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Abstract. We propose a test for assessing the stability of a temporal
econometric linear model. The test is based on subsampling ideas more
precisely to the consistency of the least square estimator whose behavior is
studied on subintervals over time. Our test allows to detect breakpoints on
the boundaries under reasonable assumptions. Under the null hypothesis,
we derive the asymptotic distribution of some simple criteria compatible
with the linearity of the model and study them by simulations. We
also present a diagnostic plot which helps in determining the nature of
the nonlinearities (outliers, structural changes, polynomial links) of the
underlying model.

Résumé. Nous proposons un test de stabilité globale d’un modèle linéaire
dans le temps. Ce test est basé sur des idées de sous-échantillonnage et
l’estimation de l’estimateur des moindre carrés ordinaires indéxé par des
intervalles de temps. Notre test permet en particulier de détecter des rup-
tures sur les bornes d’observations sous des hypothèses raisonnables. Nous
obtenons la distribution asymptotique d’un critère simple compatible avec
l’hypothèse nulle de linéarité et l’étudions par simulations. Nous présentons
également un test graphique simple qui aide interpréter la nature des non
linéarités (points abérrants, changements structurels, comportement poly-
nomial) du modèle sous-jacent.

Keywords. Resampling, empirical process, linear model, structural
changes, simulations.

AMS 2000 subject classification: Primary 62J20; secondary 62G09,
62J05, 62M10.
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1. Introduction. Before drawing inference from a linear model, it seems
important to assess the stability of the relationship. A first approach,
coherent with various physical, biological or economical theories is to test
for structural changes (see for instance Basseville and Nikiforov (1993)
and the reference therein). This problem has been extensively studied
in the statistical literature in the case of a single breakpoint τ and has
been extended to various specification (non linear regression model, times
series models, nonlinear simultaneous equations models etc. . .) and different
stability problems (tests of finite multiple structural changes, tests of
cross section consistency), see for instance Andrews and Ploberger (1994),
Bai and Perron (1998), where references may be found. To avoid any
misinterpretation, we stress that the tests we are interested in here do not
focus on the problem of testing a linear model against a non linear model
but rather intend to detect instabilities or structural changes in a given
linear (or may be non-linear) model: relevant tests in this other direction
may be found for instance in Härdle and Mammen (1993), Stute (1997),
Spokoiny (2001).

When the breakdate(s) is(are) known, the tests proposed are more
or less derived from the analysis of covariance in the well known two
regressions problem, see Chow (1960). The basic ideas for testing parameter
consistency in the single unknown breakpoint problem goes back to Quandt
(1960) who proposed to take the largest Chow (1960) statistics over all
possible breakdates, leading to the now classical change point estimation
problem over an interval [ 0, n ]. The intuition behind the proposed tests is
that if we split the sample in two subsamples, the set of observations before
and after a date t, then the difference between estimations (or monotone
transformations) over period [ 0, t ] and period [ t, n ] should be equal to 0
if there is no structural change and is maximal at the change point t = τ

if it exits. Andrews (1993), Andrews and Ploberger (1994) have extended
these ideas to various parametric models and proposed some optimal tests
which are now currently used in the econometric literature. Extending ideas
of Darkhovshk (1976) and Carlstein (1988), Dümbgen (1991) proposed a
general non parametric approach of the change point problem estimation
and gives various powerful Bayes exponential tests. From a technical point
of view, the main results are proved by studying transformations of the
weighted process (indexed by t) of the difference between the empirical
distribution of the observations before and after t. These results may also
be used to test the consistency over time of a smooth functional of the
empirical distribution. However these tests are unable to detect structural
change near the boundary of the interval of observation. One purpose of
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this paper is to propose some tests that will take care of this feature.
In this paper we extend some of the mentioned ideas to test the global

stability of the model. Our tests are different from previous tests proposed
in the statistical literature because, in some sense, they allow for an
infinity of breakpoints and variations of the parameter. However our aim
is not to locate the breakpoints; it is only to assess the consistency of
the linear relationship. On the contrary to some econometric tests of
structural change, for instance predictive tests, we do not make any prior
assumption on the location of the change points. Indeed, as we shall see
in the simulations, it may be very difficult to detect non-linearities and/or
structural changes just by looking at the data.

The principle is based on the estimation of the parameter over (almost)
all sub-intervals of [ 0, n ]. The intuition behind the tests that we propose
is that, under the hypothesis of global stability, all the estimations over
subsets of observations must be close to the true parameter. This suggests
to study an estimator of the parameter as a process indexed by intervals,
see also Shorack and Wellner (1986, chapter 17). This approach is closely
related to subsampling methods and more particularly to Jackknife tech-
niques, used for instance in the detection of outliers, see Belsley, Kuh and
Welsh (1980). However in our case, a departure from the model means
misspecification of the model rather than inadequacy of the observations.
The proposed procedure is also closely related to the subsampling scheme
studied by Politis and Romano (1994), who show that it is possible to build
first order correct confidence intervals under a very general set of assump-
tions, if the underlying model is true. However in our case, the resampling
technique is not used to infer on the value of the parameters but to infer
on the validity of the model itself.

Moreover on the contrary to most tests in the structural change litera-
ture, structural instability may be detected on the bounds of the intervals
of observations, that is, at the very beginning of the sample or the end, but
also on short period. Instability may indeed come from outliers but also
from instantaneous shocks. We shall give some graphic tools to character-
ize and interpret the misspecification detected by the tests. Particularly,
when we treat the parameter componentwise, we give a very useful statis-
tics, closely related to Watson’s (1961) test of uniformity on a circle, whose
critical values may be directly deduced from the Kolmogorov-Smirnov test.

In part 2 we describe the main results and discuss some possible
extensions particularly to non-linear model and to accommodate residuals
which are not i.i.d.

In part 3, we give a simulation study of the tests of instability in various
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situations. The proofs of the results are postponed in part 4

2. Stability of linear specification. Consider the commonly used
random design regression model in which the observation (Xi, Yi) satisfy

Yi = X ′
ib + εi , i = 1, . . . , n,

where the Xi’s are (p, 1) random vectors and the εi’s are i.i.d. random
variables. We write X for the n× p matrix whose i-th row is X ′

i and Y for
the column vector (Yi)1≤i≤n.

The usual least square estimator (l.s.e.) of b is

b̂n = (X ′X)−1X ′Y .

We assume that

A1. E(εi |Xi) = 0
A2. EVar(εi |Xi) = σ2 is positive and finite.
A3. limn→∞max1≤i≤n n−1X

(m)
i Var(εi |X(m)

i ) = 0 a.s.
A4. Σ = EXiX

′
iε

2
i is finite and positive.

A5. E|X1|β is finite for some β > 6.
A6. There exists a constant c such that for any unit vector u, and

any ε positive, P{ |u′X| ≤ ε } ≤ cε.

A1–A4 are conditions which ensure the good behavior of the explana-
tory variables, and the convergence of b̂n. They are a little weaker than
the traditional ones. In particular, we do not require that the conditional
variance of εj given Xj is constant. In our case we allow for a little het-
eroscedasticity of the residuals conditionally to the explanatory variables,
an hypothesis which seems more appropriate in many models.

Assumption A6 is somewhat unusual. If X has density f , the density of
u′X at r is the Radon transform

gu(r) =
∫

v:v′u=r

f(v) dv .

If this is a bounded function in a neighborhood of the origin, then

P{ |u′X| ≤ ε } =
∫ ε

−ε

gu(r) dr

≤ 2ε sup{ gu(r) : |r| ≤ ε } ,

and A5 holds. Thus, to verify A5, it suffices to check that for any unit
vector u, the function

r 7→
∫

u⊥
f(ru + y) dy
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is bounded independently of u in a neighborhood of the origin.

Now define Π to be the half unit square

Π = { (s, t) ∈ R2 , 0 ≤ s ≤ t ≤ 1 } .

Let d be an integer such that

β
(d

2
− (p + 1)

)
− 10(p− 1)− 3d > 0 (2.1)

Such integer exists under A5. Note that d must be larger than 2(p+1) and
that the bigger β is, the smaller d can be chosen.

For any pair (s, t) in Π, we define the least square estimator of b on the
set of all observations observed in the interval [ns, nt ],

bn(s, t) =
{ ( ∑

ns<i≤nt XiX
′
i

)−1 ∑
ns<i≤nt XiYi if |s− t| > d/n

0 otherwise.

The definition of bn(s, t) is such that it is indeed defined on the whole set Π.
If |s − t| < p/n, the matrix

∑
ns<i≤nt X ′

iXi is certainly non-invertible, for
it has rank less than its dimension. The quantity d ≥ 2(p + 1) is a measure
of the smallest fraction of the data that one should retain to calculate the
l.s.e. It essentially depends on the tail of the explanatory variables. If all
moments of the explanatory variables are finite one can choose d = 2(p+1).

The following theorem shows that the process bn(s, t), indexed by Π,
correctly normalized, converges to a Gaussian process. To state it, we
denote by Bd(Π) the set of all bounded functions on Π. We equipped
Bd(Π) with the uniform topology induced by the uniform norm || · ||∞. In
other words, a sequence of functions gn, n ≥ 1, defined and bounded on Π,
converges to a function g in Bd(Π), if and only if

lim
n→∞

||gn − g||∞ = lim
n→∞

sup
(s,t)∈Π

||gn(s, t)− g(s, t)|| = 0 .

It then makes sense to speak of weak convergence (or convergence in
distribution) of (the distribution of) random variables in Bd(Π); see Pollard
(1984). Define U = E(X1X

′
1). Assumption A4 ensures that U is positive.

Theorem 2.1 Assume that conditions A1 to A6 hold. Under the hypoth-
esis of linearity,

√
n(t− s)

(
bn(s, t)− b

) w−→U−1Σ1/2
(
Wp(t)−Wp(s)

)
(2.2)

where Wp is a p-dimensional Brownian motion and the convergence holds
in probability given (Xi)i≥1. Therefore,

√
n(t− s)

(
bn(s, t)− b̂n

) w−→U−1Σ1/2
(
Bp(t)−Bp(s)

)
(2.3)
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where Bp is a p-dimensional Brownian bridge and the convergence is in
conditional probability given (Xi)i≥1.

The proof of Theorem 2.1 is deferred to section 4. Theorem 2.1 is
quite easy to understand. On the hypothesis of linearity, the estimators
defined on subintervals are unbiased estimators of b and are asymptotically
normally distributed with a covariance matrix which is a function of the
length of the intervals. The covariance between two different estimators
depends on the overlap of the two different intervals. The power of this
result is that it is uniform on [ 0, 1 ], allowing a control of the stability of
the parameter on the bound of the interval and for small values of t − s.
The main difficulty of the proof is actually to control the behavior of the
process for small increments (that will allow to detect transitory shocks or
structural change on the boundaries) . Indeed if the difference between t

and s is big, the estimator is typically constructed with a large number
of observation, whereas is t − s is of order k/n, then the estimator is
constructed with a finite number of observations.

From a practical point of view, for a fixed n, the process is approximated
by calculating all the possible estimators of b on subintervals of the form
[ k/n, (k + l)/n ] with l = d + 1, . . . , n − 1 and k = 1, . . . , n − l. The
number of calculations of the estimator of b needed to approximate the
process bn(·), is of order n2. However, it is possible to reduce the computing
cost in using recursive estimates. Knowing the value of the estimator on
[ k/n, (k + l)/n ], it is easy to obtain its value on [ k/n, (k + l + 1)/n ] (see
for instance Belsley, Kuh and Welsh, 1980). Of course if n is very large
it may be time (computer) consuming to calculate all the possible values
of the estimators over all the possible subintervals. In that case, just like
for the bootstrap or subsampling distribution (see Politis and Romano,
1994), we may replace the original process by a Monte Carlo approximation
by drawing B sub-intervals at random and computing the corresponding
estimators. Asymptotically, if B gets large the asymptotic performance will
not be entailed by this Monte Carlo step.

Similar results may be obtained for other estimators, 2 stages or 3
stages least squares estimators based on some instrumental variables, under
a similar set of assumptions on both the explanatory and instrumental
variables.

This result suggests numerous ways of testing the hypothesis of global
stability of the model. A first category of tests based on (2.3) may be seen
as uniformity tests of the Cramer-Von Mises type (see also Watson, 1961,
1967). Indeed, if | · |Bd(Π) is any norm on Bd(Π), continuous w.r.t. || · ||∞,
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it is easy to obtain the limiting distribution of

Dn =
∣∣(t− s)

(
bn(t, s)− b̂n

)∣∣
Bd(Π)

.

Moreover, if Σ̂ and Û are convergent estimators of Σ and U , we can also
derive the limiting distribution of

Wn = 2−1
∣∣(t− s)Σ̂−1/2Û

(
bn(s, t)− b̂n

)∣∣
Bd(Π)

.

Examples of convergent estimators of Σ and U are

Σ̂ = n−1
∑

1≤i≤n

XiX
′
i ε̂

2
i

and
Û = n−1

∑

1≤i≤n

XiX
′
i

where ε̂i = Yi −X ′
i b̂n are the estimated residuals of the initial model .

The continuous mapping theorem and Theorem 2.1 readily imply the
following:

Corollary. Under the hypotheses of Theorem 1, the limiting distri-
bution of Wn (resp. Dn) is that of 2−1|Bp(t) − Bp(s)|Bd(Π) (resp.
|U−1Σ1/2

(
Bp(t)−Bp(s)

)|Bd(Π))

Remark 1. Since Û and Σ̂ may not be good estimates of U and Σ, and the
asymptotic approximation a poor approximation of the true distribution it
may be preferable to use robust estimators of the variance (as suggested
in the simulations) or to approximate the true distributions of Dn and
Wn by bootstrapping. However, it is clear that one should construct
the bootstrap model assuming a linear relation if one wants to obtain a
consistent estimator of the limiting distribution. The usual way to do this
is to construct a pseudo model using the previous estimates and the centered
(orthogonal to the instrumental variables if there are some) estimated
residuals, see Freedman (1981, 1984). It is easy to see that such a procedure
may be adapted in our context and may be used to approximate the true
distribution. Of course this procedure would be very computationally
expensive since the original tests is already computer intensive. We shall see
in the simulations that even with a very crude asymptotic approximation,
our subsampling procedure is very informative and allows to detect various
misspecifications. However, it may be important to have a robust estimate
of the variance, for instance for the detection of outliers (see simulations 7
and 8).
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Remark 2. Notice that it is always possible to treat the problem compo-
nentwise. In the unidimensional case, if we choose a L2-norm for | · |Bd(Π),
then the statistics Wn has the same limiting distribution as the random
variable

W = 2−1

∫ 1

0

∫ 1

0

(
B1(t)−B1(s)

)2 dt ds =
∫ 1

0

B1(t)2 dt−
( ∫ 1

0

B1(t) dt
)2

.

This is the limiting distribution of Watson’s statistics, see Shorack and
Wellner (1986, p.142 and p.220). Watson (1961, 1967) shows that W has
the same distribution as

(
sup

0≤t≤1
|B1(t)|

)2

/π2

It follows that the critical value of our test Wn may be directly obtained
from the limiting distribution of the Kolmogorov-Smirnov test. This yields
the following table of critical values for the test Wn, in the unidimensional
case

P{W > w } 0.01 0.05 0.1 0.2 0.3
w 0.27 0.19 0.15 0.12 0.97

Table 1

Before concluding this theoretical section, let us examin shortly the
important issue of the power of our tests. Under a nonlinear fixed
alternative,

Yj = m(Xj , j/n) + εj ,

where m(·, ·) is a nonlinear function, our proof shows that under suitable
conditions n−1

∑
ns<i≤nt XiYi converges to E

∫ t

s
X1m(X1, u) du. For fixed

t and s, we then have

lim
n→∞

bn(s, t) = U−1(t− s)−1

∫ t

s

E(Xm(X, u)) du

in probability. This limit is constant if and only if the function u −→
EXm(X, u) is constant. Our test will not detect such alternative (except
in some particular cases, for instance if the explanatory variables are not
i.i.d. and are for instance ordered). Hence, it is not really aimed at detecting
nonlinearities but rather nonstability of the original specification. Perhaps
more important than its power against a fixed alternative is the power
against contiguous ones. So assume that

Yj = Xjb + n−1/2m(Xj , j/n) + εj . (2.4)
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Our next result gives an idea about the local asymptotic power. In practical
situation when one wants to protect himself or herself against a specific
contiguous alternative, it allows to derive tests with good local properties.
The conditions of the theorem are far from optimal but they are good
enough to give an idea on the local power and allow a short and simple
proof. We assume that

A7. m(·, ·) and its partial derivative with respect to the second variable are
both continuous and bounded.

We define the function

h(t) =
∫ t

0

EXm(X,u) du− t

∫ 1

0

EXm(X,u) du .

Theorem 2.2. Under (A1)–(A7) and for the model (2.4), we have the
convergence in distribution of the processes

√
n(t− s)

(
bn(s, t)− b̂n) 7→ U−1

(
Σ1/2

(
Bp(s)−Bp(t)

)− h(s) + h(t)
)

as n tends to infinity.

Theorem 2.2 tells us that for alternatives with large function h(·), the
process

√
n(t − s)

(
bn(s, t) − b̂n

)
has a substantial drift. In this case, the

test will tend to reject the null hypothesis as it should.

Some Extensions. The results may be extended to other non-linear
models.

1) One would like for instance to test for the stability of the nonlinear model

Yj = m(Xj , θ) + εj , j = 1, . . . , n

where m is a known function and θ a finite dimensional parameter.
Assuming that under the null hypothesis, we have a convergent estimate
of θ or that some suitable moments conditions hold, it is possible to study
the process of the estimated values indexed by the subintervals of [ 0, 1 ].
For instance if θn is the nonlinear least-square estimate of θ, the limiting
behavior of θn is given by a straightforward linearization: Theorem 1 and
its derived results may be adapted to that case without any effort.

2) It is also possible to generalize these ideas to non-i.i.d. residuals. Indeed
the main tool used in the proof is the approximation of partial sums
by a Wiener process and the ability to control the increments of the
process. Many results on empirical processes have been obtained in that
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direction in the recent year (see Doukhan, 1994) and may be used to
obtain generalizations. In this situation, it is possible to mimic the proof of
Theorem 1, at the cost of higher sophisticated notations, to obtain similar
results. Of course the limiting distributions of Dn are more complicated
and depend on the nature of the serial dependence. In that case it may be
more difficult to obtain a convergent and robust estimate of the asymptotic
variance. Thus, the subsampling techniques of Politis and Romano (1994)
may prove to be very useful, to get a robust estimate of the variance (under
the null hypothesis). It would be also very useful to use the same type of
tools for integrated processes. One more time, this possibility mainly relies
on the existence of a strong invariance principle (see Phillips and Durlauf,
1986) and the possibility to control for small increments, which may be
more difficult in that case, unless we have additional assumptions on the
explanatory variables.

3. Diagnostic tests: A simulation study. In this paragraph, we study
the performance of the test Wn in the case of least-squares estimators and
show how undersampling may be used to detect misspecifications. All the
simulations are presented in the same way. In every simulations we try to
fit the linear model yt = a + bxt, t=1,...,n. The first picture represents the
link between the variables and the estimated linear relationship. It shows
that it may be sometimes difficult to visually detect structural changes or
non-linearities directly on the data. The second one represents the values
of (t− s)(bn(t, s)− bn) as a function of t− s, and two pointwise confidence
bands respectively at level 95% and 99%. The bands are constructed in the
following way. Let σb̂n

be the standard deviation of b̂n. For each values of
t−s, the random variable (t−s)(bn(t, s)− b̂n)/σb̂n

is asymptotically normal
with variance (t − s)(1 − t + s). Let zα be the quantile of order 1 − α of
the standard Gaussian distribution. For each value t− s = k/n, k > 0, we
build a confidence region of type

[ − σb̂n
zαk/n(1− k/n) , σb̂n

zαk/n(1− k/n) ] ,

Under the null hypothesis, for any fixed positive δ, all the values (t −
s)(bn(t, s) − bn), for t − s ≥ δ should be inside the bounds at the given
level. This is a very crude test which is of course less powerful than the
previous tests that we studied in part 2. Nevertheless, it is very interesting
to visually detect outliers, transitory shocks and/or structural changes. We
also give the results of the linear regression and the value of test Wn.

In our simulations the residuals are i.i.d. Gaussian r.v.’s with mean
0, standard deviation σ. The design points Xt’s are randomly generated
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according to the rule Xt = 2∗U1,t+U2,t, where Ui,t, i = 1, 2, t = 1, . . . , n are
independent uniform random variables (except in simulations 11 and 12). It
follows that the standard deviation of the Xt is 0.65. All the computations
have been performed with Splus on an old bi-processor Pentium pro station.
The routines are available on request. The test and the graphics may be
obtained in less than 10 seconds for n = 50, 1 minutes for n = 100, and
5 minutes for n = 500, which is still reasonable. In the following, we
give some details on the simulations and some short comments since the
graphics speak by themselves. Note also that in nearly all the simulations,
the adjusted R2 is rather high, suggesting a good fit, even when the model
is not well specified.

Simulations 1. We consider the true linear model

yt = a + xtb + εt , t = 1, . . . , n,

with a = 1, b = 1, σ = 1, and n = 50.
The residual standard error (RSE) of the estimation is 0.51. The multiple

R2 (MR2) is 0.65. The F-statistics is 89.7 with 1 on 48 degrees of freedom;
its p-value is 0.00. The table bellow the plot summarizes the estimation.
The column ’est’ contains the estimated value of the coefficient; the column
’std’ contains the estimated standard deviations of the estimators of the
coefficients; the ’St t’ column contains their Student t statistics; and the
’pv t’ column indicates the p-value of the Student statistics.

Simulation 1

est std St t pv t

a 1.0 0.28 3.6 0.00
b 1.1 0.11 9.5 0.00

For this realization of the model, the statistics Wn is 0.09. From table 1,
we see that the quantile of order 95% of the limiting distribution of Wn is
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0.19 while that of order 99% is 0.27. Thus, we accept the assumption that
the model is linear, even at the low level 1%. On the plot, notice the form
of the trajectories of the bn(t, s) which seem ”random” compare to some of
the next simulations.

Simulation 2. The model is now the same as in simulation 1, but we have
twice as many observations, that is n = 100.

Simulation 2

est std St t pv t

a 1.0 0.19 5.0 0.00
b 1.0 0.07 13.9 0.00

RSE MR2 F(1/98) pv F Wn

0.52 0.66 191.9 0.00 0.08

Again, we do not reject the null hypothesis, even at a very low level.
The trajectories of the bn(t, s) are not that much different from that of
simulation 1 if one factors out the scale (the scale changed as the number
of observation did).

Simulation 3. We consider the model with a structural change at [n/2]

yt = a1 + xtb1 + εt , t = 1, . . . , [n/2]

yt = y[n/2] + b2(xt − x[n/2]) + εt , t = [n/2] + 1, . . . , n

with a1 = 1, b1 = 1 and respectively n = 50, σ = 0.1 and with b2 = 1.5.
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Simulation 3

est std St t pv t

a 0.9 0.3 3.1 0.00
b 0.9 0.12 7.8 0.00

RSE MR2 F(1/48) pv F Wn

0.49 0.56 60.6 0.00 0.20

The test based on Wn detects the structural change at the level 5%.
Note the two distinct directions on the graphic due to the different slopes
in the model.

Simulation 4. The model is the same as in simulation 3 but we double
the number of observations, i.e. n = 100.

Simulation 4

est std St t pv t

a 0.4 0.19 2.5 0.01
b 1.2 0.07 18.1 0.00

RSE MR2 F(1/98) pv F Wn

0.47 0.77 328.5 0.00 0.31

As we should expect, the conclusion in this simulation is clearer than in
the previous one.

Simulation 5. The model is the same as in simulation 3, but the structural
change is smaller since now b2 = 1.1. The number of observation is n = 50.
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Simulation 5

est std St t pv t

a 0.2 0.44 0.5 0.63
b 1.2 0.15 7.5 0.00

RSE MR2 F(1/48) pv F Wn

0.66 0.54 57.3 0.00 0.14

For such a small sample size and small change, the test based on Wn fails to
detect the erroneous specification at the level 5%. However, the plot of the
process bn(·) is still very informative and allows to suspect the structural
change.

Simulation 6. The models and parameters are those of simulation 5, but
we double the number of observations; that is n = 100 now.

Simulation 6

est std St t pv t

a 0.8 0.29 2.9 0.00
b 0.9 0.10 8.4 0.00

RSE MR2 F(1/98) pv F Wn

0.62 0.42 69.8 0.00 0.20

The test based on Wn detects the wrong specification of the model.

Simulation 7. We consider the same model as in simulation 1, but with
two outliers, for t = 8 and t = 9.

13



Simulation 7

est std St t pv t

a 1.1 0.45 2.3 0.02
b 0.9 0.18 5.1 0.00

RSE MR2 F(1/48) pv F Wn

0.94 0.35 25.6 0.00 0.05

The test based on Wn does not detect the misspecification. This may
be due to the largest estimator of the variance created by the outliers.
This simulation suggests that it may be more appropriate to use a robust
estimator of the variance to build the test. Indeed, using a truncated
estimator of the variance (eliminating the 5% higher observations) , we
obtain Wn = 0.31 and we reject the linear specification.
Simulation 8. We double the number of points compare to simulation 7;
so n = 100 here.

Simulation 8

est std St t pv t

a 0.7 0.27 2.6 0.01
b 1.1 0.10 10.8 0.00

RSE MR2 F(1/98) pv F Wn

0.65 0.54 115.6 0.00 0.06

The conclusion of simulation 7 apply to simulation 8. However, the graph
of the process bn(·) is very informative. Note the direction corresponding to
the estimation of the slope when the outliers are not in [ s, t ] and the extra
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trajectories close the the vertical axis at t− s = 0; these extra trajectories
correspond to the impact of outliers. When using the truncated estimator
of the variance, we find Wn = 0.48 and reject a proper specification of the
model.

Simulation 9. In this simulation we introduce a structural change on the
boundary at t = n/10, with n = 50 observations.

Simulation 9

est std. St t pv t

a 0.1 0.30 0.2 0.85
b 1.7 0.12 14.0 0.00

RSE MR2 F(1/48) pv F Wn

0.5 0.80 197.2 0.00 0.10

The change is too close to the boundary to be detected by the Wn

statistics calculated on a so small number of observations. But again, the
plot of the process bn(·) for s− t near 0 let us suspect that something may
be wrong with the linear model.

Simulation 10. As in the previous simulation, we consider a linear model
with structural change on the boundary at t = n/20 but for n = 100
observations.

15



Simulation 10

est std St t pv t

a -0.3 0.22 -1.2 0.24
b 1.55 0.08 18.9 0.00

RSE MR2 F(1/98) pv F Wn

0.5 0.78 357.4 0.00 0.24

Compare to simulation 9, some more points allow to detect the misspec-
ification, even though the change is relatively closer to the boundary. The
conclusion is even clearer on the plot of the process bn(·).

Simulation 11. In this simulation as well as in simulation 12, we
introduce some non-linearities in the model with dependent data Xt having
a temporal trend, Xt = t + U1, t. The true model is

yt = a + x3
t b + εt , t = 1, . . . , n

with the parameters of simulation 1. In that case we may see this non-linear
model as a model with an infinity of structural break. This specification
is directly covered by our theoretical analysis but is still interesting from a
practical point of view.
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Simulation 11

est std St t pv t

a -31 1.78 -17.5 0.00
b 20.3 0.67 30.5 0.00

RSE MR2 F(1/48) pv F Wn

2.9 0.95 933.1 0.00 0.19

The test based on Wn rejects the linearity hypothesis; this seems quite
obvious if we look at the plot of the original data. The trajectories of bn(·)
clearly show that the link is polynomial. Indeed, we see the non-linear
relationship as a succession of changes in the slopes since on short period,
the curve is almost linear. However it does not mean that our test will
systematically detect non-linear relationship, which is another problem. In
this case it is detected because the observations are (almost) ordered.
Simulation 12. Same model as in simulation 11, but with n = 100.

Simulation 12

est std St t pv t

a -29 1.29 -22.5 0.00
b 19.2 0.50 38.0 0.00

RSE MR2 F(1/98) pv F Wn

2.9 0.94 1443.9 0.00 0.26

Other simulations have been performed in similar situations but also
in combined situations (structural changes plus outliers, structural change
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plus non-linearities, outliers and non-linearities,. . .) leading to the same
kind of conclusions. Wn easily test for the stability of the linear relationship,
except for very small sample size and the graphic of the bn(t, s), among
other things identify the source of the instability.

4. Proof of Theorem 2.1. In order to prove Theorem 2.1, we define the
[nt]× d matrix Xn(t) whose i-th row is X ′

i. Similarly we define εn(t) to be
the [nt]× 1 vector whose i-th component is εi. Set

Zn(t) = n−1/2Xn(t)′εn(t) .

The proof is captured in several steps. We first show that the process
Zn(·) may be approximated by a suitably standardized Brownian motion.
Then, we show that the approximation can be strengthened into a weighted
approximation for the process Zn(t)− Zn(s) defined over Π. Defining

Xn(s, t) = (X ′
[ns], . . . , X

′
[nt])

′ .

we then prove that the process

Un(t, s) =
Xn(s, t)′Xn(s, t)

n(t− s)

suitably normalized converges to a deterministic process. Since under the
linearity assumption

n1/2(t− s)(bn(s, t)− b) = n−1/2Un(s, t)−1
(
Zn(t)− Zn(s)

)
+ op(1) ,

this will give a good approximation for bn(s, t) from which the theorem will
be derived.

Lemma 1. As random variables in (Bd(Π), || · ||∞), the processes Zn(·)
converge weakly to Σ1/2Wp(·) in probability conditionally on (Xi)i≥1.

Proof. The proof of the convergence of the finite dimensional distributions
is straightforward. To prove the tightness, it suffices to prove that the
components of the vector Zn(·) are tight in probability conditionally on
(Xi)i≥1. Since we are dealing with the components, we can assume without
any loss of generality that p = 1. Define

σ2
n = n−1

∑

1≤i≤n

Var(εi|Xi) ,

and set ζi,n = Xiεi/σn. With this notation,

Zn(t) =
σn√

n

∑

i≤nt

ζi,n .
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Assumption A1 and the strong law of large numbers ensure that

lim
n→∞

σ2
n = EVar(ε1|X1)

is finite. Moreover, A2 implies

lim
n→∞

max
1≤i≤n

n−1Var(εi|Xi) = 0 a.s.

Let
gn(ε) = n−1

∑

1≤i≤n

E
(
1[
√

nε,∞)(X
2
i ε2i )X

2
i ε2i |Xi

)
.

Clearly, for any positive M and n large enough,

gn(ε) ≤ n−1
∑

1≤i≤n

E
(
1[Mε,∞)(X2

i ε2i )X
2
i ε2i |Xi

)
.

This upper bound converges almost surely to

E
(
1[Mε,∞)(X2

1 ε21)X
2
1 ε21|X1

)
= E

(
X2

1E(1[Mε,∞)(X1ε
2
1)ε

2
1|X1)

)
,

which converges to 0 as M tends to infinity. Therefore, limn→∞ gn(ε) = 0
a.s. Apply Theorem 42.2.C in Loève (1977) to obtain that the distribution
of Zn(·) converges weakly to that of a Wiener process in probability
conditionally on (Xi)i≥1, and thus is tight in conditional probability.

The following is an immediate consequence of Lemma 1.

Lemma 2. As random variables in (Bd(Π), | · |∞), the processes Zn(t)−
Zn(s) converge weakly to Σ1/2

(
Wp(t)−Wp(t)

)
, in probability conditionally

on (Xi)i≥1.

Observe now that for any fixed s and t, Un(s, t) converges almost surely
to U . Hence we can expect to approximate n1/2(t − s)(bn(s, t) − b) by
U−1Σ1/2 (Wd(t)−Wd(s)). Unfortunately for any 1 ≤ k ≤ n, Un(k/n, (k +
1)/n) = VkX ′

k does not converges to U , so that the convergence of Un(s, t)
to U is not uniform in s and t. To overcome this problem, write for any
positive η less than 1/2,

Un(s, t)−1
(
Zn(t)− Zn(s)

)

= (t− s)1/2−ηUn(s, t)−1
((

Zn(t)− Zn(s)
)
/(t− s)1/2−η

)
. (4.1)

We shall prove that (t − s)1/2−ηUn(s, t)−1 behaves nicely, as well as
(Zn(t)− Zn(s))/(t− s)1/2−η.
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Lemma 3. Whenever η is positive less than 1/2,

lim
δ→0

lim sup
n→∞

sup
|t−s|<δ

|Zn(t)− Zn(s)|
(t− s)1/2−η

= 0 in probability,

in probability conditionally on (Xi)i≥1.

Proof. It suffices to prove the result on every coordinate of the vector
valued process Zn. Thus, we can assume without any loss of generality that
p = 1. Write

ω(Zn, δ) = sup
|t−s|<δ

|Zn(t)− Zn(s)|
(t− s)1/2−η

.

The weighted approximation of Csörgő, Csörgő, Horváth and Mason (1986)
implies

lim
δ→0

lim sup
n→∞

P{ω(Zn, δ) ≥ ε } = 0 .

Since
P{ω(Zn, δ) ≥ ε } = EP{ω(Zn, δ) ≥ ε |X }

the random variables
P{ω(Zn, δ) ≥ ε |X }

converge to 0 in L1, and therefore in probability.

Lemma 4. For a symmetric matrix M , write λmin(M) its smallest
eigenvalue. Assume that E|X|β is finite. If there exists two real numbers c

and δ such that for any unit vector u

Fu(ε) = P{ |u′X1| ≤ ε } ≤ cερ ,

then for any d > p,

P{λmin(X ′
1X1 + · · ·+ X ′

dXd) ≤ ε } ≤ cεβ(ρd+2−2p)/(2β+4(p−1)) .

Proof. Let Sp−1 denote the unite sphere centered at the origin in Rp. The
left hand side in the conclusion of the Lemma is equal to

P{ ∃u ∈ Sp−1 :
∑

1≤i≤d

u′XiX
′
iu ≤ ε } .

Since u′XiX
′
iu = |u′Xi|2, for any nonnegative number M , the above

probability is less than

P{ ∃u ∈ Sp−1 :
∑

1≤i≤d

|u′Xi|2 ≤ ε ; max
1≤i≤d

|Xi| ≤ M }+P{ max
1≤i≤d

|Xi| ≥ M } .
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The moment assumption in the Lemma yields

P{ max
1≤i≤d

|Xi| ≥ M } ≤ dP{ |Xi| ≥ M } ≤ d
E|X|β
Mβ

.

If |Xi| is less than M , observe that for any unit vectors u and v,

|(u′iXi)2 − (v′Xi)2| = |(u′ − v′)Xi(u′ + v′)Xi|
≤ |u− v||Xi|(|u|+ |v|)|Xi|
≤ 2|u− v|M2

Therefore, if u and v are distant apart of ε/4M2, then (u′Xi)2 and (v′Xi)2

are apart of at most ε/2.
Let N(Sp−1, η) be the smallest number of points in Sp−1 such that caps

of radius η at those points cover Sp−1. We then have

P{ ∃u ∈ Sp−1 :
∑

1≤i≤d

|u′Xi|2 ≤ ε ; max
1≤i≤d

|Xi| ≤ M }

≤ N(Sp−1, ε/4M2) max
u∈Sp−1

P{
∑

1≤i≤d

(u′Xi)2 ≤ ε/2 } .

Since the inequality
∑

1≤i≤d(u
′Xi)2 ≤ ε/2 implies that every summand

(u′Xi)2 is less than ε/2 as well, we conclude that

P{λmin(X1X
′
1 + · · ·+ XpX

′
p) ≤ ε }

≤ N(Sp−1, ε/4M2) max
u∈Sp−1

P{ |u′X1| ≤
√

ε/2 }d +
dE|X1|β

Mβ
.

We now claim that there exists a constant c such that N(Sp−1, η) ≤ cηp−1.
Indeed, the parameterizations of the northern hemisphere of Sp−1 in
polar coordinates realizes a diffeomorphism with [ 0, 2π ]p−2 × [ 0, π ]. The
parameter set can be covered by O(εp−1) cubes of size ε (as ε tends to 0), and
the parameterizations has uniformly bounded Jacobian over the parameter
set (because the sine and cosine functions have bounded derivative). The
claim follows.

Using our claim, the previous inequality and the assumption of the
Lemma, we conclude that for a constant c,

P{λmin(X1X
′
1 + · · ·+ XpX

′
p| ≤ ε } ≤ c

((M2(p−1)

εp−1

)
ερd/2 +

1
Mβ

)
.

Optimizing in M yields the result.

The key point of the Lemma is that for d > 2(p− 1)/ρ, the lower tail of
the distribution of the smallest eigenvalue of the sum decays like a power
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of ε. In typical application we will require β > 3 and we will have ρ = 1.
In this case, the exponent of ε is at least 3

(
d − 2(p − 1)

)
/
(
6 + 4(p − 1)

)
,

which is positive as soon as d > 2(p− 1).
We now show that (t − s)1/2−ηUn(s, t)−1 is uniformly bounded. In the

following ‖ · ‖ denotes the operator norm, that is the largest singular value
of the operator.

Lemma 5. If the conclusion of Lemma 4 holds and
((3

2
− η

) 2
β
− 1

2

)
β

δd + 2− 2p

2β + 4(p− 1)
< −1 . (4.2)

For any positive δ,

lim sup
n→∞

sup
|t−s|<δ

‖(t− s)1/2−ηUn(s, t)−1‖

is a stochastically bounded sequence.

Proof. Let ε be a positive real number and define the event

An(ε) = { sup
d/n≤t−s≤δ

(t− s)1/2−η‖Un(s, t)−1‖ ≥ 1/ε } .

Recall that if M is invertible, then the norm of its inverse is the inverse of
its smallest eigenvalue, that is

‖M−1‖ = 1/ inf
|u|=1

|Mu| = 1/λmin(M) .

This implies that the event A(ε) is

{ ∃s, t , d/n ≤ t− s ≤ δn , λmin

(
Xn(s, t)′Xn(s, t)

) ≤ εn(t− s)3/2−η
}

.

Hence, we have the equality

A(ε) =
{
∃1 ≤ i ≤ n , ∃d ≤ k ≤ nδ , i + k ≤ n

λmin

( ∑

i≤`≤i+k

X`X
′
`

)
≤ εk3/2−η/n1/2−η

}
.

In the sequel, when it is convenient, we write Γp,q(M) the (p, q) entry of
a matrix M .

From the strong invariance principle of Komlós, Major and Tusnády
(1975, 1976) and Major (1976), we infer that up to enlarging the probability
space, there exists Wiener processes Wi,j , such that

sup
0≤t≤n

∣∣∣Γp,q

( ∑

`≤nt

X`X
′
`

)
− tΓp,qEX1X

′
1 −Wp,q(t)

∣∣∣ = O(n2/β)

22



almost surely. This implies that

Γi,j

( ∑

i≤`≤i+k

X`X
′
`

)
= kΓp,q(EX1X

′
1) + Wp,q(i + k)−Wp,q(i) + O(n2/β)

uniformly in 1 ≤ i ≤ n and 1 ≤ k ≤ n with i + k ≤ n. Therefore, since the
matrices X`X

′
` are of fixed finite size and the map associating to a matrix

its smallest eigenvalue is continuous, the probability of the event

A1(ε) =
{
∃1 ≤ i ≤ n , ∃Mn2/β ≤ k ≤ nδ , i + k ≤ n

λmin

( ∑

i≤`≤i+k

X`X
′
`

)
≤ εk3/2−η/n1/2−η

}

can be made arbitrary small by choosing M large enough. Consider the
event

A2(ε) =
{
∃1 ≤ i ≤ n : ∃d ≤ k ≤ Mn2/β , i + k ≤ n ,

λmin

( ∑

i≤`≤i+k

X`X
′
`

)
≤ εk3/2−η/n1/2−η

}
.

Clearly, A(ε) = A1(ε) ∪ A2(ε). So it suffices to prove that in choosing ε

large enough, no matter what M is, we can make the probability of A2(ε)
as small as desired. Observe that P

(
A2(ε)

)
is less than

nP
{
∃d ≤ k ≤ Mn2/β : λmin

( ∑

1≤`≤k

X`X
′
`

)
≤ εk3/2−η/n1/2−η

}
.

Define Zj =
∑

1≤`≤d Xmj+`X
′
mj+`. Write any integer k as k = md + r,

with r < d. Then

∑

1≤`≤k

X`X
′
` =

∑

0≤j≤m

Zj +
∑

1≤`≤r

Xmd+`X
′
md+` .

Observe that the Zj ’s are i.i.d. symmetric matrices almost surely nonneg-
ative. Now, if M1 and M2 are two symmetric matrices, the smallest eigen-
value of their sum is larger than the sum of their smallest eigenvalue, viz.

λmin(M1 + M2) ≥ λmin(M1) + λmin(M2)

as the variational formula

λmin(M1 + M2) = inf
|u|=1

u′(M1 + M2)u
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shows. Therefore

P
{
∃ k ≤ Mn2/β : λmin

( ∑

1≤`≤k

X`X
′
`

)
≤ εk3/2−η/n1/2−η

}

≤ P
{ ∃ 1 ≤ m ≤ Mn2/β :

∑

1≤j≤m

λmin(Zj) ≤ ε
(
(m + 1)d

)3/2−η
/n1/2−η

}
.

For m ≥ 1, the ratio (m + 1)/m is at most 2. Thus, the above probability
is less than

∑

1≤m≤Mn2/β

P
{ ∑

1≤j≤m

λmin(Zj) ≤ 4εd3/2−ηm3/2−η/n1/2−η
}

. (4.3)

If the sum of the positive r.v.’s λmin(Zj) is less than a given number, then
certainly all the variables in the sum are less than that number. Therefore
(4.3) is less than

∑

1≤m≤Mn2/β

P
{

λmin(Z1) ≤ 4εd3/2−ηm3/2−η/n1/2−η
}m

≤
∑

1≤m≤Mn2/β

P
{

λmin(Z1) ≤ 4ε(dM)(
3
2−η)n( 3

2−η) 2
β− 1

2+η
}m

.

≤ 2P{λmin(Z1) ≤ 4ε(dM)
3
2−ηn( 3

2−η) 2
β− 1

2+η
}

the last inequality coming from summing a geometric series which is less
than 1/2 thanks to Lemma 4. Applying Lemma 4, we see that this upper
bound is of order

n(( 3
2−η) 2

β− 1
2+η)β δd+2−2p

2β+4(p−1) .

The condition on β in the statement of the Lemma ensures that the above
is o(n−1). Therefore, P

(
A2(ε)

)
= o(1) as n tends to infinity, no matter

what M . This concludes the proof.

We now conclude the proof of (2.2). For η = 0 and δ = 1, inequality
(4.2) is equivalent to (2.2). Thus, we can find a positive η such that (4.2)
holds. Combining (4.1), Lemmas 2, 3 and 5 yields (2.2). Then (2.3) follows
since b̂n = bn(0, 1).

5. Proof of Theorem 2.2. Define

Z̃n(t) = n−1/2
∑

i≤nt

(
n−1/2X ′

im(Xi, i/n) + X ′
iεi

)

= n−1
∑

i≤nt

X ′
im(Xi, i/n) + Zn(t) .
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Using the arguments of Lemma 1, the process n1/2(t− s)
(
bn(s, t)− b

)
has

the representation

n−1/2Un(s, t)−1
(
Zn(t)− Zn(s) + n−1

∑

ns<i≤nt

X ′
im(Xi, i/n)

)
+ oP (1) .

The same argument used to prove Theorem 1 give Theorem 2 provided we
can show that

lim
n→∞

sup
0≤s<t<1

∣∣∣n−1
∑

ns<i≤nt

Xim(Xi, i/n)−
∫ t

s

EX1m(X1, u) du
∣∣∣ = 0 (5.1)

in probability, and (compare with Lemma 3)

lim
δ→0

lim sup
n→∞

sup
d/n≤t−s≤δ

∣∣∣n−1(t− s)η−1/2
∑

ns<i≤nt

Xim(Xi, i/n)
∣∣∣ = 0 . (5.2)

in probability. Define Σm,u = EX1X
′
1m(X, u)2 the covariance matrix of

X1m(X1, u). This covariance is well defined since m(·, ·) is bounded and
X1 is square integrable. Set Σm =

∫ 1

0
Σm,u du. Since the function m(·, ·)

is bounded and A5 hold, the random variables Xim(Xi, i/n) have moment
of order 6. This garantees that they satisfy the Lindeberg condition. Then
Prokhorov’s (1965) version of Donsker’s theorem implies that the process

n−1
∑

1≤i≤nt

(
Xim(Xi, i/n)− EXim(Xi, i/n)

)

converge in distribution to ΣmWp(·). We also have

n−1/2
∑

1≤i≤nt

∣∣∣EXim(Xi, i/n)−
∫ i/n

(i−1)/n

EX1m(X1, u) du
∣∣∣

≤ n−1/2
∑

1≤i≤n

n−1E|X1 sup
0≤u≤1

∂um(X1, u)| = o(1)

as n tends to infinity, thanks to (A7). This proves (5.1).
To prove (5.2), we write

1
n(t− s)1/2−η

∑

ns<i≤nt

Xim(Xi, i/n)

=
1

n1/2(t− s)1/2−η

1√
n

∑

ns<i≤nt

(
Xim(Xi, i/n)− EXim(Xi, i/n)

)

+
1

n(t− s)1/2−η

∑

ns<i≤nt

EXim(Xi, i/n) . (5.3)
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Since t−s ≥ d/n, the inequality n1/2(t−s)1/2−η ≥ nηd1/2−η holds. Hence,
the first term in the right hand side of (5.3) is at most n−ηOP (1) and
converges to 0 uniformly in s and t with t− s > d/n. The second term is

1
(t− s)1/2−η

∫ t

s

EX1m(X1, u) du

+
O(1)

n2(t− s)1/2−η

∑

ns<i≤nt

E|Xi sup
0≤u≤1

∂um(Xi, u)|

=
1

(t− s)1/2−η

∫ t

s

EX1m(X1, u) du + O(1)(t− s)1/2+η .

The convergence in (5.2) follows.

References.
Andrews, D.W.K. (1993). Tests for parameter instability and structural

change with unknown change point, Econometrica, 61, 821–856.
Andrews, D.W.K. and Ploberger, W. (1994). Optimal tests when a nuisance

parameter is present only under the alternative, Econometrica, 62,
1383–1414.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with
multiple structural changes, Econometrica, 66, 47–78.

Basseville, M and Nikiforov, I. (1993). Detection of abrupt changes: theory

and application. Information and system science series. Prentice Hall,
Englewood Cliffs.

Belsley, D.A., Kuh E., Welsh, R.E. (1980). Regression diagnostics: identi-

fying influential data and sources of colinearity, Wiley.
Carlstein, E. (1988). Nonparametric estimation of a change-point, Ann.

Statist., 16, 188–197.
Chow, G.C. (1960). Tests of the equality between two sets of coefficients

in two linear regressions, Econometrica, 28, 561–605.
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