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Abstract

This paper extends to the multiasset framework the closed-form solution for options with

stochastic volatility derived in Heston (1993) and Ball and Roma (1994). This extension

introduces a risk premium in the return equation and considers Wishart dynamics for the

process of the stochastic volatility matrix, which is the multiasset analogue of the model of

Cox, Ingersoll, and Ross (1985). This approach is used to extend Merton’s model (Merton

(1974)) for corporate default to a framework with stochastic liability, stochastic volatility

and several firms.

We thank D. Duffie and M. Grasselli for helpful comments.
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1 Introduction

The standard Black-Scholes model (Black and Scholes (1973)) is not flexible enough to

reproduce some stylized facts observed on derivative prices such as the smile effect, that is a

U-shaped relationship between the implied Black-Scholes volatility and the strike price (for

any given residual maturity). It is well-known that a smile can be created by introducing

stochastic volatility in the Black-Scholes model. This approach was introduced by Hull and

White (1987) (see also Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Melino

and Turnbull (1990), Stein and Stein (1991)) and improved by Heston (1993), Ball and Roma

(1994) who changed the volatility dynamics to ensure a positive volatility.

Another related empirical regularity widely documented in the empirical literature and not

satisfied in the Black-Scholes framework concerns the leverage effect, that is the skewness

of the univariate implied volatilities as function of the stock price. To account for this

feature, stochastic volatility models often assume a correlation between the stock return

and volatility shock. For example, Wiggins (1987) introduces such a correlation in a special

case and Naik (1994) develops the general framework. Alternatively, a correlation can be

implicitely introduced as in Hobson and Rogers (1998), who define instantaneous volatility

in terms of past moments of the stock price. Recently, Chan, Kohn, and Kirby (2003) study

the leverage effect in a multivariate framework.

The aim of this paper is to introduce and study a multiasset extension of Heston’s model.

In Section 2, we introduce the joint dynamics of asset prices and volatilities. The price

equation includes a volatility-in-mean effect, whereas the volatility matrix is assumed to

follow a Wishart autoregressive (WAR) process. The reason for introducing a volatility in

mean effect is twofold. First, it is necessary to account for a risk premium if we want to get

good historical fit. Second, by introducing interactions between covolatilities and expected

returns, we expect to capture the tendency for volatility and stock price to move together

even without assuming an instantaneous correlation between the stock return and volatility
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innovations.1 AWAR specification of the volatility matrix is the direct multivariate extension

of the CIR dynamics (Cox, Ingersoll, and Ross (1985)), and ensures that the volatility matrix

is symmetric positive definite.

The closed-form expression of the conditional Laplace transform derived in Section 2 is

used in Section 3 to obtain closed-form solutions for the prices of derivatives written on

several assets. In Section 3 we also discuss the dynamics under the risk-neutral distributions

and some stylized facts on European call options written on the stocks. The application

to credit risk is discussed in Section 4 where Merton’s model (Merton (1974)) is extended

to a framework with stochastic firm liability, stochastic volatility and more than one firm.

Section 5 concludes.

2 The joint dynamics of price and volatility

Let us consider a market with one riskfree asset and n risky assets. The riskfree rate is

assumed to be constant and is denoted by r, whereas the infinitesimal geometric returns of

the risky assets are represented in a n-dimensional vector d log St with St being the vector

of asset prices at time t. The (infinitesimal) volatility matrix of the risky returns is denoted

by Σt. It corresponds to a continuous-time process of stochastic symmetric positive definite

matrices.

2.1 The model

The joint dynamics of log St and Σt is given by the stochastic differential system:

d log St =


µ+




Tr (D1Σt)
...

Tr (DnΣt)




 dt+Σ

1/2
t dW S

t , (2.1)

dΣt = (ΩΩ′ +MΣt +ΣtM
′) dt+Σ

1/2
t dW σ

t Q+Q′ (dW σ
t )
′Σ

1/2
t , (2.2)

where WS
t and W σ

t are a n-dimensional vector and a (n, n) matrix, respectively, whose

1 This tendency to move together is also captured by the increase in the number of assets which is considered.
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elements are independent unidimensional standard Brownian motions, µ is a deterministic

n-dimensional vector, whereas Di, i = 1, . . . , n, Ω, M, Q are (n, n)matrices with Ω invertible.

Tr denotes the trace operator and Σ
1/2
t is the positive square root of the volatility matrix

Σt.

The volatility matrix is introduced in the drift to account for a risk premium. More

explicitly, we get:

Et (d log Si,t) = [µi + Tr (DiΣt)] dt, i = 1, . . . , n, (2.3)

where Et denotes the expectation conditional on the information available at time t. The

drift is an affine function of volatilities and covolatilities. To get the interpretation of the

risk premium, we expect that Tr (DiΣt) ≥ 0, for any asset and realization of the volatility

matrix. This condition is satisfied if2:

Assumption A.1: Di is a symmetric positive definite matrix for any i.

The dynamics of the volatility matrix corresponds to the continuous-time Wishart autore-

gressive process (WAR) introduced in Gourieroux and Sufana (2003), Gourieroux, Jasiak,

2 A symmetric positive definite matrix D can be written as: D =
∑n

j=1 λjmjm
′

j , where λj and mj are the

eigenvalues and eigenvectors of D, respectively. Thus we get:

Tr (DΣt) = Tr

(
n∑

j=1

λjmjm
′

jΣt

)
=

n∑

j=1

λjTr
(
mjm

′

jΣt
)

=
n∑

j=1

λjTr
(
m
′

jΣtmj

)
=

n∑

j=1

λjm
′

jΣtmj ≥ 0,

where the last equality and inequality follow since we can commute within the trace operator and since λj >

0, ∀j, and Σt is positive definite.
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and Sufana (2004)3 ,4 ,5. The matricial stochastic system (2.2) ensures that the admissible

values of Σt are symmetric positive definite matrices. The symmetry of dΣt is immediately

derived. Let us discuss more carefully its positivity. For this purpose, let us consider a

quadratic form a′Σta, say, where a is a n-dimensional vector. This quadratic form defines a

one-dimensional process with drift:

Et [d (a
′Σta)] = (a

′ΩΩ′a+ a′MΣta+ a′ΣtM
′a) dt, (2.4)

and volatility (see Appendix 1):

Vt [d (a
′Σta)] = 4 (a

′Σta) (a
′Q′Qa) dt, (2.5)

where Vt denotes the variance conditional on the information available at time t. Let us now

consider what arises when Σt reaches the boundary of the set of symmetric positive definite

matrices. There exists a nonzero vector a in the kernel of Σt which satisfies a′Σta = 0, and

also Σta = 0. In this case, we have:

Vt [d (a
′Σta)] = 0,

and

Et [d (a
′Σta)] = (a

′ΩΩ′a) dt > 0.

Thus we get a reflection towards positivity when the boundary is reached (whenever Ω is

invertible).

Finally note that the system defining Σt involves n2 independent Brownian motions,

3 See also Bru (1991), O’Connell (2003), Donati-Martin et alii (2003) for the special case of the unit root.

4 An alternative specification of the volatility matrix assumes that the inverse of Σt follows a Wishart process.

This extends the inverted gamma distribution assumed in one-dimensional stochastic volatility models to get a

closed form expression for the return density and to study its tail magnitude [see e.g. Praetz (1972), Clark (1973),

Blattberg and Gonedes (1974)]. The direct Wishart specification used in our framework is more appropriate to

get closed form expressions for the moment generating functions and to price derivatives.

5 The Wishart distribution, but not the Wishart process, is also used in Bayesian approaches of stochastic volatility

models (Jacquier, Polson, and Rossi (1995)).
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whereas the volatility matrix has dimension n (n+ 1) /2 due to the symmetry restrictions.

Thus the Brownian matrix W σ
t does not correspond to the process of standardized ”innova-

tions” of Σt and brings more information than Σt itself.

Example 1 In the one-dimensional framework (n = 1) the system (2.1) and (2.2) becomes:

d log St =
(
µ+ δσ2t

)
dt+ σtdW

S
t ,

d
(
σ2t
)

=
(
ω2 + 2mσ2t

)
dt+ 2qσtdW

σ
t .

Thus the volatility process is a CIR process and the model reduces to Heston’s specification

(see Heston (1993), Ball and Roma (1994)).

2.2 Affine property

The joint process (log St,Σt) is an affine process, that is admits drift and volatility functions

which are affine functions of log St and Σt (see Duffie and Kan (1996), Duffie, Filipovic,

and Schachermayer (2003) for the definitions and analysis of affine processes). The affine

property is clearly satisfied for the drifts of logSt, Σt and for the volatility of log St. Let us

now examine the volatility of the volatility. For any pair of vectors a and b we have (see

Appendix 1):

Vt (a
′dΣtb) = (a

′Σta b′Q′Qb+ 2a′Σtb b′Q′Qa+ b′Σtb a′Q′Qa) dt. (2.6)

This quantity is also affine with respect to Σt.

Thus it is possible to use the general theory of affine processes to derive:

i) the conditional Laplace transform of the process at any horizon,

ii) the set of risk-neutral distributions.

Let us first derive the conditional Laplace transform (moment generating function). In

the property below the exponential affine expression of the conditional Laplace transform is a

direct consequence of general results on affine processes (see Duffie, Filipovic, and Schacher-

mayer (2003)). The form of the Riccati equations satisfied by the sensitivity coefficients is
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derived in Appendix 2.

Proposition 1 The conditional Laplace transform of the joint process (log St,Σt) and of

its cumulated values is defined by:

Ψt,h
(
γ, γ0, γ̃, C, c0, C̃

)
= Et exp

[∫ t+h

t

(γ′ log Su + γ0) du+ γ̃ ′ log St+h

+

∫ t+h

t

Tr (CΣu + c0) du+ Tr
(
C̃Σt+h

)]
, (2.7)

where the coefficients γ, γ0, γ̃, C, c0, C̃ can be real or complex whenever the expectation exists.

For the affine process given in (2.1) and (2.2), the conditional Laplace transform is:

Ψt,h

(
γ, γ0, γ̃, C, c0, C̃

)
= exp

[
a (h)′ log St + Tr (B (h)Σt) + b (h)

]
, (2.8)

where the functions a, B, and b satisfy the system of Riccati equations:

da (h)

dh
= γ, (2.9)

dB (h)

dh
= B (h)M +M ′B (h) + 2B (h)Q′QB (h)

+
1

2
a (h) a (h)′ +

∑n

i=1
ai (h)Di + C, (2.10)

db (h)

dh
= a (h)′ µ+ Tr [B (h) ΩΩ′] + γ0 + c0, (2.11)

with initial conditions: a (0) = γ̃, B (0) = C̃, b (0) = 0.

Thus the differential system involves the parameters γ, γ0, C, c0, whereas γ̃, C̃ define the

initial conditions. Note that the differential equation for a admits the explicit solution:

a (h) = γh+ γ̃.

Then the system in (2.9), (2.10) and (2.11) can be recursively solved. The second equation

provides the matrix B (h) and finally the form of b (h) is obtained by substituting a (h) and

B (h) by their expressions in the third equation.

The above Riccati equations admit a closed-form solution whenever γ = 0 (see Appendix

4). Thus this is an example of multidimensional Riccati equations with a fundamental system

of solutions (see Walcher (1986) for a general definition and Grasselli, Tebaldi (2004), Section
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3.4.2, for a discussion of quadratic models, which does not include the present WAR process).

Proposition 2 For γ = 0, we get:

B (h) = B∗ + exp [(M + 2Q′QB∗) h]
′

{(
C̃ −B∗

)
−1

+ 2

∫ h

0

exp [(M + 2Q′QB∗) u]Q′Q exp [(M + 2Q′QB∗) u]
′
du

}−1

exp [(M + 2Q′QB∗)h] ,

where B∗ satisfies:

M ′B∗ +B∗M + 2B∗Q′QB∗ +
1

2
γ̃γ̃′ +

∑n

i=1
γ̃iDi + C = 0.

The closed-form solution for b (h) can be immediately deduced from the third differential

equation:

b (h) =
(
γ̃′µ+ γ0 + c0

)
h+ Tr

[∫ h

0

B (u) du ΩΩ′
]
.

The following corollary is a consequence of Propositions 1 and 2.

Corollary 1 The conditional distribution of the asset return is characterized by:

Et
[
exp

(
γ̃′ logSt+h

)]
= exp

[
γ̃′ log St + Tr (B (h) Σt) + b (h)

]
,

where:

dB (h)

dh
= B (h)M +M ′B (h) + 2B (h)Q′QB (h) +

1

2
γ̃γ̃′ +

∑n

i=1
γ̃iDi,

db (h)

dh
= γ̃′µ+ Tr [B (h) ΩΩ′] ,

with initial conditions: B (0) = 0, b (0) = 0.

The closed-form solution for B (h) is:

B (h) = B∗ + exp [(M + 2Q′QB∗)h]
′

{
− (B∗)−1 + 2

∫ h

0

exp [(M + 2Q′QB∗) u]Q′Q exp [(M + 2Q′QB∗) u]
′
du

}−1

exp [(M + 2Q′QB∗) h] ,
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where B∗ satisfies:

M ′B∗ +B∗M + 2B∗Q′QB∗ +
1

2
γ̃γ̃′ +

∑n

i=1
γ̃iDi = 0.

The closed-form solution for b (h) is:

b (h) = γ̃′µh+ Tr

[∫ h

0

B (u) du ΩΩ′
]
.

Example 2 In the one-dimensional framework, which includes Heston (1993) and Ball and

Roma (1994), we get:

Et [exp (γ̃ log St+h)] = exp [γ̃ log St +B (h)Σt + b (h)] ,

where:

B (h) = B∗ +
exp [2 (m+ 2q2B∗)h]

− (B∗)−1 + q2 exp[2(m+2q
2B∗)h]−1

m+2q2B∗

,

b (h) =
(
γ̃µ+ ω2B∗

)
h+

ω2

2q2
log

∣∣∣∣1 +
1− exp [2 (m+ 2q2B∗) h]

m/ (q2B∗) + 2

∣∣∣∣ ,

and B∗ is a solution of:

2mB∗ + 2q2B∗2 +
1

2
γ̃2 + γ̃δ = 0.

The recursive equation can be used to find an expansion of the log-Laplace transform

when γ̃ = uγ̃0, say, for u in a neighborhood of zero, and thus to deduce the first and second

order conditional moments of asset returns. Indeed let us consider the expansion of B (h)

and b (h):

B (h) = B1 (h)u+B2 (h) u
2 + o

(
u2
)
,

b (h) = b1 (h) u+ b2 (h) u
2 + o

(
u2
)
.

The system in B (h) becomes:

dB1 (h)

dh
= B1 (h)M +M ′B1 (h) +

∑n

i=1
γ̃0iDi,

dB2 (h)

dh
= B2 (h)M +M ′B2 (h) + 2B1 (h)Q

′QB1 (h) +
1

2
γ̃0γ̃

′

0.
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Thus we have just to solve recursively linear differential equations first with respect to

B1, then with respect to B2 to deduce the affine expressions of the conditional mean and

volatilities6.

As usual the introduction of stochastic volatility increases the tail magnitude of the stock

returns. In the present framework, it is easily checked that the Laplace transform admits

a series expansion in a neighborhood of zero and the power moments of stock returns exist

at any nonnegative order. Thus the tail increase due to WAR stochastic volatility does not

imply the nonexistence of some moments.

The associated transition of the stock returns can be deduced by inverting the Fourier

transform (the Laplace transform evaluated at pure imaginary arguments) or in a more direct

way. Indeed, for a given volatility path, the return process is multivariate Gaussian. The

conditional distribution of log St+h given (Σt) and log St is normal with mean:

log St + µh+




Tr
(
D1

∫ t+h
t

Σudu
)

...

Tr
(
Dn

∫ t+h
t

Σudu
)


 ,

and variance-covariance matrix
∫ t+h
t

Σudu. Thus the transition of log St+h given Σt and

log St is deduced by integrating out the cumulated volatility
∫ t+h
t

Σudu given Σt.

The general expression of the conditional Laplace transform can now be used to char-

acterize the distribution of the integrated volatility
∫ t+h
t

Σudu, or of the average volatility

1
h

∫ t+h
t

Σudu:

Corollary 2 The conditional distribution of the integrated volatility is characterized by:

Et

[
exp

∫ t+h

t

Tr (CΣu) du

]
= exp [Tr (B (h)Σt) + b (h)] ,

6 More generally, there exists a local analytic solution whose coefficients can be recursively computed as solutions of

linear differential equations [Walcher (1991), p. 27 and Grasselli, Tebaldi (2004), Section 3.1].
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where:

dB (h)

dh
= B (h)M +M ′B (h) + 2B (h)Q′QB (h) + C,

db (h)

dh
= Tr [B (h) ΩΩ′] ,

with initial conditions: B (0) = 0, b (0) = 0.

The closed-form solution for B (h) is:

B (h) = B∗ + exp [(M + 2Q′QB∗)h]
′

{
− (B∗)−1 + 2

∫ h

0

exp [(M + 2Q′QB∗) u]Q′Q exp [(M + 2Q′QB∗) u]
′
du

}−1

exp [(M + 2Q′QB∗) h] ,

where B∗ satisfies:

M ′B∗ +B∗M + 2B∗Q′QB∗ + C = 0.

The closed-form solution for b (h) is immediately deduced from the second differential equa-

tion:

b (h) = Tr

[∫ h

0

B (u) du ΩΩ′
]
.

3 Derivative pricing

The explicit expression of the conditional Laplace transform given in Proposition 2 can be

used to price derivatives written on several assets by using the transform analysis (Duffie,

Pan, and Singleton (2000)). It allows us to avoid the numerical approximations such as

multibranches trees introduced in the multiasset framework (see e.g. Boyle (1988), Boyle,

Evnine, and Gibbs (1989), Ho, Stapleton, and Subrahmanyam (1995), Chen, Chung, and

Yang (2002)), or expansions around the constant volatility hypothesis (see e.g. Hull and

White (1987)). Without loss of generality, the derivations can be performed assuming a zero

riskfree rate.
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3.1 Risk-neutral distribution

It is known from Girsanov theorem that the change of density for period (t, t+ h) between

the historical and risk-neutral distributions is of the type:

mt,t+h = exp

{∫ t+h

t

[γ′ud logSu + Tr (CudΣu)] +

∫ t+h

t

(γ0udu+ c0udu)

}
,

where γu, Cu, γ0u, c0u denote predetermined coefficients. The change of probabilities and

thus the coefficients are constrained by both the unit mass restriction and the martingale

condition on stock prices.

Let E∗

t denote the conditional expectation under the risk-neutral probability. The property

below is proved in Appendix 3.

Proposition 3 Under the risk-neutral distribution, the joint process (logSt,Σt) satisfies a

stochastic differential system with volatility equal to the historical volatility and a modified

drift:

E∗

t (d log St) = Et (d log St) + Σtγt dt

= −
1

2
[Tr (eie

′

iΣt)] dt

= −
1

2
[σii,t] dt, (3.1)

E∗

t (dΣt) = Et (dΣt) + Covt [Tr (CtdΣt) , dΣt]

= Et (dΣt) + 2 (ΣtCtQ
′Q+Q′QC ′

tΣt) dt, (3.2)

where ei denotes the canonical vector with zero components except the ith component equal

to 1 and [σii,t] denotes the vector with the ith element equal to σii,t.

The risk premium on the Brownian motion of the return equation is fixed by the martin-

gale condition (see Appendix 3), whereas the risk premia corresponding to the volatilities-

covolatilities (that are Ct) can be fixed arbitrarily as a consequence of market incompleteness

(see e.g. Garman (1976)).

The stochastic system under the risk-neutral probability has the same form as the stochas-
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tic system under the historical probability if:

Ct = C is constant. (3.3)

Indeed the former differential system corresponds to:

E∗

t (d log St) = (µ
∗ + [Tr (D∗

iΣt)]) dt,

where µ∗ = 0, D∗

i = −
1
2
eie

′

i, and

E∗

t (dΣt) = (Ω
∗Ω∗′ +M∗Σt +ΣtM

∗′) dt,

where Ω∗Ω∗′ = ΩΩ′, M∗ = M + 2Q′QC ′. In this case, the intercept in the volatility drift

stays the same, whereas the matrix of "mean-reverting parameters" can be fixed arbitrarily.

3.2 Conditional Laplace transform under the risk-neutral distribu-

tion

The risk-neutral conditional Laplace transform Ψ∗t,h

(
γ, γ0, γ̃, C, c0, C̃

)
is defined as in equa-

tion (2.7), with Et replaced by E∗

t . Under condition (3.3) above, it can be directly deduced

from Proposition 1, after replacing the historical parameters by the risk-neutral ones.

Proposition 4 The conditional Laplace transform of the joint process (log St,Σt) and of

its integrated values under the risk-neutral distribution is:

Ψ∗t,h

(
γ, γ0, γ̃, C, c0, C̃

)
= E∗

t exp

[∫ t+h

t

(γ′ log Su + γ0) du+ γ̃′ log St+h

+

∫ t+h

t

Tr (CΣu + c0) du+ Tr
(
C̃Σt+h

)]
(3.4)

= exp
[
a∗ (h)′ log St + Tr (B∗ (h)Σt) + b∗ (h)

]
, (3.5)

where the functions a∗, B∗, and b∗ satisfy the system of Riccati equations:

da∗ (h)

dh
= γ, (3.6)

dB∗ (h)

dh
= B∗ (h)M∗ +M∗′B∗ (h) + 2B∗ (h)Q′QB∗ (h)

+
1

2
a∗ (h) a∗ (h)′ −

1

2
diag (a∗ (h)) + C, (3.7)
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db∗ (h)

dh
= Tr [B∗ (h)ΩΩ′] + γ0 + c0, (3.8)

with initial conditions: a∗ (0) = γ̃, B∗ (0) = C̃, b∗ (0) = 0.

The closed-form solutions for a∗, B∗ and b∗ are similar to the solutions for a, B and b

derived in Section 2.

Proposition 5 For γ = 0, we get:

a∗ (h) = γ̃,

B∗ (h) = B∗ + exp [(M∗ + 2Q′QB∗) h]
′

{(
C̃ −B∗

)
−1

+ 2

∫ h

0

exp [(M∗ + 2Q′QB∗) u]Q′Q exp [(M∗ + 2Q′QB∗)u]
′
du

}−1

exp [(M∗ + 2Q′QB∗) h] ,

b∗ (h) = (γ0 + c0) h+ Tr

[∫ h

0

B∗ (u) du ΩΩ′
]
,

where B∗ satisfies:

M∗′B∗ +B∗M∗ + 2B∗Q′QB∗ +
1

2
γ̃γ̃′ −

1

2
diag (γ̃) + C = 0.

Propositions 4 and 5 can be used to compute the price of a European derivative with

exponential payoff jointly written on log St and Σt.

Corollary 3 The price at time t of the derivative with residual maturity h and payoff

exp
[
γ̃′ log St+h + Tr

(
C̃Σt+h

)]
is:

Π
(
t, h; γ̃, C̃

)
= Ψ∗t,h

(
0, 0, γ̃, 0, 0, C̃

)

= exp
[
γ̃′ log St + Tr (B∗ (h)Σt) + b∗ (h)

]
,

where:

B∗ (h) = B∗ + exp [(M∗ + 2Q′QB∗) h]
′

{(
C̃ −B∗

)
−1

+ 2

∫ h

0

exp [(M∗ + 2Q′QB∗) u]Q′Q exp [(M∗ + 2Q′QB∗)u]
′
du

}−1

exp [(M∗ + 2Q′QB∗) h] ,
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b∗ (h) = Tr

[∫ h

0

B∗ (u) du ΩΩ′
]
,

and B∗ satisfies:

M∗′B∗ +B∗M∗ + 2B∗Q′QB∗ +
1

2
γ̃γ̃′ −

1

2
diag (γ̃) = 0.

3.3 Stylized facts and financial puzzles

The multivariate stochastic volatility model of Sections 2 and 3 provides a convenient frame-

work to understand some stylized facts on derivative prices.

As an illustration let us assume a zero riskfree rate, and consider two assets (n = 2) and

a European call option written on the first asset. Its price at date t is:

g (t, h, k; Σt)

= S1,tE
∗

[(
S1,t+h
S1,t

− k

)+
|Σt

]

= S1,tE
∗
{
[exp (log S1,t+h − logS1,t)− k]+ |Σt

}

= S1,tE
∗

{
E∗

{
[exp (log S1,t+h − log S1,t)− k]+ |Σt,t+h

}
|Σt

}

= S1,tE
∗



E∗





[
exp

[
−
1

2

∫ t+h

t

σ11,udu+

(∫ t+h

t

σ11,udu

)1/2
ξ

]
− k

]+
|Σt,t+h



 |Σt



 ,

where Σt,t+h denotes the volatility path between dates t, t+h, ξ is a standard normal variable

independent of the volatility process (Σt), k is the moneyness strike and h is the residual

maturity. As usual, the call price is deduced from the one-dimensional Black-Scholes formula.

If X ∼ N (m, s2), it is well-known that:

Ψ
(
k,m, s2

)
= E

[
(expX − k)+

]

= (E expX)N (d1)− kN (d2) ,

where

d1 =
log [(E expX) /k] + s2/2

s
, d2 = d1 − s,

and N denotes the cumulative distribution function of the standard normal distribution.
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The option price becomes:

g (t, h, k; Σt) = S1,tE
∗

[
Ψ

[
k,−

1

2

∫ t+h

t

σ11,udu,

∫ t+h

t

σ11,udu

]
|Σt

]

= S1,tE
∗ [N (d1)− kN (d2) |Σt] , (3.9)

where

d1 =
− log (k) + 1

2

∫ t+h
t

σ11,udu
(∫ t+h

t
σ11,udu

)1/2 , d2 = d1 −

(∫ t+h

t

σ11,udu

)1/2
.

Thus for any parameter values, we can easily simulate the joint path of the fundamental

volatility factor Σt, the stock price S1,t, and the option price g (t, h, k; Σt).

A number of stylized facts are observed from approaches which consider separately the

different stocks, and in particular introduce different measures of volatility for asset 1. Among

these measures are:

i) the Black-Scholes implied volatility associated with the option price g (t, h, k; Σt),

ii) the realized volatility at a higher frequency, computed as a sample historical variance of

high frequency returns within the period (t, t+ 1),

iii) the GARCH(1,1) volatility forecast to approximate η21t = V [log S1,t+1 | S1,t, S1,t−1, . . .]

based on annual data.

We use simulations to investigate the implications of the multivariate stochastic volatility

model proposed in this paper. We consider two risky assets driven by the differential system

(2.1) - (2.2) and simulate log-prices over 50 years, with a time step of 0.01 (which provides

100 prices per year). The parameter values are:

µ =

(
0.1
0.035

)
, D1 = D2 = 0,

for the stock price equation, and

K = 4, Md = 0, Σd =

[
0.035 ρ

√
(0.035) (0.001)

ρ
√
(0.035) (0.001) 0.001

]
,

for the time discretized Wishart process7. Each simulation is performed for two extreme

7 As shown in Gourieroux, Jasiak, and Sufana (2004), when the degree of freedom K is integer, the time dis-
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values of the latent correlation: ρ = 0 and ρ = 0.95.

Figure 1 shows the end-of-year log asset prices and Figure 2 plots the associated simple

annual returns. The two assets have different expected return and volatility. Asset 1 has a

higher expected return to compensate for its higher volatility.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 1. End-of-year log price of asset 1 (solid line) and asset 2 (dotted line).

cretization of the continuous-time Wishart process:

dΣt =
(
KQQ

′ +MΣt +ΣtM
′
)
dt+Σ

1/2
t dW

σ
t Q

′ +Q (dWσ
t )

′ Σ
1/2
t ,

is the discrete-time Wishart process:

Σt =

K∑

k=1

xktx
′

kt,

xk,t+s =Mdxkt + εk,t+s, εk,t+s ∼ N (0,Σd) ,

where

Md = exp (Ms) , Σd =

∫ s

0

exp (Mu)QQ′ [exp (Mu)]′ du,

and s is the time step.

The latent correlation ρ represents the conditional correlation between the two latent components of the process

(xkt). In particular, if ρ = 0, the two latent components are conditionally independent.
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a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 2. Simple annual return of asset 1 (solid line) and asset 2 (dotted line).

End-of-year at-the-money call prices are computed using equation (3.9) with moneyness

strike k = 1 and horizon h = 1 and the corresponding implied volatilities, obtained by

inverting the Black-Scholes formula, are presented in Figures 3 and 4.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 3. Implied volatility of asset 1 (solid line) and asset 2 (dottedline).
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a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 4. Implied volatility of asset 1 versus implied volatility of asset 2.

Since the stochastic volatility is driven by three factors, the implied Black-Scholes volatil-

ities of the two assets do not satisfy a deterministic relationship. They are stochastic with

a nondegenerate joint distribution. The pattern of this distribution depends on the latent

correlation. When ρ = 0, we observe in Figure 4a) that the implied volatilities are almost

independent, whereas Figure 4b) shows a regression line when ρ = 0.95. Figure 5 plots the

sample correlation between the 49 implied volatilities of asset 1 and the 49 implied volatilities

of asset 2 as a function of the latent correlation ρ. For each value of ρ, the sample correlation

is computed as the ratio of the sample covariance of the two assets to the square root of the

product of the sample variances.

Figure 5. Sample correlation of implied volatilities of assets 1 and 2 versus latent correlation.

20



3.3.1 Skewed implied volatility

The Black-Scholes implied volatilities can be a skewed function of the (moneyness) strike,

and this stylized fact is usually reproduced in the standard one-asset stochastic volatility

model by introducing a correlation between the Brownian motions of the price and volatility

equations.

In the present multiasset framework, the two (multivariate) Brownian motions have been

assumed independent. However, the independence of innovations conditional on the infor-

mation set Σt, is compatible with a dependence of innovations conditional on the smaller

information set S1,t, σ11t, say. Thus it is not surprising to reproduce an asymmetric volatility

smile in the framework of a bivariate model with independent innovations. This property

is illustrated in Figure 6, where the implied volatilities of asset 1 for the second year are

reported as a function of moneyness strike k.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 6. Implied volatility of asset 1 versus moneyness strike.

3.3.2 Relation between the option price and volatility

In the one-dimensional Black-Scholes model, the call price is an increasing function of the

(marginal) volatility. However, this property is not always satisfied in a more complicated

framework (see El Karoui, Jeanblanc, and Shreve (1998)). In the multivariate stochastic

volatility model it is expected that the call price is an increasing function of the fundamental

risk Σt, but this does not imply that it will be an increasing function of a "marginal" volatil-
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ity, computed with a restricted information set. As an illustration, we provide below the

dependence between the at-the-money implied volatility and the realized and GARCH(1,1)

volatilities, respectively. Note that a realized volatility is an approximation of a marginal

volatility, and is computed without taking into account the information of lagged returns.

Similarly, the GARCH(1,1) volatility is computed by considering the information on lagged

returns of stock 1 only.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 7. Implied volatility of asset 1 versus realized volatility of asset 1. The sample
correlation coefficient between these two variables is: a) 0.0692, b) 0.0814.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 8. Implied volatility of asset 1 versus GARCH(1,1) volatility forecast. The sample
correlation coefficient between these two variables is: a) 0.0016, b) -0.0026.

It is immediately noted that the implied volatility is weakly related with both the realized
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and GARCH(1,1) volatilities. Moreover, they do not vary around the same volatility level.

Thus both realized and GARCH(1,1) volatilities are poor proxies of the implied Black-Scholes

volatilities.

3.3.3 Relation between call and stock prices

Figure 9 reveals a more complex relationship between the standardized call price (call price

divided by stock price) and the stock price than is implied by the Black-Scholes model.

a) Latent correlation = 0 b) Latent correlation = 0.95

Figure 9. Joint density of the standardized call price and stock price (in logarithm).

In the standard Black-Scholes model, the ratio of the call price to the stock price depends

only on the design of the call and on the return volatility. But it is constant with respect to

the stock price.

4 Application to Credit Risk

The multivariate stochastic volatility model can in particular be applied to credit risk analysis

by considering the asset values and liabilities of the firms as the basic contingent claims. The

model is described in Section 4.1, whereas simulation results are presented in Section 4.2.

4.1 The model

A new interest in multiasset derivatives has been shown recently in relation with credit risk.
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Indeed in the standard framework of the firm value model introduced by Merton (1974), the

potential time to default h, say, is predetermined, and the stock, bonds, credit default swaps

corresponding to a given firm i are defined from its asset Ai,t+h and liability Li,t+h at date

t + h. More precisely, with a zero riskfree rate, the value at date t of a zero-coupon bond

with residual maturity h issued by the firm i is8:

Bi (t, t+ h) = E∗

t

[
Ai,t+h
Li,t+h

1Ai,t+h<Li,t+h + 1Ai,t+h>Li,t+h

]
,

where E∗

t denotes the conditional expectation with respect to the risk-neutral probability

and the first component takes into account the recovery rate when default occurs.

The value at date t of the equity is:

Si,t = E∗

t

[
(Ai,t+h − Li,t+h)

+] ,

whereas the value of the credit default swap with residual maturity h is:

CDSi (t, t+ h) = E∗

t

(
1Ai,t+h<Li,t+h

)
.

Therefore all financial assets defined above are written on the underlying variables A, L, or,

equivalently, on the variables logA, logL. In the basic Merton’s model the debt amount L is

assumed predetermined, which allows the use of the one-dimensional Black-Scholes model

on variable A, and the same assumption is made in the practical approach developped

by Moody’s KMV for credit risk (see e.g. Crosbie and Bohn (2003)). As a consequence,

all derivative prices are deterministic functions of the asset value at date t. However, the

corporate liability is clearly as varying as the asset value and both underlying variables move

together.

An extension to the framework of stochastic liability has been done by (Stapleton and

Subrahmanyam (1984)) with a multivariate Black-Scholes model. The results of Sections 2

and 3 allow for the direct extension to the stochastic volatility and multifirm framework.

Let us first consider a given firm. We can represent the joint dynamics of the asset value

8 The computations are performed with a zero riskfree rate.
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and liability by:

(
d logAt
d logLt

)
=

[
µA + Tr (DAΣt)
µL + Tr (DLΣt)

]
dt+Σ

1/2
t dWS

t ,

dΣt = (ΩΩ′ +MΣt +ΣtM
′) dt+Σ

1/2
t dW σ

t Q+Q′ (dW σ
t )
′Σ

1/2
t .

This model can easily be extended to several firms, in order to distinguish the firm id-

iosyncratic effects from the general effects, creating default dependence. Let us consider

for expository purposes a homogeneous portfolio where the n firms can be considered as

equivalent. The model will be written as:
(

d logAi,t
d logLi,t

)
=

[
µA + Tr

(
DG
AΣt

)
+ Tr

(
DC
AΣi,t

)

µL + Tr
(
DG
LΣt

)
+ Tr

(
DC
LΣi,t

)
]
dt+Σ

1/2
t dW S

t +Σ
1/2
i,t dW

S
i,t, (4.1)

where the general risk factor satisfies:

dΣt =
(
ΩGΩG′ +MGΣt +ΣtM

G′
)
dt+Σ

1/2
t dW σ

t Q
G +QG′ (dW σ

t )
′Σ

1/2
t , (4.2)

and the idiosyncratic risk factors are such that:

dΣi,t =
(
ΩCΩC′ +MCΣi,t +Σi,tM

C′
)
dt+Σ

1/2
i,t dW

σ
i,tQ

C +QC′
(
dW σ

i,t

)
′

Σ
1/2
i,t . (4.3)

As usual the idiosyncratic and general innovations W S
t , W S

i,t, i = 1, . . . , n, W σ
t , W σ

i,t, i =

1, . . . , n, are assumed independent.

4.2 Simulations

Let us consider two firms with no general risk factor. The parameter values are:

µ =

(
0.05
0.05

)
, DG

A = 0, DG
L = 0, DC

A = 0, DC
L = 0,

for the asset-liability equation,

K = 4, Md = 0, Σd,1 =

(
0.04 0
0 0.04

)
,

for the time discretized Wishart risk process of firm 1, and

K = 4, Md = 0, Σd,2 =

(
0.02 0
0 0.02

)
,
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for the time discretized Wishart risk process of firm 2.9 We simulate the evolution of asset

values and liabilities for 50 years with a time step of 0.01. The initial state of each firm at

time 0.01 is assumed to be

(
logA
logL

)
=

(
11
10

)
. Each simulation is also performed for the

case when the firms are driven by the same Wishart process with parameter values:

K = 4, Md = 0, Σd =

(
0.04 0
0 0.04

)
.

Figures 10 and 11 plot the end-of-year values of the joint process (logA , logL) to illus-

trate a fundamental difference between this framework andMerton’s model: this multivariate

model allows a firm’s liability to vary stochastically over time while in the Merton’s model it

is assumed predetermined (that is with deterministic evolution in Moody’s KMV implemen-

tation). In our framework, the behavior of the liability can be similar or very different from

that of the asset value, which is closer to the actual behavior of these variables. In Merton’s

model, default occurs at the first crossing of asset and liability curves.

a) Independent WAR processes b) Same WAR process

Figure 10. Log-asset (solid line) and log-liability (dotted line) for firm 1.

9 See footnote 7 for the relationship between the parameters ΩC , MC , QC , of the continuous-time Wishart process in

equation (4.3), and the parameters K, Md, Σd, of the corresponding time discretized Wishart process.
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a) Independent WAR processes b) Same WAR process

Figure 11. Log-asset (solid line) and log-liability (dotted line) for firm 2.

By replicating asset and liability paths, we can simulate the joint distribution of the times

to default of the two firms. The number of replications is set to 200. The (right censored)

marginal distributions of the time to default are provided in Figures 12 and 13.

a) Independent WAR processes b) Same WAR process

Figure 12. Distribution of the time to default for firm 1. The sample mean of the time to
default for firm 1 is: a) 0.3710, b) 0.2966.
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a) Independent WAR processes b) Same WAR process

Figure 13. Distribution of the time to default for firm 2. The sample mean of the time to
default for firm 2 is: a) 0.4785, b) 0.3711.

It is seen in Figure 13a) that the effect of stochastic volatility can provide marginal

distributions of the time to default significantly different from the standard exponential

distribution. In particular, the introduction of positive correlation between firms reduces

the average time to default.

Of course it is more interesting to consider the joint distribution of the times to default.

Indeed these duration variables are likely more dependent when there exists a common

volatility factor between the two firms. The joint density plots are displayed in Figure 14

and are based on 800 replications.

a) Independent WAR processes b) Same WAR process

Figure 14. Joint density of the time to default of firm 1 and time to default of firm 2.
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Finally we can consider the various credit derivative prices. The bond, equity and CDS

end-of-year prices are computed for each firm for residual maturity h = 10. In the standard

Merton’s one-factor model, two credit derivative prices are in a nonlinear deterministic re-

lationship. In our multifactor framework, the joint distribution of credit derivative prices is

no longer degenerate. Bivariate density plots are provided in Figures 15 - 18.

a) Independent WAR processes b) Same WAR process

Figure 15. Joint density of the bond price and equity price for firm 1.

a) Independent WAR processes b) Same WAR process

Figure 16. Joint density of the bond price and equity price for firm 2.
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a) Independent WAR processes b) Same WAR process

Figure 17. Joint density of the CDS price and equity price for firm 1.

a) Independent WAR processes b) Same WAR process

Figure 18. Joint density of the CDS price and equity price for firm 2.

We clearly observe some stochastic decreasing relationship between bond and equity prices

and between CDS and equity prices.

5 Conclusion

In the Black-Scholes model with CIR stochastic volatility, a closed-form solution for option

prices can be derived (Heston (1993) and Ball and Roma (1994)). In the present paper we

have considered a multiasset extension of this approach, where risk premia are introduced

in the return equations and the CIR volatility process is replaced by a Wishart process for
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stochastic volatility matrices. Then the approach has been used to extend the standard

Merton’s model for credit risk (Merton (1974)) by allowing for stochastic corporate liability,

stochastic volatility and more than one firm. These extensions show that the Wishart process

is a convenient tool for modelling the dynamics of volatility matrices (Gourieroux, Jasiak,

and Sufana (2004)).

As noted in Ball and Roma (1994), derivative pricing in models with stochastic volatility

is similar to bond pricing. Thus it is not surprising that the Wishart process can be used

to define new affine models for the term structure of interest rates, called Wishart quadratic

term structure models (Gourieroux and Sufana (2003)), or for introducing a coherent pricing

approach for bonds, stocks and currencies (Gourieroux, Monfort, and Sufana (2004)).
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Appendix 1. Volatility of Σt

We have:

Vt (a
′dΣtb) = Vt

[
a′Σ

1/2
t dW σ

t Qb+ a′Q′ (dW σ
t )
′Σ

1/2
t b

]

= Vt

(
a′Σ

1/2
t dW σ

t Qb+ b′Σ
1/2
t dW σ

t Qa
)

= a′Σ1/2t Vt (dW
σ
t Qb) Σ1/2t a+ a′Σ1/2t Covt (dW

σ
t Qb, dW σ

t Qa)Σ1/2t b

+b′Σ
1/2
t Covt (dW

σ
t Qa, dW σ

t Qb)Σ
1/2
t a+ b′Σ

1/2
t Vt (dW

σ
t Qa) Σ

1/2
t b.

Since Covt (dW
σ
t a, dW

σ
t b) = a′b Id dt, we obtain:

Vt (a
′dΣtb) =

[
a′Σ

1/2
t (b′Q′Qb Id)Σ

1/2
t a+ a′Σ

1/2
t (b′Q′Qa Id)Σ

1/2
t b

+b′Σ
1/2
t (a′Q′Qb Id)Σ

1/2
t a+ b′Σ

1/2
t (a′Q′Qa Id) Σ

1/2
t b

]
dt

= (a′Σta b′Q′Qb+ 2a′Σtb b′Q′Qa+ b′Σtb a′Q′Qa) dt. (A.1.1)

We deduce from the result above that:

Vt (a
′dΣta) = 4a

′Σta a′Q′Qa dt. (A.1.2)

Similar computations provide the conditional covariance between two quadratic forms based

on dΣt:

Covt (a
′dΣta, b

′dΣtb) = 4 a′Σtb a′Q′Qb dt, (A.1.3)

and

Covt (a
′dΣta, b

′dΣtc) = 2 [a
′Σtb a′Q′Qc+ a′Σtc a′Q′Qb] dt. (A.1.4)

From (A.1.3) we deduce the volatility of Tr (DdΣt), where D is a symmetric positive

definite matrix. Since D can be decomposed as D =
∑n

i=1 aia
′

i, we get:

Tr (DdΣt) =
n∑

i=1

Tr (aia
′

idΣt) =
n∑

i=1

a′idΣtai.

We can write:

Vt [Tr (DdΣt)] = Vt

(
n∑

i=1

a′idΣtai

)
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=
n∑

i=1

n∑

j=1

Covt
(
a′idΣtai, a

′

jdΣtaj
)

= 4
n∑

i=1

n∑

j=1

a′iΣtaj a
′

iQ
′Qaj dt

= 4
n∑

i=1

n∑

j=1

a′jΣtai a
′

iQ
′Qaj dt

= 4
n∑

j=1

a′jΣtDQ′Qaj dt,

which implies that:

Vt [Tr (DdΣt)] = 4Tr (DΣtDQ′Q) dt. (A.1.5)

The result above is modified if D is not positive definite. The decomposition becomes

D =
∑n

i=1 εiaia
′

i, where εi = ±1. A similar computation provides:

Vt [Tr (DdΣt)] = 4Tr
(
D+ΣtD

+Q′Q
)
dt,

where D+ =
∑n

i=1 aia
′

i is derived from D by replacing all the eigenvalues by their absolute

values.

Similarly, using (A.1.4) we have:

Covt (Tr (DdΣt) , dΣt) =
n∑

i=1

Covt (a
′

idΣtai, dΣt)

=

[
n∑

i=1

Covt (a
′

idΣtai, e
′

kdΣtel)

]

= 2

[
n∑

i=1

a′iΣtek a′iQ
′Qel +

n∑

i=1

a′iΣtel a
′

iQ
′Qek

]
dt

= 2

[
n∑

i=1

e′kΣtai a
′

iQ
′Qel +

n∑

i=1

e′lΣtai a
′

iQ
′Qek

]
dt

= 2 [e′kΣtDQ′Qel + e′lΣtDQ′Qek] dt

= 2 (ΣtDQ′Q+Q′QD′Σt) dt.

33



Appendix 2. Conditional Laplace transform

The exponential affine expression of the conditional Laplace transform is a well-known prop-

erty of affine processes (see e.g. Duffie, Filipovic, and Schachermayer (2003)). Therefore we

only look for the generalized Riccati equations satisfied by functions a, B, and b. We have:

Ψt,h+dt = Et

{
exp

[∫ t+dt

t

(γ′ logSu + γ0) du+

∫ t+dt

t

Tr (CΣu + c0) du

]
Ψt+dt,h

}

≃ Et {exp [(γ
′ logSt + γ0) dt+ Tr (CΣt + c0) dt]

exp
[
a (h)′ logSt+dt + Tr (B (h)Σt+dt) + b (h)

]}

= exp [(γ′ log St + γ0) dt+ Tr (CΣt + c0) dt]

exp
[
a (h)′ logSt + Tr (B (h) Σt) + b (h)

]

Et exp
[
a (h)′ d log St + Tr (B (h) dΣt)

]

= exp [(γ′ log St + γ0) dt+ Tr (CΣt + c0) dt]

exp
[
a (h)′ logSt + Tr (B (h) Σt) + b (h)

]

exp
{
Et
[
a (h)′ d logSt + Tr (B (h) dΣt)

]

+
1

2
Vt
[
a (h)′ d log St + Tr (B (h) dΣt)

]}
.

Using the definitions of the affine processes in equations (2.1), (2.2), and the result (A.1.5)

derived in Appendix 1, we have:

Ψt,h+dt = exp [(γ′ log St + γ0) dt+ Tr (CΣt + c0) dt]

exp
[
a (h)′ log St + Tr (B (h)Σt) + b (h)

]

exp



a (h)′


µ+




Tr (D1Σt)
...

Tr (DnΣt)




 dt

+Tr [B (h) (ΩΩ′ +MΣt +ΣtM
′)] dt

+
1

2
a (h)′Σta (h) dt+ 2Tr [B (h) ΣtB (h)Q

′Q] dt

}
.

Since another expression for Ψt,h+dt is:

Ψt,h+dt = exp
[
a (h+ dt)′ log St + Tr (B (h+ dt) Σt) + b (h+ dt)

]
,
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the terms multiplying logSt, Σt and the intercept must be the same in the two expressions

above. Identifying the corresponding terms and taking dt −→ 0, we deduce the differential

equations:

da (h)

dh
= γ,

dB (h)

dh
= B (h)M +M ′B (h) + 2B (h)Q′QB (h)

+
1

2
a (h) a (h)′ +

∑n

i=1
ai (h)Di + C,

db (h)

dh
= a (h)′ µ+ Tr [B (h) ΩΩ′] + γ0 + c0.

The initial conditions follow from:

Ψt,0 = exp
[
γ̃′ log St + Tr

(
C̃Σt

)]
.

Appendix 3. Drift of the process (logSt,Σt) under the

risk-neutral distribution

It is well-known that the volatility of the process is the same under the risk-neutral and

historical distributions. Moreover, since

mt,t+dt = exp [γ
′

td log St + Tr (CtdΣt) + (γ0t + c0t) dt] ,

the risk-neutral drift of logSt is:

E∗

t (d logSt) =
Et (mt,t+dtd logSt)

Et (mt,t+dt)

≃
Et {[1 + γ′td log St + Tr (CtdΣt)] d log St}

Et [1 + γ′td logSt + Tr (CtdΣt)]

≃ {Et (d logSt) + Et (γ
′

td log Std log St) + Et [Tr (CtdΣt) d logSt]}

{1− Et (γ
′

td log St)− Et [Tr (CtdΣt)]}

= Et (d log St) + Et (γ
′

td logStd log St) + Et [Tr (CtdΣt) d log St]

≃ Et (d log St) + Covt (d logSt, γ
′

td logSt)
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= Et (d log St) + Σtγt dt,

since d logSt and dΣt are conditionally independent. Similarly, the risk-neutral drift of Σt

is:

E∗

t (dΣt) =
Et (mt,t+dtdΣt)

Et (mt,t+dt)

≃
Et {[1 + γ′td log St + Tr (CtdΣt)] dΣt}

Et [1 + γ′td logSt + Tr (CtdΣt)]

≃ Et (dΣt) + Et (γ
′

td log StdΣt) + Et [Tr (CtdΣt) dΣt]

≃ Et (dΣt) + Covt [Tr (CtdΣt) , dΣt] .

Moreover, Ito’s formula and the martingale condition imply:

E∗

t (d log Sit) ≃ E∗

t

dSit
Sit

−
1

2
E∗

t

(dSit)
2

(Sit)
2

≃ −
1

2
σii,tdt.

Thus the risk premium γt is fixed to:

γt = Σ
−1
t

[
−
1

2
σii,t − µi − Tr (DiΣt)

]
.

Finally, the sum of the coefficients γ0t, c0t is fixed by the unit mass restriction and given by:

γ0t + c0t = −γ′t (µ+ [Tr (DiΣt)])− Tr [Ct (ΩΩ
′ +MΣt +ΣtM

′)]

−
1

2
γ′tΣtγt − 2Tr [CtΣtCtQ

′Q] .

Appendix 4. An explicit solution to the Riccati equations

The aim of this appendix is to find the solutions of the differential system:

dX (h)

dh
= A′X (h) +X (h)A+ 2X (h) ΛX (h) + C1, (A.4.1)

with initial condition: X (0) = C0, where Λ, C1, C0 are symmetric matrices, Λ ≫ 0, and A

is a square matrix.

In a first step, we explain how to eliminate the constant C1. Then in a second step, we
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solve the system with C1 = 0.

First step:

Lemma 1 Let X∗ be a solution of the system:

A′X∗ +X∗A+ 2X∗ΛX∗ + C1 = 0.

Then the process: Z (h) = X (h)−X∗ satisfies:

dZ (h)

dh
= A∗′Z (h) + Z (h)A∗ + 2Z (h) ΛZ (h) ,

with Z (0) = C∗

0 , where A∗ = A+ 2ΛX∗, C∗

0 = C0 −X∗.

Proof. The Lemma is obtained by replacing X (h) by Z (h) +X∗ in equation (A.4.1).

Second step:

Lemma 2 The solution of the system:

dZ (h)

dh
= A∗′Z (h) + Z (h)A∗ + 2Z (h) ΛZ (h) ,

with Z (0) = C∗

0 , is:

Z (h) = exp (A∗h)′
[
C∗−1
0 + 2

∫ h

0

exp (A∗u) Λ exp (A∗u)′ du

]−1
exp (A∗h) .

Proof. Let us consider the process Λ (h) defined by:

Z (h) = exp (A∗h)′ Λ (h) exp (A∗h) .

The derivative of Z (h) is:

dZ (h)

dh
= A∗′ exp (A∗h)′Λ (h) exp (A∗h)

+ exp (A∗h)′ Λ (h) exp (A∗h)A∗ + exp (A∗h)′
dΛ (h)

dh
exp (A∗h)

= A∗′Z (h) + Z (h)A∗ + exp (A∗h)′
dΛ (h)

dh
exp (A∗h) .
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Comparing with the initial equation, we get:

exp (A∗h)′
dΛ (h)

dh
exp (A∗h)

= 2 exp (A∗h)′ Λ (h) exp (A∗h) Λ exp (A∗h)′ Λ (h) exp (A∗h) .

The result follows by integrating the differential system:

dΛ (h)

dh
= 2Λ (h) exp (A∗h) Λ exp (A∗h)′ Λ (h) ,

with initial condition Λ (0) = C∗

0 .

Third step:

The application of Lemmas 1 and 2 provide the general solution of equation (A.4.1):

X (h) = X∗ + exp [(A+ 2ΛX∗) h]′

{
(C0 −X∗)−1 + 2

∫ h

0

exp [(A+ 2ΛX∗)u] Λ exp [(A+ 2ΛX∗) u]′ du

}−1

exp [(A+ 2ΛX∗)h] ,

where X∗ satisfies:

A′X∗ +X∗A+ 2X∗ΛX∗ + C1 = 0.

Finally note that the equation defining X∗ can also be written as:

[
(2Λ)1/2X∗ + (2Λ)−1/2A

]
′
[
(2Λ)1/2X∗ + (2Λ)−1/2A

]
+ C1 − A′ (2Λ)−1A = 0.

We deduce the following lemma.

Lemma 3 If the matrix A is symmetric, two cases can be distinguished.

i) If C1 ≫ A′ (2Λ)−1A, the equation defining X∗ has no solution.

ii) If C1 ≪ A′ (2Λ)−1A, there is a multiplicity of solutions:

X∗ = (2Λ)−1/2
[
A′ (2Λ)−1A− C1

]1/2
− (2Λ)−1A,

where
[
A′ (2Λ)−1A− C1

]1/2
denotes any square root of the matrix A′ (2Λ)−1A − C1, not

necessarily the positive one.
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