

A = sup | Hypp(x) — HE (2)| = Op,(n™"), as n — o0,
zeR

with Hip p(z) = P*(n)y V2o (H){s(f) = pa( )} < 2 | X ™) and H (z) =

n

P02 () (f) — u(f)} < 2).

This result ensures that the RBB has the optimality of the i.i.d. Boot-
strap. This is noteworthy, since the RBB method applies to countable chains
(for which any recurrent state is an atom) but also to many speci..c Markov
models widely used in practice (see § 2.4 in Meyn & Tweedie (1996), Feller
(1971) and Asmussen (1987) for more details on such models and for instance
the popular storage model in Example 1 of section 4). We point out that
the relationship between the ”block moment” condition (iii) and the rate of
decay of mixing coe€cients has been investigated in Bolthausen (1982): for
instance condition (iii) is typically ful..lled when f is bounded as soon as the
strong mixing coedcients sequence decreases at an arithmetic rate n=", for
some p > s—1. Condition (V) is a technical assumption used in Bertail & Clé-
mencon (2004) to obtain an E.E. in the studentized case. As may be shown by
a straightforward calculation, if the density of the ZZiﬁti)(j)(f(Xi) —u(f))’s
is bounded then it holds for N = 2.

Remark 2.5 The same results holds a.s. up to O(n~"loglog(n)/?), just
like in the i.i.d. case under the same moment conditions. This straighfor-
wardly results from the LIL applied to the empirical moments of the blocks
appearing in the E.E. of the RBB distribution. Notice also that if one is
interested in getting the second order validity up to o(n~'/?) only, then a
careful examination of Malinovskii (1987) and Bertail & Clémencon (2004)
shows that s > 3 (respectively s > 4) is su¢cient in the standardized case
(resp. the studentized case).

3 Approximate regenerative block-bootstrap

for positive recurrent chains

3.1 General Harris chains and the splitting technique

For clarity’s sake, we now briety recall the splitting technique introduced
in Nummelin (1978), which allows to extend in some sense the probabilistic

10



structure of any chain in order to arti..cially construct a regeneration set in
the general Harris recurrent case. First, consider the following notion.
De..nition 3.1 For a Markov chain valued in a state space (E, &) with
transition probability II, a set S € £ is said to be small if there exist an
integer m > 0, a probability measure ¢ supported by S, and 6 > 0 such that

Vre SYAeE, IIM(z,A)>6d(A),

denoting by II™ the m-th iterate of II. When this holds, we say that the
chain satis..es the minorization condition M(m, S, 6, ®).

Recall that accessible small sets do exist for irreducible chains (any ac-
cessible set actually contains a small set, see Jain & Jamison (1967)). Let
X be a Harris recurrent chain. Let us now make precise how to construct
the atomic chain onto which the initial chain X is embedded, from a set on
which an iterate IT™ of the transition probability is uniformly bounded below.
Suppose that the chain X satis..es M = M(m, S, 6, ®) for some measurable
set S such that (S) > 0. Even if it entails to replace the chain (X,), .y by
the chain ((Xpm; -+ Xnm+1)—1) )nen, We SUppose m = 1. The sample space is
expanded so as to de..ne a sequence (Y, ),y Of independent random variables
with parameter ¢ by de..ning the joint distribution P, ,, whose construction
relies on the following randomization of the transition probability II each
time the chain (X,), . hits the set S (note that it happens almost surely
since the chain is Harris recurrent and ¢ (S) > 0). If X,, € S and

e if Y, = 1 (which happens with probability 6 € ]0,1[), then X, is
distributed according to the probability measure ®,

e if Y, = 0 (that happens with probability 1—¢), then X, is distributed
according to the probability measure (1 — 8) " Y(I1(X,,.) — §®(.)).

We now have constructed a bivariate Markov chain XM = ((X,,,Y,)), .
called the split chain, taking its values in £ x {0,1} and which possesses
an atom, namely S x {1}. The whole point of this construction consists
in the fact that X inherits all the communication and stochastic stability
properties from X (irreducibility, Harris recurrence,...), in particular (for the
case m = 1) the blocks constructed for the split chain are i.i.d.. Hence the
splitting method enables to extend the regenerative method and to establish
all of the results known for atomic chains, to general Harris chains. It should
be noticed that if X satis..es M = M(m, S, 6,®) for m > 1, the resulting
blocks are not independent anymore but 1-dependent, a form of dependence
which may be also easily handled. For simplicity ’s sake, we shall omit the
subscript M in what follows and abusively denote by P, the extensions of
the underlying probability we consider.
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3.2 “Approximating the regenerative blocks”

Our method for bootstrapping positive recurrent chains relies on approximat-
ing the splitting construction and is based on the knowledge of the parameters
of a minorization condition M ful..lled by the chain. In the following, we
suppose that condition M is ful..lled with m = 1 for the sake of the sim-
plicity. We assume further that the family of the conditional distributions
{II(z, dy) }zcr and the initial distribution v are dominated by a o-..nite mea-
sure \ of reference, so that v(dy) = f(y)A(dy) and Il(x, dy) = p(z,y)A(dy),
for all z € E. Notice that the minorization condition entails that @ is ab-
solutely continuous with respect to A too, and that p(z,y) > 6¢(y), A(dy) a.s.
for any x € S, with ®(dy) = ¢(y)dy. Let Y be the binary random sequence
constructed via the Nummelin technique from the parameters of condition
M. Our proposal for approximating the Nummelin construction is based on
the crucial observation that the distribution of Y™ = (Y3, ..., ¥;,) condition-
ally to X(™+1) = (21, ..., z,,41) is the tensor product of Bernoulli distributions
given by: for all 3™ = (64, ..., 8,) € {0,1}", 20D = (zy, ..., 2py1) € B,

P, (y(n) = g | XD — x(n+1)) - pr(yi = 0; | Xy = x5 Xjp1 = Ti41),

=1

with, for 1 <i < n,

o ifu; ¢ 8,
PYi=1|Xi =1z, Xip1=2i11) = 6,

o ifz; €585,

P,(Yi =1|Xi =24 Xiy1 =2i41) = 60(xis1)/p(xi, Tig1),
PVQQ =0 ’ Xi=z; Xip1 = 952'+1) =1- 5¢(33i+1)/19(33i,$i+1)-

Roughly speaking, conditioned on X*1, from i = 1 to n, Y; is drawn
from the Bernoulli distribution with parameter ¢, unless X has hit the small
set S at time 4: in this case Y; is drawn from the Bernoulli distribution
with parameter §¢(X;.1)/p(X;, X;11). We denote by L™ (p, S, 6, ¢, z™+Y)
this probability distribution. If we were able to generate Y3, ..., Y;,, so that
XM®) = ((X,71),...,(Xn,Y,)) be a realization of the split chain XM de-
scribed in § 3.1, then we could apply the RBB procedure to the sample
path XM (™) Unfortunately, as shown above, knowledge of the transition
density p(z,y) is required to draw practically Yi, ..., Y, this way. Hence,
our proposal for approximating this construction consists in computing an
estimator p,(z,y) of the transition density p(z,y) using data Xj,..., X,
(note that we may choose the estimate p,,(z, y) of the transition density such

12



that p,(z,y) > 6¢(y), Mdy) as., and p,(X;, Xiy1) > 0, 1 < i < n), and
then drawing a binary random vector (171, ...,}7”) conditionally to X1 =
(X1, ..., Xns1), from the distribution £™(p,, S, 8, ¢, X "), approximating
in some sense the conditional distribution £™(p, S, 6, ¢, X ™) of (V3,...,
Y,) for given X™+Y_ Our method for bootstrapping Harris chains, which
we call approximate regenerative block-bootstrap (ARBB), simply amounts
then to apply the RBB procedure to the data ((Xl,}Afl),...,(Xn, ffn)) as if
they were drawn from the atomic chain X*. We shall prowe that, even if
it requires to use a consistent estimate of the ”nuisance parameter” p and
the corresponding approximate blocks it induces, this bootstrap method still
remains asymptotically valid.

In the next subsection, we show that the accuracy of this approximation in
the sense of the Mallows distance (which metric is a crucial tool for proving
asymptotic validity of bootstrap methods, see Bickel & Freedman (1981)
and technical proofs in section 5) mainly depends on the rate of the uniform
conwvergence of p,(x,y) to p(x,y) over S x S.

3.3 Mallows distance between (X, Y;)i<i<, and (Xi,Yi)1<icn

Let us show that the distribution of (X, ﬁ)lgign gets closer and closer to the
distribution of (X;, Vi), ,,, in the sense of the Mallows distance (also known
as the Kantorovich or Wasserstein metric in the probability literature) as
n — oo. Hence, we express here the distance between the distributions P#
and PZ" of two random sequences Z = (Zy),o and Z' = (Z}),=o, taking
their values in R¥, by (see Rachev & Rischendorf (1998), p 76)

I,(Z,2) = 1,(P?, P?) = min {Lp (W,W'); W ~ PZ W'~ PZ’},
with
(Ly (W, W) = B [D? (W, W),
where D denotes the metric on the space x(RF) = (R¥)> de..ned by

D (w,w') = 27" [Jwk — wilwm
k=0
for any w, w’ in x(R*) (||.||gz= denoting the usual euclidian norm of R¥).
Thus, viewing the sequences Z(™ = (X, Ya) 1< e @Nd ZMW = (X, Yi)1<icn
as the beginning segments of in..nite series, we evaluate the deviation between
the distribution P™ of Z™ and the distribution P™ of Z(™ by using this
de..nition .
L(P™ P™) = min 2"“E(’Yk . Tfk‘).

Z(n) o P(n)
Z(n) p(n) k=1
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Theorem 3.1 Assume that
(i) S is chosen so that infyes ¢(z) > 0,
(i1) p is estimated by p,, at the rate «,, for the MSE when error is measured

by the L loss over S?, then

W(P™, ) < (8 inf ¢(a)) a2
This results clearly shows that the closeness between the two distri-
butions is tightly connected to the rate of convergence of the estimator
p.(x,y) but also to the minorization condition parameters. This gives us
some hints on how to choose the small set with a data driven method to
obtain better ..nite sample results (see section 3.6).

3.4 The ARBB algorithm.

It is now easy to see how we can perform an approximate regenerative block-
bootstrap (ARBB) algorithm to obtain the sample distribution of some statis-
tic 7,,. Given the parameter b,, it is simply performed in six steps as follows.

1. From the data X ™) = (X,,..., X,,.,), compute an estimate p,(z,y)
of the transition density such that p,(z,y) > 6¢(y), A(dy) a.s., and
pn(Xi>Xi—|—1) >0,1<7<n.

2. Conditionally to X (1) draw a binary data vector (Y}, ..., Y, ) from the
distribution estimate £™ (p,, S, 6, ¢, X("*1)). From a practical point of
view, it naturally suCces to draw the binary Y;’s at times i when the
chain visits the set S (i.e. when X; € S), which are the only time
points at which the split chain may regenerate: at such a time point
i, draw thus Y; according to the Bernoulli distribution with parameter

6d(Xit1)/pn(Xi; Xit1)).

3. Count the number of visits I, = > I{X; € S5,Y; = 1) to the set
Am = S x {1} up to time n. And divide the observed sample path
X ™ into 7, + 1 blocks, valued in the torus 7' = U, E", corresponding
to the pieces of the sample path between consecutive visits to A,

-~

By = (Xi, ..., X?AM(l))» B = (X;AM(1)+1, ey X?AM(Q)), ey
Xo ay) B =(x

B, .= (X?AM(Tnfl)H’ w0 Ay (i Fapg ()10

Xn),
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with
Fa,, (1) = inf {n >1, X, €8Y, = 1},
P, G+ 1) = inf {n > 7, (), X, €8,V = 1},
1(B)) = Ta,,( + 1) — 7a,, (j), forj>1.

4. Draw sequentially bootstrap data blocks 57, ..., B; independently from

the empirical distribution £, = (1, —1)~" Y, 65 ofthe blocks B, ..,
EIA 1» conditioned on X ™) until the length of the bootstrap data series

n—

I*(k) = S5, 1(B;) is larger than b,. Let I} = inf{k > 1, I*(k) > by }.

5. From the bootstrap data blocks generated at step 4, reconstruct a
pseudo-trajectory by binding the blocks together, getting the recon-
structed ARBB sample path

X\ = (B, ., B_y).
Then compute the ARBB statistic and the ARBB standardization
Toi) =T(G™M), S35 = 5™,

6. The ARBB distribution is then given by

Harpp(z) = P*(Si, NI, —Tn) <z | X™D),
In the following we choose b,, = n.

Remark 3.1 A Monte-Carlo approximation to H 4ggp(x) may be straight-
forwardly computed by repeating independently N times the steps 4-6 of the
procedure above.

3.5 Asymptotic validity of the ARBB

As explained in Malinovskii (1987) in the unstandardized case, the Edge-
worth expansion (E.E. in abbreviated form) proved in Bertail & Clémencon
(2004) for an atomic chain in the studentized case straightforwardly ex-
tends to a general positive recurrent chain by applying the latter to the
split chain (X, Y") constructed via the Nummelin technique from a minoriza-
tion condition M : it is noteworthy that, though expressed using the pa-
rameters of condition M, the coe€cients in the E.E. are independent from
these latter, in particular the asymptotic variance, which may be written
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0% = By (rap) " Ea (24 (X5) — u(f)})?), where 74,, = inf{n > 1,
(Xn, ) € Sx {1}} and E4,,(.) denotes the expectation conditionally to
(Xo, Yo) € Apm = S x {1}. However in the studentized case, one cannot use
the standardization de..ned in 2.4.1 in the atomic setting for the split chain,
since the times when the split chain regenerates are unknown. We thus con-
sider the following estimators based on the pseudo-regeneration times (i.e.
times i when (X,,Y;) € S x {1}) generated by the procedure detailed in 3.4,

ln—1 In—1
i) =7, S FByand 8200 =" S {F(B) ~ in(PUB) Y
j=1 j=1

of 11(f) and o7 respectively, with N, =TAy @)—?AM(l) = Zg’;_ll l(l§j) and
J(Bj) = SV ) J(X). By convention, fin(f) (respectively 52(f), 7,,,)
equals to 0, when [,, < 1. Note that, analogously to the way we proceeded in
the atomic case to avoid bias terms that cannot be approximated by using
a resampling method (see subsection 2.2), eventual data collected before the
.rst (respectively, after the last) pseudo-regeneration time are not used to
construct these estimators.
Let us de..ne the unstandardized distribution by

HY (2) = P32 0(£) " (Fulf) — u(f) < 2).

Wk also de..ne the pseudo-regeneration based studentized sample mean

A~

S S B) - SNB) s ) — ()
A RPN T
(S {8y - o6y}

with sampling distribution H2(z) = P,(ta,n < ).

3.5.1 Further assumptions and preliminary results

In this setting we use the following assumptions to establish the asymptotic
validity of the ARBB approach. Let k£ > 2 be a real number.
Hi(f, k, v) : The small set S is such that

Sup Ex((z |f(X3)])F) < oo and Eu((z F(X)DF) < oo

H,(k, v) : The small set S is such that

sup F,(7%) < co and E, (7F) < co.
zesS
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Remark 3.2 We point out that assumptions H:(f, k,v) and Hi(k,v) do
not depend on the choice of the small set S (if it is checked for some accessible
small set S, it is also ful..lled for all accessible small sets of the chain). Note
also that in the case when assumption H;(k,v) is satis.ed, Hi(f, k,v) is
ful..lled for any bounded measurable function f.

For a sequence of nonnegative real numbers (o, )nen cOnverging to 0 as
n — 0o,

Hs : p(z, y) is estimated by p,(z, y) at the rate «,, for the MSE when
error is measured by the L loss over S x S

E,( sup |pa(z,y) — plz,y)[*) = O(an), asn — oo.
(z,y)ES XS

Remark 3.3 Numerous estimators of the transition density of positive
recurrent Markov chains have been proposed in the literature and their esti-
mation rates have been established under various smoothness assumptions on
the density of the joint distribution u(dz)II(x, dy) and the one of u(dx) (re-
fer to Roussas (1969), Rosenblatt (1970), Birgé (1983), Doukhan & Ghindes
(1983), Athreya & Atuncar (1998) or Clémencon (2000) for instance). For
instance, under classical Holder constraints of order s, the typical rate for
the risk in this setup is a,, ~ (Inn/n)*/,

H, : The density ¢ is such that inf,cg¢(z) > 0.

Hs : The transition density p(z,y) and its estimate p,(z,y) are bounded
by a constant R < oo over S2.

We have the following result.

Theorem 3.2 Suppose that conditions of Theorem 3.1 are ful..lled by the
chain. Assume moreover that X satis..es Hi(f, p,v) and Ha(p, v) with p > 4,

‘Hs, H4 and Hs, then we have as n — oo

52(f) — o% in P,- probability,

n

ﬁiﬁu”—({%ﬁ — N(0,1) in distribution under P,.
On

We recall that condition H, ( f, p, v) may be more easily checked in practice
by using test functions methods (cf Kalashnikov (1978)). In particular, it
is well known that ’block” moment conditions may be replaced by drift
criteria of Lyapounov’s type (see Chapter 11 in Meyn & Tweedie (1996) for
further details on such conditions and many examples, as well as Douc et
al. (2004) for recent results). We also point out that assumptions H1(f, p, v)
and Hz(p, v) classically imply that the block-moment conditions (iii) and (iv)
are satis..ed by the split chain for s = p.
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3.5.2 Main asymptotic theorem

The bootstrap counterparts of the statistics introduced above are then de-
.ned as follows. Let BY,..., B._; be the bootstrapped pseudo-regenerative

data blocks and n’, = Zl N I(B;) be the length of the ARBB data series,
then set

-1 -1

1) =m0 3 B, o) =0} Y B — i I

The unstandardized version of the approximate-regenerative bootstrap
distribution is given by

Hippp(r) = P05 261 (f) (ua(f) = fin(f)) < @ | XU,

De..ne also the bootstrap version of the pseudo-regeneration based stu-
dentized sample mean by

S S8 — i) S UBY) o papi(f) = finlf)
(S () - menespy) ™ )

and the studentized ARBB distribution estimate H5,p5(7) = Pt n <
z | X("*1). Note that this is the same construction as in the atomic case,
except that one uses the approximated blocks instead of the true regenerative
ones.

tAM,TL

Theorem 3.3 Under the hypotheses of Theorem 3.2, we have the following

convergences in probability under P,

Ay = sup |Hfppp(r) — H ()] — 0, asn — oo
z€eR

Ay = sup |Hppp(2) — Hy ()] — 0, 8 n — oo.
z€R

3.5.3 Second order properties of the ARBB in the stationary case

In consideration of technical di¢culties, the study of the second order prop-
erties of the ARBB distribution estimate is con..ned in this paper to the
unstudentized case in a stationary framework. Although such a result is
clearly not satisfactory regarding practical applications, we restricted our-
selves here to this simplistic setting with the aim to show that the ARBB
may Yield second order correctness at a better rate than the MBB does, by
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using simple arguments only. In the stationary case, one may actually use
pn(f) = n~ 1> | X; as a natural unbiased estimate of x(f), avoiding this
way controlling the behaviour of the ..rst and last pseudo-regenerative blocks,
a lenghty task that could accomplished at the price of a much more technical
study). In the following we thus deal with

Hyl(z) = P,(n'?o: {E,(f) — p(f)} < ).

Because the last pseudo-regenerative block is dropped in the ARBB resam-
pling procedure, a bias problem appears in the stationary case, which can be
easily handled by recentering the ARBB bootstrap distribution. Hence, we
consider

Hippp(®) = P (Ehum — B () < 2| XOFD).

We then have the following result.

Theorem 3.4 Assume that the chain is stationary. Under the hypothe-
ses of Theorem 3.2 with p > 6, and if in addition the Cramer condition

lim sup,cg| By (exp(it(X 7 {f(X;) — u(£)}))| < 1is ful..lled, then we have

|t|]—o0

AY = sup |[H S pp(x) — HY (2)| = Op,(a/?n™12), as n — oo
xR

Remark 3.4 Observe that, even if one uses a honoptimal estimator p,,
the ARBB is still second order correct. Of course the better the estimator
is, the sharper the approximation is. In the geometrically recurrent case, the
best rate that can be attained is typically «,, = n='log(n) (see Clémengon
(2000) for instance), yielding the validity of the ARBB up to the almost
optimal rate op, (n"log(n)'/?), which clearly improves over the MBB even
in the unstudentized case (see Lahiri (2003), chap. 6.5).

Remark 3.5 The second order properties of the ARBB in the studentized
general case cannot be straightforwardly deduced from the E.E. of the RBB
version by the standard Chibisov lemma, nor from the argument used in
the atomic case. As a careful examination of the proof of Theorem 5.1
in Bertail & Clémencon (2004) shows, second order asymptotic results for
the RBB when a known atom A exists are established by partitioning the
probability space according to the number [, — 1 of regenerative blocks and
the values taken by the successive regeneration times 74(1), ..., 74(l,) up
to time n, and and applying then non uniform limit theorems for sample
mean statistics based on 1-lattice i.i.d. random vectors on each subset of
the partition (see also Malinovskii (1987, 89)). What makes this approach
very hard to transpose in the ARBB case is that, by construction, pseudo-
regeneration times 74, ,(j), and the data blocks B; they induce, depend on the
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whole trajectory, owing to the transition probability estimation step. In spite
of this, we nevertheless expect that the ARBB properties are comparable to
the RBB properties.

3.6 Practical choice of the small set

One may easily check at hand on many examples of real valued Markov
chains X, that any compact interval V, (¢) = [xq— €, 29+ ¢] for a well chosen
x (typically itsmean) and ¢ > 0 small enough, isa small set with the uniform
distribution on V,,(¢), denoted by U4, ( as a minorization measure (see
example 2 in § 4.2). Hence, in the case when one knows xy, € and 6 such that
(2) holds (this simply amounts to knowing a uniform lower bound estimate
for the probability to return to V() in one step), one may exectively apply
the ARBB methodology to X.

The number of pseudo-regenerative blocks to resample depends on how
large the small set chosen is (or more exactly, on how often it is visited by the
chain in a trajectory of ..nite length) and how accurate is the lower bound
(2) (the larger ¢ is, the larger is the probability to draw pseudo regenera-
tive times Y;, = 1 at randomization steps, i.e. when X, € V, (¢)). And
since the larger ¢ is, the smaller 4(¢) is, it is intuitive to think that bet-
ter numerical results for the block-resampling procedure can be obtained in
practice for some speci..c choices of the size ¢, likely (but with no argument
except empirical evidence to support this point) for choices corresponding to
a maximum number of regenerative data blocks given the trajectory. Thus,
from a practical viewpoint, when no prior information about the structure
of the chain is available, a data driven method for choosing empirically the
minorization condition parameters could be as follows.

A possible ideal selection rule could rely on searching for e > 0 so as to
maximize the expected number of data-blocks conditionally to the observed
trajectory, that is

No(©) = B(S X, € Vay(6), ¥i = 1) | X6) @
= ;I{(XZ»XM)G Vol )

Since the transition density p and its minimum over V, (¢)? are unknown, a
practical empirical criterion N, (¢) to optimize is obtained by replacing p by

an estimate p, and §(c)/2e by a lower bound &,(c) /2¢ for p,, over Vao (€)% iN
expression (4). Observe ..nally that other approaches may be used for the
choice of the minorization condition, for instance one may refer to Roberts
& Rosenthal (1996) in the case of dirusion Markov processes.
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4 lllustrative examples

We now give two examples, only with a view to illustrate the scope of ap-
plications of our methodology. The ..rst example presents a regenerative
Markov chain described and studied at greater length in Harrison & Resnick
(1976) (see also Brockwell, Resnick & Tweedie (1982) and Browne & Sigman
(1992)) for modeling storage systems. In consideration of the recent emphasis
on nonlinear models in the time series literature, our second example shows
to what extent the ARBB method may apply to a general nonlinear AR
model (see Franke et al. (2002)). Further, we point out that the principles
exposed in this paper are by no means restricted to the markovian setting,
but may apply to any process for which a regenerative extension can be con-
structed and simulated from the data available (see chapter 10 in Thorisson
(2000)).

4.1 Example 1 : content-dependent storage systems

Wk consider a general model for storage, evolving through a sequence of input
times (7),oy (With 7o = 0 by convention), at which the storage system is
replenished. Let S, be the amount of input into the storage system at the
n' input time T;, and C; be the amount of contents of the storage system at
time t. When possible, there is withdrawal from the storage system between
these input times at the constant rate » and the amount of stored contents
that drops in a time period [T', T'+ AT since the latter input time is equal
to Cp — Cpyoar = rAT, and when the amount of contents reaches zero, it
continues to take the value zero until it is replenished at the next input time.
If X, denotes the amount of contents immediately before the input time 7,
(i,e. X, =Cr —S,), we have for all n € N,

Xn+1 = (Xn + Sn - rATn+1)+ )

with (), = sup(z,0), Xo = 0 by convention and AT, = T,, — T, for all
n > 1. Let K(z,ds) be a transition probability kernel on Ry. Assume that,
conditionally to X, ..., X,,, the amounts of input S, ..., S,, are independent
from each other and independent from the inter-arrival times ATy, ..., AT,
and that the distribution of S; is given by K(X;,.), for 0 < i < n. Under
the further assumption that (AT,),-; is an i.i.d. sequence with common
distribution G, independent from X = (X,,).en, the storage process X is a
Markov chain with transition probability kernel II given by

(X, {0})
I(Xy, Jz, oof)

F(XT“ [Xn7 OOD,
I'X,, ]-oo, X, —x[)
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for all = > 0, where the transition probability I' is given by the convolution
product I'(z, |—o0, y[) = [=, [y G(dt)K (z, dz)I{rt — z < y}.

One may check that the chain II is éo-irreducible as soon as K(z,.) has
in..nite tail for all x > 0. In this case, {0} is an accessible atom for X and
it can be shown that it is positive recurrent if and only if there exists b > 0
and a test function V' : Ry — [0, oo such that V' (0) < co and for all z > 0 :

/H(:z:, dy)V(y) — V(zr) < =1+ bl{x = 0}.

The times at which the storage process X reaches the value 0 are thus
regeneration times, and allow to de...ne regeneration blocks dividing the sam-
ple path, as shown in Fig. 1. Figure 2 below shows a reconstructed RBB
data series, generated by a sequential sampling of the regeneration blocks (as
described in 2.3), on which RBB statistics may be based.
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Fig. 1: Dividing the trajectory of the storage process into data blocks
corresponding to the regeneration times 7,4(7)
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Fig. 2 : Reconstruction of a storage process data series using the RBB
resampling procedure
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Simulation results We simulated two trajectories of respective length
n = 100 and n = 200 drawn from this Markov chain with r = 1, K(z, dy) =
Exps(dy) and G(dy) = Expi(dy), denoting by Exp,(dy) the exponential
distribution with mean 1/X > 0, which is a standard M/M/1 model (see As-
mussen (1987) for instance). In Fig. 3 below, a Monte-Carlo estimate of the
true distribution of the sample mean standardized by its estimated standard
error (as de..ned in § 3.2.1) computed with 10000 simulated trajectories is
compared to the RBB distribution (in both cases, Monte-Carlo approxima-
tions of RBB estimates are computed from B = 2000 repetitions of the RBB
procedure, see remark 3.1)) and to the gaussian approximation.
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Fig. 3 : Comparison of true, RBB and gaussian distributions for n = 200.

With a view to constructing accurate con..dence intervals, Table 1 com-
pares the quantile of order ~ of the true distribution, the one of the gaussian
approximation (both estimated with 10000 simulated trajectories) and the
mean of the quantile of order ~ of the RBB distribution over 100 repetitions
of the RBB procedure in the tail regions.

The left tail is clearly very well estimated, whereas the right tail gives
a better approximation than the asymptotic distribution. The gain in term
of coverage accuracy is quite enormous in comparison to the asymptotic
distribution. For instance at the level 95%, for n = 200, the asymptotic
distribution yields a bilateral coverage interval of level 71% whereas the RBB
distribution yields in our simulation a level of 92%.

n= 100 200 o0 n= 100 200 0

Y% TD RBB TD RBB ASY Y% TD RBB TD RBB | ASY

1| -7.733 | -7.044 | -5.492 | 5.588 | -2.326 90 | 1.041 | 1.032 | 1.029 | 1.047 | 1.282

5| -4.374 | -4134 | -3.430 | -3.477 | -1.645 95 | 1.287 | 1.360 | 1.299 | 1.356 | 1.645

10 | -3.184 | -2.950 | -2.472 | -2.560 | -1.282 99 | 1.762 | 1.970 | 1.839 | 1.916 | 2.326

Table 1 : Comparison of the quantiles of the true distribution (TD), RBB
and gaussian distributions.
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4.2 Example 2 : nonlinear AR models

Consider the general heteroskedastic autoregressive model
Xy =m(X,) +0(X,)en1, n€N,

where m : R — R and o : R — R* are measurable functions, (e,)nen is a
i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n € N, &,41 is
independent from the X;’s, £ < n with E(e,,,) = 0 and var(e, ;) = 1. The
transition kernel density of the chain is given by p(z,y) = g((y—m(z))/o(x)),
(z, y) € R%. Assume further that g, m and o are continuous functions and
there exists =, € R such that p(xg,zy) > 0. Then, the transition density
is uniformly bounded from below over some neighborhood V,,(¢)? = [zo —
g, 10 +¢]? of (z0, 20) in R? : there exists § = 6(¢) €]0, 1] such that,

inf  p(z,y) > 6(2¢) . 5)

(z,y)EVZ

Thus the chain X satis..es the minorization condition M(1, V,,(€), 6, Uy, ()
Here are empirical evidences for two speci..c models. N

The AR(1) model © Xip1 = aX; + ei41, i € N, with & "< A(0,1),
a = 0.95, Xy =0 and for a trajectory of length n = 200.

The AR(1) model with ARCH (1) residuals called AR-ARCH model:

Xiv1 =aX; + (1 + ﬁ)(g)l/2<€i_|_17 1 €N,

with &; i N(0,1), « = 06, 3 = 0.1, Xo = 0 and for a trajectory of
length n = 200.

A much more detailed simulation study as well as applications involv-
ing dicerent types of data generating markovian model will be carried out
in a forthcoming paper. Here the true distribution of the sample mean is
estimated with 10000 simulations, the ARBB distribution is approximated
with B = 2000 iterations and the procedure is repeated 100 times (we sim-
ulated 100 trajectories and averaged the 100 quantiles of the corresponding
ARBB distributions in Table 2). We estimated the transition density with
a simple kernel estimator p,, of Nadaraya-Watson ’s type (see Doukhan &
Ghindes (1983) for instance). Note it is a nonparametric estimator and its
computation requires no prior information about the underlying markovian
model. The small set is selected by maximizing the empirical criterion N, (¢)
described above over ¢ > 0. The main steps of the procedure are summa-
rized in graph panels 1 and 2. The ..rst ..gure shows the Nadaraya-Watson
(NW) estimator, the second one represents N, (¢) as € grows and clearly al-
lows to identify an optimal value for the size of the small set. In the case
of the AR model for instance, this selection rule leads to pick ¢ = 0.90 and
6 = 0.110 (the minimum value of p(z,y) over the corresponding square is
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actually 6 = 0.118). In the second line of the panel, the level sets of the NW
estimator, the data points (X;, X;+1) and the ”optimal” small set are repre-
sented (this also shows that the small set chosen may be not that ”small”
if the transition density is fat around (0,0)). The next ..gure shows a tra-
jectory of the chain and indicates the pseudo-regenerative blocks obtained
by applying the randomization rule with Ber(1 — §(2¢) !/ pn(Xi, Xi41)) at
times ¢ when (X;, X;.1) € Vu(e)?). The ..gure on the right hand shows how
binded blocks form a typical ARBB trajectory. It is noteworthy that such
a trajectory presents less arti..cial ”jumps” than a trajectory reconstructed
from a classical MBB procedure. Finally the true distribution, the ARBB
distribution and the asymptotic gaussian distribution are compared in the
last picture. Table 2 below gives the mean of some quantiles (of order ) of
the ARBB distribution over 100 replications of the procedure for the two
models, compared to the true and asymptotic quantiles.

AR AR-ARCH AR AR-ARCH
Y TD ARBB | TD ARBB | ASY Y TD | RBB TD | ARBB | ASY
1 -3.639 | -3.754 -2.532 | -2.683 -2.326 90 | 1.683 | 1.583 | 1.362 1.416 | 1.282
25| -2.772 | -2.818 -2.025 | -2.146 -1.960 95 2.160 | 1.934 | 1.732 1.826 | 1.645
5 -2.346 | -2.388 -1.793 | -1.866 -1.645 975 | 2.731 | 2.533 | 2.004 2.143 | 1.960
10 -1.741 | -1.797 -1.429 | -1.452 -1.282 99 | 3.627 | 3.572 | 2.533 2.693 | 2.326
Table 2: Comparison of the tails of the true, ARBB and gaussian
distributions for the two models

These pictures speak volumes : for both models the true distribution is
accurately approximated. But note in particular the dicerence in the size of
the “optimal” small set and in the number of pseudo-regenerations between
these models. We point out that, though remarkable when compared to
the gaussian approximation, the gain in accuracy obtained by applying the
ARBB methodology to the AR model is higher than the one obtained for
the AR-ARCH type model. As may be con..rmed by other simulations, the
ARBB method provides less accurate results for a given (moderate) sample
size, as one gets closer to a unit root model (i.e. as « tends to 1): one may
simply get an insight for this phenomenon by noticing that the rate of the
number of regenerations (respectively, of the number of visits to the small
set) then decreases. Although generalizing successfully the ARBB method
to the null recurrent case seems possible from a theoretical viewpoint, these
empirical results suggest that further investigation is needed to elaborate a
practical ARBB procedure with so good properties in this case. This goes
beyond the scope of this article but will be studied elsewhere.
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Graph panel 1 : AR-model, a = 0.95, n
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5 Proofs

5.1 Proof of Theorem 2.1.

In the following, C' and K are constants which may be not necessarily
the same at each appearance. We denote by E*(. | X(™) the conditional
expectation given X™ (recall that the f(Bj)’s are i.i.d with distribution
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It Zé.":l 6;, conditionally to the trajectory X(). Observe ..rst that it
succes to consider the case of a non trivial regeneration set only, that is
Ea(ta) > 1. Indeed if E4(T4) =1, then 74 = 1 a.s. and the X;’s are thus
i.i.d. . Inthis case the RBB exactly corresponds to the naive Bootstrap and is
naturally second order correct both in the unstandardized and standardized
cases up to O(n~1) (cf Hall (1986)).

The proof now relies on checking that conditions for the validity of the
Edgeworth expansions (E.E. in abbreviated form) established in Malinovskii
(1987) (cf Theorem 1 therein) and in Bertail & Clémencon (2004) (cf The-
orem 5.1 therein) respectively are ful..lled for the RBB reconstructed series.
Because we only consider the statistics without the ..rst and last block, the
E.E. holds up to O(n™!). These asymptotic results actually hold not only
for Markov chains but also for any regenerative process, with regeneration
times de..ning blocks satisfying the hypotheses required. It is easy to see that
exactly the same argument may be used to derive the E.E. of the bootstrap
counterpart (just like in the i.i.d. case), with the only dicerence that all the
quantities are replaced by their empirical counterparts.

e Condition (i). Denote fort > 0, z € R,

In—1

L, 1— 1 > exp(it{ f(B;) — xl(B))}),

=1

C(t) = Ealexp(it{f(B;) — u(f)(B;)})-

Cu(t,x) =

We have
Jim T | B (exp(it{ £ (B7) —pa(UB;)E) | X)) = Tim T |G (1 (1)

On any compact set the following bound holds uniformly in ¢,

In—1

Cult ol 1)) = Cult 1) < thinl ) = WD) DO1(By)

and the term at the right hand side almost surely converges to 0 as n — oo
by virtue of the SLLN (un (f) — pu(f), while (I, —1)7 Y77 1(B;) — Ea(7a)
as n — oo0). Moreover the SLLN also yields that |C,,(u(f)) — C(t)] — 0 a.s.
as n — o0o. Thus Cy, (¢, un(f)) converges to C(¢) uniformly over any compact
set. Since lim;—.o.C(t) < 1, we may choose 0 < n < 1, such that |C(t)| <1-n
for any ¢ large enough. Then, for any A > 0, for any [t| < A, there exists
N such that, for all n > N, |C,(¢t, u.(f))| < |C(t)|+n/2<1-n/2 .Since
this is true for any A > 0, the empirical Cramer condition is satis..ed.
e Conditions (ii) and (iii). By virtue of the SLLN again, we have

l—1

Zf(Bk)p—}E(f(Bj)p) <00, asn — o0

k=1

1
I, —1

E*(f(B;) | X ™) =
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In particular,

ln—1

var (§(B}) — ual )UBY) DBy

l—l

= TA(Z?;) :IAG)UTQL(]C) — EA(TA)UJ% > 0 as.

as n — oo.
e Conditions (iv) and (v). We have by de..nition of the blocks

l,—1

E*(1(B;) | X™)

B;)* — Es(13) a.s., 8n — o0

A —1
Thus for n large enough,
E*(I(B;) | X™) > 1, as. .
It follows from Bertail & Clémencon (2004) that, as n — oo,
Hipp(x) = By () + Op,(n7"),
Hipp(z) = Fy(zQT)L(fB) + Op,(n71),
with

(n)

B2 w) = o)~ n P22 1g) —wme e, @)
(n)

FE(r) = @) + 25002 4 1)6 () — 1250 (1))

Here the empirical skewness ké”)(f) and the bias b ( f) are given by

KD (f) = (BB | X)) HM(f) = 302(H) 8™ ()} o2(f),
b (f) = —(E UB) | X M) T BO(F) Jou(f),

with

MEA(f) = B ({f(B3) = pal HUB)HY | X),
B (f) = EX({f(B}) — ual UB)I(B;) | XT).
It succes thus to show that each of these terms converges at the rate n~"/2 to

the corresponding terms in the E.E. of u,(f). By developping ..rst the cubic
term and applying a CLT to each term, we clearly have as n — oo,

In—1

> LF(B) = unl HUB)Y = Maa(f) +Op, (n7?),

=1

1
L, —1
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where
Ms.a(f) = B({f(B;) — n(f)UB))}*
In a similar fashion one may easily prove that, as n — oo,
on(f) =0} + Op,(n?) and ™) (f) = B+ Op, (n™/?),

with 3 = cov(l(B;), f(B;)—u(f)I(B;)), provided that condition (ii) is ful..lled
with s = 6 4 . Note in addition that, as n — oo,

In—1

E*(1(B;) | X™)

E'A TA)—{—OP,,( 1/2).

—1

The proof is then ..nished by observmg that the E.E. of the true distributions
(see expressions (8) and (9) in Bertail & Clémencon (2004) and the one of
the RBB distribution match up to Op, (n~') in the unstandardised case and
in the standardized case as well, as n — oc.

5.2 Proof of Theorem 3.1

In what follows, we denote by 7¢ = 75(1) =inf {n > 1, X,, € S} and 75(j) =
inf {n >79(j — 1), X,, € S}, j > 2, the times of the successive visits to the
small set S. We consider the joint distribution such that, conditionally on
the sample path X ™™ = (X, ..., X, 1), o, Xrg(in)s - Xnp1), denoting by
L, =", 15(X;) the number of visits of X to the small set S between time
1 and time n, the (YZ,YJ 's are drawn independently for 1 <i < n so that

Yootk ~ Ber (8¢ (Xrgoy+1) /D(Xrg()s Xrs()1)) 5
Yoo ~ Ber (66 (X, k)+1)/Pn( Xrotk) Xrsghy1)) »
and if p(Xg k), Xrgh)+1) < P Xrge)s Xrg(hy41)5

~

Py =1 Yoy =0 X)) =p (X, 0y, Xogry 1) — P(Xrg(h)s Xog (k) 1)
P(YTs(k) =0, YTS =1 | X 0 ) 0,

and if p(Xrg(k), Xrsm)+1) 2 Pr(Xrgh)s Xrg(y+1),

P(Yrs(k) 0, YTS =1 | X (n+D) ) p(er(k)a XTS(]C)+1) - pn(XTs(k)aXTs(k)+1)7
P(Yrg) = 1, Yoy =0 | X)) =0,

for k € {1, ..., Ln} ;and that forall s € {1, 1,..., n}\ {rs(k), 1 <k < L,},
Yi =Y, ~ Ber (). Hence, we deduce that, for 1 < k < Ly,

8¢ (Xrsyrr) 66 (Xrs(ryin)
P(Xrg (k) Xrs(k)y+1) P Xrg(h), Xrg(k)+1)

P(Yrg() # Yrs | X)) = as.,
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0P Xk+1)  _ 0(Xit1)
(anXk—l-l) pn(Xk7Xk+1)

(P, P™) Z 2FB1s

Observe that, we almost surely have

0 (Xkt1) 6P(Xkt1)

P( X, Xi1) (X, Xiop)

Consequently, we may write

Xy Xi41) — P (X, X))

p(
S (et P( Xk, Xgt1)

n—1
W(P™, PM) <N 2 E[I{X) € S, Xpp € S}

k=1
" Ip( Xk, Xiy1) — pn( Xk, Xk+1)\]
p(Xk7Xk+1)
n—1
<Y 2 FE[I{X: €S, Xen €S}
k=1
" Ip( Xk, Xiy1) — pn( Xk, Xk+1)\]
6P (Xpy1)
Hence, under (i), we have
) p) K -
LW(P™, P™) < (8 inf ¢(2) Z? Bl sup_lo(e:9) — ()]

Thus, given the asymptotic properties of p, we assumed, we get the wished
bound (§inf,cg ¢(z)) tar/>.

5.3 Proof of Theorem 3.2

In order to make the exposition of the proof much simpler, we only consider
the case when f is bounded, since the same argument applies to the general
unbounded case except for light and obvious modi..cations. The proof is
based on the study of the closeness between the distribution of the blocks
By, ..., B, dividing the segment X®*+) = (X, .. X, 1) according to the
ln consecutive visits of (X;,Y;) to the atom Ay = S x {1} between time
1 and time n and the distribution of the blocks By, ..., B; dividing X®+V
according to the ln successive visits of (X, z-) to S x {1} conditionally to
X ™+ et us assume that, conditionally to X (™) the (Y;,Y;)’s are drawn as
supposed in subsection 5.2. We shall use the notations I, = > | I{X; € S,
Y, = 1}, TAy = TAM(l) = inf{n = 1,(Xn,Yn) € AM}, TAM(j—i— 1) =
inf{n > 74, (j), (Xn, Yn) € Amd, UB;) = 7ay(f) — Tan () for j > 1.
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Setna,, =7a,,(ln) —7a, (1) and let p,(f) —nAM ZJ L f(B;) and o2(f) =
noy Zé.":l{f(Bj) — p1(f)1(B;)}? be the respective counterparts of 7,,(f) and
o2(f) based on the regenerative blocks.

We ..rst begin by controlling the diaerence between the ..rst (resp. the
last) pseudo regeneration time and the true one. For the sake of the sim-
plicity, we introduce further notation and denote by 7 = 74,, (respectively,
71 = 7a,,) the (random) time corresponding to the ..rst visit to S x {1} of

(X, Yi)1<icn (resp., of (X, Y;)1<icn) as well as the time 7, = Ta (1) (resp.,
To = 7Ta,, (ln)) corresponding to the last visit.

Lemma 5.1 Let v > 2. Under H2(2v) and Hs, there exists a constant C
such that for i € {1,2},

E, (7 —7|") < Cal2

Proof. Let C' denote a constant that is not necessarily be the same at
each appearance in what follows. Given assumptions H, and Hs, note that

66 (Xrg(ky41) /P(Xrs(h), Xrswyr1) and 8¢ (Xrgyi1) /Pn(Xrg k), Xrg(k)41) are
bounded from below by ¢ = 6 inf,es ¢(z)/R. Given the joint distribution of

the (V;, ?Z-)’s (refer to 5.2 above) and in particular that

P(Yro) # Yoy | X)) < (Sinf ¢(x))™" sup  |po(z,y) — p(z,9)]
xES (a:,y)ESQ

forany k € {1, ..., L,}, one may derive the following bound for the conditional
expectation

E(f-nl Xm0 <o 3 (rslh) — o) a1 — g*!

1<I<k< Ly,

X sup |pp(z,y) —plx,y)| .
(z,y) €S2

Using Cauchy-Schwarz ’s inequality and assumption H3, easy calculations
yield the following bound for the (unconditional) expectation

E,(7 —7[") < Cal? Zk2 Q) B, (rs(k)*"))Y2.

Furthermore, it straightforwardly follows from the identity 7s(k) = 75 +
S {7s(1+1) — 75(1)} that E, (5(k)?) is bounded by 227{E, (12") + (k —
1)? sup,cq Fx (737)} for all k. Under H(2v) the bound is thus established
when i = 1.
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The case i = 2 follows from a similar argument.
Let g: (E,£) — R be a bounded measurable function and set ¢g(B;) =

Z:Aﬁ(jjl)( 1 9(X;). Now consider the functionals M (g) = n 't 0 g(B)M

and 75 (g) = n! Zé" S g(By)M for M e {1,2}, with by convention T (g) =

0 (respectively, T, M (9) = 0) when [,, <1 (resp., when 1, < 1). The following
lemma provides an asymptotic bound for

DM (g) = |TM (g) — T (g)]

with M =1....,3.

Lemma 5.2 Let v > 6. Under H,(~y) and Hs, we have as n — oo

DM (g) = Op, (n"'ap/?), @)
Dv(lk)(g> = OPV (an)7 k=23 (8)

as n — oQ.

Proof. Bound (7) immediately follows from lemma 5.1.
Let N, = Y min(=m) g {YTS(k) +£ }7,5(@} be the number of times when X;

k=max (71,71 )
visits S and Y; dicers from Y; simultaneously between time max (7, ) and
time min (72, 72) (with the usual convention regarding to empty summation).
We introduce the corresponding successive random times

t; = inf § 79 (k); max(7y, 1) < Ts(k) < min(7y, 73), Yok # ?Ts(k)}a

tjy1 = inf {Ts(k); ty < 7s(k) < min(7y, 72), Yoy # )/}Tg(k)}

with j =1,.., N, — 1. And for 1 < j < N,,, we denote by tg-l) (respectively,
t§.2)) the last time before (resp., the ..rst time after) ¢; when, simultaneously,

X; visits S and Y; or Y; is equal to one, between time 0 and time n. We can
check that

2 Nn,
D) < 1= 5 )2 12300 ) — )

n =

2 Nn
< Jllgjll {(Fi—m)’+ G —n)?+ > { -1, + (4 — £9)2})
j=1
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Sett; = tf) = 0 for 5 > N,.. By proceeding analogously as we did previ-
ously, one easily shows that there exist constants c,(q) depending only on
g, such that E,((t'” — ;)7) < ¢ (q)sup, Eu(r5) for any j > 1, 7 < 7. By
Cauchy-Schwarz ’s inequality we have for any deterministic sequence of pos-
itive integers m,,,

Nn, n
(2) 2 2
E,(Y (1 —t;)* ZE (12 — )% + B, (% — )2 I{ Ny > mn})
j=1 j=1

X Clmn + CZ”( (Nn > mn))1/27

where C = sup,es Ex(72)c2(q) and Cy = sup,es Ex (78)ca(q). As shown in
5.2, the probability that Y; dicers from Y; is bounded by ¢, = (§infzes ¢(z)) ™
and the ( Ts(k),Y ())’s are drawn independently conditionally to X(+b.
Hence, by using Chebyshev’s exponential inequality, we derive that

P(N, >my,) < e ™E() <e ™ (14 que)™. 9
Now by choosing m,, T oo such that m,,/n — 0 and nay,/m, — 0as n — oo,
we deduce from (9) that n~'E,(3 " (t% — t;)?) = O(a,,), as n — cc. By
an analogous argument, one shows that n—lEy(Z?ﬁl (t; —t§1))2) = O(ay,), as

n — oo. DY) (9) may be treated similarly.

We deduce from this result that the following empirical quantities based
on the pseudo-blocks converge to their respective counterparts based on the
regenerative blocks.

Lemma 5.3 Under the assumptions of Theorem 3.2, we have the following

convergences in P, -probability as n — oo,

1/2<:U’n(f) - Mn(f)) - 07 (10)
I/n— ln/n‘ — O(al/?) (12)

Moreover we have for k = 2,3

In—1 ln—l
n Tt UB)F -t Z 1(B;)* = Op, (), (12)
j=1
l,—1 Tnf1 R
nt Y (B =nt Y f(B))* =Op,(0n), (13)
j=1 j=1
In—1 Tn—1 R R
n Y UB)F(B) —nt Y By f(B)) = Op, (aw). (14)
J=1 j=1
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Proof. From (7) inlemma5.2 with g = 1, itfollows that |n, /n—na, /n|=

Op,(ce/*n~1) as n — co. Given that na,/n — 1 P, as. as n — oo, this

combined to (7) again with g = f obviously yield (10).

Now observe that

Ly,
l/n — ln/n‘ <Y H{Yeg # Ve }
P

Using again the fact that conditionally to X®+1) the (YTs(k),iA/TS(k))’s are
drgwn indepen?ently for k =1,..., L, and P(Y_Ts(k) 7é Yow | X041y
(5lnfa:€5' ¢(ZL‘))_ Sup(a;,y)ES2 |pn(x7 y) - p(l', y)’ ) this entails

B[l /n —ly/n| | X)) <07 Ly(8 1nf o(2) ™" sup[pa(e,y) — pla,y)]-

(z,y)€S?

Since L, = > [ I{X; € S} < n, taking the expectation implies that

(|Tn/n = Lu/n|) = O(ax/?), as n — oo,
Now, (12) (respectively, (13)) straightforwardly results from lemma 5.2

with g =1 (resp., with g = f).

And (14) may be proved by simply noticing that

In—1 In—1 In—1 In—1
20(F) D_UB)F(B) =D F(By)* = > f(By)* = u(F)* Y UBy)’

and applying lemma 5.2 to each component on the right hand side (by taking
successively g(x) equal to f(x) = f(z) — p(f), f(x) and 1).

Now, one easily deduce from these results that 2(f) —o2(f) — 0 in P,-

pr., as n — co. Hence, given that o7(f) — o7 in P,- pr., as n — oo (see the

preliminary remarks in §.2.4.1) the consistency of 2(f) is established.

Finally, combining this to (10) and the CLT for the sample mean ,(f)
relating to the atomic split chain (cf § 2.4.1) proves that ﬁi/j Fn(f) 7 (Tin () —

w(f)) — N(0,1) in P,- distribution, as n — oo .

5.4 Proof of Theorem 3.3

We ..rst recall the ”Bootstrap mode of convergence”. In what follows, we

shall write Z,, P Zin P,- probability (resp., P, a.s.) along the sample when

P*(|Zn— Z| > ¢ | X") "0 in P,-probability (resp., P, a.s.).
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The unstudentized case Note that one may write

(D) = Tn(f) XS B]) — Bn(NUB))}

A on(f) n5 25, (f) '
The result is proved by following line by line the classical argument establish-
ing the CLT for regenerative process (cf Theorem 17.2.2 in Meyn & Tweedie
(1996)). The latter relies on approximating the summation over a random
number of regenerative blocks by a sum involving a deterministic number of
blocks. Note ..rst that conditionally to X +1) the ARBB sequence (although
not Markovian) de..nes a regenerative process with i.i.d. segments l§j* j=>1.
By the L.L.N., we have (I, —1)"! Zé’;‘f I(B;j) = Ea,,(7a,,), P,as. . Lemma
5.3 thus entails that, as n — oo,

7,1
E(U(Br) | Xy = - 1 1 N U(B;) — Eay(74y,) in P, probability.
n -+ j=1

In a similar fashion, we have as n — oo,
E*(I(B})? | X)) — B, (73,,) < oo in P, probability.

This implies in particular that, as n — oo,

I(B?) p- 0y .
(—L) P 0 and =22 25 1 in P,- probability along the sample. (16)
n n

Now note that by de..nition of [’ we have
lx L lx
l*—n/\* S n S ﬁ (17)
S By o o UBY)
Combining the L.L.N. to lemma 5.3 we have as n — oo,

To—1

I 12 (B)) — (In— 1)~ Zl )50 P, as,

which entails that ;' Y1 1(BY) — Ea,(74,,) = 0, in P, - probability along

the sample. We deduce that

7 - . -
— Ea (Tay)” N 0, in P,- probability along the sample.
n

Thus for ¢ > 0, if we set ny = |(1 —¢&)Ea,, (Ta,) 'n] + 1 and ny =
| (14 ¢€)Ea,,(Ta,,) 'n] (denoting by |z| the integer part of z € R), there
exists ny = no(e) € N such that, for n > ng

P(n; <I' —1<ny | X™) >1—¢in P,- probability (18)
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Combining (16), (18) and Markov’s inequality implies that for any n > 0,

pealh) ~malf) - S8 — )

nij%n(f) n:i/f&n(f) | > | X("H))
14+ nEa, (1)
S HP @) mx | 3 )~ AalUE) > XT)
1+LnE:M(TA)1J
<e+ P @(f)! max | Z {£(B5) = An(FUB)) > mn’?/2 | X))

£ Pt < 12 X0H)
< e +47,(f) 22 E*({f(B}) — il NUB)Y) /n* + ¢,

for n large enough. As this holds for any n, ¢ > 0, we get (using again (16))

)~ Bl SO ) sy
()2 n %5, (/)17 "

Am

along the sample in P,- probability, as n — oco. Now it is su€cient to apply
the classical bootstrap CLT (see Bickel & Freedmann (1981)) to the i.i.d.
rv.’s {f(B;) — in(f)I(B})}j>1. These r.v.’s are centered with variance

E*({f(B}) = fn(UB)Y | XTV) = R 52 (f)/(In — 1),
which converges to E4,, (TAM)O'? in P,- probability under the hypotheses of

Theorem 3.3 (cf Theorem 3.2 and lemma 5.3).

The studentized case We essentially have to prowe that, as n — oo,

o (f) —a,.(f) Z0in P, - pr. along the sample. With arguments similar to
those used in the unstudentized case, one easily shows that

1+ Ln/EAM (TA)J

ar(H=n" D {FBY) — ma(HIBEY +ope(1)

j=1

in P,- probability along the sample and the result follows also from standard
bootstrap results in the i.i.d case.
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6 Proof of Theorem 3.4

Under our assumptions, the E.E. of the sample mean in the unstudentized
case is given in Malinowskii (1987), see 6 with (™ ( f) replaced by 0. Because
the reconstructed ARBB series is regenerative, just as in the atomic case,
it is su€cient to check the hypotheses ensuring the validity of the E.E. for
the ARBB. The proof is thus similar to the proof of Theorem 2.1 except for
replacing the true regenerative blocks by the approximated ones. Lemma
5.3 allows to control the rate of convergence of all the empirical terms ap-
pearing in the E.E. of the ARBB distribution up to Op(as/*n~1/2). The
recentering ensures that the bias vanishes so that the two E.E. match up to
OP(O&}L/QTL_l/Q).
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