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Limiting dependence structure for credit defaults
Arthur Charpentier and Alessandro Juri

Abstract

Dependence structures for bivariate extremal events are analyzed using par-
ticular types of copulas. Weak convergence results for copulas along the
lines of the Pickands-Balkema-De Haan Theorem provide limiting depen-
dence structures for bivariate tail events. A characterization of those limit-
ing copulas is also provided by means of invariance properties. The results
obtained are applied to the credit risk area where, for intensity-based de-
fault models, stress-scenario dependence structures for widely traded prod-
ucts such as Credit Default Swap baskets or First-to-Default contract types
are proposed.

Résumé

L’étude de la structure de dépendance d’événements, ou de risques, repose
de plus en plus souvent sur 'utilisation des copules. En reprenant ’approche
de Pickands-Balkema-De Hanna, ce papier présente des résultats de conver-
gence (faible) pour les copules, donnant ainsi des comportements limites de
la structure de dépendance dans les queues de distribution. L’utilisation de
propriétés d’invariance (théorémes de points fixes) permettent d’obtenir une
caractérisation des copules limites. Ces résultats peuvent étre appliqués en
particulier pour des modéles de risque de crédit, tels que les modéles a in-
tensité. On s’intéressera alors & la dynamique de la dépendance dans le cas
de contrats de type Credit Default Swap baskets ou First-to-Default.

Keywords: copula, credit risk, dependent defaults, dependent risks, ex-
treme value theory, regular variation, tail dependence.
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1 Introduction

The reasons for studying and modelling dependencies in finance and insur-
ance are of different type. One motivation is that independence assumptions,
which are typical of many stochastic models, are often due more to conve-
nience rather than to the nature of the problem at hand. Furthermore, there
are situations where neglecting dependence effects may incur into a (dra-
matic) risk underestimation (see e.g. Bauerle and Miiller 1998 and Daul et
al. 2003). Besides this, widely used scalar dependence or risk measures such
as linear correlation, tail dependence coefficients and Value-at-Risk gener-
ally do not provide a satisfactory description of the underlying dependence
structure and have severe limitations when used for measuring (portfolio)
risk outside the Gaussian world (see e.g. Embrechts et al. 2002 and Juri and
Wiithrich 2004 for counterexamples).

Taking care of dependencies becomes therefore important in order to ex-
tend standard models towards a more efficient risk management. However,
relaxing the independence assumption yields much less tractable models. It
is therefore not surprising that only recently, i.e. in the last ten years, the
mathematical literature on the risk management of dependent risks showed
significant developments. The main message sent by much of this research is
the following (see e.g. Dhaene and Goovaerts 1996, Dhaene and Denuit 1999,
Frees and Valdez 1999, Joe 1997, Schonbucher and Schubert 2001, Juri and
Wiithrich 2002, 2004 among others). It is (intuitively) clear that the prob-
abilistic mechanism governing the interactions between random variables is
completely described by their joint distribution. On the other hand, in most
applied situations, the joint distribution may be unknown or difficult to es-
timate such that only the marginals are known (estimated or fixed a priori).
To tackle this problem a flexible and powerful approach consists in trying to
model the joint distribution by means of copulas. The latter, which are often
called dependence structures, can be viewed as marginal free versions of joint
distribution functions capturing scale invariant dependence properties of the
several random variables.

The reverse side of the medal of the copula approach is that it is usually
difficult to chose or find the appropriate copula for the problem at hand.
Often, the only possibility is to start with some guess such as a parametric
family of copulas and then try to fit the parameters (as made e.g. in Daul et
al. 2003). As a consequence, the models obtained may suffer a certain degree
of arbitrariness. As shown by Juri and Wiithrich (2002, 2004), some remedy



to this weakness of the copula approach is provided by dependence models for
(bivariate) conditional joint extremes, where limiting results along the lines
of the Pickands-Balkema-De Haan Theorem are obtained. Such “copula-
convergence theorems” reflect a distributional approach to the modelling of
dependencies in the tails and provide natural descriptions of multivariate
extremal events. Moreover, they differ from classical bivariate extreme value
results since the limits obtained are not bivariate extreme value distributions.
A further advantage of this kind of results is that they may also allow to
better face the problem of the lack of data which is typical for rare events.
In fact, there are situations where the knowledge of the limiting dependence
structure reduces the issue of modelling tail events to the estimation of one
parameter solely (Juri and Wiithrich 2002).

1.1 Outline of the paper

The paper is structured as follows. In Section 2.1 we briefly recall the copula
concept and all its properties that we will need throughout the rest of the
paper. The idea of dependence structures for tail events is then formalized
in Section 2.2, where the concept of tail dependence copula (LTDC) is intro-
duced; the latter provides a natural description of conditional bivariate joint
extremes. Sections 3 and 4 contain the main results, which extend part of the
work of Juri and Wiithrich (2002, 2004). In particular, Theorem 3.4 identi-
fies, under suitable regularity conditions, possible LTDC-limits, i.e. limit laws
for bivariate joint extremes. Motivated by classical results such as the Central
Limit Theorem and the Fisher-Tippett Theorem, we show in Section 4 that
LTDC-limits are characterized by invariance properties (Theorems 4.6, 4.10
and Corollary 4.11). In Section 5, we show how the results of the preceding
sections can be applied to the credit risk area, where, for intensity-based de-
fault models, dependence structures characterizing the behavior under stress
scenarios of widely traded credit derivatives such as Credit Default Swap
baskets or First-to-Default contract types are obtained. The proofs of the
several statements are collected in Section 6.



2 Dependence structures for tail events

2.1 Preliminaries

As mentioned above, one of the main concepts used to describe scale invariant,
dependence properties of multivariate distributions is the copula one. In this
work, we focus on bivariate continuous random vectors only and most of the
following material can be found in Nelsen (1999) or Joe (1997).

Definition 2.1. A two-dimensional copula is a two-dimensional distribution
function restricted to [0, 1]* with standard uniform marginals.

Copulas can be equivalently defined as functions C : [0, 1]? — [0, 1] satis-
fying for 0 < z < 1 and (21,%1), (72,92) € [0,1]* with 1 < zo, y; < yo the
conditions

C(z,1)=C(l,z) =2, C(z,0)=C(0,z) =0, (2.1)
C(w2,y2) — C(x2,y1) — C(w1,92) + C(21,91) > 0. (2.2)

In fact, it is easily seen that (2.1) translates into the uniformity of the
marginals and that inequality (2.2), which is known as the 2-increasing prop-
erty, can be interpreted as Plz; < X < @9,y <Y < 1] for (X,Y") having
distribution function C. Note that (2.2) neither implies nor is implied by the
fact that C' is increasing in each argument. However, (2.1) together with (2.2)
imply that C' increases in each variable as well that C'is Lipschitz-continuous
with Lipschitz constant one.

One of the most important and useful results about copulas is Sklar’s
Theorem stated below in its bivariate form. A proof of Theorem 2.2 can be
found e.g. in Nelsen (1999) or in Sklar (1959).

Theorem 2.2 (Sklar).
1. Let C be a copula and Fy, Fy be univariate distribution functions. Then,

for (ti,t3) € R?,
F(ty,ty) := C(Fyi(t1), Fy(ts)) (2.3)

defines a distribution function with marginals F, F.

2. Conversely, for a two-dimensional distribution function F' with marginals
Fi, F, there is a copula C' satisfying (2.3). This copula is not necessar-
ily unique, but it is if Fy and Fy are continuous, in which case for any
(z,y) €[0,1],

C(z,y) = F(Fy (2), Fy ' (y)), (2.4)
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where F; ', Fy'' denote the generalized left continuous inverses of F
and F.

Sklar’s Theorem constitutes the motivation for calling copulas dependence
structures that capture scale invariant dependence properties. In fact, we
see from (2.3) that C' couples the marginals Fj, F5 to the joint distribution
function F' separating thus dependence and marginal behaviors. Further, it
is easy to check that for X, Xy with joint distribution function F', copula
C' (in the sense that C'is a copula satisfying (2.3)) and strictly increasing
fi, f2 : R = R/ the variables fi(X;), f2(X3) have copula C' too.

An example of a copula is the following. Throughout the rest of the paper
we will encounter other examples of copulas.

Example 2.3. The Marshall and Olkin copula with parameters «, § € [0, 1]
is defined for z,y € [0,1] as

Cop(z,y) = (' *y) A (:Eylfﬂ), (2.5)

where for real numbers s, ¢, the expression s A t denotes the minimum of s
and t.

2.2 Tail dependence copulas

A natural way to construct dependence structures (copulas) for bivariate
(lower) tail events, is to consider first two-dimensional continuous conditional
distribution functions, where the condition is that both variables fall below
small thresholds. The second step is to get then the relative copula using the
second part of Sklar’s Theorem (Equation (2.4)).

Remark 2.4. In the sequel, we will assume that the considered copula C'
is such that = — C(z,y) and y — C(z,y) are strictly increasing for all
x,y € (0,1]. We denote by C the set of such copulas.

Let (U, V) be a random vector with distribution function C' € C. For any
(u,v) € (0,1]%, the conditional distribution of (U, V) given U < u,V < v,
denoted by F(C,u,v), is given, for 0 <z <wuand 0 <y < wv, by

Clz,y)
C(u,v)

F(Ciu,v)(z,y) =PlU <2,V <ylU <u,V <v]= (2.6)



The marginal distribution functions of F/(C,u,v) in (2.6) are given for 0 <
r <wuand 0 <y < wv respectively by

C(z,v)
C(u,v)

Clu,y)
C(u,v)

Fy(C u,v)(z) = and Fy(C,u,v)(y) = (2.7)

Since, Fy(Cyu,v), Fy(C,u,v) are continuous, the unique copula relative to
F(C,u,v) is obtained from (2.4) and equals

O(FU(Ca u, 'U)_l(x)a FV(Ca u, 'U)_l(y)).

F(C,u,v)(Fy(C,u,v) ™ (x), Fy (C,u, v) " (y)) = Clu, 0)

(2.8)

Definition 2.5. For C' € C, we call the copula defined by (2.8) the lower
tail dependence copula relative to C, LTDC for short, and we denote it by
O(C,u,v).

Note that the assumption that C' € C implies that {(u,v) € [0,1]* :
C(u,v) > 0} = (0,1]?, i.e. it ensures that the LTDC ®(C, u, v) is well defined
for all u,v € (0,1]. Furthermore, lim,, ,_,o ®(C,u, v) describes naturally the
dependence structure underlying conditional bivariate random samples in the
lower-tails.

Furthermore, starting with uniform marginals, i.e. with a copula C, is
not a restriction since the dependence structure that would be obtained with
different marginals is again of the type ®(C,u,v). In fact, let X, X, have
joint distribution function G, strictly increasing continuous marginals G, G4
and copula C. Analogously to the above, consider for appropriate (i.e. such
that the following expressions are well defined) z;, 25 € R the conditional
distribution function

GZI’ZQ(Il,IIIQ) = ]P)[Xl S .'II1,X2 S IL’2|X1 S Zl,XQ S ZQ]. (29)

Further, let G7"** (1) := G*"*(x1, 29) and G5"7(x3) := G***(21, 23), re-
spectively. Because of Sklar’s Theorem, we have that the copula relative to
G**2 ig given by

®(G, 21, 22) (un, uz) 1= G2 ((G77) H(w), (G57) M (ua)). (2.10)

Proposition 2.6. In the above setting holds ®(C, G1(z1), Ga2(22)) = ®(G, 21, 22).



Remark 2.7. Sometimes it may be more natural to look at dependencies in
the upper-tails rather than in the lower-tails as e.g. in any situation where
one is interested in the joint behavior of random variables conditional on
high thresholds. To such an extent, one could consider in (2.6) the expres-
sion P[U > x,V > y|U > u,V > v] instead of P[U < z,V < y|U < u,V < ]
yielding, through the analogous to (2.8), a dependence structure for upper-
tail events. Such dependence structures can be also obtained replacing C' in
Definition 2.5 by the relative survival copula C(z,y) ==z +y — 1+ C(1 —
z,1—y), z,y € [0,1]%. Indeed, it is easily seen that for (X,Y) with distri-
bution function F, marginals Fy, F5 and copula C, the copula of (=X, —Y")
is precisely C' and that for (z,y) € R

PX > 2,V >y = C(1 — Fi(z),1— Fy(y)). (2.11)

3 A limit theorem

The main result of this section is given by Theorem 3.4, where limits of the
type lim; o ®(C, r(t), s(t)) are considered. An explicit form for the limit is
provided under the assumption that the functions r, s defining the direction
under which the limit is taken satisfy suitable regularity conditions. Further,
an example of a non-symmetric LTDC-limit, i.e. a limit obtained under a
direction (r, s) with r # s, is given in Proposition 3.10 where we show that a
dependence model in the lower-tails may be given by the Marshall and Olkin
copula of Example 2.3. As we will see in Section 5, this copula turns out to
be a natural model for some credit derivatives.

For our purposes, the concept of regular variation appears to be the appro-
priate one. A standard reference to the topic of regular variation is Bingham
et al. (1987) and results for the multivariate case can also be found in De
Haan et al. (1984).

Definition 3.1. A measurable function f : (0,00) — (0,00) is called regu-
larly varying at 0 with index p € R, if for any x > 0,

. f(te)
M w

We write f € Rg. In the case where p = 0, the function is said to be slow
varying at 0.

(3.1)



Definition 3.2. A measurable function f : (0,00)> — (0,00) is called
reqularly varying at 0 with auziliary functions r,s : (0,00) — (0,00) if
lim; ,o7(t) = lim;_,os(t) = 0 and there is a positive measurable function
¢ : (0,00)% — (0,00) such that

i £ 02 5(09)
2 F (0, 5(0)

We write f € R(r,s) and we call ¢ the limiting function under the direction

(r,s).

Remark 3.3. Definition 3.2 can be easily modified to include functions, such
as copulas, having a domain different from (0, 00)?. This ensures in particular
that the left hand side of (3.3) below is well-defined.

— ¢(z,y) forall z,y > 0. (3:2)

Theorem 3.4. Let C € CN'R(r, s) with limiting function ¢ and assume that
r, s are strictly increasing continuous functions such that r € R? and s € R%
for some a, 3 > 0. Then, for any (z,y) € [0,1]?,

lim (C, r(t), s(t))(z, y) = (¢’ (2), 8y (1)), (3.3)

where ¢x(x) = ¢(x,1) and ¢y (y) := ¢(1,y). Moreover, there is a constant
0 > 0 such that ¢(z,y) = 2%/*h(yz=P/*) for x > 0, where

ht) = { %(Zx(ta/ﬂ) ;Z;ii [((ii]o) ' (3-4)

Remark 3.5. Note that the limiting function ¢ in (3.2) is obtained from a
pointwise convergence. Because the domain of a copula is the compact set
[0,1]?, it follows that the assumption C' € C N R(r, s) implies that the con-
vergence in (3.3) is also uniform, i.e. we have that lim;_,o ||®(C,r(t), s(t)) —

$(8x' () by ()]l = 0.

Remark 3.6. Observe that the hypothesis that r, s are continuous functions
is necessary, otherwise counterexamples such as copulas with fractal support
as considered in Fredricks et al. (2004) can be constructed. Let T = (¢;;) be a
square matrix with non-negative entries whose sum equals to one determining
the following subdivision of the unit square [0,1]? into rectangles: let ¢,
t = 0,...,n the sum of the entries of the first ¢ columns of T with ¢y := 0
and let 7;, j = 0,...,n be the sum of the entries in the first j rows of
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T with ry := 0. Then, the vectors r := (rg,...,7,) and ¢ := (co,...,¢,)
define partitions of [0,1], whence [0,1]? is partitioned into the rectangles
R;; := [¢i-1,¢] X [ri—1,m;]. Further, for a given copula C' and (z,y) € R;;,
consider the new copula T'(C') defined by

OGP SIS LS P L

Ci — Ci— ry —Tj—1

u<1,0<J v<g u<i

(3.5)
where empty sums are defined as zero. Fredricks et al. (2004) show that for
any copula C' and any 7" # 1 there is a unique copula C7 that depends only
on T such that T'(Cr) = Cp. Moreover, they show that Cp = lim,, ., T"C,
where T"C' := T(T" 'C), n > 1, T'C := T(C) and T°C := C. Consider
now the case where the starting copula C' is the independent copula, i.e.
C(z,y) = C*(z,y) := xy and the transformation matrix T is given by

0.1 0 0.1
T=[ 0 06 0 |, (3.6)
01 0 0.1

whence ¢ = r = (0,0.2,0.8,1). Then, we have for ¢, = 0.2¥, k > 1 that

(I)(CT,tk,tk) = OT = lim TnC, any k Z 1. (37)
n—o0

The fact that ®(Cr, tx, tx) = Cr can be explained with the help of Figure 3.1,
where the support of T7"(C) is plotted for n = 1,2, 3,4 and the colored re-
gions are the ones where the measure relative to 7"(C') concentrates its mass
(indeed, we see from (3.5) that the support of 7"C' is given by the rectangles
corresponding to the non-zero elements of 7). Observe that since C'is the in-
dependent copula, the measure relative to 7" C' spreads its mass uniformly on
the colored squares. Taking for example the upper right picture in Figure 3.1,
we see that restricting ourselves to [0,#;]? = [0, 0.2]* we have exactly the same
picture as in the upper left of Figure 3.1. This means that if (U, V) has cop-
ula T"C' for some n > 1, then (U,V)|U,V < t; has c.d.f. T 'C(zty, yt1),
z,y € [0,1]. Tt follows that the copula of (U, V)|U,V < t; is exactly T"~'C,
i.e. ®(T"C,ty,t;) = T" 'C. Using the same arguments, we have in gen-
eral that ®(T"C, ty,tx) = T™ *C. Finally, because ®(-,#, 1) is continuous
(see Lemma 4.13), it follows that ®(Cr,tg, 1) = lim, oo ®(T"C, ty, ty) =
lim,, o T kC = Cr.

Tj-1 -G Yy —
t +o(
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Figure 3.1: Support of T"(C) for n = 1,2, 3,4

Remark 3.7. Letting « = = 1, we have that Theorem 3.4 generalizes
Theorem 2.4 in Juri and Wiithrich (2004), the latter stating that

lim &(C, u,u)(z,y) = Glg ' (x),9' (v)), (3.8)

where ¢ : [0,00) — [0,00) is the strictly increasing continuous function de-
fined by g(z) := lim,_ o C(zu,u)/C(u,u), G(x,y) = yPq(z/y) for (z,y) €
(0,1)2 and 0 elsewhere and 6 is a positive constant. In particular, Theo-
rem 2.4 in Juri and Wiithrich (2004) applies to archimedean copulas having
regularly varying generators in which case the LTDC-limit is the Clayton
copula of Example 4.9 of the next section with parameter equal to minus the
regular variation parameter (Theorem 3.4 in Juri and Wiithrich 2004 and
Theorem 3.3 in Juri and Wiithrich 2002).

Remark 3.8. Following the previous remark, the analytical expression (3.8)
for the limiting copula is due to the fact that homogeneous functions of order



0 (in our case G(z,y) = y’g(x/y)) have closed form expressions. Analogously,
the closed form (3.4) comes from the fact that generalized homogeneous func-
tions such as ¢ in Theorem 3.4 also have closed form representations (see the
proof of Theorem 3.4 in Section 6 and Aczél (1966) for more details). Un-
fortunately, this is not the case in higher dimensions, so that, assuming that
Theorem 3.4 could be extended case along the same lines to the multivariate,
the limiting copula would not have a closed form expression.

Remark 3.9. There are many papers in the literature concerning multivari-
ate extremes. In particular, Bivariate Extreme Value (BEV) distributions
are obtained as limit laws of suitably normalized componentwise maxima as
it can be found e.g. in De Haan and Resnick (1977), Resnick (1987), Coles
and Tawn (1991, 1994) and Joe (1997). It can be shown that the copula C
of any BEV distribution satisfies the max-stability property

C'(u,v) = C(u',v") for all (u,v) € [0,1]* and any > 0. (3.9)

As mentioned in Juri and Wiithrich (2004), BEV copulas differ from LTDC-
limits, the difference being similar to the one between the univariate Gener-
alized Extreme Value (GEV) distributions and the Generalized Pareto Dis-
tribution (GPD). In fact, the GPD lives on the log-scaled compared to GEV
distributions (Theorem 4.2 in Juri and Wiithrich 2004). For instance, the
Gumbel copula satisfies (3.9), but is not an LTDC-limit. For a more detailed
discussion about relations with other results from the area of multivariate
extremes we refer to Juri and Wiithrich (2004).

We finish this section with an example of an LTDC-limit which is not of
the form (3.8). We will see in Section 4 that Theorem 4.6 provides a whole
family of other examples of this type.

Proposition 3.10. Let a,b : [0,1] — [0, 1] be two increasing functions with
a(0) = b(0) =0, a(l) = b(1) = 1 and such that t — a(t)/t, t — b(t)/t are
decreasing on (0,1]. Then,

Clx,y) = (al(x)y) A (xb(y)) (3.10)

defines a copula. Additionally, if a € RY, b € RY, where (o, 3) € [0,1]*\
{(0,0)} and for r € RY and s € R§ with 7,0 > 0 such that ay +6 = 36+ a,
we have that

lim &(C, (1), s(1)) (w,y) = («*y) A (2y”), (3.11)

t—0

10



which is the Marshall and Olkin copula with parameters 1 — a and 1 — 3. If
ay+ 0 # [0 + «, then

lim @(C. r(t),5(1) (. 9) = a1, (3.12)

which is the independent copula.

4 Invariant copulas

There are many examples of (functional) limit theorems where the limit
obtained is invariant under some kind of transformation. This is the case of
the Central Limit Theorem, where stable laws (which coincide with the class
of possible limit laws for sums of iid random variables) are invariant under
the sum operator. A similar result holds for the GEV distribution, which is
the limit of maxima of iid random variables as stated in the Fisher-Tippett
Theorem (Embrechts et al. 1997, Theorem 3.2.3).

In our context, we have that equation (2.8) can be seen as the result of
a copula transformation mapping a copula C' € C to its LTDC ®(C, u,v).
Motivated by the above classical results, it seems therefore natural to look
at copulas which are invariant under the LTDC-transformation (2.8).

Definition 4.1. We say that C' € C is invariant on the unit square if
®(C,u,v) = C for all (u,v) € (0, 1]

Lemma 4.2. Let (U, V) have distribution function C' € C and (u,v) € (0,1]2.
Then, ®(C,u,v) satisfies for (z,y) € [0,u] x [0,v] the identity

aie o (Cla) Cluy)
C(u,v) ®(C,u,v) (C(u,v)’ C’(u,v)) ’ (4.1)

From Lemma 4.2, we have that C' is invariant on the unit square if and
only if for any (u,v) € (0, 1)

Cla,y) _ (Clz,v) Clu,y)
_C<C’(u,v)’(](u,v)

) for all (z,y) € [0,u] x [0,v].  (4.2)

A weaker type of invariance than the one of Definition 4.1, is given by cop-
ulas C such that ®(C, u,v) = C holds only for a particular set of parameters
(u,v) € (0,1]2.
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Definition 4.3. A copula C' € C is said to be invariant on the diagonal if
®(C,u,u) = C for all v € (0,1]. Similarly, C' € C is called invariant on the
curve D = {(r(t),s(t)) |t € T}, T C R where r,s : T — (0, 1], whenever

O(C,r(t),s(t) =C forallteT. (4.3)

Invariant copulas on the diagonal have been considered by Juri and Wiithrich
(2002, 2004) and examples of such a copulas are given in Examples 4.4 and
4.9 below.

Example 4.4. For a € [0, 1] consider the Cuadras-Augé copula
Colz,y) == (' y) A (zy' ). (4.4)

The copula C\, can be seen as a particular case of a Marshall and Olkin
copula of Example 2.3 with identical parameters and is a geometric mixture
with weights o and 1 — « of the upper Fréchet bound C*(x,y) := x A y and
of the independent copula C*(x,y) = zy. In fact,

Co(z,y) = O (z,y)*CH (2, y)' ™. (4.5)
For U,V with joint distribution function C,, we have for 0 < z,y < u that
Colx,
Fy(Co,u,u) (1) = Fy(Co,u,u)(x) = Calw,u) _ L
Colu,u) u (4.6)
_Galry) _ ~ (r 0y '
F(C’a,u,u)(x,y)_ Ca('u,,'u,) —Ca <u,u>

Thus, we immediately get from (2.8) that C, is an invariant copula on the
diagonal.

A particular family of curve-invariant copulas is the one of Definition 4.5
below. We will see in Corollary 4.11 that this family of copulas coincides
with the LTDC-limits obtained in Theorem 3.4.

Definition 4.5. Let «, 3, # be positive constants and P, () be increasing con-
tinuous univariate distribution functions on [0,1]. We denote by H(a, 3, )
the set of two-dimensional distribution functions H on [0, 1]* that can be
expressed as

H(x,y) = 2"*h(yx="*), where h(t) := { iQ"/(;)P(ta/ﬁ) gi E [( ,,10]0)
(4.7)
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Theorem 4.6. Let o, 3,0 > 0 and H € H(w, 3,0). Then,

Q' ()" P(P~H(w)Q H(v) ), P7'(u)’
P w)eQ(P~ ()" Q 7 (v), P '(u)’

defines an invariant copula on D = {(P(t*), Q(t*)) |t € (0,1]}.

Q' (v)®
Qfl

C(P.Qua 0 = { ()"

—~ V IA

48)

Remark 4.7. From Theorem 4.6, we get that lim,_,o ®(T'(P, Q, o, 3,0), P(t%), Q(t*)) =
['(P,Q,a,3,0),ie. that I'(P,Q, a, 3,0) is a LTDC-limit. Further, note that
I'(g,9,1,1,0) is precisely the copula in (3.8).

Example 4.8. The copula I'(Id, Id, 8(a+ 8 — af) L ala+ —af) 1 1) is
the Marshall and Olkin copula which, because of Theorem 4.6, is invariant
on

D = {(tP/(atB=aB) ya/latb=aB)y 1  (0,1]} = {(#%,1%),t € (0,1]}.  (4.9)

Similarly, I'(Id, Id, a,, 3, 1) is also the Marshall and Olkin copula with param-
eters ( + f — 1/ and (a+ —1)/p.

Example 4.9. For P(z) = 2/9(1 + 7%)7'/% with § = « + §, the copula
(P, P,«, 3,0) is the Clayton copula with parameter 6, i.e. for (x,y) € [0, 1]?

L(P,Pa, B,0)(z,y) = (¢ +y " = 1)7/". (4.10)

From Theorem 4.6, one has that this copula is invariant on D = {(t*,°) |t €
(0,1]} for all , 3, i.e. T'(P, P, v, 3, + [3) is invariant on (0, 1]%.

Theorem 4.10 below characterizes the possible LTDC-limits stating that
they coincide with the set of invariant copulas on (0,1]?. In particular, the
family H(«, 3, 0) characterizes LTDC-limits on curves D = {(r(t),s(t)) |t €
T} provided that the starting copula C' belongs to C NR(r, s) and that r, s
are strictly increasing continuous and regularly varying at 0 (Corollary 4.11).

Theorem 4.10. IfC' € C and Cy are copulas such that lim,, ,_¢ [|®(C, u, v)—
Colloo = 0, then Cy is invariant on the unit square.

Corollary 4.11. Assume that C' satisfies the hypothesis of Theorem 3.4 and
let Cy = limy_,o ®(C, r(t),s(t)). Then, there is a constant > 0 such that
Co =T(ox, oy, a, 3,0) according to (4.8). As a consequence, Cy is invariant

on D = {(¢x(t%), dy(t%)) |t € (0, 1]}.
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The proof of Theorem 4.10 is based on the fact that ®(C,u',v") can be
seen as the LTDC obtained from another LTDC ®(C, u, v), where u > u' and
v > v (Lemma 4.12). The second ingredient in the proof is the continuity of
®(-,u,v) (Lemma 4.13). We state these preliminary results below and not
only in the Proof Section 6 since we believe they are interesting in their own.

Lemma 4.12. Let C € C. For0<u' <u<1and0<v <v <1 we have
that

1. o(C /0" = ®(®(C,u,v),u*,v*), where u* and v* are given respec-

tively by u* = C(u',v)/C(u,v) and v* = C(u,v")/C(u,v),

2. ®(D(Cyu,v),u,v") = ®(C,u*,v*) where u* and v* salisfy respectively
the relations C(u*,v) = u'C(u,v) and C(u,v*) = v'C(u,v).

Lemma 4.13. For any u,v € (0,1], the map C — C, C' +— ®(C,u,v) is
continuous with respect to the || - ||oo-norm.

Remark 4.14. The parameters «, § of the LTDC-limit I'( P, @, «, 3, 0) can
be interpreted as parameters describing the direction under which the limit
is taken since, as stated in Theorem 4.6, I'(P, @, «, 3,0) is invariant on D =
{(P(t%), Q%)) |t € (0,1]}. However, such a distribution is not identifiable.
In fact, a;, B and 0 are defined up to a positive multiplicative constant, thus
['(P,Q, a, 3,0) could be defined using two parameters solely. More precisely,

for 1 = f/a,
I'P,Q,a,0,0)=T(P,Q,1,n,60)=T(P,Q,n,0). (4.11)
Moreover, for all £ > 0, we have that
['(P,Q,n,0) =T(Py, Q, kn, kb), (4.12)
where Py(7) := P(z*) and Qy(z) := Q(2%), x € [0, 1].

We finish this section with a Proposition stating that the only copula
which is absolutely continuous and is also invariant on the unit square is the
Clayton copula.

Proposition 4.15. The only copula which is absolutely continuous and in-
variant on [0,1]? is the Clayton copula.
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5 An application to credit risk

The main risk drivers of almost all credit derivatives such as e.g. Credit
Default Swap baskets (CDS baskets) or first-to-default contract types are
given by the relevant default times. Among the most popular (univariate)
default time models we find intensity-based ones. As shown by Schénbucher
and Schubert (2001) a copula approach allows to model naturally arbitrary
dependence structures in such an intensity-based framework.

In this section we first review the setup of Schénbucher and Schubert
(2001) and we then show how our LTDC-limits can be used as dependence
structures for credit stress scenarios.

5.1 Intensity-based default models

For o-algebras A, B with A C B and for a set B € B, we will use in the sequel
the notation AA B := {ANB|A € A}. Further, all filtrations are supposed
to satisfy the usual conditions, i.e. they are assumed to be right continuous
and such that the smallest o-filed of the filtration is trivial. Finally, for a
review of point process intensities we refer to Brémaud (1981).

Schonbucher and Schubert (2001) propose the following intensity-based
default model which we recall in the two-dimensional case. Let \;, 7 = 1,2 be
non-negative cadlag processes adapted to a filtration (G;);>o representing the
general market information except explicit information on the occurrence of
defaults. For Uy, U, standard uniformly distributed random variables, which
are assumed to be independent from G, := U;>0G;, we define the default
times as the random variables

where 7;(t) := exp(—A;(t)) is called countdown processes and A;(t) := fot Ai(s) ds.
Note that, conditioned on G.,, we have that

-~

Pl <t,m < t]Geo] = C(m1(t1), 72(t2)), (5.2)

where C' is the distribution function of (U;, Us). Thus, we see that defining
default times as in (5.1) implies that, given general market information, the
default dependence mechanism is completely described by C'.
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Remark 5.1. The motivation behind (5.1) comes from the fact that, for a
Cox process with intensity A, the time 7 of the first jump can be written

T:inf{t>0‘/0t>\(s)d822}, (5:3)

where Z is exponentially distributed with parameter 1 (see Lando 1998).

In general, the intensity of a point process depends on the information
which is conditioned on. Denoting by N; the default counting process of
counterparty ¢ = 1,2 and by F; the augmented filtration of o(N;(s);0 < s <
t), we have that ); is the F/-intensity of N;. However it is in the spirit of any
multivariate model also consists in considering the information relative to the
other counterparties such as the one given by C' and H, := V;—12(F} V G;),
t > 0. Indeed, we find in Schénbucher and Schubert (2001) that the #,;-
intensity h; of N; equals to

hi(t) == Ai(t) - 7i(t) - 0:1og(C(mi (1), 72(1)))- (5.4)

Because of the term 0; log(C'(v1(t),¥2(t))), the intensity of a single counter-
party is also affected by the dependence structure of the several counterpar-
ties. In the case where Uy, U, are independent, i.e. whenever C = C*, we
have that the right hand side of (5.4) reduces to \;(t), i.e. to the Fj-intensity
of N;. Further, under the additional information that the other obligor has
already defaulted, i.e. {r; = ¢}, j # i, t; > 0, the default intensity of the
survived counterparty takes the form

05;C(Mn (1), 12(1))
95 C (71 (1), 72(t))

A special case of (5.4) and (5.5) is given by C' equal to the Clayton copula
with parameter 0 of Example 4.9. In that case,

hi’(8) = Ni(t) - %(t)

(5.5)

C(7(t), 2(t)\’ -

hi(t) = (W) M) and B7I(6) = (1+0)hi(t).  (5.6)
Vi

As stated in Schonbucher and Schubert (2001), such a dependence structure

reflects one of the main features of a model introduced by Davis and Lo

(1999a, 1999b), where knowledge of one obligor’s default determines a jump

in the spread of the other obligor by a factor (1 + 6).
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5.2 Dependence structures for stress scenarios

Stress scenarios for default times arise in many different situations. For
example, pension funds have to invest only in investment grade bonds because
of regulatory reasons. Thus, a default (or downgrade) of a bond in the
pension fund’s portfolio determines the replacement of that bond, whence a
possible (large) losses due to the bonds’s value decrease. Another example is
given by first-to-default CDS baskets where in the case of an “early” default
the protection seller receives the premium only for a short time but has to
deliver the underlying very soon.

More generally, knowing or modelling the dependence structure of the
several default times and in particular the joint behavior under averse mar-
ket conditions, avoids risk underestimation allowing thus for a risk-adjusted
pricing (for instance of credit derivatives). Such stress situations can be
described by conditional distributions of the type

Plr <t, 1 <t3|Goo N1 < T, 15 < T}, (5.7)

as T tends to zero. Since the conditional distribution of 7; given H! equals
vi(t), it follows from Proposition 2.6 and Equation (5.2) that the copula
relative to the conditional distribution in (5.7) is given by

®(C,1—n(T),1—7(T)), (5.8)
where C is the survival copula of C'.

Example 5.2 (First-to-default). The conditional distribution of the first-
to-default time 7 := 71 A 75 conditioned on Goo A {my < T, 79 < T} is given
for t < T by
Pt <tlGo A{ni < T, <T}=1-=Plmy >t, 70 > t|Goo AN{11 < T, 79 <T}|
=1-C"(1 =mn(t),1—(t)),
(5.9)

where C* is the survival copula of @(5, 1 —5(T),1 = (7).

Suppose now that A; is regularly varying at 0 with parameter o; > 0
which, as it is easy to check, implies that 1—~; € R?Mi' Further, assume C' €
CNR(1—71,1—72) with limiting function ¢. Then, because of Corollary 4.11,
there is a constant € > 0 such that

lim O(C, 1 — 1 (T),1 —%(T)) =T(dx, by, L+ 01,1+ 65,0).  (5.10)
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As a special case, we have for 7 = v =: v and §; = d, = 0 that
lim ®(C,1—y(T),1—y(T)) =T(g,9,1,1,0), g:=ox, (5.11)

which corresponds to the limiting copula (3.8) of Remark 3.7.

As we already mentioned at the end of Section 3, a special case of The-
orem 3.4 is given by the situation where the starting copula is archimedean
with a regularly varying generator. In this case, the LTDC-limit on the
diagonal is the Clayton copula. Thus, the Davis-Lo-model can be seen as
stress-scenario one.

6 Proofs

Proof of Proposition 2.6. For w; := G;(z;), i = 1,2, we have by definition
that
C(Fy, (C, w1, wa) ™ (ua), Frr, (Cy wy, wa) ™" (un))

®(C, G1(21), Ga(2)) (ur, uz) = C(G1(21), Ga(22))

(6.1)
Further,

_ Clo,wy) — C(u,Ga(z) GG (01),2)
Fu (€ w1, wo)(vn) = Clwn,ws)  C(Gr(21),Ga(2)) Gl 2)

= G172 (GY (m)),

(6.2)

whence Fy, (C,wy,we) Huy) = G1((G7"*) *(uy)). Similarly, we have that
Fur, (C,wy, wa) " (ug) = Go((G52*) " (uy)). Thus,

C(GLGT) " (u1)), Go((G577) " (ua)))
G(Zla 22)
_ GUGT®) (), (G37) " (ua))
G(Zla 22)
= G (G (), (G5) 7 ()
= q)(Ga 21y ZZ)(“I) u’2)7

(I)(C, G1 (Zl), GQ(ZQ))(ul, ’LLQ) =

(6.3)

which finishes the proof of Proposition 2.6. O
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Proof of Theorem 3.4. The proof of this theorem is based on the following
lemma.

Lemma 6.1. Suppose that (X,,Y,) have continuous strictly increasing marginals
and are such that limy,_,(X,,Y,) = (X,Y) in distribution for some (X,Y).
Then,

nlggo ||Cn - C“OO =0, (64)

where Cy, and C' denote the copulas of (X,,Yy,) and (X,Y), respectively.

Proof of Lemma 6.1. Denote by Fx, , Fy,, Fx, Fy, F,, and F the distribution
functions of X, Y, X, Y, (X,,Y,) and (X,Y), respectively. Then, for
u,v € [0,1],

|Crn(u,v) = Clu, v)] = | Fu( X,f(U), Fy, ! (v)) = F(Fy' (u), Fy' (v))
< |Fu(Fx ) (u), Iy (v) = Fu(Fx ' (u), By (v)]

+ |Fu(Fx ' (w), Iy ' (v) = F(Fx'(u), Fy ' (0))].

Because F,, is continuous and since Fl, and Fy, are strictly increasing,

F)}i(u) — F'(u) and F;nl(v) — Fy'(v) as n — oo for any u,v € [0,1].

So, for any € > 0 there is some positive integer N; such that for any n > N,

(6.5)

b

|
)
)

|Fa(Fx, (u), Fy, (v)) = Fa(Fy ' (u), Fy' (v))| < e/2. (6.6)

Similarly, because lim,, ., F,,(x,y) = F(x,y), there is Ny such that for any
n 2 N2
|Fou(Fy ' (u), Fy ' (v) — F(Fx'(u), Iy ' (v)| < /2. (6.7)

Thus, for any u,v € [0,1] and any n > N := max{N;, N}, we have that
|Cp(u,v) — C(u,v)| < g, ie. lim, ,o, C,, = C pointwise. Because [0, 1]* is
compact and both (), and C' are continuous, this convergence is also uniform.
This finishes the proof of Lemma 6.1. O

Let now (U, V) have distribution function C. Note that

Clr(t)z, (1)
C(r(t),s(t))
Glr0),5MY) _ pryy < syl < (), V < s(8)], (6.9)

= P[U < r(t)z|U < r(t),V < s(t)], (6.8)

=PlU < r(t)z,V < s(t)ylU < r(t),V < s(t)], (6.10)
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i.e. the distributions in (6.8)—(6.10) are respectively the conditional distribu-
tions of U/r(t), V/s(t) and (U/r(t),V/s(t)) given U < r(t),V < s(t). Since
copulas are invariant under strictly increasing transformations of the under-
lying variables, it follows that we can take the conditional distributions in
(6.8)—(6.10) instead of Fy (C,r(t),s(t)), Fyv(C,r(t),s(t)) and F(C,r(t),s(t))
in order to construct ®(C,r(t),s(t)). Further, since C' € C and because r, s
are strictly increasing and continuous, we have that the distributions in (6.8)—
(6.10) are continuous too and strictly increasing. By hypothesis C' € R(r, s),

ie.
O, s(t)y)
=0 C(r(t),s(t))
so that the expressions in (6.10) converge to ¢x, ¢y and ¢ as t — 0 respec-

tively. Thus, applying Lemma 6.1, we get

lim &(C, (1), 5(1)) (2, y) = 065 (2). 6y (1)) (6.12)

= ¢(z,y) for all z,y € [0, 1], (6.11)

whence (3.3) has been proved. Since r € R?,s € ’R%, we have according to
Theorem 2.1 in De Haan et al. (1984) that there is # > 0 such that for all
t,r,y >0

o(t%x, t7y) = t"p(z,y). (6.13)
Further, according to Aczél (1966) the most general solution to the functional
equation (6.13) is given by

/e h(yz=Pl) if o #£0
o(z,y) =< cy/? ifr=0andy#0 , (6.14)
0 ifr=9y=0

where ¢ is a constant and h is function of one variable. Because ¢(0,y) = 0
and ¢y (y) = ¢(1,y) = h(y), it follows that ¢ = 0 and that the restriction of
h on [0, 1] equals ¢y, respectively. Further, we have for = € (0, 1] that

dx (zP) = p(x*/? 1) = 295 h(1/x), (6.15)

whence for ¢ = 1/x > 1 we obtain h(t) = h(1/z) = z7P¢px(2*/%) =
98¢ x (t=%/8), which shows (3.4) and finishes therefore the proof of Theo-
rem 3.4. U

Proof of Proposition 3.10. In order to prove that (3.10) defines a copula,
we have to show (2.1) and (2.2). For z € [0, 1], the conditions C(z,0) =
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C'(0,z) = 0 are satisfied because a(0) = b(0) = 0. Further, since z — a(x)/x
is decreasing with a(1) = 1, we have that a(z) > x for any x € [0,1]. Thus,
because b(1) = 1, we get C(z,1) = a(x) A x = z. Similarly, C(1,z) = =,
x € [0, 1], which shows (2.1). Consider now 0 < 73 < 25 < 1 and 0 < y; <
yo < 1. Then,

A= Oz, y2) — C(21,92) — O, 31) + C(21,41)
(A2 ) (o) M) () )

T2 Y2 T Y2 T2 n
b
a1 n

(6.16)

Since = +— a(z)/x and z — b(z)/x are decreasing, six different cases have to
be considered:

1. Assume that a(z3)/xe < a(z1)/x1 < b(y2)/ya < b(y1)/y1. Then, A =
(y2 — y1)(a(z2) — a(z1)) > 0 since a is increasing,.

2. If b(y2)/y2 < bly1)/y1 < alxg)/xe < a(xy)/xy, then A = (zy —
x1)(b(y2) — b(y1)), which is of course non-negative.

3. Suppose now that a(z2)/xe < b(y2)/y2 < b(y1)/y1 < a(xy)/z;. Then,
A =xz1(b(y1) — b(y2)) + a(x2)(y2 — y1) is non-negative if and only if

b(y2) — b(y1) < a(ry)
Y2 — W - ox

(6.17)

Since x — b(z)/x is decreasing, the left hand side of (6.17) can be
bounded as follows:

b(y2) —b(y1) _ bly2) e blyr) i _ b(yl)_

< (6.18)
Y2 — U1 Y2 Y2 — U Yyt Y2 — U1 n

By hypothesis and since a is increasing, we have b(y1)/y; < a(x1)/xz; <
a(zy)/x1, whence (6.17).

4. The case b(y2)/y2 < a(xe)/xe < a(xy)/x1 < bly1)/y1 yields A =
(a(zy) — a(xs))yr + (2 — 21)b(y2), which can be shown to be non-
negative using the same arguments as in (3).
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5. Ifa(wy) /2o < b(y2)/y2 < alwy)/zy < b(y1)/yr, then A = (yo—y1)a(zs)—
21b(y2) + y1a(z1). By hypothesis,

21b(y2) < al(@1)y2 = a(z1)y +a(z1)(y2—y1) < alz1)yr+al@2)(y2 — 1),

(6.19)
where the last inequality follows because a is increasing. This shows
that A > 0.

6. The last case is given by b(y2)/ye < a(x2)/xa < b(y1)/y1 < a(z1)/x1
and A = (23 — 21)b(y2) — yia(za) + z1b(y1). As in (5), it follows that
A >0.

Therefore, (3.10) defines a copula.
Let us prove this result for Marshall and Olkin copulas. Let C denote Mar-
shall and Olkin’s copula with parameters o and 3, i.e.

C(z,y) = min{xl’o‘y, xyl’ﬁ}, Vr,y €[0,1], (6.20)

where « and # are real parameters, in (0, 1), then, the limiting copulae for
Marshall and Olkin’s copula C' under some power function directions are

. [ C(y) if0=a/8
kgé(CJJQCQQ__{Cﬂﬁgw H9¢ZN1 (6.21)

On the one hand, if § = «/f3, the result is trivial since those copulas are
invariant under direction

D={(¢*,1%),t e [0,1]} = {(t,t*/F) ,t € [0,1]}. (6.22)

On the other hand, if 6 # «/3, assume that 0 < 0 < /. Let (U, V) be a
random pair with c.d.f. C, the joint distribution of (U, V) given U < ¢,V <
9, is

min{z' y, zy'? min{z' %y, zy'?
PU<a,VylUst,V<t)= min{{tl—atﬂy, ttéy(l—ﬁ)}} - {tﬂ(l—g)ﬂy }’

(6.23)

where z € [0,#] and y € [0,#’] : since 80 < o, and t € (0,1], t > > ¢t %,
and so t't0=® > ¢1+9=98  Apd the marginal distributions are

min{z'~*t? 2t?0-9}
$+0(1-B)+1

PU<zU<t, V<) =

= min{z' %=1 2171},

(6.24)
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and analogously,

min{t' =%y, ty* 7}
$+0(1-B)+1

P (V <ylU <t, V< tg) = = min{t_a_e(l_ﬂ)y, t_a(l_ﬁ)yl_ﬁ}.
(6.25)

One can notice that z'~%¢?$=1 < zt~' if and only if = > t?%/%; but since

0 < a/B, 08/a < 1, and so x'~°t%~1 < x¢t7! if and only if x > 98/ > ¢

which can not occur since x € [0,t]. It come that, necessarily,

P(U§x|U§t,V§t‘9):§, zelo,1. (6.26)

Analogously t~* 008y > t-00-8)y1-F if and only if t @ > y P ie. t¥/8 >y,
but since # < a/B and t € [0,1], t*/% < 1/ and so t=@ 010y > =0(1=0)y1-6
if and only if y < t*/% < ¢ which always occurs since y € [O,te]. It come
that, necessarily,

P(V<ylU<t,V<t') =t 0Hylh (6.27)
So finally, the generalized inverse of those marginal c.d.f.’s are respectively
z— xt and gy — y/ 00, (6.28)

The copula of (U, V) given U < ¢,V < t? is then given by

1 _ —
P (C, £, t‘9) (z,y) = AT min{(xt)l o (yl/(l—ﬂ)te) , (xt) (yl/(l—ﬁ)ta)l /3},
1
_ v min{xl_o‘yl/(l_ﬁ)teﬂ_a,xytlw(l_ﬁ)},

= gymin{g oy Hpatis 11
Since § < «a/f. then a > (36, or equivalently 03 — a < 0, and so, for all
z,y > 0, there is ty such that, if t > t,, x—yP/(1=Bl¢g=e+08 > 1

So finally, for all z,y in (0,1] there exists ¢, such that, for any t > ¢,
o (C, t, te) (z,y) = xy. It comes that

lim® (C,t, 1) (z,y) = 2y = C* (2,y). (6.29)

t—0

(one gets the uniform convergence since copula functions are defined on the
compact set [0, 1] x [0, 1]).
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(77i) assume now that o/3 < 0. Let (U, V) be a random pair with c.d.f.
C, the joint distribution of (U, V) given U < ¢,V < t9, is
min{x'~%y, zy'~° min{x' =%y, zy'~°
P (U <3,V <ylU<LtV < te) - min{{tlaﬁy, ttf;y(lﬁ)}} - { t1+03ia . }’
(6.30)
where z € [0,t] and y € [O,ta] : since a < 36, and t € (0,1], 7 < t79,
and so ¢!t~ < ¢1+0-05  And the marginal distributions are

min{z'~¢¢, z1/0-9}

P(U<zlU<t,V<th= f+0—a

= min{z'"** !, xta_l_aﬂ},

(6.31)

and analogously,

min{t'~*y, ty" 7}
tl+0—a

P(V<ylU<tV<t') = = min{t~"y,#*7"y' "7}

(6.32)
One can notice that z'=*t* ! < 2t %=1 if and only if 27 < =%, or
equivalently, x < t%%/®; but since § > a/3, or 3/a > 1, and ¢ € [0, 1], then
prootet < g1 if and only if 2 < t%9/® < ¢ which always occurs since
x € [0,t]. Tt come that, necessarily,

P(U<alU<tV<t?) =z = G)H, ze0,f].  (6.33)

Analogously ¢ %y > t* %' F if and only if t @ > y ¥ ie. t*/f < y; but
since # > a/3 and t € [0,1], t*/% > 1%, and so t ="y < t*Py'=F if and only if
y > t*/8 >t which can not occurs since y € [0, te]. It come that, necessarily,

P(V<ylU<t,V<t)=t". (6.34)
So finally, the generalized inverse of those marginal c.d.f.’s are respectively
z — /=% and y — t%y. (6.35)

The copula of (U, V) given U < ¢,V < ¥ is then given by

1 ) o 1— —a 1-8
® (C, t, ta) (x,y) = prEw min{ (txl/(l )) “ 40y, ¢t/ (1) (tgy) }
_ 1 min{xytﬂ—i—l—a, xl/(l—a)yl—ﬂtl—l—ﬂ—ﬂﬁ},

tl+0—a
= min{zy, 2y P08 — gy min{1, x/ (-0~ Fy-08-al
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Since § > «a/f. then a — 08 < 0, and so, for all z,y > 0, there is t, such
that, if t > to, £®/(1-0)y=Fpa=08 > 1,
So finally, for all z,y in (0, 1] there exists ¢, such that, for any ¢ > t,,

o (C, t, te) (z,y) = xy. It comes that

. 0 i

lim @ (C, ¢, ") (x,y) = vy = C* (,y). (6.36)
(one gets the uniform convergence since copula functions are defined on the
compact set [0,1] x [0,1]). Moreover, one can notice that # < «/f and
0 > o/ are symmetric cases.
This finishes the proof if C' is Marshall and Olkin copula. An analogous
proof, but slightly more technical, leads to Proposition 3.10. 0

Proof of Lemma 4.2. Because C' € C, we have that Fi;(C, u,v) and Fy(C, u,v)
are strictly increasing. Because of Sklar’s Theorem and using (2.6), (2.7), we
get

C(z,v) Cu,y)
®(C,u,v) (C’(u,v)’ C(u,v)

) = &(C,u,v)(Fy(C,u,v)(x), Fy(C,u,v)(y))

(z,9)
C(u,v)

Q

= F(Cauav)(xay) =

(6.37)
This finishes the proof of Lemma 4.2. O

Proof of Theorem 4.6. We will first prove that I'(«, 3, 6) defined by (4.8) is
a copula and then show the invariance property. The function H defined by
(4.7) can be rewritten as

0/cfy.—B/a]0/B —B/a)=a/BY if B o
Hiey) =1 %) lyz %]/ P(lyz=rre]eP) if v <y
2 Q(yx—P) if 7 > y®
_ YO P(y=o/Bx) if 28 <y
2°Q(yx=P) if o >y
By hypothesis, the marginals P, () of H are strictly increasing continuous

functions, whence it follows from Sklar’s Theorem that the copula associated
to H equals

(6.38)

0t - { @ PP @ ) P () < Q)
77100700 = { et 20 ), 5yt o
(6.39)



which is precisely I'(P, @, «, 3,0). We show now that I'( P, Q, «, 3, ) is invari-
ant on the curve D = {(P(t%), Q(t")) | t € (0,1]}. For notational convenience
we denote I'(P, @, a, 3,0) by C. In order to derive the LTDC associated to
C, we first notice that from (6.39) it follows

C(P(t%),Q(t%) =1,

PP~ (z)t™®) if P~!(z) < t®
C(«TaQ(tﬁ)) = { p—l(x)e/aQ(p—l(x)—ﬁ/atﬁ) if P~'(x) >t ’ (6.40)

0 = QP WPPEQ ) ) i < Q)
o0 = Folb e g )| 05610

Let now (7,y) € [0, P(t*)] x [0, Q(¢?)]. Because of (2.7) and (6.40), we have
that the marginals of F(C, P(t*), Q(t°)) are given respectively by

Cz, Q")) _ t"P(P~(z)t™*)

FilCL P, QU)) = i gty = - = PP @)t ),
(6.41)
FeC.PI). QU0 = iy iy = Q7@ ). (642

Their inverses equal
Fy(C, P(t%),Q(t")) '(z) = P(P ! (a)t%),
Fy(C, P(t%),Q(1")) H(y) = Q(°Q " (v)).

Assume now that z,y are such that P~!(2)? < Q~'(y)®. From (6.40) we
obtain that

(6.43)

Clr,y)  _Q')"’P(P N (2)Q " (y)~*")
C(P(t*),Q(t7)) tf '

F(C,P(t*), Q") (z,y) =
(6.44)
Thus, for any (z,y) € (0,1]? such that P~'(F;'(x))’ < Q' (F, ' (y))%, i.e.
P~1(2)? < Q7(y)®, we have that
®(C, P(t), Q(t"))(,y)

= F(C,P(t),Q(t"))(Fu(C, P(t),Q(t")) ' (x), Fv (C, P(t"), Q(t") "' (1))

=t (t°Q 7 ()" P(P~ (@)t (°Q ™" (y) ™)

= Q7' ()" PP~ (2)Q " (y)™") = C(ay).
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Similarly, if (z,y) € [0, P(t%)] x [0,Q(t?)] are such that P~!(x)? > Q~'(y)?,
then

P (@) Q(P ()@ (1)

F(C,P(t"),Q(t"))(z,y) = 0

(6.46)

Thus,

o(C, P(t%), Q(t%))(w,y)
= F(C, P(t), Q")) (Fu(C, P(t*),Q(t")) '(z), Fv (C, P(1*), Q(t")) *(y))
=t"P ()" QP (y) Q! (x)) = C(a, ).
(6.47)

Hence, for all (z,y) € [0,1]%, ®(C, P(t%),Q(t*))(x,y) = C(x,y), ie. C is
invariant on D = {(P(t%),Q(t’))|t € (0,1]}. This finishes the proof of
Theorem 4.6. 0

Proof of Lemma 4.12. (i) Let C* = ®(®(C, u,v), u*,v*). Because of Lemma 4.2,
we have for 0 <z < wu* and 0 <y < v* that

O(Cyu,0)(2,y) . [ (Cou,0)(z,0%)  B(C,u,v)(ut,y)
(Cru, )] (@(au,v)(u*,v*)’ <1><o,u,v>(u*,v*>> - (68

On the other hand, we have, again using Lemma 4.2, that ®(C, u, v)(u*, v*)
equals

B(C,u,v)(u, v*) = B(C, u, v) (C(U’,v) C(u,v')> O, ')

C(u,v)” C(u,v) - C(u,v) (6.49)

Further, Fi;(C,u,v)™"(u*) = v’ and Fy(C,u,v)""(v*) = v' by definition of
u* and v*. Because,

C(FU(Cv u, v)_l(m)a FV(Ca u, U)_l(y))

O(C,u,v)(z,y) = Cluv) , (6.50)
it follows multiplying (6.49) with (6.50) that
@(C’,u,v)(x,y) _ C(FU(C,U,U)fl(SL‘),FV(C,U,U)fl(y))‘ (6.51)

®(C,u,v)(u*,v*) C(u',v")
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Let s = Fy(C,u,v)™'(z) and t = Fy(C,u,v)"'(y), then, substituting into
(6.48), we have

C(s,t) . C(s,0) C(u,t)
=C <C’(u’,v’)’(](u’,v’)> (6.52)

for all x,y in [0,u*] x [0,v*]. Because C' is continuous, Fy(C,u,v) and
Fy(C,u,v) are also continuous on [0, u] and [0, v] respectively. Hence, (6.52)

holds for all s, ¢ in [0, u/] x[0, ¥'] because Fr(C, u,v) ™' (u*) = v and Fy-(C, u,v) "' (v*) =
v’

Finally, if 0 < v/ < u < 1 and 0 < ¢/ < v < 0, then ®(C,u,?")
O(P(C,u,v),u*,v*), where u* are v* satisfy respectively v* = C'(v,v)/C(u,
and v* = C(u,v")/C(u,v).

(17) Conversely, C* = ®(P(C, u,v),u’,v") satisfies, for 0 < z < v’ and 0 <
y <o

<
~—"

O(Cou,v)(w,y) o [ B(Cyu,v)(w,0")  B(C,u,v)(u,y)
P(C,u,v)(u',v') =C <(I>(C,u,v)(u’,v’)’ @(O,U,U)(u’,v’)> : (6.53)
Since
C(r,y) o (Cla) Cluy)
C(u,v) = %0, )<C(u,v)’0(u,v)>’ (6.54)

we get that for all x < u' and y < ¢’ that

C(Fu(C,u,v)~(x), Fy(C,u,v)" (y))
C(Fu(Cru,v) ('), Fy (Cu,v)~H(v"))
:C*<C(FU(C,%U) '), Fy (€, u,0) " (v')) C(FU(C,%U)I(U’),Fv(C,uav)l(y))>
C(Fy(Cyu,v)~ (u'), Fy (Cyu,v)~(v"))’ C(FU(C,U,’U)_I(UI),Fv((GCE,);)L),’U)_I(’U'))

Let u* = Fy(C,u,v)"'(v') and v* = Fy(C,u,v)~(v'), i.e. u* and v* satisfy
respectively C'(u*,v) = v'C(u,v) and C(u,v*) = v'C(u,v). Then, for all
r <u*andy < v*

Cloy) _ o (C(fﬂ,v*) C(u*,y) ) (6.56)

C(u*,v*) C(u*,v*)” C(u*, v*)

i.e. C* = ®(C, u*, v*) from Sklar’s Theorem since the functions z — C(z,v*)/C(u*, v*)
and y — C(u*,y)/C(u*,v*) are continuous.
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Finally, if 0 < v/;u < 1 and 0 < v',v < 0, then ®(®(C,u,v),u',v") =
O(C,u*, v*) where u* are v* satisfy respectively C(u*,v) = u'C(u,v). More-
over, because C'(u*,v) = u'C(u,v) < C(u,v) and because x — C(z,v)/C(u,v)
is an increasing function, it follows that u* < w. Similarly, v* < v, which com-
pletes the proof of Lemma 4.12. O

Proof of Lemma 4.13. In order to show the continuity of ®(-, u,v), we have
to bound differences of the form

|®(C",u,v)(s,t) — ®(C,u,v)(s,t)], (6.57)

where C,C" € C and s,t € [0,1]. Since the functions C(-,v)/C(u,v) and
C(u,-)/C(u,v) are continuous and take the values 0 and 1 at u, respectively
v, we may assume without loss of generality that s = C(x,v)/C(u,v) and
t =C(u,y)/C(u,v) for some (z,y) € [0,u] x [0,v]. Applying Lemma 4.2, it
follows then

_ Clz,y)
O(C,u,v)(s,t) = i) (6.58)
Let now A := C'" — C and consider
._ C(x,y) L A(x,y)
ac(e,y) = C(u,v) + A(u,v) and - dalr,y) = C(u,v) + A(u,v) (6.59)
We obtain that
C'(x,v) _ Clz,y) + Alz,y)
= — 6
Cllu,) ~ Cluy) ¥ Bay) U Foalnsh
¢, y) = ac(u,v)t + 0a(u,y).
C'(u,v) ’ ’
Thus, using again Lemma 4.2, we get
/ C'(z,
B(C, )l v)s + 3 (o, o, -+ Bal) = Gl (601)

Now, the expression in (6.57) can be bounded as follows:
|Q)(C”, u, U)(Sa t) o q)(ca u, U)(Sa t)|
< |@(C' u,v) (s, t) — D(C', u, v)(ac(u,v)s + da(x, v), ac(u, v)t + dalu, y))|
+|®(C", u,v)(ac(u,v)s + 0a(x,v), ac(u, v)t + oa(u,y)) — ®(C,u,v)(s, t)]
C'(z, C(x,
< lac(u,v)s + 0a(a,v) = s + loie (u,v)t + 0 () — 1] + C,Ejf;i - ngjf;; ,
(6.62)
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where the last inequality follows because any copula is Lipschitz-continuous
with Lipschitz constant 1 and because of (6.59), (6.61). Further, from the
definition of a¢, da and because x < u, s < 1, we have that

lae(u, v)s + 0a(z,v) — 5| < —A(u,v)s A(z,v) < 2|A(u,v)|
clu, alZ, ~ 1 C(u,v) + A(u,v)  C(u,v) + A(u,v) | = Clu,v) + A(u,v)
NALe
~ Cu,v) = 1Al
(6.63)
Similarly,
2/|A ]l

Jac(u, v)t + 0a(u,y) — 1] <

= Clue) - 8T (00

Further, since z < u,y < v, we have that

C'z,y) _ Cl,y)| _ A, y)Cu,v) - Cla, y) Alw, o) _ 2|C(w, v)A(u,v)] _ 2[|Allw
C'(u,v) C(u,v) C'(u,v)C(u,v) - C’(u,v)C((éL,Gzé)) - C'"(u,v)

From (6.62), (6.63), (6.64) and (6.65), we get

Al A[oo 2[|Alloo
Clu,v) = |Alle ~ C'(u,v)’

|®(C",u,v)(s,t) — D(C,u,v)(s, t)] < (6.66)
where the right hand side is independent from s, ¢ and can be made arbitrarily

small as ||Al|« becomes small. This finishes the proof of proof of Lemma 4.13
U

Proof of Theorem 4.10. Let (uy,) and (v,) be the two sequences defined re-
cursively by the following relationship: Let o and /8 be two constants in (0, 1]
with (o, #) # (1,1) so that, given u,, and v, strictly positive, C(uy41,v,)/C(tn, vy) =
a and C'(up, Vyy1)/C(tun,v,) = B for all n > 1. Given u,, and v,, u,; and
Un+1, we have from the continuity of C' that are well defined (but not nec-
essarily unique). Those sequences can be defined starting in (1,1) so that
u; = « and v; = .

Because «, 8 € (0,1], we have that 0 < u,1; < u, and 0 < v,y < v,.
Let v = lim, o u, and v = lim, ,v,. If v > 0 and v > 0, then
C(u,v)/C(u,v) = o = B, i.e. « = [ = 1 contradicting the hypothesis
(o, B) # (1,1) meaning that either v = 0 or v = 0.

Let C,, = ®(C, up,v,). From Lemma 4.12, we have that ®(C, u,41,v,11) =
Q(P(C, up,vn), Uy, 1, vs,,) where u) ., and vy, are given respectively by
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w1 = C(Uny1, Vn)/C(Un,vn) and v} 1 = C(Un, Uny1)/C(Un, vn), i ur | =
a and v}, = 4, and so, ®(C, upi1,Vp41) = ®(Cp,, ) = Cryq. Because
Cy = ®(C, uy, v,), then, as soon as either u,, — 0 or v,, — 0 when n — oo,
C,, converges towards Cy when n — oco. And so, because, given « and (3,
®(.,a, 3) is a continuous function, from Lemma 4.13, then necessarily, Cj
satisfies ®(Cy, a, 3) = Cy. This finishes the proof of Theorem 4.10. O

Proof of Corollary 4.11. Since Cy = limy_o ®(C,r(t),s(t)), then it follows
from Theorem 3.4 that Co(z,y) = ¢(¢%' (%), #5' (y)), where for z > 0

oz, y) = xa/ah(?ﬂfﬁ/a)a h(z) = { f;//gz)x(x—a/ﬁ) gi 2 [((i,,i]o) .

(6.67)
In other words,

Colz,y) =¢(9%' (), 67 (v))
_{ l(y)g/ﬂ¢x(¢
x (@) ¢

"y)~ a/% Ha)) if ' (2)% < ¢y (y)°
)% dy ( ¢

Yoy (x)77/%) it ¢x (2) > ¢3! ()™
(6.68)

Y
Y

ie. Cy = T'(ox, ¢y, «, 3,0) according to (4.8). This finishes the proof of
Corollary 4.11. O

Proof of Proposition 4.15. Let C' be an absolutely continuous and invariant
copula on the unit square. Because of Lemma 4.2, we have for all x,y,u,v €

10, 1] that

C(l‘u7 yv) — C C(‘TU7 U) , C’(U/, yv) . (669)
C(u,v) C(u,v)’ C(u,v)

Since C' is absolutely continuous, then derivating with respect to x and y

yields

uvCha(zu, yv)  vCy(u, yv) uC(zu, v) C(zu,v) C(u,yv)
C(u,v) — C(u,v)  C(u,v) Chz ( Clu,)” Clu,0) ) , (6.70)

where C, Cy and (5 denote the partial derivatives of C' with respect to the
relative variables. The latter equation can be written as

C(u, v)Cha(xu, yv) _c, (C(xu,v) C(u,yv))
Co(u, yv)Cy(zu,v) C(u,v) " Clu,v) )

(6.71)
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Inserting x = y = 1, we obtain that

C(u, v)Cha(u, v)
Cs(u, v)C(u,v)

The latter equation can be rewritten as

Cia(u,v) Cy(u,v)

=(0-1 : :
Gty VO 0.7
Integrating with respect to v leads to
log Cy(u,v) = (6 — 1) log C(u,v) + k(u) (6.74)

for some function k of u. In order to determine the function k, notice that
log Cy(u,1) = (# — 1) logu + x(u). Substituting into equation (6.74) yields

Ci(u,v) C(u,v)
Crnd) (60 —1)log s (6.75)

log

Taking the exponential on both sides produces the identity
Ci(u,v) Cy(u,1)

C(u,v)f-1  wuf! (6.76)
Integrating with respect to u, we obtain
C - COu,1)7? -
(“_’;’) _ 9) FAW) = "+ A0) (6.77)

for some function A\ of v. Because of symmetry, it follows that A does not
depend on v, i.e. that

9 -0 -0
C(u_ag) — U—H 4 U——G + constant, (6.78)

which can also be written as

C(u,v) ™ =u™? + v + constant 0 < u,v < 1, (6.79)

where ¢ is some constant. Finally, because C'is a copula, it must be C'(1,1) =
1, whence the constant in the equation above must be —1, i.e. C is the
Clayton copula with parameter 6. Conversely, since the Clayton copula is
absolutely continuous and also invariant on [0, 1]?, it follows that it is the
only copula with this properties. O
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