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Abstract

In this paper we analyze a large class of semiparametric M−estimators for single-
index models, including semiparametric quasi-likelihood and semiparametric maximum
likelihood estimators. Some possible applications to robustness are also mentioned. The
definition of these estimators involves a kernel regression estimator for which a bandwidth
rule is necessary. Given the semiparametric M−estimation problem, we propose a natural
bandwidth choice by joint maximization of the M−estimation criterion with respect to the
parameter of interest and the bandwidth. In this way we extend a methodology first in-
troduced by Härdle, Hall and Ichimura (1993) for semiparametric least-squares. We prove
asymptotic normality for our semiparametric estimator. We derive the asymptotic equiv-
alence between our bandwidth and the optimal bandwidth obtained through weighted
cross-validation. Empirical evidence obtained from simulations suggests that our band-
width improves the higher order asymptotics of the semiparametric M−estimator when
it replaces the usual bandwidth chosen by cross-validation.

Key words: semiparametric M−estimator, single-index model, bandwidth selection,
cross-validation, U−processes, semiparametric quasi-likelihood, robustness.

MSC 2000: 62G05, 62G08, 62G20, 62J12.

Résumé

Dans ce papier nous étudions une classe de M−estimateurs semi-paramétriques dans
les modèles à direction révélatrice unique. Cette classe contient en particulier les estima-
teurs semi-paramétriques de quasi-vraisemblance et du maximum de vraisemblance. La
technique utilisée fait appel à un estimateur préliminaire à noyau, pour lequel un choix
de fenêtre est nécessaire. Nous proposons un choix ”naturel” résultant de la maximisa-
tion du critère de M−estimation conjointement par rapport au paramètre d’intérêt et
à cette fenêtre. Nous étendons ainsi une méthodologie considérée par Härdle, Hall et
Ichimura (1993) dans le cadre des moindrés carrés semi-paramétriques. Nous montrons
la normalité asymptotique de notre estimateur semi-paramétrique. Nous montrons que
la largeur de la fenêtre proposée est asymptotiquement équivalente à celle obtenue par
validation croisée pondérée. Des résultats empiriques obtenus par simulations suggèrent
que notre fenêtre améliore le comportement asymptotique d’ordre supérieur de notre es-
timateur semi-paramétrique quand elle remplace la fenêtre usuelle choisie par validation
croisée.

Mots clefs: M−estimateur semi-paramétrique, modèle à direction révélatrice unique,
choix de la fenêtre, U−processus, quasi-vraisemblance semi-paramétrique, robustesse.



1 Introduction

Consider the problem of estimating a regression function m(x) = E (Y |X = x) from

independent copies
(
Y1, X

T
1

)T
, . . . ,

(
Yn, XT

n

)T
of a random vector

(
Y, XT

)T ∈ Rd+1. In
GLM (generalized linear models; e.g., McCullagh and Nelder (1989)) it is assumed that
m (x) = r0 (xθ0) with r0 known. Here, xθ is a notation for xT θ when x, θ ∈ Rd. The
function r0 is the inverse of the so-called link function. Moreover, the conditional density
fY |X=x of Y given X = x belongs to the linear exponential family, that is

fY |X=x (y) = exp [B (r0 (xθ0)) + C (r0 (xθ0)) y + D (y)] ,

where B, C and D are known functions.
A natural extension of GLM is provided by the semiparametric single-index models

(SIM), where one only assumes the existence of some θ0 ∈ Rd (unique up to a scale
normalization factor) such that

E (Y | X) = E (Y | Xθ0) , (1.1)

that is m (x) = r0 (xθ0) , with unknown r0. Since the regression r0 (t) = E (Y | Xθ0 = t)
depends on θ0, hereafter, we shall write rθ0 instead of r0. In SIM framework, both θ0 and rθ0

are to be estimated. Numerous semiparametric approaches for root-n consistent estima-
tion of θ0 have been proposed : M−estimation [e.g., Ichimura (1993), Sherman (1994b),
Delecroix and Hristache (1999), Xia and Li (1999), Xia, Tong and Li (1999)], direct
(average derivative based) estimation [e.g., Powel, Stock and Stoker (1989), Härdle and
Stoker (1989), Hristache, Juditsky and Spokoiny (2001), Hristache, Juditsky, Polzehl and
Spokoiny (2001)], iterative methods [e.g., Weisberg and Welsh (1994), Chiou and Müller
(1998), Bonneu and Gba (1998), Xia and Härdle (2002)].

Typically, the semiparametric M -estimators mentioned above can be written as

θ̂ = arg max
θ

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
τn(Xi), (1.2)

where r̂i
θ,h (t) is, for instance, the leave-one-out Nadaraya-Watson estimator (with band-

width h) of rθ (t) = E (Y | Xθ = t), −ψ is a contrast function and τn(·) is a so-called
trimming function introduced to guard against small values for the denominators appear-

ing in r̂i
θ,h (t). Finally, the regression function m (x) is estimated by r̂θ̂,h

(
xθ̂

)
. Other

smoothers, such as local polynomials and splines, can replace the Nadaraya-Watson esti-
mator.

In order to estimate θ0 and rθ0 (· θ0) , two smoothing parameters seem to be necessary.

First, after choosing a primary bandwidth h, the estimator θ̂ is computed as in (1.2) .

Afterwards, rθ0 (xθ0) is estimated by r̂θ̂,h∗

(
xθ̂

)
, a kernel estimator, with bandwidth h∗,

of the expectation of Y given xθ̂. The rates of decay for the two bandwidths should verify
some conditions. When ψ (y, r) = − (y − r)2 , Härdle, Hall and Ichimura (1993) defined
more directly (

θ̂, ĥ
)

= arg max
θ,h

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IA (Xi) . (1.3)
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Here, the trimming function is IA (·) , the indicator function of the set A, and A is fixed,
bounded and strictly included in the support of X. The regression rθ0 (· θ0) can be then

estimated by r̂θ̂,ĥ

(
· θ̂

)
.

In this paper we consider a class of semiparametric M−estimators defined by a general
function ψ. Moreover, we provide an automatic and natural choice of the smoothing
parameter h used to define the estimator θ̂. This bandwidth has also some optimal
properties for the nonparametric regression. In particular, it is of order n−1/5. To achieve
these goals we extend Härdle, Hall and Ichimura’s idea, that is, given a function ψ,
we maximize the semiparametric M−estimation criterion (1.2) simultaneously in θ and
h. For simplicity we use a leave-one-out Nadaraya-Watson estimation of the regression
function, although this approach could be applied for other smoothers like, for instance,
local polynomials. Our proofs allow for discrete covariates and do not require a preliminary
(or pilot) estimator of θ0 having a suitable rate of convergence in probability OP (n−δ),
δ > 0.

The methodology we propose allows to build efficient estimators of θ0 under suitable
additional model assumptions. Moreover, it can be extended and applied to a multi-index
framework, that is when there exists θ1

0, ..., θ
p
0 ∈ Rd, p < d, such that

E (Y | X) = E
(
Y | Xθ1

0, ..., Xθp
0

)

[see Ichimura and Lee (1991) and Picone and Butler (2000)]. Finally, if the probabilistic
results on U−processes we use in the proofs could be extended to non-i.i.d. data, our
theoretical results could be adapted easily to such a case.

The paper is organized as follows. Existing results on semiparametric M−estimation
are reviewed in section 2. Moreover, the gaps our paper aims to fulfill are clearly described.
The methodology we use for the theoretical results is depicted in section 3. As in Härdle,
Hall and Ichimura (1993), the basic idea is to show that joint maximization in θ and h
is asymptotically equivalent to separate maximization of a purely parametric term with
respect to θ and of a purely nonparametric term with respect to h. In this way we derive
the asymptotic normality of θ̂, while for ĥ we obtain an asymptotic equivalence with a
theoretical “optimal” bandwidth maximizing the quantity

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ0,h (Xiθ0)

)
I{x: fθ0

(xθ0)≥c} (Xi) ,

where fθ0 is the density of Xθ0 and c is some positive constant. We call this quantity a
ψ−CV (cross-validation) function. When ψ (y, r) = − (y − r)2 , the usual cross-validation
function from nonparametric smoothing is recovered up to a change of sign (Clark (1975)).
In general, we show that maximizing the ψ − CV function is asymptotically equivalent
to minimizing a weighted (mean-squared) cross-validation function. Chiou and Müller
(1998, 1999) provide empirical evidence supporting the idea of choosing the bandwidth
using other criteria than the usual cross-validation function. Their nonparametric quasi-
likelihood criterion is closely related to a ψ − CV . Our theoretical results are stated
in section 4. Section 5 contains some empirical evidence. It is shown that other func-
tions ψ than the usual ψ (y, r) = − (y − r)2 may provide M−estimators θ̂ with better

performances. The choice of ψ acts on the performances of θ̂ in two ways, through the
asymptotic variance and through the optimal choice of h based on the ψ − CV func-
tion. The two effects are discussed. Some comments and conclusions end the paper. The
assumptions and the technical proofs are provided in the appendices.
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Let us end this introduction noticing that it is not clear, a priori, whether an optimal
bandwidth for the regression function is also optimal for the estimation of the parameter
θ. As pointed out by a referee, to find the optimal bandwidth for θ is of theoretical
interest but quite difficult since it involves higher order asymptotic expansions of the
semiparametric estimator. This refinement lies beyond the scope of our paper.

2 Motivations

2.1 Possible choices of ψ

Flexibility in the choice of the function ψ (y, r) could be helpful, for instance, when the
interest is focused on efficiency, goodness-of-fit or robustness. Sherman (1994b) and Dele-
croix and Hristache (1999) seem to be the only papers on semiparametric M−estimation
allowing ψ to belong to a large class of functions.

Apart some technical aspects, our theoretical findings are based on two conditions
ensuring that joint maximization in θ and h as in (1.3) is asymptotically equivalent to
splitting the criterion into two parts, one purely parametric and another one purely non-
parametric, and maximizing separately with respect to θ and h, respectively. These
conditions are

E [∂2ψ (Y, rθ0 (Xθ0)) | X] = 0 (2.1)

and
E [∂θ∂2ψ (Y, rθ0 (Xθ0)) | Xθ0] = 0, (2.2)

where ∂2 denotes the derivative with respect to the second argument of ψ and ∂θ is the
derivative with respect to all occurrences of θ, that is, given y and x,

∂θ∂2ψ (y, rθ0 (xθ0)) =
∂

∂θ
∂2ψ (y, rθ (xθ))|θ=θ0

(see also Sherman (1994b) for similar conditions). In the SIM framework, the two or-
thogonality assumptions can be satisfied by at least two important types of hypothesis:
i) assumptions on ψ without any reference to the conditional distribution of Y given X;
and ii) assumptions on ψ combined with some conditions on the conditional law. This
brings us to at least three cases where our approach applies, provided that the single-index
assumption holds.

Example 1 (quasi-likelihood). Consider a SIM without additional distributional as-
sumptions on the conditional law of Y given X. In this case, the first condition is equiv-
alent to ψ given by linear exponential families (cf. Delecroix and Hristache (1999); see
also Gouriéroux, Monfort and Trognon (1984)). We have

θ0 = arg max
θ

E[B (rθ (Xθ)) + C (rθ (Xθ)) Y + D (Y )] (2.3)

= arg max
θ

E[B (rθ (Xθ)) + C (rθ (Xθ)) Y ],

where B,C satisfy the identity B′(r) + C ′(r)r ≡ 0 and C ′ > 0. In other words, θ0 maxi-
mizes the function θ 7→ E [Q (Y, rθ (Xθ))], where Q is the quasi-(log-)likelihood function

Q (y, r) =

∫ r

y

C ′ (s) (y − s) ds.
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Thus ∂2ψ (Y, r) = ∂2Q (y, r) = C ′(r) (y − r) from which (2.1) follows. The second condi-
tion (2.2) is a consequence of the equation

E
[
∂2

22ψ (Y, rθ0 (Xθ0)) | X
]

= E
[
∂2

22ψ (Y, rθ0 (Xθ0)) | Xθ0

]

and of the identity

E [∂θrθ0 (Xθ0) | Xθ0] = E
[
r′θ0

(Xθ0) (X − E [X | Xθ0]) | Xθ0

]
,

where r′θ0
(·) is the derivative of rθ0(·). This last identity is always true under the SIM

assumption (see Newey (1994), p. 1358). The semiparametric least-squares corresponds
to B(r) = −r2 and C(r) = 2r. Taking B(r) = −r and C(r) = ln r yields the Poisson
pseudo-maximum likelihood method.

More generally, one can allow the functions B, C and D to depend on a nuisance pa-
rameter η that is supposed fixed when writing (2.3) (e.g., negative binomial and gamma
pseudo-log-likelihood functions). This additional parameter could be used to specify sec-
ond order moments of Y given X (see Gouriéroux, Monfort and Trognon (1984), section 5).

Example 2 (maximum likelihood). Assume that θ0 is unique such that the true condi-
tional density of Y given X depends on X only through rθ0 (Xθ0) , that is fY |X=x(y) =
f0(y; rθ0 (xθ0)) with f0 known. Moreover, the marginal law of X does not depend on
θ. If ψ = log f0, conditions (2.1) and (2.2) are then direct consequences of the model
assumptions. This choice of ψ yields the semiparametric maximum likelihood estimator.
Examples are : GLM with unknown link function [e.g., Huh and Park (2002), Carroll,
Fan, Gijbels and Wand (1997), Chen (1995), Klein and Spady (1993)], quadratic expo-
nential families like the normal N(r, r2) [e.g., Xia, Tong and Li (2002) with Gaussian
residuals]. The corresponding estimator is efficient in the semiparametric sense.

Example 3 (robustness). In robust statistics one usually considers ψ(y, r) = −ρ(y− r)
where a) ρ is symmetric; b) the conditional law of Y −rθ0 (Xθ0) given X is symmetric; and
c) the conditional law of Y given X depends only on Xθ0 (this is the case, for instance,
if the errors Y − rθ0 (Xθ0) are independent of the regressors X). An example of function
ρ is the Tukey biweight function

ρc(t) = min(
t2

2
− t4

2c2
+

t6

6c4
,

c2

6
),

a smooth Huber-type function (see Fraiman, Yohai and Zamar (2001) for a larger class
of such smooth functions). For other important examples of M−estimators in robust
statistics we refer to Hampel, Ronchetti, Rousseeuw and Stahel (1986). Another example
is provided by the so-called α−estimator defined by ρ (t) = 1− e−αt2 (cf. Vajda (1989)).

2.2 Bandwidth range and pilot estimation

A major critique for most of existing asymptotic results on semiparametric M−estimation
in index-models is related to the domain from which the bandwidths of the regression esti-
mator has to be chosen. Moreover, quite often there is no explicit rule on how to choose the
bandwidth in practice. Another important critique is the need of a preliminary estimator
approaching θ0 at a suitable rate OP

(
n−δ

)
, δ > 0. Table 1 contains a (non-exhaustive)
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list of papers on semiparametric M−estimation together with their assumptions on pilot
estimation and bandwidth range. For instance, Härdle, Hall and Ichimura (1993) con-
strained θ in a OP (n−1/2) neighborhood of θ0 and h of order n−1/5. However, it is not
obvious that there exists a

√
n−consistent semiparametric estimator when h is of order

n−1/5. Another example which may raise questions is the iterative strategy of Xia, Tong
and Li (1999), page 837. Their idea is to replace the joint maximization in θ and h by a
scheme where θ and h are updated iteratively by separate maximization with respect to
one of them when the other is fixed. The parameter θ is taken in a cone Θn that shrinks
to θ0 sufficiently fast and h is restricted to a domain of bandwidths of order n−1/5. Such
a scheme makes sense only if one proves that for a bandwidth of order n−1/5 there exists
a semiparametric M−estimator with a rate compatible with Θn.

Table 1. Overview of some assumptions in semiparametric M− estimation for Single-Index Models. Let
Θn,δ denote a OP (n−δ) neighborhood of θ0 and let Hn,α stand for a range of bandwidths of order

O(n−α). The regression rθ0(t) is assumed k times differentiable.

Θn,δ Hn,α k continuous X

Ichimura (1993) O(1) α ∈ (
1
8 , 1

7

)
3 no

Härdle, Hall and Ichimura (1993) OP

(
n−1/2

)
α = 1

5 2 yes
Klein and Spady (1993) OP

(
n−1/3

)
α ∈ (

1
8 , 1

6

)
1 no

Sherman (1994b) oP (1) α ∈ (
1
7 , 1

6

)
7 no

Carroll, Fan, Gijbels and Wand (1997) OP

(
n−1/2

)
α ∈ (

1
4 , 1

2

)
2 yes

Bonneu and Gba (1998) OP

(
n−1/2

)
α ∈ (

1
8 , 1

7

)
2 no

Delecroix and Hristache (1999) O(1) α ∈ (
1
8 , 1

7

)
3 no

Xia and Li (1999) δ ∈ (
3
10 , 1

2

)
α = 1

5 2 yes
Xia, Tong and Li (1999) δ ∈ (

3
10 , 1

2

)
α = 1

5 2 yes
Xia, Tong and Li (2002) O(1) α ∈ (

1
6 , 1

4

)
4 yes

Xia and Härdle (2002) O(1) α ∈ (
1
6 , 1

4

)
3 yes

Weisberg and Welsh (1994) O(1) α ∈ (
1
6 , 1

4

)
4 yes

In section 3 we provide new and useful insights on preliminary estimates and band-
width range. Our bandwidth should decrease slower than n−1/4 and faster than n−1/8.
If the explanatory variables are bounded, we only need a consistent in probability pilot
estimator. For unbounded X but satisfying a suitable moment condition, we only require
a consistent preliminary estimator with a rate of convergence in probability faster than
1/ ln n. Moreover, we indicate how to build an estimator with this rate.

When a function ψ(y, r) other then −(y−r)2 is preferred for defining the M−estimator

θ̂, it seems natural to choose h in a way compatible with ψ. For instance, one may prefer
a Poisson pseudo-maximum likelihood method (ψ(y, r) = −r + y ln r) for count data
regression. In this case, a ψ − CV type criterion should be used for choosing h. Such
a choice is equivalent to using a quasi-deviance criterion (McCullagh and Nelder (1989);
see also the nonparametric quasi-likelihood deviance used by Chiou and Müller (1998)).
The use of a general ψ − CV for choosing h is also supported by the empirical findings
reported in Chiou and Müller (1998). Some additional empirical evidence is provided in
section 5.

Finally, when selecting the smoothing parameter h in a semiparametric M−estimation
procedure, one may look for a bandwidth with the optimal rate of decay n−1/(2k+1), where

5



k is the number of derivatives required for the regression (Stone (1982)). From this point
of view, the popular rate n−1/5 is justified only if k = 2. Our bandwidth is shown to be of
order n−1/5. For this, only second order derivatives for the regression function are needed.

3 Methodology

To ensure the estimability of the parameter θ, let us fix its first component to 1 and
identify θ with its last d− 1 components. More precisely, from now on θ will be a vector
of Rd−1 and xθ, with x ∈ Rd, denotes the matrix product (1, θT )x. Accordingly, the
parameter set Θ is a subset of Rd−1. Finally, without loss of generality, assume that
ψ (·, ·) ≤ 0.

Given 1/8 < β1 < β2 < 1/4 and the constants c1, c2 > 0, define

Hn =
{
h : c1n

−β2 ≤ h ≤ c2n
−β1

}
(3.1)

and take hn ∈ Hn, n ≥ 1. Let θn, n ≥ 1 be a preliminary consistent estimator of θ0.
Define the semiparametric M−estimator

(
θ̂, ĥ

)
= arg max

θ∈Θ, h∈Hn

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
I{x: f̂ i

θn,hn
(xθn)≥c}(Xi), (3.2)

where c > 0 and

r̂i
θ,h (t) =

1
n−1

∑
j 6=i

Yj Kh (t−Xjθ)

1
n−1

∑
j 6=i

Kh (t−Xjθ)
=:

γ̂i
θ,h (t)

f̂ i
θ,h (t)

denotes the leave-one-out version of the Nadaraya-Watson estimator of the regression
function

rθ (t) = E (Y |Xθ = t) =:
γθ (t)

fθ (t)
,

with fθ the density of Xθ. The function K (·) is a (second order) kernel function and
Kh (·) stands for K (·/h) /h.

Trimming is designed to keep f̂ i
θ,h away from zero and thus to stabilize computations.

On the other hand, trimming is usually required for analyzing the asymptotic properties
of the nonparametric regression estimator and of the optimal bandwidth. The practical
purpose of trimming recommends a data-driven device like I{x: f̂ i

θ,h(xθ)≥c}(·). However, to

ensure consistency with such trimming, one should require that θ0 is the maximizer of the
map

θ 7→ E
[
ψ (Y, rθ (Xθ)) I{x: fθ(xθ)≥c}(X)

]
, θ ∈ Θ.

Meanwhile, a trimming function like I{x: fθ0
(xθ0)≥c}(·) is easier to manipulate in theory.

Our trimming procedure aims to reduce this gap. It is simple and easy to implement in
applications since it only consists of a checking of the observations before starting the
optimization. In practice, quite often one may take I{z: f̂ i

θn,hn
(x′θn)≥c}(·) ≡ 1. On the other

hand, in a certain sense, our trimming is asymptotically equivalent to the fixed trimming
I{x: fθ0

(xθ0)≥c}(·) which renders the proofs quite transparent. We prove this equivalence

under two types of assumptions: either i) X is bounded and θn − θ0 = oP (1), or ii)

6



E [exp (λ |X|)] < ∞, for some λ > 0, and θn − θ0 = oP (1/ ln n) . Preliminary consistent
estimates can be obtained by M−estimation with a fixed trimming IB(·) where B is a
subset of Rd such that fθ (xθ) ≥ c > 0, x ∈ B, θ ∈ Θ. In particular, it can be shown
that this preliminary estimator is oP (1/ ln n) for a range of bandwidths

[
n−(1/2−ε), n−ε

]
,

0 < ε < 1/2. For a complete proof, see Appendix E.
Let us point out that a minor modification of the arguments used in Appendix E yields

the consistency in probability for the estimator θ̂ defined in (3.2) when X is bounded.
Therefore, for the asymptotic results, in the maximization problem (3.2) we can replace
the parameter set Θ by a sequence of neighborhoods Θn, n ≥ 1 shrinking to θ0. For
technical reasons, when X is unbounded, we have to define the estimator (3.2) with Θ
replaced by shrinking neighborhoods Θn, n ≥ 1. In practice, there is no difference between
the cases X bounded and X unbounded and therefore (θ̂, ĥ) can be always computed by
maximization over Θ.

Define A = {x : fθ0 (xθ0) ≥ c} ⊂ Rd and Aδ = {x : |fθ0 (xθ0)− c| ≤ δ} , δ > 0. By
little algebra, for all θ ∈ Θn, h ∈ Hn and i,

∣∣∣I{x: f̂ i
θ,h(xθ)≥c}(Xi)− IA(Xi)

∣∣∣ ≤ IAδ(Xi) + I(δ,∞)(Zn),

where
Zn = max

1≤i≤n
sup

θ∈Θn, h∈Hn

∣∣∣f̂ i
θ,h (Xiθ)− fθ0 (Xiθ0)

∣∣∣ .

Let

Ŝ
(
θ, h; Ã

)
=

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IÃ (Xi)

with Ã = A or Aδ. Since ψ (·, ·) ≤ 0, we have

∣∣∣∣∣
1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
I{x: f̂ i

θn,hn
(xθn)≥c}(Xi)− Ŝ (θ, h; A)

∣∣∣∣∣

≤ −Ŝ
(
θ, h; Aδ

)− I(δ,∞)(Zn)

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
.

We show that Ŝ
(
θ, h; Aδ

)
= oP (Ŝ (θ, h; A)), uniformly over Θn×Hn, provided that δ → 0

and P (fθ0 (Xθ0) = c) = 0. On the other hand, we prove that P (Zn > δ) → 0, provided
that δ → 0 slowly enough (see Lemma B.2 in the appendix). All this proves that, modulo

arbitrarily small corrections,
(
θ̂, ĥ

)
can be defined as the maximizer of Ŝ (θ, h; A) over

Θn ×Hn. Hereafter, we simply write Ŝ (θ, h) instead of Ŝ (θ, h; A) and we consider

(
θ̂, ĥ

)
= arg max

θ∈Θn, h∈Hn

Ŝ (θ, h) ,

with Θn, n ≥ 1 shrinking to θ0 and Hn defined in (3.1).

Next, the basic idea is that the semiparametric criterion Ŝ (θ, h) can be split into

a purely parametric part S̃ (θ), a purely nonparametric one T (h) and a reminder term

7



R(θ, h), where

S̃ (θ) =
1

n

n∑
i=1

ψ (Yi, rθ (Xiθ)) IA (Xi)− 1

n

n∑
i=1

ψ (Yi, rθ0 (Xiθ0)) IA (Xi) ,

T (h) =
1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ0,h (Xiθ0)

)
IA (Xi) ,

R (θ, h) =
1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ,h (Xiθ)

)− ψ (Yi, rθ (Xiθ))
]

IA (Xi)

− 1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ0,h (Xiθ0)

)− ψ (Yi, rθ0 (Xiθ0))
]

IA (Xi)

(see also Härdle, Hall and Ichimura (1993) for a slightly different splitting). In view of

this general purpose decomposition, the simultaneous optimization of Ŝ (θ, h) is equivalent

to separately optimizing S̃ (θ) with respect to θ and T (h) with respect to h, provided
that R (θ, h) is sufficiently small. To prove that R (θ, h) is indeed negligible we show in
Proposition D.1 in Appendix D that

R (θ, h) =

{
OP

(
h4

)
+ OP

(
1

nh2

)
+ OP

(
1

n
√

nh4

)
+ oP

(
1√
n

)
(3.3)

+OP (|θ − θ0|)
[
O

(
h2

)
+ OP

(
1

h2
√

n

)]}
×OP (|θ − θ0|) ,

as n →∞, uniformly in h ∈ [
n−(1/2−ε), n−ε

]
, with 0 < ε < 1/2, and uniformly in θ ∈ Θn;

herein, |·| denotes the Euclidean metric. The key ingredients for proving this identity
are the cornerstone conditions (2.1) and (2.2), the definition of the trimming set A and
results on the rates of convergence for degenerate U−processes (Sherman (1994a)).

Taylor expansion yields

S̃ (θ) = OP

( |θ − θ0|√
n

)
+ OP

(|θ − θ0|2
)

and therefore, to ensure that R (θ, h) is negligible with respect to S̃ (θ) , it suffices to

constrain h in the range Hn defined in (3.1). Even if other decompositions of Ŝ (θ, h) may
be used, a careful inspection of our proofs suggests that a bandwidth range like Hn is the
largest for which we may deduce

√
n−consistency for θ̂ in our framework.

3.1 Asymptotic distribution for θ̂

In view of (3.3) deduce that

R (θ, h) = oP

( |θ − θ0|√
n

)
+ oP

(|θ − θ0|2
)
,

uniformly in h ∈ Hn and θ ∈ Θn. Use this and Taylor expansion to write

Ŝ (θ, h) =
1√
n

(θ − θ0)
T Vn − 1

2
(θ − θ0)

T Wn (θ − θ0) (3.4)

+oP

( |θ − θ0|√
n

)
+ oP

(|θ − θ0|2
)

+ {terms not depending on θ} ,

8



uniformly over Θn, where

Vn =
1√
n

n∑
i=1

∂θψ (Yi, rθ0 (Xiθ0)) IA (Xi) , Wn = − 1

n

n∑
i=1

∂2
θθψ (Yi, rθ0 (Xiθ0)) IA (Xi)

(here, ∂θψ is a vector in Rd−1, while ∂2
θθψ is a (d − 1) × (d − 1) matrix). From the

assumptions we shall impose below, the vector Vn converges in distribution to N (0,M0)
and Wn → W0, almost surely, where

M0 = E
[
∂θψ (Yi, rθ0 (Xiθ0)) ∂θψ (Yi, rθ0 (Xiθ0))

T IA (Xi)
]
,

and
W0 = −E

[
∂2

θθψ (Yi, rθ0 (Xiθ0)) IA (Xi)
]
.

Intuitively, θ̂ has the same asymptotic distribution as the maximizer of the quadratic form
(3.4). More precisely, apply Theorems 1 and 2 of Sherman (1994a) to deduce first, the√

n−consistency of θ̂ and next, the asymptotic normality

√
n

(
θ̂ − θ0

) D−→ N (
0,W−1

0 M0W
−1
0

)
.

3.2 Order of T (h) and behavior of ĥ

By Taylor expansion we can write

T (h) = T0 + T1(h) + T2(h) + {negligible terms} ,

where T0 is independent of h,

T1(h) =
1

n

n∑
i=1

∂2ψ (Yi, rθ0 (Xiθ0))
[
r̂i
θ0,h (Xiθ0)− rθ0 (Xiθ0)

]
IA (Xi)

and

T2(h) =
1

n

n∑
i=1

1

2
∂2

22ψ (Yi, rθ0 (Xiθ0))
[
r̂i
θ0,h (Xiθ0)− rθ0 (Xiθ0)

]2
IA (Xi) .

Using condition (2.1) and rates of convergence for degenerate U−processes, we deduce
from Lemma C.1, Appendix C, that, uniformly over Hn,

T2(h) = −C1h
4 − C2/nh + oP (h4 + 1/nh),

with C1, C2 some constants defined in section 4 below; our Lemma C.1 is a refinement of
a well-known result from nonparametric regression (e.g., Härdle and Marron (1985)). We
also show that T1(h) = oP (T2(h)), uniformly over Hn (see Lemma C.2).

Note that R(θ, h) = oP (T2(h)), uniformly in θ in OP (n−1/2) neighborhoods of θ0

and h ∈ Hn. Since θ̂ was shown to be
√

n−consistent, deduce that ĥ is asymptotically

equivalent to the maximizer of T2(h). More precisely, ĥ/hopt
n → 1, in probability, where

hopt
n = (C2/4C1)

1/5n−1/5. As a by-product of these results, we obtain the asymptotic
equivalence between the ψ − CV function T (h) and T2(h).
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Remark that in the quasi-likelihood framework (see Example 1 in section 2) where
ψ(y, r) = B(r) + C(r)y + D(y) and ∂2

22ψ (y, r) = C ′′ (r) (y − r) − C ′ (r), the function
−T2(h) is asymptotically equivalent to the weighted cross-validation function

X 2 =
1

n

n∑
i=1

1

2
C ′ (rθ0 (Xiθ0))

[
r̂i
θ0,h (Xiθ0)− rθ0 (Xiθ0)

]2
IA (Xi) .

(Recall that [C ′ (r)]−1 is the variance of the conditional law given by exp ψ (y, r)). In
other words, choosing h by optimizing a ψ−CV criterion is asymptotically equivalent to
choosing it as the minimizer of a kind of Pearson chi-squared statistics X 2. In particular,
this explains why in practice Pearson and deviance-based bandwidth choices are about
the same (cf. Chiou and Müller (1998), page 1382).

To conclude this section, note that the arguments above reduce maximization of
Ŝ (θ, h) over Θn ×Hn to maximization with respect to θ in a OP (n−1/2) neighborhood of
θ0 and h of order OP (n−1/5). Indeed, up to asymptotically negligible adjustments, we can
write

max
θ∈Θn, h∈Hn

Ŝ (θ, h) = max
h∈Hn

{
max
θ∈Θn

[
S̃ (θ) + R (θ, h)

]
+ T (h)

}

= max
h∈Hn

{
max

|θ−θ0|=OP (n−1/2)

[
S̃ (θ) + R (θ, h)

]
+ T (h)

}

= max
h∈Hn

max
|θ−θ0|=OP (n−1/2)

Ŝ (θ, h) = max
|θ−θ0|=OP (n−1/2)

max
h∈Hn

Ŝ (θ, h)

= max
|θ−θ0|=OP (n−1/2)

{
max
h∈Hn

[T (h) + R (θ, h)] + S̃ (θ)

}

= max
|θ−θ0|=OP (n−1/2)

{
max

h=OP (n−1/5)
[T (h) + R (θ, h)] + S̃ (θ)

}

= max
|θ−θ0|=OP (n−1/2)

max
h=OP (n−1/5)

Ŝ (θ, h) .

Hence, one of our contributions is to prove, and no longer to assume, as in Härdle, Hall
and Ichimura (1993), that the rates of θ̂ and ĥ are indeed n−1/2 and n−1/5, respectively.

4 The main results

Assume that the parameter set Θ ∈ Rd−1 is compact with nonvoid interior. Define

C1 =
K2

1

4
E

{
1

2
∂2

22ψ (rθ0 (Xθ0) , rθ0 (Xθ0)) (4.1)

×
[
r′′θ0

(Xθ0) +
2 r′θ0

(Xθ0) f ′
θ0

(Xθ0)

fθ0 (Xθ0)

]2

IA (X)

}
,

C2 = K2 E

{
1

2
∂2

22ψ (rθ0 (Xθ0) , rθ0 (Xθ0))
1

fθ0 (Xθ0)
vθ0 (Xθ0) IA (X)

}

and
hopt

n = arg max
h

(
C1h

4 + C2n
−1h−1

)
= (C2/4C1)

1/5 n−1/5.
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Theorem 4.1 Suppose that the assumptions of Appendix A hold and X is bounded. If
(θ̂, ĥ) is defined as in (3.2), then ĥ/hopt

n → 1, in probability, and

√
n

(
θ̂ − θ0

) D−→ N (
0,W−1

0 M0W
−1
0

)
.

If X is unbounded, consider a sequence of real numbers {dn} such that dn ln n → 0 and
let Θn = {θ : |θ − θ0| ≤ dn}, n ≥ 1. The conclusions remain true if Θ is replaced by Θn

in the definition of (θ̂, ĥ).

Proof. First, consider that (θ̂, ĥ) is defined as in (3.2) with Θ replaced by Θn. We can

decompose Ŝ
(
θ, h; Aδ

)
in the same way as Ŝ (θ, h) and obtain the same order, uniformly

over Θn ×Hn and uniformly in δ ∈ [0, δ0], for some small δ0 (apply also Lemma B.4b)).
The constants appearing in the dominating terms of the decomposition vanishes as δ →
0, provided that P (fθ0 (Xθ0) = c) = 0. Consequently, Ŝ

(
θ, h; Aδ

)
= oP (Ŝ (θ, h; A)),

uniformly over Θn×Hn, if δ → 0. Next, the conclusions follow from Lemma B.2, Corollary
3.1, Proposition D.1 and the arguments in section 3.

For the case where X is bounded, the same arguments as in Appendix E yield the
consistency in probability for the estimator θ̂ when (θ̂, ĥ) is defined as in (3.2), that is
maximizing over Θ × Hn. This means that Θ × Hn can be replaced by Θn × Hn where
the diameter dn of Θn tends to zero. Finally, use the Remark following Lemma B.3 to
complete the proof.

For the nonparametric part we have the following usual result (see Härdle and Stoker
(1989)). The proof is omitted.

Theorem 4.2 Assume that the conditions of Theorem 4.1 are fulfilled. Then, for any t
such that fθ0 (t) > 0,

√
nĥ

(
r̂θ̂,ĥ (t)− rθ0 (t)− ĥ2β (t)

) D−→ N
(
0, K2vθ0(t)fθ0 (t)−1)

where β (t) = (K1/2)
[
r′′θ0

(t) + 2r′θ0
(t) f ′

θ0
(t) fθ0 (t)−1] .

Note that, for any x such that fθ0 (xθ0) > 0,

√
nĥ

(
r̂θ̂,ĥ

(
xθ̂

)
− rθ0 (xθ0)− ĥ2β (xθ0)

) D→ N
(
0, K2vθ0(xθ0)fθ0 (xθ0)

−1) . (4.2)

Indeed, we can write

r̂θ̂,ĥ

(
xθ̂

)
− rθ0 (xθ0) = r̂θ̂,ĥ

(
xθ̂

)
− r̂θ0,ĥ (xθ0) + r̂θ0,ĥ (xθ0)− rθ0 (xθ0)

= ∂θr̂θ0,ĥ (xθ0)
(
θ̂ − θ0

)
+ oP

(∣∣∣θ̂ − θ0

∣∣∣
)

+ r̂θ0,ĥ (xθ0)− rθ0 (xθ0)

= OP

(
n−1/2

)
+ r̂θ0,ĥ (xθ0)− rθ0 (xθ0) ,

because ∂θr̂θ0,ĥ (xθ0) → ∂θrθ0 (xθ0) , in probability, uniformly over oP (1) neighborhoods
of θ0 (see Lemma B.3). Thus, the convergence in (4.2) is a consequence of the asymptotic
distribution of the Nadaraya-Watson estimator (e.g., Bosq and Lecoutre (1987)).
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5 Empirical evidence

In order to illustrate the finite sample properties of our estimator, we conducted a sim-
ulation study using a SAS 8.1 program. For optimization we used the NLPNRA rou-
tine of SAS/IML software. This routine is based on a Newton-Raphson method. All
the estimates reported in this section were obtained with a quartic kernel K (u) =
(15/16) (u2 − 1)

2
I[−1,1] (u) .

In the first experiment, the data were generated in the following way :

1. Xi =
(
X

(1)
i , X

(2)
i , X

(3)
i , X

(4)
i

)T

∈ R4 :

X
(1)
i ∼ N (0, 1/4) , X

(2)
i ∼ B (1, 1/2) , X

(3)
i ∼ N (0, 1/4) , X

(4)
i =

(
X

(3)
i + Q

)
/2,

with Q ∼ N (0, 1) , where X
(1)
i , X

(2)
i , X

(3)
i and Q are independent random variables;

2. θ0 =
(
θ

(1)
0 , θ

(2)
0 , θ

(3)
0 , θ

(4)
0

)
= (1, 1, 1, 1)T ;

3. the conditional law of Yi given Xi = x is a negative binomial law of mean r0 (xθ0)
and variance r0 (xθ0) [1 + r0 (xθ0)], where r0 (t) = exp [(t− 3) /2].

Three types of ψ were used to estimate θ0:

a) ψNB (y, r) = y log r− (y + 1) log (1 + r), corresponding to the true density of Y given
X;

b) ψP (y, r) = y log r − r, corresponding to a Poisson pseudo-likelihood;

c) ψN (y, r) = −r2 +2 r y, yielding the semiparametric least squares estimator considered
in Härdle, Hall and Ichimura (1993).

Let θ̂NB, θ̂P and θ̂N be the M−estimators corresponding to ψNB, ψP and ψN , respec-

tively. Write θ̂ =
(
1, θ̂(2), θ̂(3), θ̂(4)

)T

where θ̂ stands for any of θ̂NB, θ̂P and θ̂N . For each

sample size n ∈ {250, 500, 1000} we generated 500 samples
(
Yi, X

T
i

)T ∈ R5, 1 ≤ i ≤ n.

For each sample we computed θ̂NB, θ̂P and θ̂N .
Table 2 contains the mean and the standard deviation of the estimates of the last

three components of θ0. Moreover, we calculate the estimated mean squared error of θ̂

MSE =
1

500

500∑
s=1

(∣∣∣θ̂(2)
s − θ

(2)
0

∣∣∣
2

+
∣∣∣θ̂(3)

s − θ
(3)
0

∣∣∣
2

+
∣∣∣θ̂(4)

s − θ
(4)
0

∣∣∣
2
)

,

with θ̂ equal to θ̂NB, θ̂P and θ̂N , respectively.
We remark that θ̂P outperforms θ̂N in terms of bias and variance. Even if the true

model we considered is characterized by a significant overdispersion, the semiparametric
Poisson pseudo-maximum likelihood estimator behaves almost like the semiparametric
maximum likelihood estimator θ̂NB.
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Table 2. The true conditional law of Y given X is negative binomial of mean r0 (xθ0) and variance
r0 (xθ0) [1 + r0 (xθ0)] with r0 (t) = exp [(t− 3) /2]. The true vector θ0 is (1, 1, 1, 1)T . Let θ̂NB , θ̂P and

θ̂N denote the M− estimators obtained from the true, Poisson and normal log-likelihoods, respectively.
The upperscripts indicate the components of the vectors.

n θ̂
(2)
NB θ̂

(3)
NB θ̂

(4)
NB θ̂

(2)
P θ̂

(3)
P θ̂

(4)
P θ̂

(2)
N θ̂

(3)
N θ̂

(4)
N

250 mean 1.144 1.200 1.185 1.156 1.218 1.179 1.297 1.236 1.250
st. dev. 1.189 1.177 1.203 1.231 1.254 1.277 1.462 1.287 1.338
MSE 4.331 4.881 5.780

500 mean 1.052 1.088 1.117 1.096 1.090 1.140 1.115 1.076 1.142
st. dev. 0.791 0.810 0.796 0.892 0.823 0.840 0.927 0.895 0.907
MSE 1.937 2.212 2.518

1000 mean 1.078 1.045 1.077 1.084 1.041 1.072 1.102 1.072 1.124
st. dev. 0.521 0.524 0.466 0.507 0.527 0.439 0.645 0.651 0.625
MSE 0.775 0.740 1.260

The choice of a criterion ψ influences the estimates of θ0 in two ways. On one hand, the
function ψ appears in the asymptotic variance of the M−estimator. On the other hand, the
semiparametric criterion defined by ψ is also used for choosing the bandwidth. The choice
of the bandwidth does not influence the asymptotic variance of the M−estimator but it
influences its higher order asymptotic properties. In order to distinguish the performance
gain due to our new way of choosing the bandwidth, we conducted a second simulation
experiment. This time we compute the M−estimator and the bandwidth using a sequence
of iterations. For a given ψ, two types of iterative procedures are considered. In the first
one, which we call it iterative procedure I, we choose h through a ψ − CV function as
follows:

I.1 For given θ̂, find ĥ the maximizer of the ψ − CV function

h → 1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ̂,h

(
Xiθ̂

))
;

I.2 For given ĥ, an updated estimate θ̂ is obtained by maximizing

θ → 1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,ĥ

(Xiθ)
)

.

For the second type of iterations considered we choose the bandwidth through a clas-
sical cross-validation procedure. The following steps defining the iterative procedure II
are run until convergence:

II.1 For given θ̂, find ĥ the minimizer of CV function

h → 1

n

n∑
i=1

(
Yi − r̂i

θ̂,h

(
Xiθ̂

))2

;
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II.2 For given ĥ, an updated estimate θ̂ is obtained by maximizing

θ → 1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,ĥ

(Xiθ)
)

.

Note that repeating Steps I.1 and I.2 until convergence one expects some values
(
θ̂, ĥ

)

very close to those obtained by joint optimization in θ and h. However, our experience
proves that iterating Steps I.1 and I.2 is not only more computational demanding but also
leads to more instable results. For the sake of more accurate comparisons, we maintain
the iterative procedure I even when we choose the bandwidth through a ψ−CV criterion.

For this second simulation experiment we used the same conditional distribution of Y
given X and the same one-dimensional regression function r0 (·) . For shorter computa-
tions, we take only two independent explanatory variables X(1), X(2) ∼ N (0, 1) and we fix

θ0 = (1, 1)T . In this case, we only have to calculate the second components θ̂
(2)
NB, θ̂

(2)
P and

θ̂
(2)
N of the six M−estimators we consider (that is, we consider ψNB, ψP and ψN in each

of the two iterative procedures above). For each n ∈ {100, 200, 400} we draw 500 samples(
Yi, X

T
i

)T ∈ R3, 1 ≤ i ≤ n. The results are given in Table 3. Looking at the MSE we
notice that the contribution of the bandwidth choice method to the performances of the
M−estimator is significant. There is a clear improvement of the MSE, mainly because of
a smaller variance, when the ‘optimal’ bandwidth is obtained through a ψ−CV function.

Finally, we analyze the impact of the bandwidth choice on the performances of the
nonparametric estimator of the regression function r0 (·) using the results of our second
experiment (see also Chiou and Müller (1998), section 5, for a similar analysis). For
brevity, only the case n = 400 and ψ equal to ψP is considered. A grid of points t
between −2.3 and 2.3 is fixed. Given the design of our experiment, the probability that
|Xθ0| ≤ 2.3 is close to 0.9. The Nadaraya-Watson estimators r̂θ̂,ĥ (t) with t in the grid

and (θ̂, ĥ) yielded by each of the iterative procedures I and II were computed.

Table 3. The law of Y given X and the regression r0 (t) are as in Table 2. Moreover, θ0 = (1, 1)T . The
iterative procedures I and II are considered. Each M− estimator is obtained by iterative separate
optimization with respect to the second component of θ and with respect to the bandwidth. Two

criteria for finding the ‘optimal’ bandwidth are used, that is ψ−CV and usual CV.

n θ̂
(2)
NB θ̂

(2)
NB θ̂

(2)
P θ̂

(2)
P θ̂

(2)
N

with CV with ψ−CV with CV with ψ−CV with CV

100 mean 0.993 0.949 1.015 0.958 0.986
st. dev. 0.722 0.650 0.752 0.663 0.820
MSE 0.520 0.424 0.564 0.441 0.672

200 mean 1.058 1.001 1.011 0.995 0.991
st. dev. 0.580 0.497 0.584 0.542 0.635
MSE 0.339 0.247 0.340 0.293 0.403

400 mean 1.055 1.021 1.051 1.022 1.038
st. dev. 0.441 0.406 0.459 0.423 0.492
MSE 0.197 0.165 0.213 0.179 0.243
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For any t in the grid, the mean squared error E[r̂θ̂,ĥ (t) − r0 (t)]2 is estimated by

the average of [r̂θ̂,ĥ (t) − r0 (t)]2 over 500 samples. Let MSEI (t) and MSEII (t) be the
averages corresponding to the iterative procedure I and II, respectively. The curve t →
100 ∗ (MSEII (t) /MSEI (t) − 1) is depicted in Figure 1. It appears that a bandwidth
obtained through a ψ − CV function is at least as good as the usual cross-validation
bandwidth when used to build the nonparametric estimator of the regression r0 (·).

Figure 1: The difference expressed in percentage between the mean squared errors of the Nadaraya-
Watson estimators computed with cross-validation and ψ−CV based bandwidths ĥ.

6 Conclusions

We introduce a large class of semiparametric M−estimators for single-index models and
we show their asymptotic normality. The estimates are obtained as maximizers of a
criterion

Ŝ (θ, h) =
1

n

n∑
i=1

ψ (Yi, r̂θ,h (Xiθ)) τn(Xi),

where a nonparametric kernel estimator r̂θ,h is used to estimate the conditional expec-
tation rθ (·) = E (Y |Xθ = ·). It is well-known that the (first order) asymptotics of

θ̂ = arg minθ∈Θ Ŝ (θ, h) do not depend on the choice of h, provided that h satisfies some
conditions. The decomposition

Ŝ (θ, h) = S̃ (θ) + T (h) + R (θ, h)

and the order of R (θ, h) given in (3.3) allows us to derive a large range of values for the

smoothing parameter which lead to the same asymptotic law for θ̂. This range is between
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n−1/4 and n−1/8, if the true regression rθ0 (·) is twice differentiable. In particular, the
optimal rate n−1/5 for the bandwidth choice in nonparametric regression is in this range.

In practice, one still has to choose a reliable h. Since the choice of h affects only the
higher order asymptotics of an estimator θ̂, a natural way to deal with the bandwidth
choice problem is to find an optimal h for the regression estimation, for example by cross-
validation. In the single-index framework this idea was first developed by Härdle, Hall
and Ichimura (1993), which, for the particular case of ψ (y, r) = − (y − r)2, proposed to

maximize Ŝ (θ, h) jointly in θ and h. This leads to a bandwidth which is asymptotically
equivalent to h chosen by cross-validation if θ0 were known.

In the case of a more general ψ (e.g., quasi-likelihood, maximum likelihood or robust

methods), it also seems natural to maximize Ŝ (θ, h) with respect to θ and h. In some
sense, this is like considering h an auxiliary parameter for which the M−estimation crite-
rion may provide an estimate. We show in this paper that such a choice ĥ for h is optimal
for estimating the regression function in the sense that it is equivalent to a bandwidth
optimizing a weighted cross-validation criterion. The weights are given by the second
derivative of ψ with respect to r (e.g., for the semiparametric quasi-likelihood case, the

weights correspond to the inverse of the variance). We prove that ĥ is of order n−1/5. The

simulation experiments we conducted indicate that ĥ is also preferable for estimating θ0.
Whether our ĥ is optimal for the estimation of θ remains unknown.

The proofs are based on a technical toolbox linking powerful results on U− processes
to index regressions. Our technique allows for asymptotic results under weak conditions.
In particular, discrete covariates are allowed and no preliminary estimator of θ0 having a
suitable rate of convergence in probability OP (n−δ), δ > 0, is required.

A Appendix: definitions and assumptions

Assume that Θ is a compact subset of Rd−1 with nonvoid interior. Recall that Xθ is a
short for (1, θT )X.

Assumption 1.1 The observations
(
Y1, X

T
1

)
, . . . ,

(
Yn, X

T
n

)
are independent copies of a

random vector
(
Y, XT

)T ∈ Rd+1.

Assumption 1.2 There exists a unique θ0 interior point of Θ such that E (Y | X) =
E (Y | Xθ0) .

Assumption 1.3 For every θ ∈ Θ, the random variable Xθ admits a density fθ(·) with
respect to the Lebesgue measure on R.

Assumption 1.4 There exists c0 > 0 and a positive integer k0 such that, for any 0 <
c ≤ c0 and θ ∈ Θ, the set {t : fθ(t) = c} has at most k0 elements.

The last two assumptions ensure, in particular, that P (fθ0(Xθ0) = c) = 0, for any
0 < c ≤ c0.

Assumption 1.5 E [exp (λ |X|)] < ∞, for some λ > 0. Moreover, E(Y 4) < ∞.
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CONDITION L A function g : Θ×R→ R is said to satisfy Condition L if, for any
Λ a compact set on the real line, there exists B > 0 and b ∈ (0, 1] such that

|g (θ, t)− g (θ′, t′)| ≤ B |(θ, t)− (θ′, t′)|b , for any θ, θ′ ∈ Θ, t, t′ ∈ Λ.

Assumption 1.6 a) The function (θ, t) 7→ fθ (t) ≥ 0, θ ∈ Θ, t ∈ R, satisfies a Lipschitz
condition, that is there exists a ∈ (0, 1] and C > 0 such that

|fθ (t)− fθ′ (t
′)| ≤ C |(θ, t)− (θ′, t′)|a for any θ, θ′ ∈ Θ and t, t′ ∈ R.

b) The function (θ, t) 7→ rθ (t) , θ ∈ Θ, t ∈ R, satisfies Condition L.
c) For any θ ∈ Θ, the functions t 7→ γθ (t) and t 7→ fθ (t) are twice differentiable. Let

γ′′θ (t) and f ′′θ (t) denote the second order derivatives. The functions (θ, t) 7→ γ′′θ (t) and
(θ, t) 7→ f ′′θ (t) , θ ∈ Θ, t ∈ R, satisfy Condition L with b = 1.

d) For any θ ∈ Θ and any component X(j) of X, the functions t 7→ E
(
X(j) |Xθ = t

)
and t 7→ E

(
Y X(j) |Xθ = t

)
are twice differentiable and their second order derivatives

satisfy Condition L with b = 1.
e) For any t ∈ R, the function θ 7→ rθ (t) is twice continuously differentiable and, for

any θ ∈ Θ, the functions t 7→ ∂θrθ (t) and t 7→ ∂2
θθrθ (t) are continuous. Moreover, the

function (θ, t) 7→ ∂θrθ (t) satisfy Condition L with b = 1.

Let vθ (t) = var (Y |Xθ = t) be the conditional variance of Y given Xθ = t.

Assumption 1.7 The function (θ, t) 7→ vθ (t) satisfies Condition L.

Consider ψ : Y × R → R, with Y , R ⊂ R. If c, δ > 0, define Λ =
⋃

θ∈Θ{t : fθ(t) ≥ c}
and

D(c, δ) = {r : ∃ (θ, t) ∈ Θ× Λ such that |r − rθ(t)| ≤ δ}.
Assumption 1.8 If c > 0, there exists δ > 0 such that D(c, δ) is strictly included in R.

Assumption 1.9 There exists F (·) such that ψ (y, r) ≤ F (y) , ∀r ∈ R.

This assumption allows us to consider ψ (y, r) ≤ 0, possibly after replacing it with
ψ (y, r)− F (y) . This condition is fulfilled in all examples we provided above.

Assumption 1.10 The function ψ(·, ·) is twice differentiable in the second argument.
For any c and δ > 0 for which D(c, δ) is strictly included in R, there exists a function
Ψ(·) such that

sup
r∈D(c,δ)

(|∂2
22ψ(y, r)|+ |∂2ψ(y, r)|) ≤ Ψ(y),

sup
r,r′∈D(c,δ)

∣∣∂2
22ψ(y, r)− ∂2

22ψ(y, r′)
∣∣ ≤ Ψ(y)|r − r′|

and E[Ψ(Y )4+ε], for some ε > 0.

Assumption 1.11 The kernel function K (·) is differentiable, symmetric, positive and
compactly supported. Moreover, K (·) and the derivative K ′ (·) are of bounded variation.

Assumption 1.12 The following conditions hold:

1. E [∂2ψ (Y, rθ0 (Xθ0)) | X] = 0;

2. E [∂θ∂2ψ (Y, rθ0 (Xθ0)) | Xθ0] = 0.

Assumption 1.13 The (d− 1)× (d− 1) matrix W0 = −E [∂2
θθψ (Yi, rθ0 (Xiθ0)) IA (Xi)]

is positive definite.
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B Appendix: Technical lemmas

First, let us recall that F , a class of real-valued functions defined on a set X , is Euclidean
for the envelope F if there exist positive constants C and V with the following property: if
0 < ε ≤ 1 and if µ is a measure for which

∫
Fdµ < ∞, then there are functions f1, ..., fk ∈

F such that k ≤ Cε−V and, for each f ∈ F , there is an fi with
∫ |f − fi| dµ ≤ ε

∫
Fdµ.

Moreover, the constants C and V must not depend on µ. Let us call the functions f1, ..., fk

approximating functions. Recall also that a class of indicator functions of sets in a class
D is Euclidean (for the envelope F ≡ 1) if and only if D is a Vapnik-Červonenkis (VC)
class (cf. Pakes and Pollard (1989)).

Recall that Hn was defined in (3.1) as the range
{
h : c1n

−β2 ≤ h ≤ c2n
−β1

}
, n ≥ 1,

for some fixed 1/8 < β1 < β2 < 1/4 and c1, c2 > 0. However, most of the results in the
appendices are valid for a larger range of bandwidths. For this reason, consider also the
range Hn =

[
n−(1/2−ε), n−ε

]
, with some small 0 < ε < 1/2. Let Θn = {θ : |θ − θ0| ≤ dn},

with {dn} some sequence decreasing to zero. We use C to denote a positive constant,
not necessarily the same at each occurrence. For simplicity, if x1 ∈ Rd and x2 ∈ R, we

omit the transpose when writing the vector
(
xT

1 , x2

)T
. For ease of exposition, we write

‘supa∈A, b F (a, b) = OP (G(a))’ instead of ‘supb F (a, b) = OP (G(a)), uniformly in a ∈ A’.
A similar notation with oP (·) is used.

Lemma B.1 Assume that the kernel K is a symmetric, positive, compactly supported
function of bounded variation. Suppose that the map (θ, t) 7→ fθ (t) ≥ 0, θ ∈ Θ, t ∈ R,
satisfies a Lipschitz condition, that is there exists a ∈ (0, 1] and C > 0 such that

|fθ (t)− fθ′ (t
′)| ≤ C |(θ, t)− (θ′, t′)|a for θ, θ′ ∈ Θ and t, t′ ∈ R. (B.1)

Then
max
1≤i≤n

sup
θ, x, h∈Hn

∣∣∣f̂ i
θ,h (xθ)− fθ (xθ)

∣∣∣ = OP

(
n−1/2h−1

)
+ O (ha) .

Proof. Define fθ,h (t) = E [Kh (t−Xθ)] and note that

sup
θ, t, h∈Hn

|fθ,h (t)− fθ (t)| = sup
θ, t, h∈Hn

∣∣∣∣
∫

K(u) [fθ (t + uh)− fθ (t)] du

∣∣∣∣

≤
∫

K(u)

(
sup

θ, t, h∈Hn

|fθ (t + uh)− fθ (t)|
)

du

= O (ha) ,

where the last equality is due to (B.1). On the other hand, we have

n− 1

n

∣∣∣f̂ i
θ,h (t)− fθ,h (t)

∣∣∣ ≤ 1

h

∣∣∣∣∣
1

n

n∑
j=1

K

(
t−Xjθ

h

)
− E

[
K

(
t−Xθ

h

)]∣∣∣∣∣

+
1

nh

∣∣∣∣K
(

t−Xiθ

h

)
− E

[
K

(
t−Xiθ

h

)]∣∣∣∣ .

Given the properties of K, the class of functions {K ((t− xθ) /h) : θ ∈ Θ, h ∈ Hn} is Eu-
clidean for a constant envelope (cf. Lemma 22(ii) of Nolan and Pollard (1987) applied
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for α = h−1θ and β = h−1t). Use, for instance, Corollary 4(ii) of Sherman (1994a), with
k = 1, and deduce that

max
1≤i≤n

sup
θ, x, h∈Hn

∣∣∣f̂ i
θ,h (xθ)− fθ,h (xθ)

∣∣∣ = OP

(
n−1/2h−1

)
.

Now, it becomes more clear why Hn is defined as
[
n−(1/2−ε), n−ε

]
, with 0 < ε < 1/2 :

it is the range for which f̂ i
θ,h (xθ) converges to fθ (xθ) in probability, uniformly in θ, x and

h. Note that in the next lemma the definition of Zn is slightly more general than in section
3 because h belongs to the larger range Hn.

Lemma B.2 a) If δ > 0, then

sup
θ∈Θn, h∈Hn

∣∣∣I{x: f̂ i
θ,h(xθ)≥c}(Xi)− IA(Xi)

∣∣∣ ≤ IAδ(Xi) + I(δ,∞)(Zn), 1 ≤ i ≤ n,

where Aδ = {x : |fθ0 (xθ0)− c| ≤ δ} and

Zn = max
1≤i≤n

sup
θ∈Θn, h∈Hn

∣∣∣f̂ i
θ,h (Xiθ)− fθ0 (Xiθ0)

∣∣∣ .

b) Assume that K (·) and fθ (·) satisfy the assumptions of Lemma B.1 for some a, C >
0. Moreover, E [exp (λ |X|)] < ∞ for some λ > 0. Assume dn = o (1/ ln n) , with dn

from the definition of Θn. If δn → 0 such that δn/n
−aε and δn [dn ln n]−a → ∞, then

I(δn,∞)(Zn) = oP (n−α) , ∀α > 0.

Proof. a) We have
∣∣∣I{x: f̂ i

θ,h(xθ)≥c}(Xi)− IA(Xi)
∣∣∣ ≤ I{x: f̂ i

θ,h(xθ)≥c}\A(Xi) + IA\{x: f̂ i
θ,h(xθ)≥c}(Xi).

For any θ, h and δ, we can write
{

f̂ i
θ,h (Xiθ) ≥ c

}
\ A ⊂

{
f̂ i

θ,h (Xiθ) ≥ c, fθ0 (Xiθ0) < c− δ
}
∪ {c− δ ≤ fθ0 (Xiθ0) < c}

and

A \
{

f̂ i
θ,h (Xiθ) ≥ c

}
⊂

{
f̂ i

θ,h (Xiθ) < c, fθ0 (Xiθ0) ≥ c + δ
}
∪ { c ≤ fθ0 (Xiθ0) < c + δ}

which proves the inequality.
b) It suffices to prove that P (Zn > δn) → 0. Note that, for any x and θ,

|fθ (xθ)− fθ′ (xθ′)| ≤ C
(
|xθ − xθ′|2 + |θ − θ′|2

)a/2

≤ C (1 + |x|)a |θ − θ′|a .

Combine this inequality with the arguments of Lemma B.1 and write

Zn ≤ max
1≤i≤n

sup
θ∈Θ, h∈Hn

∣∣∣f̂ i
θ,h (Xiθ)− fθ (Xiθ)

∣∣∣ + max
1≤i≤n

sup
θ∈Θn

|fθ (Xiθ)− fθ0 (Xiθ0)|

≤ max
1≤i≤n

sup
θ∈Θ, h∈Hn, x

∣∣∣f̂ i
θ,h (xθ)− fθ (xθ)

∣∣∣ + C |θ − θ0|a max
1≤i≤n

(1 + |Xi|)a

= O
(
n−aε

)
+ OP

(
n−ε

)
+ O (da

n) max
1≤i≤n

(1 + |Xi|)a .
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On the other hand, we can write

P

(
da

n max
1≤i≤n

(1 + |Xi|)a > δn

)
≤

n∑
i=1

P ((1 + |Xi|)a > δn/da
n)

= nP
[
exp (λ(1 + |Xi|)) > exp

(
λδ1/a

n /dn

)]

≤ n
eλE [exp (λ |Xi|)]
exp

(
λδ

1/a
n /dn

) .

Since δ
1/a
n /dn ln n and δn/n

−aε →∞, deduce that P (Zn > δn) → 0.

Lemma B.3 Assume that E [Y 2] < ∞. The kernel function K(·) satisfies the conditions
of Lemma B.1. Moreover, K(·) is differentiable with K ′(·) of bounded variation. Let
c > 0. Suppose that there exists a ∈ (0, 1] and C > 0 such that condition (B.1) holds.
Assume that, for any θ ∈ Θ, the functions t 7→ γθ (t) , t 7→ fθ (t), t 7→ E (X |Xθ = t) and
t 7→ E (Y X |Xθ = t) are twice differentiable. Moreover, the second derivatives of these
functions satisfy a Lipschitz condition on compacts: if g stands for one of these functions,
then for any compact set D ⊂ R there exists b ∈ (0, 1], C > 0, independent of θ, such
that, for any θ ∈ Θ,

|g′′θ (t1)− g′′θ (t2)| ≤ C |t1 − t2|b , t1, t2 ∈ D.

Consider dn = o (1/ ln n) , where dn is the radius of Θn, and Hn =
[
n−(1/2−ε), n−ε

]
, with

some small 0 < ε < 1/2. Moreover, E [exp (λ |X|)] < ∞ for some λ > 0. If ξ stands for
f, γ or r, then

max
1≤i≤n

sup
θ∈Θn, h∈Hn

∣∣∣ξ̂i
θ,h (Xiθ)− ξθ (Xiθ)

∣∣∣ I{x: fθ0
(xθ0)≥c}(Xi) = O

(
h2

)
+ OP

(
n−1/2h−1

)

and

max
1≤i≤n

sup
θ∈Θn, h∈Hn

∣∣∣∂θξ̂
i
θ,h (Xiθ)− ∂θξθ (Xiθ)

∣∣∣ I{x: fθ0
(xθ0)≥c}(Xi) = O

(
h2

)
+ OP

(
n−1/2h−2

)
.

Proof. Like in Lemma B.2, deduce

|fθ (xθ)− fθ′ (xθ′)| ≤ C (1 + |x|)a |θ − θ′|a .

Next, remark that

{x : fθ0 (xθ0) ≥ c} ⊂ {x : fθ (xθ) ≥ c/2} ∪ {x : C (1 + |x|)a da
n > c/2} , θ ∈ Θn.

Since E [exp (λ |X|)] < ∞, for some λ > 0, and dn = o (1/ ln n) , we have

nP (C (1 + |X|)a da
n > c/2) → 0,

from which we deduce I{x: fθ0
(xθ0)≥c} (Xi) ≤ I{x: fθ(xθ)≥c/2} (Xi) + I{x:C(1+|x|)ada

n>c/2} (Xi) ,

θ ∈ Θn, with
max
1≤i≤n

I{x:C(1+|x|)ada
n>c/2} (Xi) = oP

(
n−α

)
,∀α > 0.
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Thus, we can replace I{x: fθ0
(xθ0)≥c} (Xi) by I{x: fθ(xθ)≥c/2} (Xi) .

Next, note that A (Θ) :=
⋃

θ∈Θ {t : fθ (t) ≥ c/2} , n ≥ 1 is a bounded set. Indeed,
if A (Θ) is unbounded, let {tm} and {θm} such that |tm| → ∞ and fθm (tm) ≥ c/2. Let
θ′ ∈ Θ be a limit point for {θm} . Use condition (B.1) to deduce that fθ′ (tm) ≥ c/4, if m
is sufficiently large, which is impossible because of the uniform continuity of the density
t 7→ fθ′ (t).

If fθ,h (t) = E [Kh (t−Xθ)] , use a Taylor expansion and the symmetry of K and write

fθ,h (t)− fθ (t) =

∫
K(u) [fθ (t + uh)− fθ (t)] du

= h2f ′′θ (t)

∫
u2K(u)du + h2

[
f ′′θ

(
t̃
)− f ′′θ (t)

] ∫
u2K(u)du,

with t̃ between t and t + uh. It follows that

sup
θ∈Θ, t∈A(Θ), h∈Hn

|fθ,h (t)− fθ (t)| ≤ h2

∫
u2K(u)du

[
sup

θ∈Θ, t∈A(Θ)

|f ′′θ (t)|+ C |uh|b
]

.

Complete with the arguments in the proof of Lemma B.1 and deduce

max
1≤i≤n

sup
θ∈Θn, h∈Hn

∣∣∣f̂ i
θ,h (Xiθ)− fθ (Xiθ)

∣∣∣ I{x: fθ(xθ)≥c/2}(Xi) = O
(
h2

)
+ OP

(
1/h

√
n
)
.

Proceed as for fθ,h and deduce

sup
θ∈Θ, t∈A(Θ), h∈Hn

|γθ,h (t)− γθ (t)| = O
(
h2

)
,

with γθ,h (t) = E [Y Kh (t−Xθ)] . On the other hand, consider gθ,t,h(x, y) = yK((t−xθ)/h)
and note that the class of functions {gθ,t,h : θ ∈ Θ, t ∈ A (Θ) , h ∈ Hn} is Euclidean for an
envelope F (x, y) = C |y| with C such that K (·) ≤ C. Then,

max
1≤i≤n

sup
θ, t∈A(Θ), h∈Hn

∣∣γ̂i
θ,h (t)− γθ,h (t)

∣∣ ≤ n

(n− 1) h

∣∣∣∣∣
1

n

n∑
j=1

gθ,t,h (Xj, Yj)−E [gθ,t,h (X, Y )]

∣∣∣∣∣

+
C

(n− 1) h
max
1≤i≤n

(|Yi|+ 1)

= OP

(
1/h

√
n
)
.

Deduce that

max
1≤i≤n

sup
θ∈Θn, h∈Hn

∣∣γ̂i
θ,h (Xiθ)− γ (Xiθ)

∣∣ I{x: fθ(xθ)≥c/2}(Xi) = O
(
h2

)
+ OP

(
1/h

√
n
)
.

Next, deduce the same result for r̂i
θ,h = γ̂i

θ,h / f̂ i
θ,h after writing

r̂i
θ,h − rθ =

γ̂i
θ,h

f̂ i
θ,h

− γθ

fθ

=
1

f̂ i
θ,h

[
γ̂i

θ,h − γθ

]− rθ

f̂ i
θ,h

[
f̂ i

θ,h − fθ

]
.
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The arguments for ∂θγ̂
i
θ,h and ∂θr̂

i
θ,h are similar and hence omitted. Note only that

(see, e.g., Andrews (1995), section 6)

∂θfθ (xθ) =
d

dt
{E [(x−X) |Xθ = t] fθ(t)}|t=xθ ,

∂θγθ (xθ) =
d

dt
{E [Y (x−X) |Xθ = t] fθ(t)}|t=xθ .

Therefore, at this stage the functions t 7→ E (X |Xθ = t) and t 7→ E (Y X |Xθ = t)
should satisfy the same conditions as fθ (·) and γθ (·).

REMARK. It is clear from the proofs of Lemmas B.2 b) and B.3 that there is a
trade-off between the rate dn and conditions on the moments of the explanatory variables
X. Note that no assumption is required on dn, the radius of Θn, when X is bounded.
Indeed, if X lies in a compact, condition (B.1) implies that for any x,

|fθ (xθ)− fθ′ (xθ′)| ≤ C |θ − θ′|a , θ, θ′ ∈ Θ,

with C > 0 some constant independent of x. In this case the arguments in the proof
of Lemma B.2 b) can be applied for any δn → 0 such that δn/n

−aε and δn/d
a
n → ∞.

Moreover, Lemma B.3 remains true for any dn → 0.

Lemma B.4 Assume that Assumption 1.4 holds. Moreover, the functions t 7→ fθ(t),
θ ∈ Θ, are continuous. Let Aδ = {x : |fθ0 (xθ0)− c| ≤ δ} , c, δ > 0. Then:

a) the class of indicator functions
{
(x, ω) 7→ I{t: fθ(t)≥c}(xθ + ωh) : θ ∈ Θ, h ∈ [0, 1]

}
,

with (x, ω) ∈ Rd× [−1, 1] , is Euclidean for the envelope F ≡ 1, provided that c > 0 is fixed
and sufficiently small. The same remains true for the class

{
x 7→ I{t: fθ(t)≥c}(xθ) : θ ∈ Θ

}
,

that is in the case where h is fixed equal to zero.
b) the class of indicator functions {x 7→ IAδ(x) : 0 < δ ≤ δ0} is Euclidean for the en-

velope F ≡ 1, provided that c, δ0 > 0 are fixed sufficiently small.

Proof. a) The continuity of the functions t 7→ fθ(t), θ ∈ Θ, and Assumption 1.4 ensure
that any set {t : fθ (t) ≥ c} , θ ∈ Θ, is a union of at most k0 intervals, provided that c > 0
is sufficiently small. Use Lemma 2.4 (for the space of real-valued linear functions on Rd+1)
and Lemma 2.5 (ii)-(iii) of Pakes and Pollard (1989) to deduce that the class of all sets
of the form {(x, ω) : xθ + ωh ∈ T} , with θ ∈ Rd−1, h ∈ [0, 1] and T a union of at most k0

intervals on the real line, is a VC class. Thus, the class of sets {(x, ω) : fθ (xθ + ωh) ≥ c} ,
θ ∈ Θ, h ∈ [0, 1] , is a VC class. Similar arguments apply for the second class of functions.

b) Note that any set {t : |fθ0 (t)− c| ≤ δ} , 0 < δ ≤ δ0, is a union of at most 2k0

intervals, provided that c, δ0 > 0 are sufficiently small. By the results of Pakes and
Pollard (1989) the class of sets Aδ, 0 < δ ≤ δ0, is a VC class.

Lemma B.5 Assume that Assumption 1.4 holds. Moreover, the function (θ, t) 7→ fθ(t)
satisfies condition (B.1). Let g : Θ× R→ R be a function satisfying Condition L. Then
the class of functions

{
(x, ω) 7→ g (θ, xθ + ωh) I{t: fθ(t)≥c}(xθ + ωh) : θ ∈ Θ, h ∈ [0, 1]

}
,
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with (x, ω) ∈ Rd × [−1, 1] , is Euclidean for envelope F (x, ω) = M (1 + |x|)b , for some
M > 0. The same remains true in the case where h is set equal to zero.

Proof. Denote (x, ω) 7→ I{t: fθ(t)≥c}(xθ+ωh) by Iθ,h (x, ω) . By Lemma B.4, the class of
functions Iθ,h (·, ·), indexed by (θ, h) , is Euclidean for the constant envelope equal to one.

Take ε > 0 and µ such that
∫

(1 + |x|)b dµ < ∞. In particular, µ is a finite measure. Given

ε and µ, let
(
θ̃i, h̃i

)
, i = 1, ..., Ñ be the points corresponding to a set of approximating

functions for the class of functions Iθ,h (·, ·), where Ñ ≤ Cε−V for some C and V .
Enclose Θ × [0, 1] in a cube S of side l and partition S in kd subcubes of side l/k,

with k to be determined shortly. For each subcube that intersects Θ× [0, 1] and for any
i, choose arbitrarily a point (θ, h) in the intersection such that

∫ |Iθ,h− Iθ̃i,h̃i
|dµ ≤ ε

∫
dµ,

when such a point exists. Augment the set of points
(
θ̃i, h̃i

)
by the points chosen in this

way and denote the augmented set by {(θj, hj) : j = 1, ..., N} . Note that

N ≤ Cε−V
(
1 + kd

)
.

Each (θ, h) in Θ× [0, 1] belongs to at least one of the subcubes. By construction, there
exists a point (θj, hj) belonging to a same subcube as (θ, h) such that

∫ ∣∣Iθ,h − Iθj ,hj

∣∣ dµ ≤
2ε

∫
dµ. Moreover, (θj, hj) lies necessarily a distance no greater than (l/k)

√
d from (θ, h) .

We can write

∣∣g (θ, xθ + ωh) Iθ,h (x, ω)− g (θj, xθj + ωhj) Iθj ,hj
(x, ω)

∣∣
≤ |g (θ, xθ + ωh)− g (θj, xθj + ωhj)| Iθ,h (x, ω) Iθj ,hj

(x, ω)

+ (|g (θ, xθ + ωh)|+ |g (θj, xθj + ωhj)|)
∣∣Iθ,h (x, ω)− Iθj ,hj

(x, ω)
∣∣

=: ∆1 + ∆2.

Since Λ =
⋃

θ∈Θ {t : fθ (t) ≥ c} is a bounded set (see Lemma B.3), there exist B > 0 and
b ∈ (0, 1] (depending only on c) such that

∆1 ≤ B
(|θ − θj|2 + |(θ, h)− (θj, hj)|2 |(x, ω)|2)b/2

≤ B |(θ, h)− (θj, hj)|b
[
2 + |x|2]b/2

≤ C1k
−b (1 + |x|)b ,

for some C1 > 0. Deduce that
∫

∆1dµ ≤ C1ε
∫

(1 + |x|)b dµ, provided that k−b ≤ ε. On
the other hand, there exists a constant C2 > 0 such that

sup
θ∈Θ, h∈[0,1]

|g (θ, xθ + ωh)| Iθ,h (x, ω) ≤ C2, (x, ω) ∈ Rd × [−1, 1] .

Deduce that there exist some constant M (depending only on c) such that

∆1 + ∆2 ≤ Mε

∫
(1 + |x|)b dµ,

if k is the smallest integer greater than ε−1/b. This choice of k guarantees that N grows
at a rate that characterize a Euclidean class.
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The proof of the following lemma is an obvious adaptation of the proof of Lemma B.5
and therefore it will be omitted. See also Lemma 2.13 of Pakes and Pollard (1989).

Lemma B.6 Suppose that Assumption 1.4 holds. Moreover, the function (θ, t) 7→ fθ(t)
satisfies condition (B.1). Consider a function (θ, t, y) 7→ g(θ, t, y), with θ ∈ Θ, t ∈ R and
y ∈ Y ⊂ R, such that for any compact Λ ⊂ R there exist a real-valued function B(·) and
b ∈ (0, 1] for which

|g(θ, t, y)− g(θ′, t′, y)| ≤ B(y)|(θ, t)− (θ′, t′)|b, θ, θ′ ∈ Θ, t, t′ ∈ Λ, y ∈ Y .

Then the family of functions

{
(x, ω, y) 7→ g(θ, xθ + ωh, y)I{t: fθ(t)≥c}(xθ + ωh) : θ ∈ Θ, h ∈ [0, 1]

}
,

with (x, ω, y) ∈ Rd × [−1, 1]× Y, is Euclidean for the envelope

|g(θ, xθ + ωh, y)|I{t: fθ(t)≥c}(xθ + ωh) + MB(y)(1 + |x|)b,

for some arbitrary θ, h in Θ× [0, 1] and some function B(·) and M > 0.

Lemma B.7 Suppose that the map (θ, t) 7→ fθ (t) ≥ 0, θ ∈ Θ, t ∈ R, satisfies the
Lipschitz condition (B.1) for some C > 0 and a ∈ (0, 1]. Then the family

{
(x, ω) 7→ f−1

θ (x θ + ωh) I{t: fθ(t)≥c} (x θ + ωh) : θ ∈ Θ, h ∈ [0, 1]
}

,

c > 0, is Euclidean for the envelope C ′ (1 + |x|)a , where C ′ is some positive constant. The
same remains true when h is fixed equal to zero.

Proof. First, note that

f−1
θ (t) I{t ′: fθ(t ′)≥c} (t) = [max (fθ (t) , c)]−1 I{t ′: fθ(t ′)≥c} (t) .

Next, by little algebra deduce that

|1/ max (fθ (t) , c)− 1/ max (fθ′ (t
′) , c)| ≤ C1 |(θ, t)− (θ′, t′)|a ,

for some C1 > 0. Finally, apply Lemma B.5 above for g (θ, t) = [max (fθ (t) , c)]−1.

C Appendix: The expansion of T (h)

Denote (n)k = n(n − 1)...(n − k + 1) and recall that Hn is the range
[
n−(1/2−ε), n−ε

]
,

0 < ε < 1/2. Let Θn be defined as in Lemmas B.2 and B.3. When X is bounded, see
the remark following Lemma B.3. The following lemma is a refined version of a standard
result for cross-validation in nonparametric regression (e.g., Härdle and Marron (1985)).
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Lemma C.1 Let Z1, Z2, ... be independent copies of a random vector Z =
(
Y,XT

)T ∈
Rd+1. Define rθ (t) = E (Y |Xθ = t) and vθ (t) = var (Y |Xθ = t) . Suppose that Assump-
tion 1.4 holds, fix some small c > 0 and let Λ =

⋃
θ∈Θ{t : fθ(t) ≥ c}. Moreover, suppose

that:

1. E(Y 4) < ∞ and E [exp (λ |X|)] < ∞ for some λ > 0.

2. for any θ ∈ Θ, the random variable Xθ admits a density fθ with respect to the
Lebesgue measure on R.

3. (θ, t) 7→ fθ (t), θ ∈ Θ, t ∈ R, satisfies the Lipschitz condition (B.1) for some C > 0
and a ∈ (0, 1].

4. (θ, t) 7→ rθ (t), θ ∈ Θ, t ∈ R, satisfies Condition L.

5. for any θ ∈ Θ, the functions t 7→ γθ (t) = rθ (t) fθ (t) and t 7→ fθ (t) , t ∈ R, are
twice continuously differentiable.

6. (θ, t) 7→ f ′′θ (t) and (θ, t) 7→ γ′′θ (t), θ ∈ Θ, t ∈ R, satisfy Condition L with b = 1.

7. (θ, t) 7→ vθ (t), θ ∈ Θ, t ∈ R, satisfies Condition L.

Let (y, t) 7→ wθ(y, t), θ ∈ Θ, be a family of functions for which there exist a real-valued
function B(·) with E[B(Y )4+ε] < ∞, for some ε > 0, and b′ ∈ (0, 1] such that, for each y

|wθ(y, t)− wθ′(y, t′)| ≤ B(y)|(θ, t)− (θ′, t′)|b′ , θ, θ′ ∈ Θ, t, t′ ∈ Λ.

Moreover, there exist θ and B̃(·) such that supt∈Λ|wθ(·, t)| ≤ B̃(·) and E[B̃(Y )4+ε] < ∞.
Define

U (θ, h) =
1

n

n∑
i=1

wθ (Yi, Xiθ)
[
r̂i
θ,h (Xiθ)− rθ (Xiθ)

]2
I{x: fθ(xθ)≥c} (Xi) , θ ∈ Θ, h ∈ Hn,

where r̂i
θ,h (·) denotes the leave-one-out kernel estimator of rθ (·); the kernel is a continuous

probability density function K with the support in [−1, 1]. Moreover, K is of bounded
variation and symmetric. Then,

U (θ, h) = −h4C1 (θ)− 1

nh
C2 (θ) + ρ (θ, h) ,

where

C1 (θ) =
K2

1

4
E

{
−wθ (Y, Xθ)

[
r′′θ (Xiθ) +

2 r′θ (Xθ) f ′θ (Xθ)

fθ (Xθ)

]2

I{x: fθ(xθ)≥c} (X)

}
,

C2 (θ) = K2 E

{
− wθ (Y, Xθ)

fθ (Xθ)
vθ (Xθ) I{x: fθ(xθ)≥c} (X)

}
,(C.1)

with K1 =
∫

u2K (u) du, K2 =
∫

K2 (u) du and the reminder ρ (θ, h) satisfies

sup
θ∈Θ, h∈Hn

ρ (θ, h) = oP

(
h4 + (nh)−1) .

25



Proof. For brevity, assume that, for any θ, the set {t : fθ (t) ≥ c} is an interval,
necessarily bounded. The extension to the case where {t : fθ (t) ≥ c} is the union of at
most k0 bounded intervals is straight.

First, simplify the notation: when there is no possible confusion, omit the arguments
Xiθ and xiθ or replace them by Vi and vi, respectively. Write r̂i = γ̂i/ f̂ i and r = γ / f

instead of r̂i
θ,h = γ̂i

θ,h/f̂
i
θ,h and rθ = γθ/fθ, respectively. Similarly, w is a short for wθ.

Moreover, write Ii instead of I{x: fθ(xθ)≥c} (Xi) .

By Taylor expansion, 1/f̂ i 2 = 1/f 2−2[(f
i
)−3(f̂ i−f)], with f

i
between f̂ i and f . Thus

U (θ, h) =
1

n

n∑
i=1

a
(
γ̂ i − rf̂ i

)2

Ii − 1

n

n∑
i=1

a bn

(
γ̂ i − rf̂ i

)2

Ii,

with a = wf−2 and bn = 2[(f
i
)−3(f̂ i − f)]. Clearly, a bnIi = oP (1) (see also Lemma B.1).

Using the definition of γ̂ i and f̂ i,

U (θ, h) =
n− 2

n− 1
U1 (θ, h) +

1

n− 1
U2 (θ, h) + {terms of smaller order}

with

U1 (θ, h) = (n)−1
3

∑

i6=j 6=l

f1 (Zi, Zj, Zl; θ, h) , U2 (θ, h) = (n)−1
2

∑

i6=j

f2 (Zi, Zj; θ, h) ,

f1 (zi, zj, zl; θ, h) = a (vi) [yj − rθ (vi)] [yl − rθ (vi)] Kh (vi − vj) Kh (vi − vl) Ii

and
f2 (zi, zj; θ, h) = a (vi) [yj − rθ (vi)]

2 K2
h (vi − vj) Ii . (C.2)

The order of U1 (θ, h) . For any i 6= j denote by Ei and Eij the conditional expecta-
tion operators E (· |Zi) and E (· |Zi, Zj) , respectively. By the usual decomposition of a
U−statistics in degenerate U−statistics [see, e.g., Serfling(1980)], write

U1 (θ, h) = U3
nf1,3 (·, ·, ·; θ, h) + U2

nf1,2 (·, ·; θ, h) + P 1
nf1,1 (·; θ, h) + E (f1) ,

where

U3
nf1,3 = (n)−1

3

∑

i 6=j 6=l

{f1 − [Eij + Eil + Ejl] (f1) + [Ei + Ej + El] (f1)− E (f1)}

U2
nf1,2 =

1

(n)2

[
∑

i 6=j

Eij +
∑

i6=l

Eil +
∑

j 6=l

Ejl] (f1)− 2

n
[
∑

i

Ei +
∑

j

Ej +
∑

l

El] (f1) + 3E (f1)

P 1
nf1,1 = n−1[

∑
i

Ei +
∑

j

Ej +
∑

l

El] (f1)− 3E (f1) .

Using the results of Sherman (1994a) on the rates of uniform convergence for degenerate
U−processes indexed by classes which are Euclidean for a squared integrable envelope,
we show that E (f1) is the dominant term in the decomposition of U1 (θ, h). To prove the
Euclidean property we use results from Nolan and Pollard (1987) (hereafter NP87), Pakes
and Pollard (1989) (abbreviated by PP89), Sherman (1994a) and Lemmas B.4 to B.7
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above. Let us simply recall that pointwise addition or pointwise product of two Euclidean
classes as well as integration with respect to one of the arguments of the functions in an
Euclidean class preserve the Euclidean property.

First, note that the family

{(zi, zj, zl) 7→ K [(xiθ − xjθ) /h] K [(xjθ − xlθ) /h] : θ ∈ Θ, h ∈ Hn}
is Euclidean for a constant envelope (apply Lemma 22(ii) of NP87). Next, use Lemmas
B.4, B.5 and B.7 above and deduce that the family {h2f1,3 (·, ·, ·; θ, h)} is Euclidean for a
squared integrable envelope. Apply Corollary 4 of Sherman (1994a) and deduce

U3
nf1,3 (·, ·, ·; θ, h) = h−2OP (n−3/2) = OP (h−2n−3/2), (C.3)

uniformly in θ ∈ Θ and h ∈ Hn.
Next, we look for the order of U2

nf1,2. Remark that

Eij (f1) = a (Vi) [Yj − r (Vi)] Kh (Vi − Vj) Eij {[Yl − r (Vi)] Kh (Vi − Vl)} Ii

= a (Vi) [Yj − r (Vi)] Kh (Vi − Vj) E {[r (Vl)− r (Vi)] Kh (Vi − Vl) |Vi} Ii.

If v is fixed, the symmetry of K, a simple change of variables and Taylor expansion yield

g1 (v; θ, h) = E {[rθ (Vl)− rθ (v)] Kh (v − Vl)}
=

∫
γθ(u)Kh (v − u) du− rθ(v)

∫
fθ(u)Kh (v − u) du

=

∫
γθ(v − ωh) K(ω)dω − rθ(v)

∫
fθ(v − ωh) K(ω)dω

=
(
h2/2

)
[γ′′θ (v)− rθ(v)f ′′θ (v)]

∫
ω2K(ω) dω (C.4)

+

∫
sγ(v, ω; θ, h) K(ω) dω − rθ(v)

∫
sf (v, ω; θ, h) K(ω) dω,

where sγ and sf are the reminders under integral form of the Taylor expansions of γθ (·)
and fθ (·) , respectively, that is,

sL (v, ω; θ, h) =

∫ v−ωh

v

(v − ωh− s) [L′′θ(s)− L′′θ(v)] ds, (C.5)

with L = γ or f. By Condition 6,∣∣∣∣
sL (v, ω; θ, h)

h2
− sL (v, ω; θ, h′)

h′ 2

∣∣∣∣ ≤
∣∣∣∣
∫ v−ωh

v

[
v − ωh− s

h2
− v − ωh′ − s

h′ 2

]

× [L′′θ(s)− L′′θ(v)] ds|

+

∣∣∣∣∣
∫ v−ωh′

v−ωh

v − ωh′ − s

h′ 2
[L′′θ(s)− L′′θ(v)] ds

∣∣∣∣∣
≤ 2C (h′ − h) |ω|3 + C (h′ − h) |ω|3 /2, (C.6)

for some C > 0, provided that 0 < h ≤ h′. On the other hand, using again condition 6,
∣∣∣∣
sL (v, ω; θ, h′)

h′2
− sL (v, ω; θ′, h′)

h′ 2

∣∣∣∣ ≤
∫ v−ωh′

v

|v − ωh′ − s|
h′2

|L′′θ(s)− L′′θ′(s)| ds

+ |L′′θ(v)− L′′θ′(v)|
∫ v−ωh′

v

|v − ωh′ − s|
h′2

ds

≤ 2Cω2 |θ − θ′| . (C.7)
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The last two displays show that the families of functions

(x, ω) 7→ h−2sL(x θ, ω; θ, h)I{x′: fθ(x′θ)≥c} (x) (C.8)

(with L = γ or f) indexed by (θ, h) , satisfy the Lipschitz condition of Lemma 2.13 of
PP89. Deduce that these families are Euclidean for a constant envelope. The Euclidean
property is preserved for the last two integrals in (C.4). Finally, apply Lemma B.5 and
deduce that the family of functions

x 7→ [γ′′θ (x θ)− rθ(xθ)f ′′θ (x θ)] I{x′: fθ(x′θ)≥c} (x)

is Euclidean for an envelope M(1 + |x|)1+b, for some M > 0 and b ∈ (0, 1]. Now, we have
all the ingredients necessary to conclude that the family of functions

x 7→ h−2g1(x θ ; θ, h)I{x′: fθ(x′θ)≥c} (x) ,

indexed by (θ, h) is Euclidean for the envelope C(1+|x|)1+b, for some C > 0 and b ∈ (0, 1].
Consequently, {h−1 E [ f1 (zi, zj, · ; θ, h)]} is Euclidean for a squared integrable envelope.
By similar arguments deduce that {h−1 E [ f1 (zi, · , zl; θ, h)]} is Euclidean for the corre-
sponding squared integrable envelope.

The last term of U2
nf1,2 (·, ·; θ, h) to be studied is Ejl (f1) . By a change of variable,

E [f1| (Yj, Vj) = (yj, vj) , (Yl, Vl) = (yl, vl)]

= h−1

∫
aθ(vj + ωh) [yj − rθ (vj + ωh)] [yl − rθ (vj + ωh)]

×K (ω) K [(vj − vl) /h + ω] I{t: fθ(t)≥c} (vj + ωh) fθ(vj + ωh) dω.

Apply Lemmas B.4 to B.7 and deduce that the family of functions

(ω, zj, zl) 7→ aθ(xj θ + ωh) [yj − rθ (xj θ + ωh)] [yl − rθ (xj θ + ωh)]

×K [(xj θ − xl θ) /h + ω] I{t: fθ(t)≥c} (xj θ + ωh) fθ(xj θ + ωh),

indexed by (θ, h) , is Euclidean for a squared integrable envelope. Consider the last in-
tegral above as an expectation with respect to the probability defined by K (ω) dω and
deduce that the class {hE [ f1 (·, zj, zl ; θ, h)]} indexed by (θ, h) is Euclidean for a squared
integrable envelope.

The previous findings indicate that {h f1,2 (·, · ; θ, h) ; θ ∈ Θ, h ∈ Hn} is Euclidean for
a squared integrable envelope. Moreover, for any θ and i1 6= i2

sup
θ∈Θ, h∈Hn

hE (|f1,2 (zi1 , zi2 ; θ, h)|) → 0. (C.9)

Since
sup

θ∈Θ, h∈Hn

|aθ (Xiθ) [Yj − rθ (Xiθ)] [Yl − rθ (Xiθ)]| I{x: fθ(xθ)≥c} (Xi)

is integrable, to prove property (C.9) it suffices to show that

sup
θ∈Θ, h∈Hn

hE [Kh (Xiθ −Xjθ) Kh (Xjθ −Xlθ)] → 0, i 6= j 6= l.
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For this note that, for any θ, P (Xjθ −Xlθ = 0) = 0 and recall that the support of K
is bounded. By the same arguments as used in the proof of Corollary 8(ii) of Sherman
(1994a), deduce that uniformly over Θ×Hn,

U2
nf1,2 (·, ·; θ, h) = oP (h−1n−1). (C.10)

For the order of P 1
nf1,1 (·; θ, h) let us write

Ei (f1) = a (Vi) Ei { E [(Yj − r (Vi)) | Zi, Vj] E [(Yl − r (Vi)) | Zi, Vl]

× Kh (Vi − Vj) Kh (Vi − Vl)} Ii

= a (Vi) [g1(Vi; θ, h)]2 Ii, (C.11)

with g1(·; θ, h) defined as in (C.4). Deduce that {h−4 E [ f1 (zi, ·, ·; h)]} is Euclidean for a
constant envelope. On the other hand, by simple algebra we obtain

Ej (f1) = Ej {Eij {a (Vi) [Yj − r (Vi)] [Yl − r (Vi)] Kh (Vi − Vj) Kh (Vi − Vl) Ii}}
= E {a (Vi) [Yj − r (Vi)] g1(Vi ; θ, h) Kh (Vi − Vj) Ii |Yj, Vj} .

Moreover, by a change of variables

E {a (Vi) [Yj − r (Vi)] g1(Vi; θ, h) Kh (Vi − Vj) Ii |Yj = y, Vj = v}
=

∫
g1(t; θ, h) a(t) [y − rθ (t)] Kh (t− v) fθ(t) I{t′: fθ(t′)≥c} (t) dt

=

∫
g1(uh + v; θ, h)a(uh + v) [y − rθ (uh + v)] K (u) fθ(uh + v)I{t′: fθ(t′)≥c} (uh + v) du.

In view of (C.4), write

g1(uh + v; θ, h) = h2 (K1 /2) [γ′′θ − rθf
′′
θ ] (uh + v)

+

∫
sγ(uh + v, ω; θ, h) K(ω) dω

−rθ(uh + v)

∫
sf (uh + v, ω; θ, h) K(ω) dω,

with sγ and sf defined as in (C.5). By the same arguments as used for the families written
in (C.8), the families

(x, u, ω) 7→ h−2sL(uh + x θ, ω; θ, h)I{x′: fθ(x′θ)≥c} (x) ,

(with L = γ or f) indexed by (θ, h) , are Euclidean for a constant envelope. Next, after
integrating out ω, deduce that

(x, u) 7→ h−2g1(uh + x θ; θ, h)I{x′: fθ(x′θ)≥c} (x) ,

is Euclidean for a squared integrable envelope. Finally, after integrating out u, deduce
that the family {h−2 E [ f1 (·, zj, · ; θ, h)]} is Euclidean for a squared integrable envelope.
Similar arguments apply for El (f1) . Use Corollary 4 of Sherman(1994a) to deduce

P 1
nf1,1 (·; θ, h) = OP

(
h2n−1/2

)
, (C.12)
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uniformly in (θ, h) ∈ Θ×Hn. In view of (C.4), (C.6), (C.7) and (C.11), deduce

Ei (f1) = h4a (Vi)
K2

1

4

[
(rθfθ)

′′ (Vi)− rθ (Vi) f ′′θ (Vi)
]2

I{x: fθ(xθ)≥c} (Xi) + h4R1(Vi; θ, h),

with |R1(v; θ, h)| → 0 as h → 0, uniformly in v and θ. Thus, uniformly in (θ, h) ∈ Θ×Hn,

E (f1) = E [Ei (f1)] = −h4C1 (θ) + o
(
h4

)
.

The order of U2 (θ, h) . Write U2 (θ, h) = U2
nf2,2 + P 1

nf2,1 + E (f2) , with

U2
nf2,2 (·, ·; θ, h) = (n)−1

2

∑

i6=j

[f2 (Zi, Zj)− Ei (f2)− Ej (f2) + E (f2)] ,

P 1
nf2,1 (·; θ, h) = n−1[

∑
i

Ei +
∑

j

Ej] (f2)− 2E (f2)

and f2 is defined in (C.2). The order of U2 (θ, h) is given by E (f2) . Indeed, use the same
arguments as for U3

nf1,3 and deduce that uniformly over Θ×Hn,

U2
nf2,2 (·, ·; θ, h) = h−2OP

(
n−1

)
= OP

(
h−2n−1

)
. (C.13)

For the order of P 1
nf2,1 (·, ·; θ, h) write

Ei (f2) = a (Vi) Ei

{
E

{
[Yj − rθ (Vj) + rθ (Vj)− rθ (Vi)]

2 | Vi, Vj

}
K2

h (Vi − Vj)
}

Ii

= a (Vi) E
[
vθ (Vj) K2

h (Vi − Vj) |Vi

]
Ii

+a (Vi) E
{
[rθ (Vj)− rθ (Vi)]

2 K2
h (Vi − Vj) |Vi

}
Ii.

Use again a change of variables and arguments as used for Ejl (f1) and deduce that
the family {hE [ f2 (zi, · ; θ, h)]} is Euclidean for a squared integrable envelope (use also
condition 7). Similar arguments apply to the family {hE [ f2 (·, zj ; θ, h)]}. Corollary 4 of
Sherman (1994a) yields P 1

nf2,1 (·; θ, h) = OP

(
h−1n−1/2

)
. Finally, by simple algebra

Ei (f2) = h−1K2 a (Vi) vθ (Vi) fθ (Vi) + R2(Vi; θ, h),

with |R2(v; θ, h)| → 0 as h → 0, uniformly in v and θ. Consequently,

E (f2) = E [Ei (f2)] = −h−1C2 (θ) + o
(
h−1

)
,

uniformly in (θ, h) ∈ Θ×Hn. Deduce that

(n− 1)−1 U2 (θ, h) = −n−1h−1C2 (θ) + o
(
n−1h−1

)
,

uniformly over Θ×Hn. Now the proof is complete.

The following lemma indicates, in particular, that the order of T (h) is given by
T2 (h) . For this we have to constrain h to the range Hn defined in (3.1), that is Hn ={
h : c1n

−β2 ≤ h ≤ c2n
−β1

}
, for some fixed 1/8 < β1 < β2 < 1/4 and c1, c2 > 0.
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Lemma C.2 Let Z1, Z2, ... be independent copies of a random vector Z =
(
Y,XT

)T ∈
Rd+1. Assume that conditions 1 to 6 of Lemma C.1 hold. Moreover, consider a kernel K
as in Lemma C.1. Let

T̃ (θ, h) =
1

n

n∑
i=1

α (Zi)
[
r̂i
θ,h (Xiθ)− rθ (Xiθ)

]
I{x: fθ0

(xθ0)≥c} (Xi) ,

with E [α (Z) | X] = 0 and E
[
|α (Z)|4+ε I{x: fθ0

(xθ0)≥c} (X)
]

< ∞, for some ε > 0. Then,

T̃ (θ, h) = oP

(
h4

)
+ oP

(
n−1h−1

)
,

uniformly in h ∈ Hn and in θ ∈ Θn.

Proof. As in the proof of Lemma B.3, we can replace I{x: fθ0
(xθ0)≥c} (Xi) by Ii =

I{x: fθ(xθ)≥c/2} (Xi) . We use the same simplified notation as in the proof of Lemma C.1.
Moreover, αi = α (Zi) . By Taylor expansion

1

f̂ i
=

1

f
− 1

f 2

(
f̂ i − f

)
+ OP

(∣∣∣f̂ i − f
∣∣∣
2
)

=
2

f
− f̂ i

f 2
+ OP

(∣∣∣f̂ i − f
∣∣∣
2
)

.

Therefore, we can write

T̃ (θ, h) =
1

n

n∑
i=1

αi

(
f̂ i

)−1 (
γ̂ i − rf̂ i

)
Ii

=
2

n

n∑
i=1

αif
−1

(
γ̂ i − rf̂ i

)
Ii − 1

n

n∑
i=1

αif
−2

(
γ̂ i − rf̂ i

)
f̂ i + R̃(h)

=: T̃1(θ, h) + T̃2(θ, h) + R̃(h).

It is easy to check that the reminder R̃(h) has the order oP (h4 + n−1h−1) for h ∈ Hn

(apply Lemma B.3). More precisely,

R̃(h) =
[
O

(
h2

)
+ OP

(
h−1n−1/2

)]3

= O
(
h6

)
+ OP

(
h3n−1/2

)
+ OP

(
n−1

)
+ OP

(
h−3n−3/2

)
.

Next,

T̃1(θ, h) = (n)−1
2

∑

i 6=j

2αi

f (Vi)
(Yj − r (Vi)) Kh (Vi − Vj) Ii =: U2

ng (·, ·; θ, h) .

Since E [α (Zi) | Xi] = 0, the conditional expectation of g given Zj, denoted Ej (g), and
E (g) are null. Hence, the second order U−statistics U2

ng can be decomposed in degener-
ated U−statistics like

U2
ng (·, ·; θ, h) = U2

ng2 (·, ·; θ, h) + P 1
ng1 (·, ·; θ, h)

= (n)−1
2

∑

i6=j

[g (Zi, Zj; θ, h)− Ei (g (Zi, Zj; θ, h))]

+n−1

n∑
i=1

Ei (g (Zi, Zj; θ, h)) .

31



By similar arguments as in Lemma C.1 deduce that the class {hg2 (·, ·; θ, h) : h ∈ Hn} is
Euclidean for a squared integrable envelope. Moreover, if i 6= j,

sup
θ∈Θn, h∈Hn

hE (|g2 (zi, zj; θ, h)|) → 0,

(see the arguments following equation (C.9)). Corollary 8(ii) of Sherman (1994a) implies
U2

ng2 (·, ·; θ, h) = oP (h−1n−1). On the other hand,

Ei (g) = αif (Vi)
−1 E [(r (Vj)− r (Vi)) Kh (Vi − Vj) | Vi] Ii

and thus the arguments used in Lemma C.1 for the function g1 in equation (C.4) apply
again. Deduce that the class {h−2 E[ g(zi, · ; θ, h)] : h ∈ Hn, θ ∈ Θn} is Euclidean for a
squared integrable envelope and P 1

ng1 (·, ·; θ, h) = OP (h2n−1/2). Thus,

T̃1(θ, h) = oP

(
n−1h−1

)
+ OP

(
h2n−1/2

)

uniformly in h ∈ Hn, θ ∈ Θn.
On the other hand,

T̃2(θ, h) =
1

n

n∑
i=1

αi

f 2
(γ̂ i − rf̂ i)f̂ iIi

=
1

(n)3

∑

i 6=j 6=l

αi

f 2
(Yj − r(Vi))Kh(Vi − Vj)Kh(Vi − Vl)Ii

+
1

(n− 2)

1

(n)2

∑

i6=j

αi

f 2
(Yj − r(Vi))K

2
h(Vi − Vj)Ii.

It remains to study the orders of the two U -statistics on the right-hand side of the last
display using arguments as in Lemma C.1. For the first one, we obtain the order

OP (h−2n−3/2) + oP (h−1n−1) + OP (h2n−1/2)

(see also the arguments used to obtain the orders in (C.3), (C.10) and (C.12)), while for
the second U−statistics to be analyzed the order is n−1

[
OP (h−2n−1) + OP (h−1n−1/2)

]
.

Consequently,

T̃2(θ, h) = OP

(
h−2n−3/2 + h2n−1/2 + h−2n−2 + h−1 n−3/2

)
+ oP

(
n−1h−1

)
,

uniformly in h ∈ Hn, θ ∈ Θn.

Corollary 3.1 Under the assumptions of Appendix A,

T (h) = −C1h
4 − C2/nh + oP (h4 + 1/nh)

uniformly in h ∈ Hn, with C1, C2 defined in equation (4.1).

Proof. By Taylor expansion

T (h) = T0 + T1(h) + T2(h) + T3(h),

with T0 = n−1
∑

i ψ (Yi, rθ0 (Xiθ0)) IA (Xi) , T1(h) and T2(h) defined in section 3.2, and
T3(h) the reminder. Use Assumption 1.12-1) and Lemma C.2 to deduce that T1(h) =
oP (h4 + 1/nh). Moreover, by Lemma C.1, T2(h) = −C1h

4 − C2/nh + oP (h4 + 1/nh).

Finally, note that the order of T3(h) is given by the cubic terms
∣∣r̂i

θ,h (Xiθ)− rθ (Xiθ)
∣∣3 .

Use Lemma B.3 to deduce that T3(h) = oP (h4 + 1/nh).
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D Appendix: The expansion of R(θ, h)

Proposition D.1 Let A = {x : fθ0 (xθ0) ≥ c} ⊂ Rd, for some c > 0. Under the Assump-
tions of Theorem 4.1

R (θ, h) =
1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ,h (Xiθ)

)− ψ (Yi, rθ (Xiθ))
]

IA (Xi)

− 1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ0,h (Xiθ0)

)− ψ (Yi, rθ0 (Xiθ0))
]

IA (Xi)

=

[
OP

(
h4

)
+ OP

(
1

nh2

)
+ OP

(
h2

√
n

)
+ OP

(
1

n
√

nh4

)]
×OP (|θ − θ0|)

+

[
O

(
h2

)
+ OP

(
1√
nh2

)]
×OP

(|θ − θ0|2
)

when n → ∞, uniformly in h ∈ [
n−(1/2−ε), n−ε

]
, with 0 < ε < 1/2, and uniformly in

θ ∈ Θn. Moreover,

R (θ, h) = oP

(
n−1/2 |θ − θ0|

)
+ oP

(|θ − θ0|2
)

uniformly in h ∈ Hn defined in (3.1) and uniformly in θ ∈ Θn.

Proof. We use again the same simplified notation as in the proof of Lemma C.1
whenever is possible. Write

R (θ, h) = R1 (θ, h)−R1 (θ0, h) = ∂1R1

(
θ, h

)
(θ − θ0) ,

with θ between θ and θ0, where

R1 (θ, h) =
1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ,h

)− ψ (Yi, rθ)
]

IA (Xi) ,

so that

∂1R1 (θ, h) =
1

n

n∑
i=1

[
∂2ψ

(
Yi, r̂

i
θ,h

)
∂θr̂

i
θ,h − ∂2ψ (Yi, rθ) ∂θrθ

]
IA (Xi) .

Recall that whenever is necessary, modulo arbitrarily small terms, IA (Xi) may be replaced
by I{x: fθ(xθ)≥c/2} (Xi) (see the proof of Lemma B.3). Let Ii denote any of these indicator
functions. We can write

∂1R1 (θ, h) =
1

n

n∑
i=1

[
∂2ψ

(
Yi, r̂

i
)− ∂2ψ (Yi, r)

] (
∂θr̂

i − ∂θr
)

Ii

+
1

n

n∑
i=1

∂2ψ (Yi, r)
(
∂θr̂

i − ∂θr
)

Ii

+
1

n

n∑
i=1

∂θr
[
∂2ψ

(
Yi, r̂

i
)− ∂2ψ (Yi, r)

]
Ii

=: R11 (θ, h) + R12 (θ, h) + R13 (θ, h) .

33



The order of R11 (θ, h) . By the mean value theorem, R11 (θ, h) can be written as

R11 (θ, h) =
1

n

n∑
i=1

∂2
22ψ

(
Yi, r

i
) (

r̂i − r
) (

∂θr̂
i − ∂θr

)
Ii

=
1

n

n∑
i=1

∂2
22ψ (Yi, r)

(
r̂i − r

) (
∂θr̂

i − ∂θr
)

Ii

+
1

n

n∑
i=1

[
∂2

22ψ
(
Yi, r

i
)− ∂2

22ψ (Yi, r)
] (

r̂i − r
) (

∂θr̂
i − ∂θr

)
Ii,

with ri between r̂i and r. The first term can be handled as in Lemma C.1. It is of order
O (h4) + OP (n−1h−2). Note that the bias term is of the same order h4, since the bias in
estimating the regression function or its derivative, under the assumptions we made, is
the same, namely h2. Only the variance term changes, due to the extra h−1 coming from
the derivation of Kh (·). The second term in the decomposition of R11 is similar to the

reminder term R̃(h) in the decomposition of T̃ (h) in Lemma C.2. We then obtain

R11 (θ, h) = O
(
h4

)
+ OP

(
n−1h−2

)

+
[
O

(
h2

)
+ OP

(
n−1/2h−1

)]2 × [
O

(
h2

)
+ OP

(
n−1/2h−2

)]

= O
(
h4

)
+ OP

(
n−1h−2 + n−1/2h2 + n−3/2h−4

)
,

uniformly in h ∈ Hn and θ ∈ Θn.

The order of R12 (θ, h) . We can write

R12 (θ, h) =
1

n

n∑
i=1

∂2ψ (Yi, rθ0 (Xiθ0))
[
∂θr̂

i
θ,h (Xiθ)− ∂θrθ (Xiθ)

]
Ii

+
1

n

n∑
i=1

[∂2ψ (Yi, rθ (Xiθ))− ∂2ψ (Yi, rθ0 (Xiθ0))]

× [
∂θr̂

i
θ,h (Xiθ)− ∂θrθ (Xiθ)

]
Ii

=: R121 (θ, h) + R122 (θ, h) .

Use Assumption 1.12-1) and mimic the arguments in Lemma C.2 in order to show that

R121 = oP

(
n−1h−2

)
+ OP

(
h2n−1/2 + n−3/2h−4

)
+ O

(
h6

)
.

In fact, R121, which at a first look has the same order as h−1T̃1 (θ, h) (we write this

R121 ≈ h−1T̃ (θ, h)), can be written as

R121 = oP

(
1

nh2

)
+ OP

(
h2

√
n

) {
≈ 1

h
T̃1 (θ, h)

}

+OP

(
1

h3n
√

n

)
+ oP

(
1

nh2

)
+ OP

(
h2

√
n

) {
≈ 1

h
T̃21 (θ, h)

}

+OP

(
1

h3n2

)
+ OP

(
1

h2n
√

n

) {
≈ 1

h
T̃22 (θ, h)

}

+

[
O

(
h2

)
+ OP

(
1

h
√

n

)]2 [
O

(
h2

)
+ OP

(
1

h2
√

n

)]
.

{
≈ 1

h
R̃ (h) ≈ R112

}
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T̃21 (θ, h) and T̃22 (θ, h) denote the first and the second sum in the expression of T̃2 (θ, h)
appearing in the proof of Lemma C.2. Similarly, R112 stands for the second sum appearing
in the expression of R11. For example, the first term in this decomposition is, crudely

speaking, OP

(
h−1 T̃1 (θ, h)

)
, which would mean to be of order oP (n−1h−2)+OP

(
n−1/2h

)
.

But the OP

(
n−1/2h2

)
term in T̃1 (θ, h) is a degenerated U−statistics of order 1 with h2

coming from the bias of a kernel estimator. The corresponding term in R121 has thus the
same order OP

(
n−1/2h2

)
, and not only OP

(
n−1/2h

)
, since it involves a bias term for a

derivative kernel estimator which is still of order h2.
Next, use Assumptions 1.6, 1.10 and Lemma B.3 to obtain that

R122 =
[
O

(
h2

)
+ OP

(
n−1/2h−2

)]
OP (|θ − θ0|) .

The order of R13 (θ, h) . Write R13 (θ, h) = R13 (θ0, h)+ [R13 (θ, h)−R13 (θ0, h)] . We

show that R13 (θ0, h) has the same order as T̃ (θ0, h) in Lemma C.2 plus a oP (|θ − θ0|)
term, while R13 (θ, h)−R13 (θ0, h) = oP (|θ − θ0|). First,

R13 (θ0, h) =
1

n

n∑
i=1

∂θrθ0 (Xiθ0)
[
∂2ψ

(
Yi, r̂

i
θ0,h (Xiθ0)

)− ∂2ψ (Yi, rθ0 (Xiθ0))
]

Ii

=
1

n

n∑
i=1

∂θrθ0 (Xiθ0) ∂2
22ψ (Yi, rθ0 (Xiθ0))

[
r̂i
θ0,h (Xiθ0)− rθ0 (Xiθ0)

]
Ii

+
1

n

n∑
i=1

∂θrθ0 (Xiθ0)
[
∂2

22ψ (Yi, rθ0 (Xiθ0))− ∂2
22ψ (Yi, rθ0 (Xiθ0))

]

× [
r̂i
θ0,h (Xiθ0)− rθ0 (Xiθ0)

]
Ii

= : R131 (θ0, h) + R132 (θ0, h) ,

where rθ0 (Xiθ0) is between r̂i
θ0,h (Xiθ0) and rθ0 (Xiθ0). Use Assumption 1.12-2) and argue

as in Lemma C.2 to show that

R131 (θ0, h) = oP

(
n−1h−1

)
+ OP

(
h2n−1/2 + n−3/2h−3

)
+ O

(
h6

)
.

Then, use Assumptions 1.6, 1.10 and Lemma B.3 to obtain that

R132 (θ0, h) =
[
O

(
h2

)
+ OP

(
h−1n−1/2

)]
OP (|θ − θ0|) .

It remains to study the order of

R13 (θ, h)−R13 (θ0, h) =
1

n

n∑
i=1

∂θrθ0 (Xiθ0) Ii

× {[
∂2ψ

(
Yi, r̂

i
θ,h (Xiθ)

)− ∂2ψ (Yi, rθ (Xiθ))
]

− [
∂2ψ

(
Yi, r̂

i
θ0,h (Xiθ0)

)− ∂2ψ (Yi, rθ0 (Xiθ0))
]}

+
1

n

n∑
i=1

[∂θrθ (Xiθ)− ∂θrθ0 (Xiθ0)]

× [
∂2ψ

(
Yi, r̂

i
θ,h (Xiθ)

)− ∂2ψ (Yi, rθ (Xiθ))
]

Ii
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This can be done by applying the mean value theorem and using Assumption 1.6 and
1.10 and Lemma B.3, in order to obtain

R13 (θ, h)−R13 (θ0, h) = OP (|θ − θ0|) ×
[
O

(
h2

)
+ OP

(
n−1/2h−2

)]
.

The proof of the first identity for R (θ, h) is complete. Now, the order of R (θ, h) when
h ∈ Hn is obvious.

E Appendix: Preliminary estimate for θ0

A preliminary estimator of θ0 can be easily obtained using a fixed trimming (see also
Härdle, Hall and Ichimura (1993)). Fix some small c > 0 and let B be a subset of Rd such
that fθ (xθ) ≥ c > 0, x ∈ B, θ ∈ Θ. Define

θn = arg max
θ∈Θ

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IB(Xi), (E.1)

with h ∈ Hn =
[
n−(1/2−ε), n−ε

]
for some small 0 < ε < 1/2. To ensure consistency for θn,

we have to check that

θ0 = arg max
θ∈Θ

E [ψ (Y, rθ (Xθ)) IB(X)] , (E.2)

and θ0 is unique with this property. In all examples we have in mind, the SIM condition
that specifies θ0 as the unique vector in Θ satisfying E [Y | X] = E [Y | Xθ0] implies that,
for any x,

θ0 = arg max
θ∈Θ

E [ψ (Y, rθ (xθ))]

and θ0 is the unique maximizer. This is a version of the so-called conditional Fisher
consistency assumption (e.g., Kunsch, Stefanski and Carroll (1989)) which, in particular,
implies the identification condition (E.2). The other ingredient for proving consistency is
the convergence in probability of the objective function. Let Hn =

[
n−(1/2−ε), n−ε

]
, with

some small 0 < ε < 1/2. We prove that,

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IB(Xi) → E[ψ (Y, rθ (Xθ)) IB(X)], (E.3)

uniformly in θ ∈ Θ and h ∈ Hn.

Proposition E.1 (A consistent preliminary estimator) Assume that E [Y 2] < ∞ and
condition (E.2) holds. Let the kernel K (·) be as in Lemma B.1. Moreover, (θ, t) 7→ fθ (t)
and (θ, t) 7→ γθ (t) satisfy Condition L. Consider ψ : Y × R → R, with Y, R ⊂ R such
that

i) ψ (·, ·) is twice differentiable in its second argument.
ii) there exists δ > 0 such that the set

DB,δ = {r : ∃ (θ, x) ∈ Θ×B such that |r − rθ (xθ)| < δ}
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is strictly included in R.
iii)

sup
θ∈DB,δ

(|ψ (y, r)|+ |∂2ψ (y, r)|) ≤ Ψ (y)

for some δ > 0 and some squared integrable function Ψ (·) .
Then θn → θ0, in probability. If, in addition, for any t ∈ {xθ : x ∈ B, θ ∈ Θ} , the

function θ 7→ rθ (t) is twice continuously differentiable and the (d − 1) × (d − 1) matrix
W0 = −E [∂2

θθψ (Yi, rθ0 (Xiθ0)) IB (Xi)] is positive definite, then θn − θ0 = OP

(
n−aε/2

)
.

Proof. Let us write

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IB(Xi)− E[ψ (Y, rθ (Xθ)) IB(X)]

=
1

n

n∑
i=1

[
ψ

(
Yi, r̂

i
θ,h (Xiθ)

)
IB (Xi) − ψ (Yi, rθ (Xiθ)) IB (Xi)

]

+
1

n

n∑
i=1

ψ (Yi, rθ (Xiθ)) IB (Xi)− E (ψ (Y, rθ (Xθ)) IB (X))

= : Ŝ1 (θ, h) + Ŝ2 (θ) .

By Taylor expansion,
∣∣∣Ŝ1 (θ, h)

∣∣∣ is bounded by

[
max
1≤i≤n

sup
θ, h∈Hn

∣∣r̂i
θ,h (Xiθ)− rθ (Xiθ)

∣∣ IB (Xi)

]
1

n

n∑
i=1

|∂2ψ (Yi, ri)| IB (Xi) ,

with ri somewhere between r̂i
θ,h (Xiθ) and rθ (Xiθ). Given the assumptions, the sum in

the last display is bounded in probability. Next, in view of the proofs of Lemmas B.1 and
B.3, deduce that

max
1≤i≤n

sup
θ, h∈Hn

∣∣r̂i
θ,h (Xiθ)− rθ (Xiθ)

∣∣ IB (Xi) = OP

(
n−aε

)
.

It follows that supθ∈Θ, h∈Hn
Ŝ1 (θ, h) = OP (n−aε) .

For the uniform convergence of Ŝ2 (θ), use a uniform law of large numbers (e.g., Pakes
and Pollard (1989)). The family of functions {(x, y) 7→ ψ (y, rθ (xθ)) IB (x) , θ ∈ Θ} admit
the integrable envelope Ψ. Moreover, this family is Euclidean for this envelope (see Lemma

B.6). Deduce that supθ

∣∣∣Ŝ2 (θ)
∣∣∣ = oP (1). The uniform convergence of Ŝ1 (θ, h) + Ŝ2 (θ)

ensures θn − θ0 = oP (1) .
For the second part, use a Taylor expansion and deduce that

1

n

n∑
i=1

ψ
(
Yi, r̂

i
θ,h (Xiθ)

)
IB(Xi) = Ŝ1 (θ, h) +

1

n

n∑
i=1

ψ (Yi, rθ (Xiθ)) IB (Xi)

= OP

(
n−aε

)
+

1

n

n∑
i=1

ψ (Yi, rθ0 (Xiθ0)) IB (Xi)

+
1√
n

(θ − θ0)
T Vn − 1

2
(θ − θ0)

T Wn (θ − θ0) + oP

(|θ − θ0|2
)
,
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uniformly over oP (1) neighborhoods of θ0, where

Vn =
1√
n

n∑
i=1

∂θψ (Yi, rθ0 (Xiθ0)) IB (Xi) , Wn = − 1

n

n∑
i=1

∂2
θθψ (Yi, rθ0 (Xiθ0)) IB (Xi) .

Use Theorem 1 of Sherman (1994b) and deduce θn − θ0 = OP

(
n−aε/2

)
.
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