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Stochastic Migration Models with Application to Corporate Risk

Abstract

In this paper we explain how to use the rating histories provided by the
internal scoring systems of banks and by rating agencies in order to predict
the future risk of a given borrower or of a set of borrowers. The method is
developed following the steps suggested by the Basle Committee. To intro-
duce both migration correlation and non-Markovian serial dependence, we
consider rating histories with stochastic transition matrices. We develop the
complete methodology to estimate both the number and dynamics of the
factors inßuencing the transitions. Further we explain how to use the sto-
chastic migration model for prediction. As an illustration the ordered Probit
model with unobservable dynamic factor is estimated from French data on
corporate risk.

Keywords: Migration, Rating, Migration Correlation, Credit Risk, Sto-
chastic Intensity, Autoregressive Gamma Process, Jacobi Process, Ordered
Qualitative Model, Kalman Filter, Panel Data.
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1 Introduction

In this paper we explain how to use the rating histories provided by the
internal scoring systems of banks and by rating agencies in order to predict
the future risk of a given borrower, or of a set of borrowers. The method
can be applied to both retail credit or corporate loans, and is developed
following the steps suggested by the Basle Committee. To highlight the
problem, we Þrst describe the usual scoring systems and the approach of the
Basle Committee.

1.1 Scoring systems

Several banks, credit institutions or rating agencies have developed scoring
systems to predict the future risk of a given borrower. The technical levels
of the different scoring systems are rather heterogeneous, but a standard
approach consists in predicting the time to failure. More precisely, for a
given borrower the probability that the time to failure τ is larger than h is
often speciÞed as:

Pi,t [τ > h] = exp
!
−ex

!
i,tba(h; θ)

"
, (1)

where xi,t are observed covariates, a(.; θ) is a (baseline) cumulated hazard
function, and b, θ are parameters. This speciÞcation is the so-called propor-
tional hazard model. The covariates are available in the proprietary data
bases hold by banks or rating agencies. For corporations, they can include
data on balance sheets, credit histories, corporate bond prices (for large Þrms

only). The score for Þrm i at date t is: si,t = x
!
i,t
#b, where #b is the estimated

value of the parameter1. The number of variables introduced in a score is
between 10 and 15 for corporations (including different measures of size, the
industrial sector, different Þnancial ratios, ...), up to 50 − 60 for consumer
credit. The precise list of variables introduced in a score and the value of #b
are always conÞdential.

1The basic score methodology can be improved in various ways, for instance by intro-
ducing different scores for different maturities h and by correcting for selectivity bias or
competing risks [see Gourieroux, Jasiak (2005) for a complete description of the scoring
methodology and for examples of scores].
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1.2 The conÞdentiality restrictions

Before introducing new rules for Þxing the capital required to hedge credit
risk, the regulator has to account for the existing scoring methodologies de-
scribed above and for the conÞdentiality restrictions. The question is cur-
rently solved as follows.
First, the regulatory authorities can audit the scoring systems (includ-

ing the proprietary data bases) and validate the ones, which are sufficiently
discriminatory.
Second, the regulator decides the minimal information to be used for the

computation of the required capital under observance of the conÞdentiality
restrictions. It has been decided to consider qualitative measures of risk
called ratings. These ratings are compatible with a scoring system and are
often deÞned by discretizing the score. The number of rating alternatives
has been Þxed between 8 and 10.
To summarize, the different existing data bases are described in the table

below for corporations.

Balance sheet histories proprietary data bases
Credit histories proprietary data bases
Corporate spreads histories freely available from
(large companies only) Þnancial markets
Individual score histories proprietary data bases
Individual rating histories can be bought
Aggregate data on rating histories freely available

1.3 The use of rating histories

In this regulation approach, the rating histories become the basic knowledge.
They can be used for different purposes:
i) to approximate the individual scores si,t by using the sequence of previous
individual ratings. It is known from the scoring practice that such an ap-
proximation can be quite accurate, if the score has been well-deÞned.
ii) To gather the different individual ratings in order to analyze the risk on
a credit portfolio including a (large) number of borrowers.
For both problems correlation matters. More precisely, we have to con-
sider serial correlation to understand the effect of lagged ratings, and cross-
sectional correlation to account for the so-called default correlation or, more
generally, migration correlation, that is the link between rating upgrades or
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downgrades of different Þrms. The idea behind this paper is that both effects
can be appropriately captured by introducing a model explaining the rating
transitions with unobservable time varying stochastic factors. Indeed, when
these factors are integrated out, we get both dependence of the current rating
on all its lagged values and cross-sectional dependence. This type of model
is called stochastic migration model.
We want to stress the unobservability of the common time varying fac-

tors. Indeed some migration models are currently proposed in the literature
with observable factors such as unemployment, business cycle (see references
below) or, as in the KMV approach, long term bond yields and equity re-
turns. However, these models cannot be used for prediction purposes without
analyzing at the same time the dynamics of the macro-variables which have
been introduced. It is not in the spirit of the current regulation approach to
also Þx the relevant macro-variables and the econometric models to be used
for their dynamics.

1.4 Related literature

The literature on credit risk has to be discussed with respect to the regulation
approach illustrated above. Thus we have to distinguish:
i) the analysis introducing individual covariates to predict risk. The in-

terest is essentially in determining a score. Recent examples of this literature
are Chava, Jarrow (2002), Bharath, Shumway (2004), Duffie, Wang (2004);
see also references therein. Very often in academic work the number of covari-
ates is rather small and then the discriminatory power is far behind that of
scores currently implemented by some banks for credit granting decisions2.
For instance Duffie and Wang (2004) construct a score based on a rather
small number of individual covariates, that are the distance-to-default, the
Þrm size, the Þrm earnings performance, the sector earnings performance.
To compensate for the lack of microeconomic covariates, they propose to in-
troduce parameters speciÞc to Þrms, which however create the problem of
"incidental parameters" at the estimation level [see e.g. Hsiao et alii (2002)].
ii) The analysis of joint movements of individual risks based on observable

macro-variables. This literature is interested in understanding the reasons
for joint rating movements and is often related to the business cycle litera-

2However, these papers are useful for academics, who do not have access to the imple-
mented scores.
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ture or to the discussion of credit rating philosophies (point in time versus
through the cycle). As mentioned above, this type of model is difficult to
implement for the prediction of future risk in a credit portfolio. Examples of
this literature are Nickel, Perraudin and Variotto (2000), Kavvathas (2001),
Bangia et alii (2002), Rosch (2004).
iii) The analysis of joint movements of individual risks based on unob-

servable factors. This literature focuses on default correlation more than
on risk dynamics. Generally the unobservable factors have been (implic-
itly) assumed serially independent and thus currently available models are
not very appropriate for prediction purpose. Examples of this literature are
Schonbucher (2000) and Gordy, HeitÞeld (2001), (2002), while similar ideas
underlie the approach of CreditMetrics [Gupton et alii (1997)]. Finally, Duffie
and Wang (2004) also introduce in their analysis two time dependent factors:
the personal income growth, which is observable, and an unobservable factor
(implied by the homogeneous autocorrelation structure of the distance-to-
default), assumed serially independent.

1.5 Aim and contribution of this paper

Our paper extends the approach in the latter category iii) to serially depen-
dent unobservable factors, without Þxing a priori either the number of factors,
or their economic interpretations. The goal is to introduce models which are
more appropriate for predicting future risk in a large credit portfolio and,
at the same time, are in line with the regulation suggested by the Basle
Committee. To this aim, our paper considers a set of Markovian processes
with stochastic transition matrices. Basically, this speciÞcation extends the
standard (doubly) stochastic intensity model introduced by Cox (1972) in
the two-state case and used in Þnancial literature for analyzing credit risk
and default correlation3. Such a speciÞcation is especially appropriate for the
joint analysis of rating histories of several corporations, including migration
correlation at different terms.
In Section 2 we deÞne the basic model for stochastic migration. In this

model the individual qualitative rating histories are independent heteroge-
neous Markov processes with identical time varying stochastic transition ma-
trices. The underlying process of transition matrices acts as a multivariate

3See Lando (1998), Duffie, Singleton (1999), Duffie, Lando (2001), Gouriéroux, Mon-
fort, Polimenis (2003).
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systematic factor which affects all individual histories and creates both the
serial dependence between individual ratings and the correlation between
histories. We discuss the predictive properties of the model according to the
prediction horizon and to the available information set. Different speciÞca-
tions for the dynamics of the stochastic transition matrices are discussed in
Section 3. They include the case of i.i.d. transition matrices, factor ordered
probit and Gompit model, or reduced form modelling via the Jacobi process.
Section 4 focuses on the deÞnition of migration correlation, which is a corner
stone in credit risk analysis. Indeed this notion has not been precisely deÞned
in the previous academic or applied literature; while some estimates are reg-
ularly reported by the rating agencies, they are computed "without relying
on a speciÞc model driving transitions" [de Servigny, Renault (2002)]. This
can explain the following remark in the seminal paper by Lucas (1995) p82:
"These historical statistics describe only observed phenomena, not the true
underlying correlation relationship". Precise deÞnitions of migration correla-
tions can be provided in the framework of stochastic migration models only.
We Þrst discuss the case of i.i.d. transition matrices, which has been (implic-
itly) assumed in the existing literature on default correlation and migration
correlation [see e.g. Bahar, Nagpal (2001) and de Servigny, Renault (2002)].
Then we discuss models with serially dependent factors and highlight their
importance to provide non-ßat term structures for spreads on credit deriva-
tives. Section 5 is concerned with statistical inference. Since the model with
stochastic transition introduced in this paper is a nonlinear factor model
for panel data, simulation based estimation methods can be used. However,
some speciÞcities of the model deserve a more careful discussion. In particu-
lar, the section focuses on i) the consistency of the ML estimator when either
the cross-sectional or the time dimension tends to inÞnity, ii) the problem of
default absorbing barrier, iii) the implementation of an approximate linear
Kalman Þlter for large portfolios which greatly simpliÞes the estimation of
factor ordered qualitative model. Finally Section 6 presents an application
to the migration data regularly reported by the French central bank. This
type of application is especially interesting since the French central bank
has a complete internal rating system, but is also strongly linked with the
French regulatory authority, that is Commission Bancaire. We display the
estimated migration correlations and compare the estimated default correla-
tions with the values currently suggested by the regulator. Then we discuss
the relationship between the migration probabilities and the GNP increments
(business cycle) in terms of causality analysis. Finally we consider a factor
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ordered probit transition model and perform its estimation by an approxi-
mated Kalman Þlter. To our knowledge this is one of the Þrst estimation of
such a model [see Feng et alii (2004) for a similar analysis on Standard and
Poor�s data]. Section 7 concludes.

2 The basic factor model

In this section we introduce a factor model for joint analysis of a large number
of qualitative individual histories (Yi,t), i = 1, ..., n with the same known
Þnite state space {1, ...,K}. For credit risk applications the individual can
be a Þrm, the states k = 1, ..., K correspond to the admissible grades such as
AAA, AA, ..., D, and a given process (Yi,t) to a sequence of individual ratings
over time. In particular, grades k = 1, ..., K are ranked in order of increasing
risk, with k = K corresponding to default. The stochastic migration model is
deÞned in Section 2.1 and the homogeneity assumption discussed in Section
2.2. Section 2.3 is concerned by the predictive properties of the model; in
particular, the effect of the available information set is carefully discussed.

2.1 DeÞnition

The joint dynamics of individual histories is deÞned as follows.

DeÞnition 1 The individual histories satisfy a stochastic migration model
if:
i) the processes (Yi,t), i = 1, ..., n, are independent Markov chains, with iden-
tical transition matrices Πt, when the sequence of transitions (Πt) is given;
ii) the process of transition matrices (Πt) is a stochastic Markov process.

In practice the transition matrices are generally written as functions of
a small number of factors Πt = Π (Zt), say, satisfying a Markov process.
Under a stochastic migration model the whole dependence between individual
histories is driven by the common factor Zt (or Πt).
The stochastic migration model is a convenient speciÞcation to get joint

histories featuring cross-individual dependence. Indeed the model might have
been deÞned directly for the joint process of rating histories (Yt), where
Yt = (Y1,t, ..., Yn,t)

!
. However, even under the simplifying assumption that

the joint process of rating histories (Yt) is Markov, the associated joint tran-
sition matrix would includeKn (Kn − 1) independent transition probabilities
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to be estimated, and such an approach is clearly unfeasible in practice. The
stochastic migration model is introduced to constrain the transitions and
to diminish the number of parameters to be estimated. The latter will in-
clude the parameters characterizing the dependence between the transition
probabilities Πt and the factors Zt, plus the parameters deÞning the factor
dynamics. In particular, the number of parameters does not increase with
the number of Þrms, so that the stochastic migration model is an appropriate
framework for the analysis of joint rating migration in large credit portfolios.
The dynamics of rating histories (Yi,t) can be analyzed in alternative ways

according to the available information.
i) If the past, current and future values of the underlying factors are

observed, the processes (Yi,t), i = 1, ..., n, are independent Markov chains.
They are non stationary, since the transition matrices differ in time.
ii) If the underlying factors are not observed, it is necessary to integrate

out the factors (Zt) [or the transition matrices (Πt)]. Let us discuss the joint
distribution of Yt+1 given the lagged ratings Yt = (Yt, Yt−1, Yt−2, ...) only. Its
transition matrix is characterised by:

P
$
Y1,t+1 = k

∗
1, ..., Yn,t+1 = k

∗
n | Yt

%
= E

&
P
$
Y1,t+1 = k

∗
1, ..., Yn,t+1 = k

∗
n | Yt, (Πt)

% | Yt'
= E

&
πk1k∗1 ,t+1...πknk∗n,t+1 | Yt

'
, where Y1,t = k1, ..., Yn,t = kn.

We deduce the property below:

Proposition 1 For a Markov stochastic transition model, the distribution
of the joint process (Yt) is symmetric with respect to individuals, that is in-
variant by permutation of individual indexes.

In general the distribution of Yt+1 given the past ratings depends on the
whole rating history Yt. The distribution of Yt+1 given Yt can be summarized
by a Kn ×Kn transition matrix from Yt to Yt+1, whose elements depend on
the whole past history Yt−1. This transition matrix provides the nonlinear
prediction of future rating of any Þrm i, given the lagged ratings of this Þrm
and of the other ones (see the Introduction). After an appropriate reordering
of the states {1, ..., K}n, this transition matrix is given by:

Pn = E
! n⊗Π (Zt+1) | Yt" ,

where
n⊗ denotes n-fold Kronecker product.
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iii) Finally both individual histories and factors could be observed up
to time t. The available information set becomes (Yt, Zt). Then the joint
transition probabilities are derived by integrating out the future factor values
only. The transition matrix is given by:

Qn = E
! n⊗Π (Zt+1) | Zt" .

2.2 The homogeneity assumption

The property of symmetry in Proposition 1 is a condition of homogeneity
of the population of individuals. It implies identical distributions for the
individual histories, but also equidependence [see e.g. Frey, McNeil (2001),
(2003), Gouriéroux, Monfort (2002)]. The empirical relevance of the homo-
geneity assumption has to be discussed for the application to credit risk. For
this purpose it is necessary to distinguish between retail credit and corporate
bonds.
i) Retail credits include consumer credits, such as mortgages, classical

consumption credits and revolving credits, as well as over-the-counter cred-
its to small and medium size Þrms. For such applications the number of
borrowers is very large, between 100000 and several millions. The practice
for internal rating is to separate the population of borrowers into so-called
"homogeneous" classes of risk where the individual risks can be considered as
independent, identically distributed within the classes. For consumer credits
the number of classes can be rather large (several hundreds), with classes
including in general several thousands of individuals. The assumption of
identical distributions and cross individual independence can be tested and
these tests are the basis for determining the number of classes and their
boundaries [see Gouriéroux, Jasiak (2005) for a detailed presentation of the
segmentation approach used in the standard score methodology]. The ho-
mogeneity assumption considered in this paper extends the usual one in two
respects. First it assumes identical dynamics for the individual ratings (not
only identical marginal distributions for each Yi,t). Second the condition of
cross-independence is replaced by a condition of equidependence.
ii) The situation is different when large corporations and associated cor-

porate bonds are considered. It is possible to classify these corporations
according to their rating, individual sector, ... and to expect a similar distri-
bution of defaults in the medium run (1 year for S & P, 3 years for Banque de
France). Indeed the ratings reported by the rating agencies such as Moody�s,
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S & P, Fitch are derived according to this criterion. However it is not usual
to check that the standard ratings can also be used for classifying defaults at
other terms, and that they ensure equidependence. As an example, even if we
could accept similar term structures of default (term structures of spreads, re-
spectively) for IBM, General Motors, and Microsoft companies (resp. for the
IBM, GM, Microsoft bonds) which have the same rating, the joint probabil-
ity of IBM and Microsoft defaulting could be much higher than for IBM and
GM, for instance. Despite this, the assumption of equidependence adopted
in this paper is a valuable paradigm in practice. Indeed, for tractability rea-
son both professional and theoretical literatures often assume independence
between defaults within a rating class or, in more recent contributions, a
default correlation which is constant in time [see e.g. Lucas (1995), Duffie,
Singleton (1999), Schonbucher (2000), Gordy, HeitÞeld (2002), de Servigny,
Renault (2002) and the discussion in Section 4]. The assumption of equide-
pendence is clearly more ßexible than the usual conditions of independence
or constant default correlation introduced in the previous literature.

2.3 Prediction and information

The transition matrices Pn, Qn concern migration at horizon 1, that is short
run migration. In practice the horizon of interest (for instance the investment
or risk management horizon) can be different. In this section we discuss the
term structure of migration probabilities, which describes how the rating
predictions depend on horizon h.

2.3.1 Prediction formulas

The stochastic migration model can be used to analyze the rating predictions
at different horizons. These predictions depend on the available information
set, which can include either i) the lagged individual histories only, or ii) the
lagged individual histories and the lagged factor values.
i) In the Þrst case the predictive distribution of Yt+h given Yt is given by:

Pn(h) = E
! n⊗Π (Zt+1) n⊗Π (Zt+2) ... n⊗ Π (Zt+h) | Yt" . (2)

This matrix can be rewritten in terms of the transition matrix of the indi-
vidual chains between t and t+ h, that is Π(t, t+ h) = [πkl(t, t+ h)], where
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πkl(t, t + h) = P [Yi,t+h = l | Yi,t = k, (Zt)]. This transition matrix at hori-
zon h is the product of h transition matrices at horizon 1: Π(t, t + h) =
Πt+1Πt+2...Πt+h. Then the predictive distribution of Yt+h given Yt becomes:

Pn(h) = E
! n⊗Π(t, t+ h) | Yt" .

ii) When the factors are observable up to time t, the predictive distribu-
tion of Yt+h given Yt, Zt becomes:

Qn(h) = E
! n⊗Π (Zt+1) n⊗Π (Zt+2) ... n⊗ Π (Zt+h) | Zt" (3)

= E
! n⊗Π(t, t+ h) | Zt" .

2.3.2 Factor observability for large population (large portfolios)

In credit risk applications, the cross-sectional dimension n is typically much
larger than the time dimension T . In such a situation, it is interesting to
study the limiting case n → ∞ to deduce important implications regarding
the observability of the factors driving rating transitions.
Let us consider the historical rating data (Yi,t), i = 1, ..., n. These data

can be used to compute the migration countsNkl,t, k, l = 1, ...,K, t = 1, ..., T ,
where Nkl,t denotes the number of individuals migrating from k to l between
t − 1 and t, and the population structure per rating Nk,t, k = 1, ..., K, t =
1, ..., T , where Nk,t counts the number of individuals in state k at date t. By
applying the Law of Large Numbers conditional on factor Zt+1, the transition
frequency: #πkl,t+1 = Nkl,t+1

Nk,t
,

tends to the theoretical transition probability πkl,t+1 at date t+1, if n tends
to inÞnity. Thus, for a large population, at each date t the transition matrix
Πt can be regarded as known, and therefore also the factor Zt, whenever the
mapping Z → Π (Z) is one-to-one. In practice, such a factor observability
for large population has important consequences for prediction purposes.
Indeed, when n is large, it is no longer necessary to distinguish between the
two information sets considered in Section 2.3.1. More precisely, even if factor
Zt is ex-ante unobservable, the large cross-section of individual transitions
can be used to approach its value. Thus, the term structure of migration
probabilities can be computed easily according to formula (3). This provides

10



a simple methodology for predicting the future risk in a large credit portfolio
which is in line with the spirit of the current regulation approach.

3 Examples

This section describes different examples of stochastic migration models. We
Þrst consider the case of independent, identically distributed transition ma-
trices. This basic framework is important since it underlies the estimates
of default correlation which are usually displayed in the literature. The or-
dered polytomous model for transition matrices is considered in Section 3.2.
In this speciÞcation, the serial dynamics of transition matrices is introduced
by means of a structural latent factor. Finally, in Section 3.3 we consider
reduced form models for the dynamics of the stochastic transition matrices,
such as the Jacobi process.

3.1 Independent transition matrices

In this section we assume independent, identically distributed transition ma-
trices.

Assumption A.1: The transition matrices (Πt) [or factors (Zt)] are inde-
pendent, identically distributed (i.i.d.).

Under Assumption A.1, the joint transition of Yt+1 given Yt is given by:

P
$
Y1,t+1 = y1,t+1, ..., Yn,t+1 = yn,t+1 | Yt

%
= E

(
K)

k,l=1

π
nkl,t+1
kl,t+1

*
,

and depends on the individual histories by means of the state indicators for
dates t and t+ 1 only4. We deduce the property below.

Proposition 2 For a stochastic migration model with i.i.d. factors (Zt) [or
(Πt)], the joint process (Yt) is an homogeneous Markov process.

4In this formula the expectation is taken with respect to the stochastic transitions
(πkl,t+1), and the current and lagged state indicators are summarized in the observed
counts nkl,t+1.
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The state space of this Markov process is {1, ..., K}n and, after appropri-
ate ordering of the states, its transition matrix can be written as:

Pn = E
! n⊗Π (Zt)" .

The homogeneity of the Markov process implies that Pn(h) = (Pn)
h , ∀h,

that is the term structure of migration intensity is independent of the term.
In other words, Assumption A.1 implies a ßat term structure of joint mi-
gration intensities. This assumption of ßat term structure of joint migration
intensities has important consequences in terms of credit derivative pricing.
As an illustration, let us consider a credit derivative with residual maturity
h written on the two Þrms 1 and 2. The total spread for this derivative can
be decomposed as:

spread(h) = spread1(h) + spread2(h) + spread1,2(h),

where spreadj(h) denotes the marginal spread effect corresponding to Þrm
j = 1, 2, whereas spread1,2(h) is the component of spread associated with
default dependence. Let us assume to simplify that the risk neutral distri-
bution and the historical distribution coincide for default analysis. Then
Assumption A.1 will imply a ßat term structure not only for the marginal
spreads, but also for the joint spread component: spread1,2(h) independent
of h. The introduction of serially dependent factors allows for non-ßat term
structures for each spread component.
To conclude this subsection, we remark that, by a similar argument, any

given subset of m rating histories (Yi1,t, ..., Yim,t) is Markov, with a transition
matrix which depends on the size m, but not on the speciÞc Þrms intro-
duced in the set. For instance, for m = 1, the individual history (Yi,t) of
individual i is a Markov process with state space {1, ...,K} and transition
matrix P1 = E [Π(Zt)], independent of the selected individual i. For m = 2
the bivariate individual histories (Yi,t, Yj,t) of the given pair of individuals
(i, j) is a Markov process with state space {1, ...,K}2 and transition matrix
P2 = E [Π(Zt)⊗Π(Zt)] , independent of the selected pair of individuals (i, j).

3.2 Ordered polytomous model

A speciÞcation which is often suggested by the agencies proposing measures
of credit risk and also by the Basle Committee is the ordered polytomous
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model, see e.g. Gupton, Finger, Bhatia (1997), Crouhy, Galai, Mark (2000),
Gordy, HeitÞeld (2001), Bangia et alii (2002), Albanese et alii (2003), Feng
et alii (2004). The idea is to introduce an unobservable quantitative score
from which the qualitative ratings are computed. In this subsection we de-
rive a stochastic migration model along these lines by allowing for dynamic
unobservable factors in the scores.
More speciÞcally, let us denote by si,t the underlying quantitative score

for corporation i at date t. Let us assume that the conditional distribution
of si,t given the past depends on a factor Zt (which can be multidimensional)
and on the previous rating Yi,t−1, and is such that:

si,t = αk + β
!
kZt + σkεi,t, (4)

if Yi,t−1 = k, where (εi,t) are iid variables with cdf G, and the common factor
(Zt) is independent of (εi,t) . Thus three parameters are introduced for each
initial rating class: αk represents a level effect, the components of βk deÞne
the sensitivities, whereas σk corresponds to a volatility effect.
Let us Þnally assume that the qualitative rating at date t is deduced by

discretizing the underlying quantitative score:

Yi,t = l, iff cl−1 ≤ si,t < cl, (5)

where c0 = −∞ < c1 < ... < cK−1 < cK = +∞ are Þxed (unknown)
thresholds. This speciÞcation is a stochastic migration model, with stochastic
transition probabilities given by:

πkl,t = P [Yit = l | Yi,t−1 = k,Zt]
= P

!
cl−1 ≤ αk + β !kZt + σkεit < cl | Yi,t−1 = k, Zt

"
= G

(
cl − αk − β!kZt

σk

*
−G

(
cl−1 − αk − β !kZt

σk

*
, k, l = 1, ..., K.

(6)

We get an ordered polytomous model for each row, with a common latent
factor Zt. When factor Zt is unobservable, the model has to be completed
by specifying the factor dynamics. In particular, when factor Zt is serially
correlated, we get a model with serially dependent transition matrices and
non-ßat term structures of migration intensities.
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The econometric model (4), (5) includes several explanatory variables
that are the indicators of the lagged rating class and the cross effects be-
tween these indicators and the different factors. The speciÞcation focuses on
unobservables time dependent factors. It implicitly assumes that individual
effects have already been taken into account in the construction of the score.
This assumption is coherent with the general approach described in the in-
troduction. Indeed si,t depends on individual covariates by means of Yi,t−1.
More precisely we have:

si,t =
K+
k=1

,
αk + β

!
kZt + σkεit

-
Ick−1<x!i,t−1#b≤ck ,

(with the notation of the Introduction). Thus the model implicitly accounts
for the lagged individual covariates and the cross-effects with time factors in
a nonlinear way5.
The parameters of the ordered polytomous model (6) and of the factor

dynamics are not identiÞable. First, the factor is deÞned up to an invertible
affine transformation; thus we can always assume:

Identifying constraints on the factor dynamics: E (Zt) = 0, V (Zt) = Id.

Second, other identiÞability problems are due to the partial observability of
the quantitative score. The same migration probabilities can be obtained
with appropriately combined affine transformations of the quantitative score
and of the thresholds. In particular, these transformations have to be the
same for each row of the transition matrix, since the thresholds are indepen-
dent of the initial rating class. Therefore, it is enough to impose the standard
identiÞcation restrictions for an ordered polytomous model to one row only,
the Þrst one, say:

Identifying restrictions for partial observability: c1 = 0, σ
2
1 = 1.

i) Factor probit model. The model reduces to a probit model if the
error terms (εi,t) follow a standard Gaussian distribution. The migration
probabilities become:

πkl,t = Φ

(
cl − αk − β !kZt

σk

*
− Φ

(
cl−1 − αk − β !kZt

σk

*
,

5For instance the Duffie, Wang (2004) model does not include cross-effects.
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where Φ denotes the cdf of the standard normal6.

ii) Factor Gompit model. When the error terms are εi,t = log ui,t, with uit
following an exponential distribution, the cdf G corresponds to a Gompertz
distribution: G(x) = 1 − exp (−ex). The migration probabilities are given
by:

πkl,t = exp

.
− exp

(
cl−1 − αk − β !kZt

σk

*/
− exp

.
− exp

(
cl − αk − β!kZt

σk

*/
.

This model is a multistate extension of the two-state Cox model with stochas-
tic intensity, usually considered for corporate bond pricing [see e.g. Lando
(1998)]. Indeed the transitions are induced by an exponential variable cross-
ing a grid of thresholds depending on the starting grade.
The factor probit model is often called structural model in the literature

by reference to Merton�s model [Merton (1974)], in which the score is the (log)
ratio of liability by asset value7. Similarly the stochastic intensity model is
generally called reduced form model in the literature. The examples above
show that this distinction is not relevant. The two approaches are special
cases of polytomous ordered qualitative models with simply different assump-
tions on the distribution of the error term. This explains why we favour the
terminology Probit versus Gompit usually employed in microeconometrics.

3.3 Reduced form models

It is also possible to introduce directly a dynamics for the transition matrices
without referring to any structural latent variables. The Jacobi process is
a continuous time reduced form, which can be appropriate to account for
migration in the continuous time pricing models, whereas the logistic autore-
gression is widely implemented for risk analysis of consumer credit portfolio.

3.3.1 Jacobi speciÞcation

Any row of the (stochastic) transition matrix deÞnes a (stochastic) discrete
probability distribution on the state space {1, ...,K}. Thus, when t varies,

6The normality assumption on the latent score is standard in the literature and un-
derlies for instance the implementation of the ordered polytomous model proposed by
CreditMetrics.

7In standard implemented scores this ratio is only one among several explanatory vari-
ables.
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we get a stochastic process with values on the set of discrete distributions.
The multivariate Jacobi process has been introduced to specify the dynamics
of such a stochastic discrete probability distribution [see Gouriéroux, Jasiak
(2004)]. A Jacobi speciÞcation for the stochastic transitions assumes:
i) the rows [πkl,t, l = 1, ...,K, t = 1, ..., T ], k = 1, ..., K, are independent sto-
chastic processes;
ii) any row [πkl,t, l = 1, ..., K, t = 1, ..., T ] corresponds to the discrete time
observations of a continuous time multivariate Jacobi process, which satisÞes
the diffusion system:

dπkl,t = bk(πkl,t−akl)dt+√gkπkl,tdWkl,t−πkl,t
K+
m=1

√
gkπkm,tdWkm,t, l = 1, ..., K,

where (Wkm,t), k,m = 1, ...,K, are independent Brownian motions, and the

parameters satisfy the constraints bk < 0, gk > 0,
0K

l=1 akl = 1, ∀k,
akl > 0,∀k, l.
The drifts of the diffusions suggest that processes [πkl,t, l = 1, ..., K, t = 1, ..., T ]

feature a mean-reverting dynamics, with equilibrium levels akl, l = 1, ...,K,
and mean-reverting parameters bk, k = 1, ..., K. The serial dependence of
the stochastic transition matrices (Πt) is controlled by the mean-reverting
parameters bk. The parameters gk can be interpreted either as volatility pa-
rameters, or as smoothing parameters. In particular, if these parameters tend
to inÞnity, the process πkl,t tends to a pure jump process. The restrictions
on the parameters ensure that each row is a stationary process, with beta
stationary distribution.

3.3.2 Logistic autoregression

Serial dependence can also be directly introduced by considering Gaussian
vector autoregressions applied to transformed transition probabilities. For
instance, in the two-state case K = 2, a logistic autoregression can be intro-
duced for π11,t, π22,t:

log
π11,t

1− π11,t = c1 + ϕ11 log
π11,t−1

1− π11,t−1 + ϕ12 log
π22,t−1

1− π22,t−1 + ε1t,

log
π22,t

1− π22,t = c2 + ϕ21 log
π11,t−1

1− π11,t−1 + ϕ22 log
π22,t−1

1− π22,t−1 + ε2t,
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where (ε1t, ε2t) is a Gaussian white noise with variance-covariance matrix

Σ =

1
σ21 σ12
σ12 σ22

2
. Such a logistic transformation of transition probabilities

before introducing the Gaussian autoregression is suggested for instance in
the Mc Kinsey methodology.
However the approach by logistic autoregressions is difficult to extend

to a larger number of states. Indeed there is no general agreement on a
multivariate one-to-one transformation which associates with probabilities
(π1, ..., πK−1), say, constrained by 0 ≤ πk ≤ 1, k = 1, ..., K − 1, 0 ≤
1−0K−1

k=1 πk ≤ 1, an unconstrained vector of RK−1.

4 Migration correlation

In order to analyse the default risk in a credit portfolio, it is important to
take into account carefully the simultaneous rating migrations of different
Þrms in the same direction, such as joint up- or downgrades. The tendency
to a common rating migration is called migration correlation [see e.g. Lu-
cas (1995), Bahar, Nagpal (2001), de Servigny, Renault (2002)]. It extends
the concept of default correlation, corresponding to the two-state case with
default absorbing barrier.
The standard speciÞcation with deterministic transition matrices does

not feature migration correlation. In our framework, migration correlation is
introduced by means of the stochastic transition matrix, which is a common
(multivariate) factor across Þrms. More precisely the basic model (see Section
2) considers the conditional distribution of Þrm ratings given the sequence
of transition matrices and assumes the conditional independence between
Þrms. A dependence between rating dynamics is deduced when the stochastic
transition matrices are integrated out, which creates migration dependence.
We Þrst consider the case of i.i.d. transition matrices corresponding to a

ßat term structure of migration intensity. In Section 4.1 we deÞne precisely
the notions of joint bivariate transition and of migration correlation, and
explain how they can be displayed in well-chosen matrices. The deÞnitions
are illustrated in Section 4.2, where the migration correlations are computed
for the Probit and Gompit ordered polytomous models. The deÞnition of
migration correlation has to be reconsidered when the transition matrices
are serially dependent. This is done in Section 4.3, where the importance of
the selected information set is emphasized.

17



4.1 DeÞnition in the i.i.d. case

Let us consider two Þrms, whose rating histories are described by the chains
(Yi,t) and (Yj,t), respectively, following a stochastic migration model with
i.i.d. transition matrices. From Proposition 2 the bivariate process (Yi,t, Yj,t)
is still a Markov process, with bivariate joint transition:

pkk∗,ll∗ = P [Yi,t+1 = k
∗, Yj,t+1 = l∗ | Yi,t = k, Yj,t = l] = E [πkk∗,tπll∗,t] . (7)

It deÞnes a K2×K2 square matrix of joint transition probabilities. Similarly
we get:

P [Yi,t+1 = k
∗ | Yi,t = k, Yj,t = l] = E [πkk∗,t] . (8)

Migration correlation is deÞned in terms of conditional correlation of indi-
vidual rating indicators8:

ρkk∗,ll∗ = corr
$
IYi,t+1=k∗, IYj,t+1=l∗ | Yi,t = k, Yj,t = l

%
,

where IYi,t+1=k∗ = 1, if Yi,t+1 = k∗, = 0, otherwise. The migration correlations
can be written in terms of the underlying stochastic transition probabilities:

ρkk∗,ll∗ =
cov

$
IYi,t+1=k∗, IYj,t+1=l∗ | Yi,t = k, Yj,t = l

%
V
$
IYi,t+1=k∗ | Yi,t = k, Yj,t = l

%1/2
V
$
IYj,t+1=l∗ | Yi,t = k, Yj,t = l

%1/2
=

cov (πkk∗,t, πll∗,t)

[Eπkk∗,t (1− Eπkk∗,t)]1/2 [Eπll∗,t (1− Eπll∗,t)]1/2
. (9)

Migration correlation between Þrms i and j depends on their current and
future ratings only, not on their names i and j.
There are as many different migration correlations as unordered pairs

(k, k∗) , (l, l∗), that is K2 (1 +K2) /2. However, these migration correlations
are linearly dependent, since they satisfy a set of restrictions such as:0

k∗ ρkk∗,ll∗ [Eπkk∗,t (1− Eπkk∗,t)]1/2 = 0, ∀k, l, l∗, due to the unit mass re-
strictions on transition probabilities. In particular they cannot be of the
same sign. Among all different migration correlations, some are more ap-
pealing for practitioners, especially those which involve migrations of the
Þrms by one rating tick. For instance we can consider correlations between
downgrades. If the initial state is (k, l) the correlation is given by:

8By a similar approach we can deÞne migration correlations at any horizon h by con-
sidering the correlation between the rating indicators IYi,t+h=k∗ and IYj,t+h=l∗ conditional
on Yi,t = k, Yj,t = l.
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corr
$
IYi,t+1=k+1, IYj,t+1=l+1 | Yi,t = k, Yj,t = l

%
, k, l = 1, ..., K − 1.

We get a (K − 1)× (K − 1) symmetric matrix of down-down migration cor-
relations indexed by the current ratings.

4.2 Migration correlation in a factor i.i.d. ordered
qualitative model

Closed form expressions of the migration correlations can be derived for the
Probit and Gompit factor ordered qualitative models.

4.2.1 Probit model

When the common factors are i.i.d., the formulas are well-known for the
probit model [see e.g. Gordy, HeitÞeld (2002)] and are available in differ-
ent documents of the Basle Committee, at least when migration from risk
category k to default is considered. Indeed, in the current methodology,
the regulator suggests to Þrst consider the latent correlation, which is the
correlation between the underlying scores:

ρk = corr (si,t, sj,t | Yi,t−1 = Yj,t−1 = k) ,
conditional on the previous rating category k. Then, the default correlation
for rating class k, that is the migration correlation ρkK,kK, is given by:

ρkK,kK =

3 Φ−1(πk)
−∞

3 Φ−1(πk)
−∞

1

2π
√
1−ρ2k

exp

1
− 1

2(1−ρ2k)
(x2 − 2ρkxy + y2)

2
dxdy − π2k

πk (1− πk)
(10)

where πk denotes the expected default probability for category k.

4.2.2 Gompit model

Let us consider the Gompit model introduced in Section 3.2 with a single i.i.d.
factor Zt. An analytic expression for default correlation can be obtained in
the special case βk/σk = 1, for any k. Indeed default probabilities are:

πkK,t = exp [−λk exp (−Zt)] ,
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where λk = exp
,
cK−1−αk

σk

-
. We deduce from (9) the default correlation for

two Þrms in rating classes k and l:

ρkK,lK =
Ψ (λk + λl)−Ψ (λk)Ψ (λl)4

Ψ (λk) [1−Ψ (λk)]
4
Ψ (λl) [1−Ψ (λl)]

,

whereΨ denotes the Laplace transform of exp (−Zt): Ψ(u) = E [exp (−u exp (−Zt))] .
Equivalently we have:

ρkK,lK =
Ψ [Ψ−1 (πk) +Ψ−1 (πl)]− πkπl4

πk (1− πk)
4
πl (1− πl)

,

where πk denotes the marginal default probability of risk class k. This
value depends on the marginal migration rates and on the factor distri-
bution (by means of the Laplace transform Ψ). Since function (x, y) →
Ψ [Ψ−1 (x) +Ψ−1 (y)] corresponds to an Archimedean copula [see e.g. Joe
(1997)], a more heterogeneous factor will imply a larger migration correla-
tion.
As mentioned for the probit model, it has been usual among practitioners

to compare the value of the migration correlations to the level of a latent cor-
relation corresponding to the model of the underlying score. In this example
we have:

si,t = αk + βkZt + σkεi,t,

and a possible measure of the latent correlation is:

corrkl(si,t, sj,t) =
βkβlV (Zt)5

β2kV (Zt) + σ
2
kV (εi,t)

5
β2l V (Zt) + σ

2
l V (εi,t)

.

However a quantitative score is deÞned up to an increasing transformation.
In the extended Cox model it was more natural to consider the transformed
score:

s∗i,t = exp (αk + βkZt) u
σk
i,t ,

in order to get the crossing of a grid of thresholds by an exponential variate.
Therefore another latent correlation can be deÞned:

corrkl(s
∗
i,t, s

∗
j,t) =

cov
$
eβkZt, eβlZt

%6
V (eβkZt) +

V (u
σk
i,t )

E(uσki,t )
2E (e2βkZt)

6
V (eβlZt) +

V (u
σl
i,t)

E(uσli,t)
2E (e2βlZt)

.

20



This value can be very different from the value computed directly from the
score s, which moreover is not directly observable, and is also very different
from the value of the default correlations ρkK,lK. To summarize, the latent
quantitative score is deÞned up to an increasing transformation and there
exist as many latent correlations as admissible choices of the transformation.
Thus the notion of latent correlation has to be used with care.

4.3 Migration correlations for serially dependent tran-
sition matrices

Joint bivariate transition probabilities can also be derived for serially depen-
dent transition matrices. However their expressions depend on the selected
information set. They correspond to the matrix P2, if the individual histories
only are known up to time t, to the matrix Q2, if both individual histories
and factors are known up to time t 9. In particular, for serially dependent
transition matrices the joint bivariate process (Yi,t, Yj,t), where (i, j) is a given
pair of individuals, is no longer Markov. Thus the joint bivariate transitions
will not depend on the past through Yt−1 only, and in practice will vary with
the date t.
Similar remarks apply to the associated migration correlations. They are

obtained by a formula similar to (9) but involving expectations conditional on
the available information. In particular, migration correlations also depend
on the selected information set and vary in time.
It is interesting to reconsider the deÞnitions of migration correlation given

above in a static or a dynamic framework in the light of the existing liter-
ature. Indeed estimated migration correlations have been displayed in the
professional and academic literature [see e.g. Lucas (1995), Bahar, Nagpal
(2001), de Servigny, Renault (2002)], but "without relying on a speciÞc model
driving transitions" [de Servigny, Renault (2002)]. Since they are considered
constant over the whole period of estimation, they correspond intuitively to
a ßat term structure of migration intensity, that is i.i.d. stochastic transi-
tion matrices have been implicitly assumed. At the contrary, in the general
framework the migration correlations depend on: i) the initial and Þnal risk
categories of the two Þrms, ii) the horizon, and iii) the date (by means of
rating histories or factor values).

9These two matrices coincide for large portfolios (n =∞), see Section 2.3.3.
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5 Statistical inference

The stochastic migration model is a special case of multifactor model for
panel data. The likelihood function or the observable conditional moments
involve multidimensional integrals of large dimension, which depend gener-
ally on the number of observation dates. In such a framework the standard
maximum likelihood or GMM approaches are numerically intractable and
can be replaced by simulation approaches as simulated maximum likelihood,
simulated method of moments, or indirect inference [see e.g. the surveys
by Gouriéroux, Monfort (1995), Gouriéroux, Jasiak (2001)]. However the
stochastic migration model presents some speciÞcities and special aspects of
statistical inference have to be discussed. For ease of exposition we address
these points in a framework with i.i.d. transition matrices, although the main
arguments carry on to the general setting. In Section 5.1 we discuss the con-
sistency properties of the Maximum Likelihood (ML) estimator according to
the dimension n or T , which tends to inÞnity. It is explained why a large
cross-sectional dimension is not sufficient to get consistency. In Section 5.2
we explain how the asymptotic theory has to modiÞed when the state space
includes an absorbing barrier, such as default, and discuss the limiting case
of large homogeneous populations (large portfolios). To conclude, in Section
5.3 we turn to models with serially correlated transition matrices and explain
how to estimate in a simple way a factor ordered qualitative model when the
cross-sectional dimension is large.

5.1 Consistency of the ML estimator

As noted earlier in Section 3.1, when the transition matrices (Πt) are i.i.d., the
multivariate rating process Yt = (Y1,t, ..., Yn,t)

!
is a Markov process. Therefore

its distribution is deÞned by the transition:

p(yt+1 | yt; θ) = Eθ
.
K)
k=1

K)
l=1

π
nkl,t+1
kl,t+1

/
, (11)

where θ denotes the parameter characterizing the distribution of Πt. The
ML estimator is a solution of the optimization problem:

#θ = argmax
θ

T+
t=2

log p (yt | yt−1; θ) . (12)
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The likelihood function depends on the observations by means of the aggre-
gate migration counts nkl,t, k, l = 1, ..., K, t = 1, ..., T , which constitute a
sufficient statistics for θ. The likelihood involves multidimensional integrals
with dimension less or equal to K(K − 1); this dimension does not depend
on the number of observations nT 10.
If n is Þxed and T tends to inÞnity the general asymptotic theory for

Markov chains can be applied [Anderson, Goodman (1957)]. In particular
the ML estimator is consistent under regularity conditions including the as-
sumption that the chain is recurrent, that is passes an inÞnite number of
times by any admissible state (when T tends to inÞnity).
At the opposite, when n tends to inÞnity and T is Þxed, the ML estimator

of θ is not consistent11. This feature is easily understood if we consider the
case T = 1. The sufficient statistics Nkl,1 can be used to compute the sample
transition frequencies at date 1, that is Nkl,1/Nk,0, which tend to πkl,1, when
n tends to inÞnity (by the Law of Large Numbers applied conditional on the
transition matrix Π1). Therefore the transition matrix Π1 is perfectly known.
However the knowledge of Π1, that is a single observation of the sequence of
transition matrices, is not sufficient to identify the dynamics of Πt, that is
parameter θ.
In summary the ML estimator is consistent for T tending to inÞnity, but

not for n tending to inÞnity. The cross-sectional inconsistency of the esti-
mator results from the cross-sectional equidependence, which does not allow
the standard mixing conditions for the Law of Large Numbers to be satis-
Þed. The remark on the non-consistency of the cross-sectional ML estimator
of parameter θ is also valid when we consider other parameters of interest
such as migration correlations (see Section 4), or other estimation methods.

5.2 The problem of absorbing barrier

The consistency of the ML estimator when T tends to inÞnity is satisÞed
under the recurrence condition. However, in credit risk applications, there
exists an absorbing barrier, namely the default state. Asymptotically all
individuals are in default state and the migration parameters associated with

10This remark is no longer valid when the stochastic transition matrices feature serial
dependence.
11See Gagliardini, Gouriéroux (2004) for a more detailed discussion.

23



a transitory phenomenon generally cannot be identiÞed12.
A solution to recover the consistency of an estimator of θ for large T

is to increase the size of the population in time in order to compensate
the defaulted Þrms. Such a regularly updated population is called "static
pool" by Standard & Poor�s [Brady, Bos (2002)]. In a simple framework
new individuals can be regularly introduced to get a Þxed dimension of the
population of alive individuals. When an individual i defaults at date t,
it is replaced by a new one assigned randomly to a state k = 1, ..., K − 1
according to a distribution µt = (µ1,t, ..., µK−1,t), say. The states occupied
by this sequence of individuals deÞne a process 7Yt, say, with state space
{1, ..., K−1}. Conditional on µt, Πt, the process 7Yt is a Markov process with
a (K − 1)× (K − 1) transition matrix 7Πt. The elements of this matrix are:

7πkl,t = πkl,t + πkK,tµl,t, k, l = 1, ..., K − 1.

The theory presented in Section 5.1 can be applied to this transformed

process
,7Yt-, whenever the matrices (Πt, µt) are assumed i.i.d., with a spec-

iÞed parametric distribution. In particular, in this approach the migration
parameters cannot be estimated without estimating jointly the parameters
characterizing the process of population renewal.
It is interesting to discuss the limiting case of a very large population of

individuals: n =∞. Despite default, the number of individuals alive at any
date t is always inÞnite and some migrations between states can be observed
even when t is very large. More precisely, by applying the cross-sectional
argument, the transition matrices Πt, t = 1, ..., T are exactly known, since
they are consistently approximated by their sample counterparts. Therefore
the ML method can be applied to the observed factor Πt, t = 1, ..., T. The
ML estimators will be consistent when n =∞ and T tends to inÞnity, even
if there exists an absorbing barrier. In practice this means that, in the case
of an absorbing barrier, the asymptotic bias of the ML estimator computed
on a Þnite population can be diminished by increasing the cross-sectional
dimension.

12In the special case of cross-sectional independence, neither the absorbing default state
nor a Þnite number of time observations prevent consistency of the ML estimator. Indeed,
in such a case the parameters of the transition matrices can be consistently estimated from
the cross-section when n→∞ [see e.g. Berman, Frydman (1999) for the two-state case].
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5.3 Estimation of the factor ordered qualitative model

Let us now explain how to estimate the factor ordered qualitative model
introduced in Section 3.2, when the cross-sectional dimension n is large and
for instance the factors satisfy a Gaussian VAR process:

Zt = AZt−1 + ut,

where A is a matrix and (ut) is multivariate standard normal
13.

From (6) we deduce that:

π∗kl,t :=
+
h<l

πkh,t = P [Yi,t < l | Yi,t−1 = k, Zt] = G
(
cl−1 − αk − β!kZt

σk

*
,

or equivalently:

G−1(π∗kl,t) =
cl−1 − αk
σk

− 1

σk
β
!
kZt.

For a large cross-sectional dimension n (n→∞), the probability π∗kl,t is well-
approximated by its cross-sectional sample counterpart #π∗kl,t, say; moreover
we have

√
n
$#π∗kl,t − π∗kl,t% d−→ N(0,Ωkl,t), t = 1, ..., T , and the estimators

corresponding to different dates are independent. By applying the δ-method
along the lines initially proposed by Berkson (1944) for logit models with
repeated observations, we get [see also Amemiya (1976)]:8

G−1(#π∗kl,t) ) cl−1−αk
σk

− 1
σk
β
!
kZt + 7Ω1/2kl,tvkl,t, ∀k, l, t,

Zt = AZt−1 + ut,

where vt and ut are independent multidimensional Gaussian error terms. We
get an approximated linear state space model, in which the macro-component
corresponds to the transition equation and the microcomponent to the mea-
surement equation. This approximated model can be estimated by a standard
linear Kalman Þlter, under the identiÞcation restrictions. This approach
provides approximations of the microparameters α, c, β, σ, of the macro-
parameters A and of the factor values at each date. From general results
on statistical inference for panel models with unobservable dynamic factors
[Gouriéroux, Monfort (2004)], it follows that:

13For expository purpose and the link with state space representation, we impose
V (ut) = Id instead of V (Zt) = Id as identifying constraint.
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i) the approximations of the factor values are
√
n-consistent;

ii) the estimators of the micro-parameters are
√
nT -consistent and asymp-

totically efficient;
iii) the estimator of the macro-parameters are

√
T -consistent.

To summarize, in dynamic factor qualitative panel data models, the like-
lihood function has an intractable form and the standard asymptotic theory
does not apply14, but the large cross-sectional dimension can be useful to
introduce simple estimation approaches, based on the possibility to approxi-
mate the true transition matrices by their sample counterparts.

6 Application to migration data

6.1 The data set

Migration data are regularly reported by rating agencies as Moody�s and
Standard and Poor�s, or by central banks as the Banque de France [see
Foulcher, Gouriéroux, Tiomo (2004) for a comparison of the main rating
systems]. The data sets of the agencies concern rather large Þrms at the
international level. The number of rated Þrms is about 10000 and reliable
data are available since 1985. The rating is generally Þxed by experts on the
basis of information obtained at the moment of bond issuing, for instance.
In contrast, the Banque de France collects yearly the balance sheets of

all French Þrms. The balance sheets are used to construct a quantitative
score explaining how default probability at 3 years depend on a set of Þ-
nancial ratios and individual characteristics. Then this score is discretized
into rating classes. This data set has several advantages compared to the set
of the agencies. First, it concerns about 180000 French Þrms, which allows
to perform some analysis by size or industrial sectors without a too small
number of observations. Second the formula for the econometric quantita-
tive score can be followed, as well as the limiting thresholds, which deÞne
the rating classes [see Bardos et alii (2004)]. The rating procedure has been
stable during the period of observation 1992-2003, which is not necessarily
the case for the rating by expertise performed by the agencies, due to the

14The current literature on credit risk seems to be not sufficiently aware of the nonstan-
dard properties of the estimators for panel data when there is an unobservable factor, or
when the parameter size increases with the number of observations [see e.g. Duffie, Wang
(2004)].
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change of experts or to their different rating behaviours during the phases
of the business cycle [see Pender (1992), Blume et alii (1998), Gouriéroux,
Jasiak (2005), Chapter 8]. We focus on two economic sectors corresponding
to wholesale and retail trade, respectively. They concern about 30000 Þrms
for each economic sector [see Bardos et al (2004)], which are in general of
small or medium size.
The Banque de France rating contains 8 risk categories, denoted 0, 1,

2, ... 7. Alternative �0� is for default, whereas alternative �7� represents
the lowest risk, that is the usual AAA or Aaa of the rating agencies. The
individual rating histories are aggregated to produce the transition matrices
between rating classes for different years, categories and time horizons. For
instance, a 1-year transition matrix is given in Table 1, for year 2001 and the
wholesale sector.

[Table 1: Transition matrix in 2001 for the wholesale sector]

It is immediately seen that this matrix contains an additional column cor-
responding to the Þrms, which are not rated (NR) at the end of 2001. The
Þrms are not rated due to missing data, which concern either the total bal-
ance sheet, or simply some Þnancial ratios or Þrm characteristics introduced
as explanatory variables in the underlying quantitative score. These missing
data are mainly due to a lack of cooperation, which can be voluntary or not.
The rate of missing data is rather large (between 10 and 30%) and larger
than the rate generally observed for large Þrms (between 5 and 15%), which
are obliged to report regularly some information concerning their balance
sheet, especially for bond issuing. As the other rating agencies, the Banque
de France does not report the row providing the transition from the NR class
to the other risk categories. Therefore this type of matrix has to be trans-
formed into a square transition matrix by assigning the non-rated companies
among the other classes. They are usually assigned proportionally, which im-
plicitly assumes the absence of selectivity bias (see all recent applied studies
in the list of references for a similar approach). It is seen on Table 1 that
the frequency of NR Þrms has a tendency to increase when the quality of
risk diminishes. This fact could be considered either as an additional signal
of bad risk, which would create a selectivity bias, or simply it can be due to
the fact that providing information to the Banque de France is not a priority
when the situation of the Þrm deteriorates. An idea about the missing row
can be obtained from Foulcher et al. (2004) where such a row looks like:
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7 6 5 4 3 2 1 0 NR

NR 2.5 2.5 2.0 2.0 1.4 1.1 0.2 0.5 87.8

This shows that the NR alternative is not an indicator of imminent de-
fault, which is in favour of a proportional assignment. This approach is
followed in the rest of the section. The adjusted transition matrix corre-
sponding to the matrix in Table 1 is provided in Table 2.

[Table 2: Adjusted transition matrix in 2001 for the wholesale sector]

As usual the adjusted transition matrices contains a lot of very small transi-
tion probabilities. The signiÞcant elements are essentially around the main
principal diagonals, showing that the up- or down-grades are at most of one
or two buckets during the year, for Þrms in a �standard� situation. These
matrices are rather different from the transition matrices existing for large
Þrms, for which the ratings are more stable. Typically in the S&P or Moody�s
data the three main diagonals only have signiÞcant elements.

6.2 I.I.D. transition matrices

Let us Þrst consider a model with i.i.d. transition matrices, that is the basic
speciÞcation underlying the standard measures of migration correlation. As
mentioned in Section 3.1, in this framework it is natural to compute the
matrix of individual migration P1 = EΠt, and the matrix of joint migration
for a pair of Þrms P2 = E (Πt ⊗ Πt) . The theoretical matrices are estimated
by their sample counterparts, obtained by averaging on time the associated
observed transition frequencies. The estimated matrices #P1 and #P2 (joint
down-grades only) are given in Table 3 and 4 for the wholesale sector:

[Table 3: Individual migration probabilities for the wholesale sector]

[Table 4: Joint down-grade migration probabilities for the wholesale sector]

From these matrices and the results in Section 4.1 we deduce the down-grade
migration correlations in the wholesale sector for all pairs of initial states:

[Table 5: Down-grade migration correlations]

Some features of down-grade correlations can be observed, for instance they
are generally larger when the two Þrms are in similar rating classes. More im-
portantly, the displayed migration correlations are rather small, and typically
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much smaller than migration correlations reported by de Servigny, Renault
(2002) from S&P data with two risk categories only, corresponding to invest-
ment and speculative grades. However, these results are difficult to compare
since they do not correspond to the same number of risk categories, and it can
be expected that the migration correlations will diminish, when the partition
becomes thinner. Indeed the correlations are conditional on the available in-
formation, that is the chosen segmentation, and generally diminish when the
information increases.
Finally, we can compute default correlations. They are reported in Tables

6 and 7 for the wholesale sector and the retail trade sector, respectively.

[Table 6: Default correlations in the wholesale sector]

[Table 7: Default correlations in the retail trade sector]

As for migration correlation, we observe rather small values, clearly much
smaller than the values suggested by the Basle Committee. As above this
can be due to the partition into rating categories, which is neglected in the
basic methodology suggested by the Basle Committee. The disaggregation
by rating categories can also have some other consequences for default cor-
relation. For instance it is known that in a large risk the default correlation
is necessarily nonnegative [see e.g. Gouriéroux, Monfort (2002) and Frey,
McNeil (2001), (2003)]. By disaggregation, we can get subpopulations of
smaller size and observe negative default correlations. Anyway it is impor-
tant to compare the default correlations across the rating classes with the
estimated default correlation proposed by the Basle Committee. As men-
tioned in Section 4.2.1, the regulator suggests a factor probit model, with
a latent correlation which is a function of the default probability πk of the
class to which the two Þrms belong [see the Basle Committee on Banking
Supervision (2002)]. The relationship is:

ρk = 0.24− 0.12
1− exp (−50πk)
1− exp (−50) .

From (10) we deduce the relationship between the default correlation and
the marginal default probability proposed by the Basle Committee. This
relationship is displayed in Figure 1 with a zoom on the range of observed
default probabilities:

[Insert Figure 1: Default correlation vs default probability by Basle Committee]
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It can be directly compared with the relationships estimated on the Banque
de France data for the wholesale and retail trade sectors:

[Insert Figure 2: Default correlation vs default probability for two sectors]

The estimated default correlations are systematically much smaller than the
values suggested by the regulator, in fact ten times smaller, with direct con-
sequences on the required capital. These values, which are compatible with
other recent studies [Feng et alii (2004), Rosch (2004)], are not unrealistic and
are not the consequence of the doubly stochastic assumption of the model,
as expressed for instance by Schonbucher (2004). In fact, the concepts of
default correlation and of contagion are conditional on the information set.
Larger the information set, generally smaller the default correlations. In
our estimated model the information set includes the rating histories of all
Þrms. Similarly, when the underlying score is based on a larger number of
covariates, the default correlations are in general smaller. For instance, the
fact that Duffie, Wang (2004) get larger default correlations reßects simply
an underlying score based on a single explanatory variable only. Finally we
remark that, despite the difference in level, estimated default correlations
feature the same type of monotonic dependence with respect to the marginal
default probability as suggested by the Basle Committee. However, the slope
of the curve has to be adjusted for the economic sector.

6.3 Dynamics of migration probabilities

In Section 6.2 we have analyzed the sequence of migration probabilities un-
der the assumption of i.i.d. transition matrices. This assumption, which is
usually adopted in the literature for computing migration correlations (see
Section 4), has to be questioned in practice. The aim of this section is to
highlight the dynamics of migration probabilities before estimating a dynamic
factor model in Section 6.4. In the Þrst subsection we plot the series of up-
and down-grade probabilities, and discuss their serial dependence. Then in
Section 6.3.2 we consider their relationship with the French business cycle.

6.3.1 The evolution of up- and downgrade probabilities

Let us focus on downgrade and upgrade probabilities involving a migration
of at most 2 buckets: dk,t = πk,k+1,t + πk,k+2,t, uk,t = πk,k−1,t + πk,k−2,t,
respectively [except for the extreme categories, where the number of buckets
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is one]. The time series of downgrade and upgrade probabilities are reported
in Figures 3 and 4, respectively.

[Insert Figure 3: Downgrade probabilities]

[Insert Figure 4: Upgrade probabilities]

Each panel corresponds to a rating class at the beginning of the year and
provides the dynamics in the wholesale (circles) and retail trade (diamonds)
sectors. The Þrst and second order autocorrelations are reported in Table 8
for the different downgrade and upgrade series and for both sectors:

[Insert Table 8: Autocorrelations in the wholesale and in the retail trade sector]

Despite the rather small number of observation dates, it is immediately seen
that the serial autocorrelations are rather high. Thus the usual serial inde-
pendence assumption, which underlies the computation of migration corre-
lations, is not relevant empirically.

6.3.2 Business cycle

It is usual to relate the failure rate with the general state of the economy, that
is the so-called business cycle. The Banque de France data base on migration
probabilities convey much more information and a better knowledge of the
link with business cycles can be expected. Several recent studies have already
been performed on the data by Moody�s and Standard & Poor�s with proxies
of the US business cycle [see Nickell, Perraudin, Variotto (2000), Bangia et
alii (2002), and Rosch (2004)]. Even if this relationship is not the topic of
our paper, it is interesting to give some preliminary elements. In a Þrst step
the dynamics of downgrade and upgrade probabilities (see Figures 3-4) can
be compared with the evolution of GDP in France in the period 1992-2002,
which is provided in Figure 5, Þrst Panel.

[Insert Figure 5: GDP and factor evolutions]

The dynamic linear link between the series can be studied by a causality
analysis between the downgrade (resp. upgrade) series and the GDP. The
lead and lagged causality measures of downgrade and upgrade probabilities
with GDP increment It are reported in Tables 9 and 10 for the wholesale and
retail trade sector, respectively.

[Insert Table 9: Causality relations in the wholesale sector]
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[Insert Table 10: Causality relations in the retail trade sector]

The distribution of causality measures is different for up- and downgrades,
and for the different risk categories. The downgrades are generally more
reactive to the business cycle than the upgrades. Moreover for the low risk
categories the causality from I to d is more important than the causality
from d to I. For instance the business cycle clearly affects the downgrades
for class 7. But the ordering between both directional measures is reversed
in the very risky categories, where the downgrade probabilities provide a
leading indicator of the business cycle with a lead between 2 and 3 years.

6.4 Estimation of the factor ordered probit model

Finally we estimate the factor ordered probit model introduced in Section
3.2. We use the approximated linear Kalman Þlter for large cross-sectional
dimension presented in Section 5.3. The estimation is performed for the
wholesale sector.
In a Þrst step we compute the transformed series ykl,t = G

−1(#π∗kl,t), ∀k, l,
and perform their principal component analysis, that is the spectral decom-
position of matrix 7Y 7Y !

, where the rows of 7Y are given by ykl,t − ykl, k, l
varying, with ykl =

1
T

0
t ykl,t. The corresponding eigenvalues are given in

decreasing order in the following table:

5.963 2.740 2.166 0.739 0.393 0.314 0.204 0.125 0.051 0

Three eigenvalues are much larger than the other ones. The normalized
eigenvectors corresponding to the 3 largest eigenvalues are displayed in Fig-
ure 5. The pattern of the factor corresponding to the largest eigenvalue is
consistent with the evolution of downgrade probabilities reported in Figure
3, for all rating categories except the riskiest one (class 1). Indeed the factor
points out an overall decreasing downgrade risk over the sample period, with
peaks of downgrade probabilities in 1994 and in 1998-1999 15. The factor cor-
responding to the second eigenvalue feature a similar pattern, but the peaks
occur in 1995-1996 and 1999-2000. In particular the peak in 1995-1996 may
be associated with the large downgrade probabilities featured by class 1 (the

15The sign of the factor has been chosen so that the corresponding estimated coefficients
βk are positive for each class. Thus the larger is the factor value, the larger are the
downgrade probabilities.
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riskiest class) in those years (see Figure 3). Finally it is important to see
how the "business cycle" is related to the three factors. For this purpose the
relative change in GDP has been regressed on the constant and the three
factors. The regression coefficients are:

It = 1.970− 0.303Z1,t − 0.481Z2,t + 0.046Z3,t,
with R2 = 0.19. This regression analysis and the comparison with the pattern
of GDP increments displayed in Figure 5 suggest that the factors correspond-
ing to the two largest eigenvalues are related to the business cycle. Indeed
the overall improvement in credit quality in 1992-2001 suggested by the fac-
tors is associated with the positive trend in GDP increments over the same
period. Moreover the peak in downgrade risk in 1995-1996 may be related to
the slow down in GDP increment in these years. However the evolutions of
credit cycle and business cycle are not fully parallel [see Feng et alii (2004)
for similar Þndings in US data]. For instance the peak in downgrade risk
in 1998-1999 anticipates the slow growth years 2001-2002. This explains the
rather poor Þt in the regression.
The analysis is completed by applying the linear Kalman Þlter with 3 fac-

tors. This provides the dynamics of the factors and the estimated structural
parameters, which are reported in Table 11.

Insert Table 11: Estimated structural parameters

As expected the estimated thresholds c are increasing. Similarly the inter-
cepts α are increasing with respect to the rating index k, which conÞrms that
downgrade risk is higher for the lower rating classes. The β1 coefficients are
higher and more homogeneous, and thus the Þrst factor appears as a general
factor. The β2 coefficients show some opposition between the classes 1 - 4
and the classes 5 - 7, that is between speculative and investment categories.
Finally the volatility parameters σ are generally smaller for the riskier rating
categories.
Compared to the standard use of the ordered probit model suggested by

the Basle Committee, we have followed a more general approach since:
i) 3 factors have been introduced instead of a single factor as usual;
ii) the factors have been deÞned endogenously by a principal component
analysis and not chosen a priori;
iii) the estimation has been performed per economic sector, likely more ho-
mogenous than the whole population.
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Nevertheless, it is seen in Figures 6 and 7, which provide some actual and
Þtted migration probabilities for rating class k = 1 (best class) and k = 4,
respectively, that the Þt is not entirely satisfactory (note that the scales are
not the same on the different Þgures).

[Insert Figures 6, 7: Actual and Þtted cumulated migration probabilities]

It does not mean that the ordered polytomous model has to be rejected, but
there is still some speciÞcation errors. Some possible ones are the following:
i) the population is not sufficiently homogenous;
ii) factor Zt can have an instantaneous effect by means of Zt, but also lagged
ones by means of Zt−1, Zt−2, ... Such lagged effects likely exist following the
causality analysis of Section 6.3;
iii) the latent distribution G can be different from the Gaussian one, and
could feature different tail or skewness behaviours as in the factor Gompit
model (see Section 3.2);
iv) the latent distribution G can depend on the starting rating class. This
is likely the main speciÞcation error as seen in Figure 7, for rating class 4.
Indeed the general patterns of the actual migration probabilities are almost
satisfactory, but some of them differ by a drift. This drift can be corrected
by means of an appropriate choice of the G function.
These various speciÞcation tests are left for further research.

7 Concluding remarks

The stochastic migration model introduced in this paper is a speciÞcation
which is ßexible and appropriate for the joint analysis of rating migration of
several Þrms. We have discussed several properties of the model concerning
in particular the prediction of rating transitions, the migration correlations
and some special features related to statistical inference. As an illustration,
two stochastic migration models have been estimated on the French data set
of the Banque de France: a model with i.i.d. stochastic transition matrices
and a factor ordered probit speciÞcation. The Þrst model underlies the stan-
dard measures of migration correlations, but is clearly misspeciÞed, due in
particular (but not only) to the effect of the business cycle, which induces
serial dependence. The factor ordered probit model is able to account for
the dynamics of the migration probabilities. We have performed one of the
Þrst estimations of such a model by endogenously selecting the factors, and
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we have given some direction of future research for improving this approach.
One main Þnding of this empirical analysis is that estimated migration cor-
relations are much smaller than those suggested by the regulator.
As mentioned in the introduction, the stochastic migration model allows

for the joint analysis of the individual rating histories, considered as given.
However, it does not give direct information on how to construct the under-
lying scores. In particular, for large corporations, it does not explain if the
score has to be based on fundamentals, such as balance sheets (as in S&P�s,
Moody�s or the French central bank), or on bond and equity prices [as in
KMV or in Duffie, Wang (2004)]. The very small values found for the mi-
gration correlations simply reßect the quality of the cross-sectional and time
information used in the model. Less informative explanatory variables in the
underlying scores and more aggregate risk categories will imply a less accu-
rate prediction model, detected by larger migration correlations. The latter
in turn induce an increase in the required capital, which naturally compen-
sates for the low accuracy of the model. Instead of imposing unrealistic large
values for the default correlation, as currently proposed by the Basle Com-
mittee, a better solution is clearly to introduce a coefficient explaining how
to pass from the estimated CreditVaR to the required capital, coefficient that
can depend on the quality of the rating and of the model. This is exactly the
solution previously retained by the Committee to Þx the market capital risk
as function of the VaR for a portfolio of liquid stocks. Finally, small historical
migration correlations do not necessarily imply small risk neutral migration
correlations. In other words, even with small historical default correlation,
it can be useful to introduce credit derivatives written on several Þrms.
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Table 1
1-year transition matrix

7 6 5 4 3 2 1 0 NR

7 0.7155 0.0979 0.0241 0.0113 0.0031 0.0002 0.0002 0.0002 0.1474

6 0.1226 0.5977 0.1031 0.0321 0.0187 0.0022 0.0008 0.0011 0.1216

5 0.0169 0.2544 0.4232 0.1145 0.0477 0.0079 0.0025 0.0026 0.1305

4 0.0085 0.0600 0.2519 0.3517 0.1223 0.0297 0.0109 0.0070 0.1579

3 0.0011 0.0413 0.0924 0.2450 0.2934 0.0755 0.0339 0.0200 0.1974

2 0.0000 0.0114 0.0509 0.1500 0.2500 0.1640 0.0842 0.0307 0.2588

1 0.0000 0.0076 0.0317 0.0544 0.1903 0.1224 0.1813 0.0650 0.3474

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

Table 1: 1-year transition matrix for the wholesale sector in
year 2001.

Table 2
Adjusted 1-year transition matrix

7 6 5 4 3 2 1 0

7 0.8392 0.1148 0.0282 0.0133 0.0036 0.0003 0.0003 0.0003

6 0.1396 0.6804 0.1174 0.0366 0.0213 0.0025 0.0009 0.0013

5 0.0194 0.2925 0.4867 0.1316 0.0549 0.0090 0.0029 0.0030

4 0.0101 0.0713 0.2991 0.4177 0.1452 0.0352 0.0130 0.0084

3 0.0014 0.0514 0.1152 0.3053 0.3656 0.0940 0.0422 0.0249

2 0.0000 0.0154 0.0686 0.2024 0.3373 0.2213 0.1136 0.0414

1 0.0000 0.0116 0.0486 0.0833 0.2917 0.1875 0.2778 0.0995

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 2: Adjusted 1-year transition probabilities for the whole-
sale sector in 2001.
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Table 3
Average 1-year transition matrix

7 6 5 4 3 2 1 0

7 0.7968 0.1491 0.0317 0.0165 0.0040 0.0007 0.0003 0.0009

6 0.1227 0.6476 0.1458 0.0515 0.0272 0.0030 0.0010 0.0012

5 0.0162 0.2388 0.4935 0.1627 0.0703 0.0125 0.0032 0.0028

4 0.0084 0.0597 0.2587 0.4371 0.1795 0.0373 0.0124 0.0069

3 0.0026 0.0344 0.1002 0.2777 0.4095 0.1136 0.0430 0.0190

2 0.0017 0.0129 0.0494 0.1642 0.3420 0.2524 0.1338 0.0436

1 0.0015 0.0102 0.0276 0.0937 0.2432 0.2037 0.3312 0.0889

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 3: Estimated average 1-year transition matrix for the
wholesale sector.

Table 4
Joint downgrade probabilities

7 6 5 4 3 2 1 0

7 0.0225 0.0219 0.0244 0.0269 0.0170 0.0199 0.0132 −
6 0.0219 0.0214 0.0239 0.0263 0.0167 0.0196 0.0130 −
5 0.0244 0.0239 0.0267 0.0295 0.0187 0.0220 0.0145 −
4 0.0269 0.0263 0.0295 0.0326 0.0207 0.0243 0.0161 −
3 0.0170 0.0167 0.0187 0.0207 0.0131 0.0155 0.0102 −
2 0.0199 0.0196 0.0220 0.0243 0.0155 0.0183 0.0120 −
1 0.0132 0.0130 0.0145 0.0161 0.0102 0.0120 0.0081 −
0 − − − − − − − −

Table 4: Joint downgrade probabilities for two Þrms in the
wholesale sector. Row and column numbers denote the initial
rating class of the two Þrms.
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Table 5
Downgrade correlations

7 6 5 4 3 2 1 0

7 0.0021 0.0013 0.0011 0.0008 0.0006 0.0000 −0.0004 −
6 0.0013 0.0011 0.0010 0.0011 0.0009 0.0007 0.0003 −
5 0.0011 0.0010 0.0016 0.0019 0.0017 0.0016 0.0003 −
4 0.0008 0.0011 0.0019 0.0027 0.0024 0.0026 0.0010 −
3 0.0006 0.0009 0.0017 0.0024 0.0024 0.0025 0.0011 −
2 0.0000 0.0007 0.0016 0.0026 0.0025 0.0034 0.0011 −
1 −0.004 0.0003 0.0003 0.0010 0.0011 0.0011 0.0031 −
0 − − − − − − − −

Table 5: Downgrade correlations for two Þrms in the wholesale
sector. The row and column numbers denote the initial rating
classes of the two Þrms.

Table 6
Default correlation in the wholesale sector

7 6 5 4 3 2 1 0

7 0.0004 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 −
6 0.0002 0.0004 0.0002 0.0002 0.0002 0.0000 0.0000 −
5 0.0002 0.0002 0.0003 0.0001 0.0002 −0.0001 0.0003 −
4 0.0000 0.0002 0.0001 0.0003 0.0002 0.0002 0.0005 −
3 0.0000 0.0002 0.0002 0.0002 0.0006 −0.0003 0.0009 −
2 0.0000 0.0000 −0.0001 0.0002 −0.0003 0.0006 0.0000 −
1 0.0000 0.0000 0.0003 0.0005 0.0009 0.0000 0.0031 −
0 − − − − − − − −

Table 6: Default correlations for two Þrms in the wholesale
sector. The row and column numbers denote the initial rating
classes of the two Þrms.
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Table 7
Default correlation in the retail trade sector

7 6 5 4 3 2 1 0

7 0.0009 0.0000 0.0003 0.0003 0.0009 0.0007 0.0005 −
6 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 −
5 0.0003 0.0000 0.0003 0.0000 0.0004 0.0003 0.0003 −
4 0.0003 0.0001 0.0000 0.0007 0.0006 0.0004 0.0006 −
3 0.0009 0.0000 0.0004 0.0006 0.0013 0.0010 0.0011 −
2 0.0007 0.0000 0.0003 0.0004 0.0010 0.0014 0.0007 −
1 0.0005 0.0001 0.0003 0.0006 0.0011 0.0007 0.0014 −
0 − − − − − − − −

Table 7: Default correlations for two Þrms in the retail trade
sector. The row and column numbers denote the initial rating
classes of the two Þrms.

Table 8
Autocorrelations

wholesale 7 6 5 4 3 2 1

down order 1 0.0430 0.7902 0.6907 0.4373 0.2541 -0.2316 0.2516
order 2 0.3182 0.3571 0.6878 0.5267 0.4373 0.1686 -0.3434

up order 1 - 0.0551 0.3146 0.3815 0.2800 0.0283 0.2059
order 2 - -0.2284 0.0627 0.1954 0.4626 0.5549 0.0974

retail trade 7 6 5 4 3 2 1

down order 1 0.0521 0.7573 0.4433 0.2096 0.4497 0.7131 -0.2307
order 2 -0.1677 0.6729 0.3902 0.3687 0.5290 0.3226 -0.1481

up order 1 - 0.4506 0.0959 0.0730 0.4863 0.1014 0.6707
order 2 - 0.3620 0.3880 0.3867 0.4573 0.2222 0.3436

Table 8: Autocorrelations of order 1 and 2 for downgrade
and upgrade probabilities in the wholesale sector (upper Panel),
respectively in the retail trade sector (lower Panel).
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Table 9
Causality relations in the wholesale sector

7 6 5 4 3 2 1

CI→d 10.51 5.62 5.79 5.79 7.27 4.68 0.47
Cd→I(1) 1.18 0.44 0.08 0.47 1.47 3.25∗ 1.02
Cd→I(2) 1.54 1.86 0.02 0.14 0.52 2.43 3.10∗

Cd→I(3) 2.39 5.12 2.74∗ 3.51∗ 3.07∗ 2.12 5.79

CI→u − 2.27 8.97 6.72 7.96 7.69 0.44
Cu→I − 0.34 1.38 1.38 1.52 2.36 0.36

Table 9: Causality relations in the wholesale sector. The
causality measures are multiplied by T . Under the null hypothesis
of no linear link, these standardized statistics are asymptotically
χ2(1)-distributed. Bold entries (resp. entries with an asterisk)
correspond to signiÞcant values at the 5% (10%, respectively)
level. For the causality directions d→ I we provide measures at
horizon h = 1, 2, 3.

Table 10
Causality relations in the retail trade sector

7 6 5 4 3 2 1

CI→d 29.28 2.74 2.70 4.08 2.11 0.24 0.01
Cd→I(1) 1.75 0.11 0.20 0.81 0.01 1.50 0.98
Cd→I(2) 1.82 0.23 0.17 0.26 0.00 0.80 6.54
Cd→I(3) 2.58 1.06 2.49 1.97 2.51 2.44 2.06

CI→u − 8.01 4.43 3.42 1.39 0.82 0.42
Cu→I − 1.58 1.18 1.23 0.00 0.62 0.23

Table 10: Causality relations in the retail trade sector. The
causality measures are multiplied by T . Under the null hypothesis
of no linear link, these standardized statistics are asymptotically
χ2(1)-distributed. Bold entries correspond to signiÞcant values
at the 5% level. For the causality directions d → I we provide
measures at horizon h = 1, 2, 3.
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Table 11
Estimated structural parameters

c1 = 0 c2 = 0.6611 c3 = 0.9470 c4 = 1.1776 c5 = 1.3714

c6 = 1.4680 c7 = 1.5662

α1 = −0.4410 β1,1 = 0.0210 β2,1 = 0.0389 β3,1 = 0.0097 σ1 = 1

α2 = 0.6843 β1,2 = 0.0020 β2,2 = 0.0091 β3,2 = 0.0065 σ2 = 0.4067

α3 = 1.0026 β1,3 = 0.0086 β2,3 = 0.0066 β3,3 = 0.0049 σ3 = 0.2621

α4 = 1.1589 β1,4 = 0.0066 β2,4 = 0.0073 β3,4 = 0.0048 σ4 = 0.2316

α5 = 1.2902 β1,5 = 0.0280 β2,5 = −0.0010 β3,5 = 0.0033 σ5 = 0.2039

α6 = 1.3884 β1,6 = 0.0252 β2,6 = 0.0050 β3,6 = 0.0002 σ6 = 0.1655

α7 = 1.4766 β1,7 = 0.0134 β2,7 = 0.0025 β3,7 = 0.0157 σ7 = 0.1712

A11 = 0.2538 A12 = −0.0087 A13 = −0.1887
A21 = −0.7646 A22 = −0.0832 A23 = −0.2578
A31 = −0.0675 A32 = −0.1186 A33 = 0.0324

Table 11: Estimated structural parameters for the factor or-
dered probit model. Thresholds c, intercepts α, slope coefficients
β for the three factors, volatilities σ and autoregressive coeffi-
cients A are displayed.
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Figure 1: Default correlation as a function of default probability by Basle
Committee.
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Figure 2: Default correlation as a function of default probability across the
different rating classes for the wholesale and the retail trade sectors.
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Figure 3: Probabilities of a downgrade of at most 2 buckets for the different
rating classes. The circles (resp. the diamonds) correspond to the wholesale
(retail trade) sector.
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Figure 4: Probabilities of an upgrade of at most 2 buckets for the different
rating classes. The circles (resp. the diamonds) correspond to the wholesale
(retail trade) sector.
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Figure 5: The upper left Panel displays the GDP percentage increments in
France in the period 1992-2001. The other Panels diplay the time evolution
of the factors corresponding to the three largest eigenvalues.
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Figure 6: Cumulated probabilities π∗kl,t for rating class k = 1 and different
indices l in the wholesale sector: circles correspond to observed probabilities
and squares to Þtted probabilities.
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Figure 7: Cumulated probabilities π∗kl,t for rating class k = 4 and different
indices l in the wholesale sector: circles correspond to observed probabilities
and squares to Þtted probabilities.
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