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Convergence of adaptive sampling schemes

R. Douc∗, A. Guillin† , J.M. Marin‡ , and C.P. Robert§

Abstract

In the design of efficient simulation algorithms, one is often beset with a poor
choice of proposal distributions. Although the performances of a given kernel can
clarify how adequate it is for the problem at hand, a permanent on-line modification
of kernels causes concerns about the validity of the resulting algorithm. While the
issue is quite complex and most often intractable for MCMC algorithms, the equiv-
alent version for importance sampling algorithms can be validated quite precisely.
We derive sufficient convergence conditions for a wide class of population Monte
Carlo algorithms and show that Rao–Blackwellized versions asymptotically achieve
an optimum in terms of a Kullback divergence criterion, while more rudimentary
versions simply do not benefit from repeated updating.

Keywords: Adaptivity, Bayesian Statistics, CLT, importance sampling, Kullback
divergence, LLN, MCMC algorithm, population Monte Carlo, Rao-Blackwellization.

Résumé
Pour construire un algorithme de simulation, le mauvais choix d’une loi de sim-

ulation peut se révéler désastreux. Même si les performances d’un noyau donné
peuvent éclairer sur son adéquation au problème considéré, un changement perma-
nent de noyaux ne garantit pas la convergence de l’algorithme ainsi construit. Il
est géneralement impossible de prouver la convergence dans un schéma MCMC par
exemple. Par contre, dans un cadre d’importance sampling, nous montrons que nos
algorithmes de Monte Carlo par châınes de Markov convergent et que leur version
de Rao–Blackwell atteint un optimum au sens de la divergence de Kullback.

Mots-clés: Adaptivité, TCL, importance, divergence de Kullback, LGN, MCMC,
PMC, proposition, Rao–Blackwell.
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1 Introduction

In the simulation settings found in optimization and (Bayesian) integration, it is well-
documented (Robert and Casella, 2004) that the choice of the instrumental distributions
is paramount for the efficiency of the resulting algorithms. Indeed, whether we are con-
sidering implementing a Metropolis–Hasting algorithm with proposal density q(x|y) or an
importance sampling algorithm with importance function g(x), we are relying on a dis-
tribution that is customarily difficult to calibrate, outside a limited range of well-known
cases. For instance, a standard result is that the optimal importance density for approx-
imating an integral

I =

∫
f(x)π(x)dx

is g?(x) ∝ |f(x)|π(x) (Robert and Casella, 2004, Theorem 3.12), but this formal result is
not very informative about the practical choice of g, while a poor choice of g may result
in an infinite variance estimator. Similarly, it has been established by Mengersen and
Tweedie (1996) that the choice of the transition kernel q(x|y) in the Metropolis–Hastings
algorithm is crucial for the resulting convergence speed of the Markov chain.

While the goals of simulating experiments are multifaceted and therefore the efficiency
of an algorithm can be evaluated under many different perspectives, a measure of agree-
ment between the target and the proposal distribution can serve as a proxy in many cases:
In the nomenclature designed in Andrieu and Robert (2001), examples of such measures
are moments, acceptance rates and autocorrelations. An even more robust measure is the
Kullback divergence, which is ubiquitous in statistical approximation theory (Csizàr and
Tusnàdy, 1984) and which will be used in this paper.

Given the complexity of the original optimization or integration problem (which does
require Monte Carlo approximations), it is rarely the case that the optimization of the
proposal distribution against an efficiency measure can be achieved in closed form. Even
the computation of the efficiency measure for a given proposal is impossible in the major-
ity of cases. For this reason, a number of adaptive schemes have appeared in the recent
literature (Robert and Casella, 2004, Section 7.6.3), in order to design better proposals
against a given measure of efficiency without resorting to a standard optimization algo-
rithm. For instance, in the MCMC community, sequential changes in the variance of
Markov kernels have been proposed in Haario et al. (1999, 2001), while adaptive changes
taking advantage of regeneration properties of the kernels have been constructed by Gilks
et al. (1998) and Sahu and Zhigljavsky (1998, 2003). In a more general perspective,
Andrieu and Robert (2001) develop a two-level stochastic optimization scheme to update
parameters of a proposal towards a given integrated efficiency criterion like the acceptance
rate (or its difference with a value known to be optimal, see Roberts et al., 1997). As
reflected by this general technical report of Andrieu and Robert (2001), the complexity
of devising valid adaptive MCMC schemes is however a genuine drawback in their exten-
sion, given that the constraints on the inhomogeneous Markov chain that results from
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this adaptive construction either are difficult to satisfy or result in a fixed proposal after
a certain number of iterations.

As stressed in Cappé et al. (2004) (see also Robert and Casella, 2004, Chap. 14),
the importance sampling perspective is much more amenable to adaptivity than MCMC,
due to its unbiased nature: using sampling importance resampling (Rubin, 1987, 1988),
any given sample from an importance distribution g can be transformed in a sample
of points marginally distributed from the target distribution π and Cappé et al. (2004)
showed that this property is also preserved by repeated and adaptive sampling. The
asymptotics of adaptive importance sampling are therefore much more manageable than
those of adaptive MCMC algorithms, at least at a primary level, if only because the
algorithm can be stopped at any time since it does not require a burn-in time. (We will
present in this paper more advanced convergence results.) Borrowing from the sequential
sampling literature (Doucet et al., 2001), Cappé et al. (2004) constructed an iterative
adaptive scheme christened population Monte Carlo (Iba, 2000) that aims at replicating
the adaptivity of MCMC kernels by a learning mechanism on a population of points,
themselves marginally distributed from the target distribution.

In this paper, we establish a CLT for a general PMC scheme and derive an iterative
adaptive method that converges to the optimal proposal, the optimality being defined
here in terms of Kullback–Leibler divergence. From a probabilistic point of view, the
techniques used in this paper are related to techniques and results found in Chopin (2004),
Künsch (2004) and Cappé et al. (2005). In particular, the triangular array technique that
is central to the CLT proofs below can be found in Cappé et al. (2005) or Douc and
Moulines (2005).

The paper is organized as follows: We first present the algorithmic and mathematical
details in Section 2. We evaluate the convergence properties of the basic version of PMC
in Section 3, exhibiting its limitations, and show in Section 5 that its Rao-Blackwellized
version overcomes these limitations and achieve optimality for the Kullback-Leibler crite-
rion developed in Section 4. Section 6 illustrates the practical convergence of the method
on a few benchmark examples.

2 Population Monte Carlo

The form of Population Monte Carlo (PMC) introduced in Cappé et al. (2004) intrinsically
is a form of iterated sampling importance resampling (SIR), following the device of Rubin
(1987, 1988). The idea of using a repeated form of SIR is that previous samples are
informative about the connections between the proposal (importance) and the target
distributions. We stress from the start that there are very few connections with MCMC
algorithms in this scheme since (a) PMC is not Markovian, being possibly based on the
whole sequence of simulation, and (b) PMC can be stopped at any time, being validated
by the basic importance sampling identity (Robert and Casella, 2004, equation (3.9))
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rather than by a probabilistic convergence result like the ergodic theorem. These features
motivate the use of the method in setups where off-the-shelf MCMC algorithms cannot be
of help. We first recall some basic Monte Carlo techniques to define notations and goals.

2.1 The Monte Carlo framework

On a measurable space (Ω,A), we consider a probability distribution π on (Ω,A). We
assume that π is dominated by a reference measure µ, π � µ, and also denote π(dx) =
π(x)µ(dx) its density. We also suppose that π is known up to a normalizing constant,

π(x) =
π̃(x)∫
π̃(x)µ(dx)

,

where π̃ is known, but the calculation of

∫
π̃(x)µ(dx) <∞ is intractable.

For one or several π-measurable functions f , we are interested in computing an ap-
proximation of

π(f) =

∫
f(x)π(dx) =

∫
f(x)π̃(x)µ(dx)
∫
π̃(x)µ(dx)

,

assuming that the calculation of

∫
f(x)π̃(x)µ(dx) is also intractable.

In this setting, a standard stochastic approximation method is the Monte Carlo
method, based on an iid sample x1, . . . , xN simulated from π, that approximates π(f)
by

π̂MC
N (f) = N−1

N∑

i=1

f(xi) ,

which almost surely converges to π(f) (as N goes to infinity) by the Law of Large Num-
bers (LLN). The Central Limit Theorem (CLT) implies in addition that, if π(f 2) =∫
f 2(x)π(dx) <∞, √

N
{
π̂MC
N (f)− π(f)

} L
; N (0,Vπ(f)) ,

where Vπ(f) = π([f − π(f)]2). Obviously, this approach requires a direct iid simulation
from π (or π̃) which often is impossible. An alternative (see, e.g., Robert and Casella,
2004, Chap. 3) is to use importance sampling, that is, to pick a probability distribution
ν � µ on (Ω,A) called the proposal or importance distribution, with density also denoted
by ν, and to estimate π(f) by

π̂ISν,N (f) = N−1

N∑

i=1

f(xi)
(π
ν

)
(xi).
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If π is also dominated by ν, π � ν, π̂ISν,N(f) almost surely converges to π(f). Moreover,

if ν
(
f 2 (π/ν)2) <∞, the CLT also applies, that is,

√
N
{
π̂ISν,N (f)− π(f)

} L
; N

(
0,Vν

(
f
π

ν

))
.

As the normalizing constant of the target distribution π is unknown, it is not possible
to use directly the IS estimator π̂ISν,N(f) and we need to replace it with the self-normalized
version of the IS estimator,

π̂SNISν,N (f) =

(
N∑

i=1

(π/ν) (xi)

)−1 N∑

i=1

f(xi) (π/ν) (xi) ,

which also converges almost surely to π(f). If ν
(
(1 + f 2) (π/ν)2) <∞, the CLT applies:

√
N
{
π̂SNISν,N (f)− π(f)

} L
; N

(
0,Vν

{
[f − π(f)]

π

ν

})
.

Obviously, the quality of the IS and of the SNIS approximations strongly depends on the
choice of the proposal distribution ν, which is delicate for complex distributions like those
that occur in high dimensional problems.

2.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) method (Rubin, 1987, 1988) is an extension
of the IS method that achieves simulation from π by resampling rather than by simple
reweighting. More precisely, the SIR algorithm is held in two stages: The first stage is
similar to IS and consists in generating an iid sample x1, . . . , xN from ν. The second
stage builds a sample from π, x̃1, . . . , x̃M , based on the instrumental sample x1, . . . , xN
by resampling. While there are many resampling methods (Robert and Casella, 2004,
Section 14.3.5), the most standard (if least efficient) approach is multinomial resampling in
x1, . . . , xN with probabilities proportional to the importance weights

[
π
ν
(x1), . . . , π

ν
(xN)

]
:

x̃i = xJi , 1 ≤ i ≤M ,

where the random variables (J1, . . . , JM) are iid conditionally on x1, . . . , xN and dis-
tributed as

P [Jl = i|x1, . . . , xN ] =

(
N∑

j=1

π

ν
(xj)

)−1

π

ν
(xi) .

The SIR estimator of π(f) is then

π̂SIRν,N,M (f) = M−1

M∑

i=1

f(x̃i)
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which also converges to π(f) since each x̃i is (marginally) approximatively distributed
from π. By construction, the variance of π̂SIRν,N,M(f) is larger than the variance of the SNIS
estimator. Indeed, the expectation of π̂SIRν,N,M (f) conditional on the sample x1, . . . , xN is
equal to π̂SNISν,N (f). Note that an asymptotic analysis of π̂SIRν,N,M(f) is quite delicate because
of the dependencies in the SIR sample (which, again, is not an iid sample from π).

2.3 The Population Monte Carlo algorithm

In their alternative generalization of Importance Sampling, Cappé et al. (2004) introduce
an iterative feature in the production of importance samples, for the purpose of adapting
the importance distribution ν to the target distribution π. Iterations are indeed necessary
to learn about π from the (poor or good) performances of earlier proposals, performances
that are for instance evaluated through the distribution of the importance weights. At
iteration t of the PMC algorithm, N realizations are thus simulated from a proposal
distribution that is derived from the N × (t − 1) previous realizations. Cappé et al.
(2004) show that the dependence on earlier proposals and realizations does not jeopardize
the fundamental importance sampling identity. Local and adaptive importance sampling
schemes can thus be chosen in a much wider generality than thought previously. By
introducing a temporal dimension to the selection of the importance function, an adaptive
perspective can be achieved at little cost, for a potentially large gain in efficiency.

If we introduce the σ-algebras related to the current and past simulations,

FN,t = σ {(xi,j, Ji,j)1≤i≤N,0≤j≤t} (t ≥ 0) ,

FJN,t = FN,t
∨

σ {((xi,t+1)1≤i≤N} (t ≥ 0) ,

where both the xi,j’s and the Ji,j’s are defined precisely below, and if we set the renor-
malized importance weights as

ω̄i,t =
ωi,t∑N
j=1 ωj,t

,

the generic PMC algorithm reads as follows:

Generic PMC algorithm:
At time 0,

a) Generate (xi,0)1≤i≤N iid according to ν0 and compute the importance weights ωi,0 =
{π/ν0} (xi,0);

b) Conditionally on σ {(xi,0)1≤i≤N}, draw

(Ji,0)1≤i≤N
iid∼M(1, (ω̄i,0)1≤i≤N )

and set x̃i,0 = xJi,0,0 (1 ≤ i ≤ N).
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At time t (t = 1, . . . , T )

a) Conditionally on FN,t−1, draw independently xi,t according to
νi,t(FN,t−1) and compute the importance weights
ωi,t = {π/νi,t(FN,t−1)} (xi,t);

b) Conditionally on FJ
N,t−1, draw

(Ji,t)1≤i≤N
iid∼M(1, (ω̄i,t)1≤i≤N )

and set x̃i,t = xJi,t,t (1 ≤ i ≤ N).

After T iterations of the previous algorithm, a PMC estimator of π(f) is given by

π̂PMC
N,T (f) =




N∑

j=1

{
π

νi,T (FN,T−1)

}
(xj,T )



−1

N∑

i=1

{
π

νi,T (FN,T−1)

}
(xi,T )f(xi,T ) ,

although it is more efficient for all estimation purposes to average the PMC approx-
imations over all iterations, possibly with different weights. Note that we adopt the
representation νi,t(FN,t−1) for the importance function to signify that the construction
of the proposal distribution for the i-th term of the t-th sample is completely open, as
illustrated in Cappé et al. (2004). Obviously, all adaptive schemes do not lead to an au-
tomatic improvement of the proposal and we now consider two particular schemes where
improvement does not occur and does occur, respectively.

3 The D-kernel PMC algorithm

In this section, we introduce a particular PMC scheme for which νi,t(FN,t−1) is a mixture
of D different transition kernels Qk (1 ≤ k ≤ D) that are chosen prior to the simulation
experiment, but whose weights are proportional to their survival rates in the previous
resampling step. This scheme was first proposed in Cappé et al. (2004), with the purpose
that, over iterations, the algorithm would automatically adapt the mixture to the target
distribution by converging to the “right” weights, in a spirit similar to the mixture adap-
tion found in Andrieu and Robert (2001). We will however see in this Section that this
is not the case, and, more dramatically, that this scheme is intrinsically non-adaptive.

3.1 The algorithm

We consider a family (Qd)1≤d≤D of D transition kernels on on Ω×A and we assume that
both π and (Qd(x, ·))1≤d≤D, x∈Ω are dominated by the reference measure µ introduced
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earlier. As above, we also set the corresponding density function and transition kernel to
be π and qd(·, ·) respectively, that is

∀A ∈ A, π(A) =

∫

A

π(x)µ(dx), Qd(x,A) =

∫

A

qd(x, x
′)µ(dx′) .

This situation is rather common in MCMC settings where several vintage transition ker-
nels are often available and difficult to compare. For instance, the cycle and mixture
MCMC schemes already discussed by Tierney (1994) are of this nature. We detail in
this Section and the following ones how PMC can overcome the difficulty encountered by
MCMC algorithms in picking an efficient mixture of standard kernels

∑
d αdQd(x, ·).

The associated PMC algorithm then builds proposals as follows:

D-kernel PMC algorithm:
At time 0, use the same step as in the generic PMC algorithm to produce the sample
(x̃i,0, Ji,0)1≤i≤N and set α1,N

d = 1/D for all 1 ≤ d ≤ D.
At time t (t = 1, . . . , T ),

a) Conditionally on σ
{

(αt,Nd )1≤d≤D
}

, generate

(Ki,t)1≤i≤N
iid∼M(1, (αt,Nd )1≤d≤D)

b) Conditionally on σ {(x̃i,t−1, Ki,t)1≤i≤N}, generate independent

(xi,t)1≤i≤N ∼ QKi,t(x̃i,t−1, ·)

and set ωi,t = π(xi,t)/qKi,t(x̃i,t−1, xi,t);

c) Conditionally on σ {(x̃i,t−1, Ki,t, xi,t)1≤i≤N}, generate

(Ji,t)1≤i≤N
iid∼M(1, (ω̄i,t)1≤i≤N )

and set (1 ≤ i ≤ N , 1 ≤ d ≤ D)

x̃i,t = xJi,t,t , αt+1,N
d =

N∑

i=1

ω̄i,tId(Ki,t)

Recall that ω̄i,t denotes the renormalized version of ωi,t. In words, Step a) picks the
kernel index in the mixture for each point in the sample, Step b) generates the cor-
responding point and Step c) updates the weights of the D kernels according to their
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respective survival performances in the past round. (Since survival is directed by the
importance weights, reweighting is thus related to the respective magnitudes of the im-
portance weights for the different kernels.) Note also that Step c) is only used to avoid the
dissemination of small importance weights along iterations and the subsequent degeneracy
phenomenon that plagues iterated IS schemes like particle filters. Integral approximations
should however use the byproduct of Step b).

3.2 Convergence properties

In order to assess the average effect of these iterations, we now consider the convergence
of the algorithm when the number N of points in each sample is large. Indeed, as already
pointed out in Cappé et al. (2004), it does not make much sense to consider the asymp-
totics of the PMC scheme when T grows large, given that this algorithm is intended to
be run with a small number T of iterations.

In order to prove convergence of the D kernel PMC algorithm, we first assume that
the generalized importance weight is almost surely finite, that is,

(A1) ∀d ∈ {1, . . . , D}, π ⊗ π {qd(x, x′) = 0} = 0.

Note that assumption (A1) implies that π⊗π
{
π(x′)

/
qd(x, x

′) <∞
}

= 1. We denote by
γu the uniform distribution on {1, . . . , D}, that is, γu(k) = 1/D for all k ∈ {1, . . . , D}.
We can then deduce a LLN on the pairs (xi,t, Ki,t) produced by the above algorithm:

Proposition 3.1. Under (A1), for any function h in L1
π⊗γu and for all t ≥ 1,

N∑

i=1

ω̄i,th(xi,t, Ki,t)
N→∞−→P π ⊗ γu(h).

Proof. We proceed by induction wrt t. Using Theorem A.1, the case t = 1 is straight-
forward since this is a direct consequence of the convergence of the importance sampling
algorithm. Now, let t > 1 and assume that the LLN holds for t − 1. For h ∈ L1

π⊗γu ,

to prove that
∑N

i=1 ω̄i,th(xi,t, Ki,t) converges in probability to π ⊗ γu(h), we just need to
check that

N−1

N∑

i=1

π(xi,t)

qKi,t(x̃i,t−1, xi,t)
h(xi,t, Ki,t)

N→∞−→P π ⊗ γu(h) ,

N−1

N∑

i=1

π(xi,t)

qKi,t(x̃i,t−1, xi,t)

N→∞−→P 1 ,
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where the second convergence is obviously a special case of the first one (with h = 1). For
the first convergence, applying Theorem A.1 with




UN,i = N−1 π(xi,t)

qKi,t (x̃i,t−1,xi,t)
h(xi,t, Ki,t),

GN = σ
{

(x̃i,t−1)1≤i≤N , (α
t,N
d )1≤d≤D

}
,

we only need to check condition (iii). For all C > 0, we have

N−1

N∑

i=1

E

[
π(xi,t)

qKi,t(x̃i,t−1, xi,t)
h(xi,t, Ki,t)I π(xi,t)

qKi,t
(x̃i,t−1,xi,t)

h(xi,t,Ki,t)>C

ff

∣∣∣∣∣GN
]

=
D∑

d=1

N−1

N∑

i=1

FC(x̃i,t−1, d)αt,Nd (1)

where FC(x, k) =
∫
π(du)h(u, k)In π(u)

qk(x,u)
h(u,k)≥C

o. By induction, we have

αt,Nd =
N∑

i=1

ω̄i,t−1Id(Ki,t−1)−→P1/D

N−1

N∑

i=1

FC(x̃i,t−1, k)
N→∞−→P π(FC(·, k))

Using these limits in (1) yields

N−1

N∑

i=1

E

[
π(xi,t)h(xi,t, Ki,t)

qKi,t(x̃i,t−1, xi,t)
Iπ(xi,t)h(xi,t,Ki,t)

qKi,t
(x̃i,t−1,xi,t)

>C

ff

∣∣∣∣∣GN
]
N→∞−→P π ⊗ γu(FC).

Since π ⊗ γu(FC) converges to 0 as C goes to infinity, this proves that for all η > 0,

N−1

N∑

i=1

E

(
π(xi,t)h(xi,t, Ki,t)

qKi,t(x̃i,t−1, xi,t)
Iπ(xi,t)h(xi,t,Ki,t)

qKi,t
(x̃i,t−1,xi,t)

>Nη

ff

∣∣∣∣∣GN
)

N→∞−→P 0 .

Condition (iii) is satisfied and Theorem A.1 applies. The proof follows.

Note that this convergence result is more than what we need for Monte Carlo purposes
since the Ki,t’s are auxiliary parameters that are not relevant for the original problem.
However, it is eventually a negative result in that, while it implies that

N∑

i=1

ω̄i,tf(xi,t)
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is a convergent estimator of π(f), it also shows that, for t ≥ 1,

N∑

i=1

ω̄i,tId(Ki,t)
N→∞−→P

1

D
.

Therefore, at each iteration, the weights of all kernels converge to 1/D when the number
of points in the sample grows to infinity. This translates in the lack of learning properties
for the D-kernel PMC algorithm: its properties at iteration 1 and at iteration 10 are the
same. In other words, this algorithm is not adaptive and only requires one iteration with
a large value of N . We can note that, when this scheme was used in Cappé et al. (2004),
the fast stabilization of the approximation was noticeable. (It is also possible to establish
a CLT for this algorithm, but given its unappealing features, we leave the details for the
interested reader.)

In order to get a truly adaptive PMC scheme, based on the above D-kernel algorithm,
we have first to set an effective criterion of adaptivity and approximation of the target
distribution by the proposal distribution. We then derive a modification of the original
D-kernel algorithm that achieves efficiency in this sense. As argued in many papers using
a wide range of arguments, a natural choice of approximation metric is the Kullback
divergence: we can aim at deriving the D-kernel mixture that minimizes the Kullback
divergence between this mixture and the target measure π

∫∫
log

(
π(x)π(x′)

π(x)
∑D

d=1 αdqd(x, x
′)

)
(π ⊗ π)(dx, dx′) . (2)

The following Section is devoted to the problem of finding an iterative choice of mixing
coefficients that converges to this minimum. The optimal PMC scheme then follows in
Section 5.

4 The Kullback divergence

4.1 The criterion

Using the same notations as above, in conjunction with the choice of the weights αd in
the D kernel mixture, we introduce the simplex of RD,

S =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑

d=1

αd = 1

}

and π̄ = π ⊗ π. We then assume that the family of the D kernels satisfies the condition

(A2) ∀i ∈ {1, . . . , D}, Eπ̄ [| log qi(X,X
′)|] =

∫∫
| log qi(x, x

′)|π̄(dx, dx′) <∞,

11



which is automatically satisfied when all qj’s dominate π (in the accept-reject sense that
π/qj is bounded). We then derive from the Kullback divergence a function on S , that is,
for α ∈ S ,

Eπ̄(α) =

∫∫
π̄(dx, dx′) log

(
D∑

d=1

αdqd(x, x
′)

)
= Eπ̄

[
log

D∑

d=1

αdqd(X,X
′)

]
.

Note that, due to the strict concavity of the log function, Eπ̄ is a strictly concave function
on a connected compact set and thus has no local maximum besides the global maximum,
denoted

αmax = arg max
α∈S

Eπ̄(α) .

Note also that, since

∫
π(dx) log π(x)− Eπ̄(α) = Eπ̄


log

π(X)π(X ′)

π(X)
{∑D

d=1 αdqd(X,X
′)
}


 ,

αmax is the optimal choice for a mixture of transition kernels such that the joint law of
(X0, X1) when X0 ∼ π is the nearest to the product distribution π̄ = π ⊗ π. We then
have the following obvious inequality:

Lemma 4.1. Under (A1-A2), for all α ∈ S , Eπ̄(α) ≤
∫
π(dx) log π(x).

4.2 A maximization algorithm

We now propose an iterative procedure, akin to the EM algorithm, that updates the
weights so that the function Eπ̄(α) increases at each step. We first define F as the function
on S such that

F (α) =

(
Eπ̄

[
αdqd(X,X

′)∑D
j=1 αjqj(X,X

′)

])

1≤d≤D
and construct the sequence on S

{
α1 = (1/D, . . . , 1/D)

αt+1 = F (αt) for t ≥ 1
(3)

Note that, under assumption (A1), for all t ≥ 0,

Eπ̄
(
qd(X,X

′)

/∑D
j=1 α

t
jqj(X,X

′)

)
> 0 and thus, for all t ≥ 0 and all d ∈ {1, . . . , D},

αtd > 0. If we define the extremal set ID as
{
α ∈ S ;∀d ∈ {1, . . . , D}, αd = 0 or Eπ̄

(
qd(X,X

′)
∑D

j=1 αjqj(X,X
′)

)
= 1

}
, (4)

we then have the following fixed point result:

12



Proposition 4.1. Under (A1) and (A2),

i) Eπ̄ ◦ F − Eπ̄ is continuous,

ii) For all α ∈ S , Eπ̄ ◦ F (α) ≥ Eπ̄(α),

iii) ID = {α ∈ S ;F (α) = α} = {α ∈ S ; Eπ̄ ◦ F (α) = Eπ̄(α)} and ID is finite.

Proof. Eπ̄ is clearly continuous. Moreover, by Lebesgue dominated convergence theorem,

the function α 7→ Eπ̄
(
αdqd(X,X

′)
/∑d

j=1 αjqj(X,X
′)
)

is also continuous, which implies

that F is continuous. This completes the proof of i). Now, by the concavity of the log
function,

Eπ̄(F (α))− Eπ̄(α)

= Eπ̄

(
log

[
D∑

d=1

αdqd(X,X
′)∑D

j=1 αjqj(X,X
′)
Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)])

≥ Eπ̄
[

D∑

d=1

αdqd(X,X
′)∑D

j=1 αjqj(X,X
′)

logEπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)]

=

D∑

d=1

αdEπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
logEπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
(5)

Applying the inequality u log u ≥ u− 1 to (5) yields ii). Moreover, equality in u log u ≥
u− 1 holds if, and only if u = 1. Therefore, equality in (5) is equivalent to

∀αd 6= 0, Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
= 1.

Thus, ID = {α ∈ S ; Eπ̄ ◦ F (α) = Eπ̄(α)}. The second equality ID = {α ∈ S ;F (α) = α}
is straightforward.

We now prove par recursion on D that ID is finite. Recalling the definition of ID, the
recursion is quite straightforward. We just need to prove that the set

{α ∈ ID;αd 6= 0 ∀d ∈ {1, . . . , D}}

is empty or finite. If this set is non-empty, any element α in this set satisfies

∀d ∈ {1, . . . , D} Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
= 1 ,
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which implies

0 =
D∑

d=1

αmaxd

(
Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
− 1

)

= Eπ̄

(∑D
d=1 α

max
d qd(X,X

′)∑D
j=1 αjqj(X,X

′)
− 1

)
≥ Eπ̄

(
log

∑D
d=1 α

max
d qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
≥ 0

By unicity of the global maximum of Eπ̄, we conclude that α = αmax and hence iii).

Proposition 4.1 implies that our recursive procedure satisfies Eπ̄(αt+1) ≥ Eπ̄(αt).
Therefore, the Kullback Leibler divergence criterion (2) decreases at each step. This
property is closely linked with the EM algorithm (Robert and Casella, 2004, Section 5.3).
More precisely, consider the mixture model

V ∼M(1, (α1, . . . , αD)) and W = (X,X ′)|V ∼ π(dx)QV (x, dx′)

with parameter α. We denote by Ēα the corresponding expectation, by pα(v, w) the joint
density of (V,W ) wrt µ ⊗ µ and by pα(w) the density of W wrt µ. Then it is easy to
check that Eπ̄(α) =

∫
log(pα(w))π̄(dw) which is an average version of the criterion to be

maximized in the EM algorithm when only W is observed. In that case, a natural idea
adapted from the EM algorithm would be to update α according to the iterative scheme

αt+1 = arg max
α∈S

∫
Ēαt [ log pα(V,w)|w] π̄(dw) .

By direct algebra, this definition of αt+1 is equivalent to the update formula αt+1 = F (αt)
that we used above. Our algorithm then appears as an averaged EM, but preserves the
deterministic increase of the criterion enjoyed by EM.

The following proposition ensures that any α different from αmax is repulsive.

Proposition 4.2. Under (A1) and (A2), for every α ∈ S \ {αmax}, there exists a
neighborhood Vα of α such that, if αt0 ∈ Vα, then (αt)t≥t0 leaves Vα within a finite time.

Proof. Let α ∈ S \ {αmax}. Then, using the inequality u− 1 ≥ log u,

D∑

d=1

αmaxd Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
− 1 ≥ Eπ̄

(
log

∑D
d=1 α

max
d qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
> 0

which implies that there exists d ∈ {1, . . . , D} such that

Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
> 1.
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Let (Wn)n≥0 be a non increasing sequence of neighborhoods of α in S . We have by the
monotone convergence theorem,

1 < Eπ̄

(
qd(X,X

′)∑D
j=1 αjqj(X,X

′)

)
= Eπ̄

(
lim
n→∞

inf
β∈Wn

qd(X,X
′)∑D

j=1 βjqj(X,X
′)

)

= lim
n→∞

Eπ̄

(
inf
β∈Wn

qd(X,X
′)∑D

j=1 βjqj(X,X
′)

)

≤ lim
n→∞

inf
β∈Wn

Eπ̄

(
qd(X,X

′)∑D
j=1 βjqj(X,X

′)

)

Thus, there exist Wn0 = Vα a neighborhood of α and η > 1 such that for all β ∈ Vα,

Eπ̄

(
qd(X,X

′)∑D
j=1 βjqj(X,X

′)

)
> η. (6)

Now use that for all t ≥ 0 and d ∈ {1, . . . , D}, 1 ≥ αtd > 0 and combine (6) with the
update formulas for αtd (given by (3)). This shows that (αt)t≥0 leaves Vα within a finite
time.

We thus conclude that the maximization algorithm is convergent:

Proposition 4.3. Under (A1) and (A2),

lim
t→∞

αt = αmax .

Proof. First, note that ID is a finite set which contains αmax. Write ID = {β0, β1, . . . , βI}
with β0 = αmax. If we introduce a sequence (Wi)0≤i≤I of disjoint neighborhoods of the βi’s
so that for all 0 ≤ i ≤ I, F (Wi) is disjoint from ∪j 6=iWj (this is possible since F (βi) = βi
and F is continuous) and, for all i ∈ {1, . . . , I}, Wi ⊂ Vβi where the (Vβi)’s are defined in
the proof of Proposition 4.2.

The sequence (Eπ̄(αt))t≥0 is upper-bounded and non decreasing and therefore it con-
verges. This implies that limt→∞ Eπ̄ ◦ F (αt)− Eπ̄(αt) = 0. By continuity of Eπ̄ ◦ F − Eπ̄,
there exists T > 0 such that for all t ≥ T , αt ∈ ∪jWj. Since F (Wi) is disjoint from
∪j 6=iWj, this implies that there exists i ∈ {0, . . . , I} such that for all t ≥ T , αt ∈ Wi.
By Proposition 4.2, i cannot be in {1, . . . , I}. Thus, for all t ≥ T , αt ∈ W0 which is a
neighborhood of β0 = αmax. The proof is completed.

5 The Rao-Blackwellized D-kernel PMC

The update formula (3) has been shown to improve the Kullback Leibler divergence crite-
rion at every iteration. We now discuss how to implement this mechanism within a PMC
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algorithm that resembles the previous D-kernel algorithm. The only difference with the
algorithm of Section 3.1 is that we make use of the kernel structure in the computation
of the importance weight: in MCMC terminology, this is called “Rao-Blackwellization”
(Robert and Casella, 2004, Section 4.2) and it is known to provide variance reduction in
data augmentation settings (Robert and Casella, 2004, Section 9.2). In the current con-
text, the improvement brought by Rao-Blackwellization is dramatic, in that the modified
algorithm does converge to the proposal mixture that is closest to the target distribution
in the sense of the Kullback Leibler divergence. More precisely, a Monte Carlo version
of the update formula (3) can be implemented in the iterative definition of the mixture
weights, in the same way as MCEM approximates EM (Robert and Casella, 2004, Section
5.3.3).

5.1 The algorithm

In importance sampling as well as in MCMC settings, the conditioning improvement
brought by Rao-Blackwellization may be significant (Celeux et al., 2003). In the context
of theD-kernel PMC scheme, the Rao-Blackwellization argument is that it is not necessary
to use the mixture component in the computation of the importance weight but rather
the whole mixture. The importance weight is therefore

π(xi,t)

/ D∑

d=1

αt,Nd qd(x̃i,t−1, xi,t) rather than π(xi,t)
/
qKi,t(x̃i,t−1, xi,t)

as in the algorithm of Section 3.1. As already noted by Hesterberg (1998), the use of
the whole mixture in the importance weight provides a robust tool for preventing infinite
variance importance sampling estimators. In our setup, this choice of weight will guarantee
that the following algorithm converges to the optimal mixture.

Rao-Blackwellized D-kernel PMC algorithm:
At time 0, use the same step as in the generic PMC algorithm to produce the sample
(x̃i,0, Ji,0)1≤i≤N and set α1,N

d = 1/D for all 1 ≤ d ≤ D.
At time t (t = 1, . . . , T ),

a) Conditionally on σ
{

(αt,Nd )1≤d≤D
}

, generate

(Ki,t)1≤i≤N
iid∼M(1, (αt,Nd )1≤d≤D)

b) Conditionally on σ {(x̃i,t−1, Ki,t)1≤i≤N}, generate independent

(xi,t)1≤i≤N ∼ QKi,t(x̃i,t−1, ·)
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and set ωi,t = π(xi,t)

/ D∑

d=1

αt,Nd qd(x̃i,t−1, xi,t);

c) Conditionally on σ {(x̃i,t−1, Ki,t, xi,t)1≤i≤N}, generate

(Ji,t)1≤i≤N
iid∼M(1, (ω̄i,t)1≤i≤N )

and set (1 ≤ i ≤ N , 1 ≤ d ≤ D)

x̃i,t = xJi,t,t , αt+1,N
d =

N∑

i=1

ω̄i,tId(Ki,t)

Note that, once more, the adaptive mechanism is based on the importance weights.
The update of the αd’s in Step c) is the Monte Carlo version of (3) and we now show that
this algorithm is converging.

5.2 The LLN for the Rao-Blackwellized D-kernel PMC algo-
rithm

Not very surprisingly, the population of points obtained at each iteration of the Rao-
Blackwellized algorithm above approximates the target distribution in the sense of the
weak Law of Large Numbers (LLN). Note that the convergence holds under the very weak
assumption (A1) and for any test function h that is absolutely integrable wrt the target
distribution π. The function h may thus be unbounded.

Theorem 5.1. Under (A1), for any function h in L1
π and for all t ≥ 0,

N∑

i=1

ω̄i,th(xi,t)
N→∞−→P π(h) (7)

1

N

N∑

i=1

h(x̃i,t)
N→∞−→P π(h) (8)

Proof. We proceed by induction wrt t on the two limiting results (8) and (7). The case
t = 0 is the basic importance sampling convergence result. Now, let t ≥ 1 and assume
that (8) and (7) both hold for t− 1. We will just show (7) since (8) is a straightforward
consequence of (7) and Theorem A.1 due to multinomial sampling, by noting that

E

(
1

N

N∑

i=1

h(x̃i,t)

∣∣∣∣∣ (xi,t)1≤i≤N

)
=

N∑

i=1

ωi,th(xi,t).
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To prove (7), we will check that

1

N

N∑

i=1

ωi,th(xi,t)
N→∞−→P π(h)

1

N

N∑

i=1

ωi,t
N→∞−→P 1.

The later limit is also a direct consequence of the former with h = 1. We apply Theorem

A.1 with GN = σ
(

(x̃i,t−1)1≤i≤N , (α
t,N
d )1≤d≤D

)
and UN,i = N−1ωi,th(xi,t). Conditionally

on GN , the (xi,t)1≤i≤N ’s are independent and

xi,t|GN ∼
D∑

d=1

αt,Nd Qd(x̃i,t−1, ·)

Noting that

N∑

i=1

E
(
ωi,th(xi,t)

N

∣∣∣∣GN
)

=
N∑

i=1

E

(
π(xi,t)h(xi,t)

N
∑D

d=1 α
t,N
d qd(x̃i,t−1, xi,t)

∣∣∣∣∣GN
)

= π(h),

to apply Theorem A.1, we only need to check condition (iii). Now, write

N∑

i=1

E
(
ωi,th(xi,t)

N
I{ωi,th(xi,t)>C}

∣∣∣∣GN
)

=
1

N

N∑

i=1

∫
π(dx)h(x)I(

π(x)h(x)
PD
d=1

α
t,N
d

qd(x̃i,t−1,x)
>C

)

≤
D∑

d=1

1

N

N∑

i=1

∫
π(dx)h(x)I

π(x)h(x)

D−1qd(x̃i,t−1,x)
>C

ff

Note FC(u) =
∫
π(dx)h(x)I

π(x)h(x)

D−1qd(u,x)
>C

ff. We have FC(u) ≤ π(h) and thus, by the

induction assumption

N−1

N∑

i=1

FC(x̃i,t−1)
N→∞−→P π(FC).

The proof is completed since

π(FC) =

∫∫
π(dx)π(dx′)h(x)I

π(x)h(x)

D−1qd(x′,x)
>C

ff C→∞−→ 0 .
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5.3 Convergence of the weights

The next proposition ensures that, at each iteration of the algorithm, the population of
points is modified according to a mixture of kernels whose weights approximate the ones
obtained by the iterative procedure described in Section 4 for minimizing the Kullback
divergence criterion.

Proposition 5.1. Under (A1), for all t ≥ 1,

∀1 ≤ d ≤ D, αt,Nd
N→∞−→P α

t
d (9)

where the αtd’s are defined in (3).

Combining Proposition 5.1 with Proposition 4.3, we obtain that, under assumptions
(A1) and (A2), the Rao–Blackwellized version of the PMC algorithm automatically
adapts the weights of the proposed mixture of kernels and converges to the optimal com-
bination of mixtures wrt to the Kullback divergence criterion defined in Section 4.

Proof. The case t = 1 is obvious. Now, assume (9) holds for some t ≥ 1. As in the proof
of Proposition 3.1, we now prove that

1

N

N∑

i=1

ωi,tId(Ki,t) =
1

N

N∑

i=1

π(xi,t)∑D
l=1 α

t,N
l ql(x̃i,t−1, xi,t)

Id(Ki,t)
N→∞−→P α

t+1
d ,

1

N

N∑

i=1

ωi,t
N→∞−→P 1.

Only the first convergence needs be considered since the latter can be easily deduced from
the former.
We apply Theorem A.1 with GN = σ

(
(x̃i,t−1)1≤i≤N , (α

t,N
d )1≤d≤D

)
and UN,i = N−1ωi,tId(Ki,t).

Conditionally on GN , (Ki,t, xi,t)1≤i≤N are independent and for all (d,A) in {1, . . . , D}×A,

P (Ki,t = d, xi,t ∈ A| GN) = αt,Nd Qd(x̃i,t−1, A)

To apply Theorem A.1, we just need to check condition (iii). We have

E

(
N∑

i=1

ωi,tId(Ki,t)

N
I{ωi,tId(Ki,t)>C}

∣∣∣∣∣GN
)

≤
D∑

j=1

1

N

N∑

i=1

∫
π(dx)

αt,Nd qd(x̃i,t−1, x)∑D
l=1 α

t,N
l ql(x̃i,t−1, x)

I
π(x)

D−1qj(x̃i,t−1,x)
>C

ff

≤
D∑

j=1

1

N

N∑

i=1

∫
π(dx)I

π(x)

D−1qj(x̃i,t−1,x)
>C

ff N→∞−→P

D∑

j=1

π̄

(
π(x)

D−1qj(x′, x)
> C

)
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by the LLN stated in Theorem 5.1. The rhs converges to 0 as C grows to infinity since
by assumption (A1), π̄{qj(x, x′) = 0} = 0. Thus, Theorem A.1 applies and

1

N

N∑

i=1

ωi,tId(Ki,t)− E
(

1

N

N∑

i=1

ωi,tId(Ki,t)

∣∣∣∣∣GN
)

N→∞−→P 0.

To complete the proof, it remains to show that

E

(
1

N

N∑

i=1

ωi,tId(Ki,t)

∣∣∣∣∣GN
)

=
1

N

N∑

i=1

∫
π(dx)

αt,Nd qd(x̃i,t−1, x)
∑D

l=1 α
t,N
l ql(x̃i,t−1, x)

N→∞−→P αt+1
d (10)

Using again the LLN stated in Theorem 5.1,

1

N

N∑

i=1

∫
π(dx)

αtdqd(x̃i,t−1, x)∑D
l=1 α

t
lql(x̃i,t−1, x)

N→∞−→P Eπ̄

(
αtdqd(X,X

′)∑D
l=1 α

t
lql(X,X

′)

)
= αt+1

d (11)

Thus, to prove (10), we use (11) and check that the difference between both terms con-
verges to 0 in probability. To see this, first note that for all t ≥ 1, for all d in {1, . . . , D},
αtd > 0 and thus, by the induction assumption, for all d in {1, . . . , D}, αt,Nd −αtd

αtd

N→∞−→P 0.

Using that
∣∣A
B
− C

D

∣∣ ≤
∣∣A
B

∣∣ ∣∣D−B
D

∣∣+
∣∣A−C

C

∣∣ ∣∣C
D

∣∣, we have by straightforward algebra,
∣∣∣∣∣

αt,Nd qd(x̃i,t−1, x)∑D
l=1 α

t,N
l ql(x̃i,t−1, x)

− αtdqd(x̃i,t−1, x)∑D
l=1 α

t
lql(x̃i,t−1, x)

∣∣∣∣∣

≤ αt,Nd qd(x̃i,t−1, x)∑D
j=1 α

t,N
l qj(x̃i,t−1, x)

(
sup

l∈{1,...,D}

∣∣∣∣∣
αt,Nl − αtl

αtl

∣∣∣∣∣

)

+

∣∣∣∣∣
αt,Nd − αtd

αtd

∣∣∣∣∣
αtdqd(x̃i,t−1, x)∑D
l=1 α

t
lql(x̃i,t−1, x)

≤ 2 sup
l∈{1,...,D}

∣∣∣∣∣
αt,Nl − αtl

αtl

∣∣∣∣∣ .

The proof follows from
αt,Nd −αtd

αtd

N→∞−→P 0.

5.4 The CLT for the Rao-Blackwellized D-kernel PMC algo-
rithm

We now state and prove a CLT for the weighed and the unweighted samples when the size
of the population grows to infinity. As noted in the SIR algoritm (see Section 2.2), the
asymptotic variance associated with the unweighted sample is larger than the variance of
the weighted sample.
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Theorem 5.2. Under (A1),

i) For all h satisfying π̄
(
h2(x′) π(x)

qd(x,x′)

)
<∞ for some d ∈ {1, . . . , D}, we have

√
N

N∑

i=1

ω̄i,t {h(xi,t)− π(h)} L−→ N (0, σ2
t ), (12)

with σ2
t = π̄

(
{h(x′)− π(h)}2 π(x′)PD

d=1 α
t
dqd(x,x′)

)
.

ii) If moreover π(h2) <∞, then

1√
N

N∑

i=1

{h(x̃i,t)− π(h)} L−→ N (0, σ2
t + Vπ(h)) (13)

Note that amongst the conditions under which this theorem applies, the integrability
condition

π̄

(
h2(x′)

π(x)

qd(x, x′)

)
<∞ (14)

is required for some d in {1, . . . , D} and not for all d. Thus, situations where some tran-
sition kernels qd(·, ·) do not satisfy (14) can still be covered by this theorem provided that
(14) holds for at least one particular kernel. An equivalent expression of the asymptotic
variance σ2

t is

σ2
t = Vν

(
{h− π(h)} π̄

ν

)
where ν(dx, dx′) = π(dx)

(
D∑

d=1

αtdQd(x, dx
′)

)
.

Written as above, σ2
t turns to have the same expression as the asymptotic variance that

appears in the CLT associated to the self-normalized IS algorithm (SNIS) (see Section 2.1
for a description of the algorithm and the associated CLT) where the proposal distribution
is ν and the target distribution π̄. Still, the SNIS algorithm can not be implemented here
since by the above definition of ν, the proposal distribution depends on both π and the
weights (αtd) which are unknown.

Proof. Without loss of generality, we may assume that π(h) = 0. Let d0 ∈ {1, . . . , D}
such that π̄

(
h2(x′) π(x)

qd0 (x,x′)

)
< ∞. In the proof of Theorem 5.1, it has been shown that

1
N

∑N
i=1 ωi,t

N→∞−→P 1 and thus, we only need to prove that

1√
N

N∑

i=1

ωi,th(xi,t)
L−→ N (0, σ2

t ) (15)
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We will apply Theorem A.2 with

UN,i =
1√
N
ωi,th(xi,t) =

1√
N

π(xi,t)h(xi,t)∑D
d=1 α

t,N
d qd(x̃i,t−1, xi,t)

,

GN = σ
{

(x̃i,t−1)1≤i≤N , (α
t,N
d )1≤d≤D)

}
.

Conditionally on GN , the (xi,t)1≤i≤N are independent and

xi,t|GN ∼
D∑

d=1

αt,Nd Qd(x̃i,t−1, ·).

Conditions (i) and (ii) of Theorem A.2 are straightforwardly satisfied. To check condition
(iii), first note that E (UN,i| GN ) = π(h) = 0. Moreover,

AN =

N∑

i=1

E
(
U2
N,i

∣∣GN
)

=
1

N

N∑

i=1

∫
π(dx)h2(x)

π(x)∑D
d=1 α

t,N
d qd(x̃i,t−1, x)

By the LLN for (x̃i,t) stated in Theorem 5.1, we have

BN =
1

N

N∑

i=1

∫
π(dx)h2(x)

π(x)∑D
d=1 α

t
dqd(x̃i,t−1, x)

N→∞−→P σ
2
t

To prove that condition (iii) holds, it is thus sufficient to show that |BN − AN | N→∞−→P 0.

Since αt,Nd0

N→∞−→P α
t
d0
> 0, it is sufficient to consider the bound

I{αt,Nd0 >2−1αtd0
}|BN − AN |

≤ I{αt,Nd0 >2−1αtd0
} sup

1≤d≤D

(
αtd − αt,Nd

αtd

)
1

N

N∑

j=1

∫
π(dx)

h2(x)π(x)∑D
d=1 α

t,N
d qd(x̃i,t−1, x)

≤
(

sup
1≤d≤D

(
αtd − αt,Nd

αtd

)
1

N

N∑

j=1

∫
π(dx)

h2(x)π(x)

2−1αtd0
qd0(x̃i,t−1, x)

)
N→∞−→P 0

Thus, condition (iii) is satisfied. Now, consider condition (iv). Using the same argument
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as in condition (iii), we consider

I{αt,Nd0 >2−1αtd0
}

N∑

i=1

E


 1

N
ω2
i,th

2(xi,t)I( π(xi,t)h(xi,t)
PD
d=1

α
t,N
d

qd(x̃i,t−1,xi,t)
>C

)

∣∣∣∣∣∣
GN




≤ 1

N

N∑

i=1

∫
π(dx)h2(x)

π(x)

2−1αtd0
qd0(x̃i,t−1, x)

I(
π(x)h(x)

2−1αt
d0
qd0

(x̃i,t−1,x)
>C

)

N→∞−→P π̄


h2(x)

π(x)

2−1αtd0
qd0(x′, x)

I(
π(x)h(x)

2−1αt
d0
qd0

(x′,x)
>C

)




which converges to 0 as C grows to infinity. Thus, Theorem A.2 applies and the proof of
(12) is completed. The proof of (13) is derived as a direct application of Theorem A.2 as
in the SIR result by setting UN,i = 1√

N
h(x̃i,t) and GN = σ ((xi,t)1≤i≤N , (ωi,t)1≤i≤N ).

6 Illustrations

In this section, we briefly show how the iterations of the PMC algorithm quickly imple-
ment adaptivity towards the most efficient mixture of kernels though three examples of
moderate difficulty. (The R programs are available on the authors’ websites.)

Example 1. As a first toy example, consider the case of the target π being the density
of a normal mixture

3∑

i=1

1

3
N (µi, σ

2
i ) (16)

and of a independent normal mixture proposal with the same means and variances as
in (16) but started with different weights α0,N

d . Note that this is a very special case of
D kernel PMC scheme in that the Markov kernels of Section 5.1 are then independent
proposals. In this case, the optimal choice of weights is obviously α?d = 1/3. In our
experiment, we used µ1 = −2, µ2 = 0, µ3 = 2 and σ1 = 1/3, σ2 = 2/3, σ3 = 1.
The starting values α1,N

d are indicated on the left of Figure 1, which clearly shows the
convergence to the optimal values 1/3 and 2/3 for the two first cumulated weights in less
than 10 iterations. (Generating more simulated points at each iteration do stabilize the
convergence graph but the primary aim of this example is to exhibit the fast convergence
to the true optimal values of the weights.)

Example 2. As a second toy example, consider the case of a N (0, 1) target and of the
following mixture of D kernels

αt,N1 T2(x̃i,t−1, 1) + αt,N2 N (x̃i,t−1, σ
2
2) + αt,N3 N (x̃i,t−1, σ

2
3) , (17)
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Figure 1: Convergence of the cumulated weights αt,N1 and αt,N1 + αt,N2 for the three com-
ponent normal mixture to the optimal values 1/3 and 2/3 (represented by dotted lines).
At each iteration, N = 10, 000 points were simulated from the D-kernel proposal.

where σ2
2 = 4 and σ2

3 = 1/4. (The first proposal in the mixture is thus a Student T2

distribution centered at the current value x̃i,t−1.) Figure 2 details the convergence of
the weights to the optimal values for several starting values. (Note that the optimal
values can be approximated numerically by a discretization of the simplex in R3. For
the discretization step adopted in Figure 2, the optimum corresponds to α?1 = 0.41 and
α?2 = 0.51.) While the sequences of weights (αt,N1 , αt,N2 ) do not always converge exactly to
the same value, this is due to the considerable flatness of the Kullback–Leibler divergence
in this region.

0 1 Total
0 60 364 424
1 36 240 276

Total 96 604 700

Table 1: Two-by-two contingency table.

Example 3. Our third example is a contingency table inspired from Agresti (2002), given
in Table 1. We model this dataset by a Poisson regression,

xij ∼P (exp (αi + βj)) (i, j = 0, 1) ,
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Figure 2: Numerical approximation of the Kullback–Leibler divergence for the three com-
ponent mixture proposal (17) in the simplex of R3. (The discretization step is 1/75 in
both α1 and α2 directions.) Superposition of the path of four calls to the D-kernel PMC
algorithm when started from different values (α1,N

1 , α1,N
2 ). The number T of iterations is

between 150 and 500 depending on the starting values, while the sample size is 50, 000.
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with α0 = 0 for identifiability reasons. We use a flat prior on the parameter θ = (α1, β0, β1)
and run the PMC D-kernel algorithm with a mixture of 10 normal random walk proposals,
N (θ̃i,t−1, %dI(θ̂)) (d = 1, . . . , 10), where I(θ̂)) is the Fisher information matrix evaluated

at the MLE, θ̂ = (−0.43, 4.06, 5.9) and where the scales %d vary from 1.35e−19 to 1.54e+07
(the %d’s are equidistributed on a logarithmic scale). The result of 5 (successive) iterations
of the Rao-Blackwell D-kernel algorithm is as follows: unsurprisingly, the largest variance
kernels are hardly ever sampled but fulfill their main role of variance stabilizers in the
importance sampling weights while the mixture concentrates on the medium variances,
with a quick convergence of the mixture weights to the limiting weights. This convergence
is illustrated in Figure 4 for the cumulated weights of the 5th, 6th, 7th and 8th components
of the mixture, which converge to 0, 0.003, 0.259 and 0.738, respectively. The adequation
of the simulated sample with the target distribution is shown in Figure 3, since the points
of the sample do coincide with the (unique) modal region of the posterior distribution.
The last row of Figure 3 (see also the log-posterior histograms in Figure 5) shows in
addition that there is no degeneracy in the produced samples: most points in the last
sample have very similar posterior values. For instance, 20% of the sample corresponds
to 95% of the weights, while 1% of the sample corresponds to 31% of the weights. A
closer look at convergence is provided by Figure 5 where the histograms of the resampled
samples are represented, along with the distribution of the loglikelihood and the empirical
cdf of the importance weights: they do not signal any degeneracy phenomenon but on the
opposite a clear stabilization around the values of interest.
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of the mixture for the contingency table example.
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Figure 5: Evolution of the samples over 4 iterations of the Rao-Blackwellized D-kernel
PMC sampler for the contingency table example (the output from each iteration is a
vignette of four graph, to be read from left to right and from top to bottom): histograms of
the resampled samples of α1, β0 and β1 of size 50, 000 and (lower right of each vignette)
loglikelihood and the empirical cdf of the importance weights.
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A Convergence theorem for triangular arrays of ran-

dom variables

In this section, we recall some convergence results for triangular arrays of random variables
(see Cappé et al., 2005 or Douc and Moulines, 2005 for more details, including the proofs).
We will use these results to study the asymptotic behavior of the PMC algorithm. In the
following, let {UN,i}N≥1,1≤i≤N be a triangular array of random variables defined on the
same measurable space (Ω,A), let {GN}N≥1 be a sequence of σ-algebras included in A.
The symbol XN −→P a means XN converges in probability to a as N goes to infinity.

The definitions and theorems we need in the above proofs are given below.

Definition A.1. The sequence {UN,i}N≥1,1≤i≤N is said to be independent given {GN}N≥1

if, ∀N ≥ 1, the random variables UN,1, . . . , UN,N are independent given GN .

Definition A.2. A sequence of random variables {ZN}N≥1 is said to be bounded in prob-
ability if

lim
C→∞

sup
N≥1

P [|ZN | ≥ C] = 0.

Theorem A.1. If

(i) {UN,i}N≥1,1≤i≤N is independent given {GN}N≥1;

(ii) the sequence

{
N∑

i=1

E[|UN,i||GN ]

}

N≥1

is bounded in probability ;

(iii) ∀η > 0,
N∑

i=1

E[|UN,i|I|UN,i|>η|GN ] −→P 0 ;

then
N∑

i=1

(UN,i − E[UN,i|GN ]) −→P 0.

Theorem A.2. If

(i) {UN,i}N≥1,1≤i≤N is independent given {GN}N≥1;

(ii) ∀N ≥ 1,∀i ∈ {1, . . . , N}, E[|UN,i||GN ] <∞ ;

(iii) ∃σ2 > 0 such that
N∑

i=1

(
E[U 2

N,i|GN ]− (E[UN,i|GN ])2) −→P σ
2 ;

(iv) ∀η > 0,
N∑

i=1

E[U 2
N,iI|UN,i|>η|GN ] −→P 0 ;
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then,

∀u ∈ R, E

[
exp

(
iu

N∑

i=1

(UN,i − E[UN,i|GN ])

)∣∣∣∣∣GN
]
−→P exp

(
−u

2σ2

2

)
.
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