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Abstract

We provide a model of decision making under uncertainty in which the decision maker reacts to
imprecision of the available data. Data is represented by a set of probability distributions. We
axiomatize a decision criterion of the maxmin expected utility type, in which the revealed set
of priors explicitly depends on the available data. We then characterize notions of comparative
aversion to imprecision of the data as well as traditional notions of risk aversion. Interest-
ingly, the study of comparative aversion to imprecision can be done independently of the utility
function, which embeds risk attitudes. We also give a more specific result, in which the func-
tional representing the decision maker’s preferences is the convex combination of the minimum
expected utility with respect to the available data and expected utility with respect to a subjec-
tive probability distribution, interpreted as a reference prior. This particular form is shown to
be equivalent to some form of constant aversion to imprecision. We finally provide examples of
applications first to unanimity rankings of imprecision and risk and then to optimal risk sharing
arrangements.

Keywords: Imprecision, Ambiguity, Uncertainty, Decision, Multiple Priors.
JEL Number: D81.

Résumé

Nous proposons un modèle de décision dans l’incertain qui permet au décideur de tenir
compte de l’imprécision des données dont il dispose, ces dernières étant représentées par un
ensemble de distributions de probabilité. Nous caractérisons axiomatiquement un critère de
décision de la forme “maxmin d’espérance d’utilité”, dans lequel l’ensemble révélé de distribu-
tions de probabilité dépend explicitement des données disponibles. Nous caractérisons également
les notions d’aversion à l’égard de l’imprécision des données, et d’aversion à l’égard du risque
compatibles avec ce modèle de décision. En particulier, nous montrons que l’étude de l’aversion à
l’égard de l’imprécision de l’information peut être faite indépendamment de la fonction d’utilité
du décideur, tandis que l’attitude à l’égard du risque du décideur dépend uniquement de la forme
de sa fonction d’utilité. Nous caractérisons également un modèle de décision plus spécifique,
dans lequel la fonctionnelle représentant les préférences du décideur est une combinaison con-
vexe du minimum de l’espérance d’utilité calculé sur l’ensemble des données disponibles, et de
l’espérance d’utilité par rapport à une distribution de probabilité subjective, interprétée comme
une distribution de référence. Cette forme particulière se révèle être équivalente à une cer-
taine forme d’aversion constante à l’égard de l’imprécision. Enfin, nous proposons des exemples
d’applications, d’une part au classement unanime de l’imprécision et du risque, et d’autre part
au partage optimal du risque entre agents.

Mots clés: Imprécision, Ambigüıté, Incertitude, Décision, Probabilités a priori multiples.
Numéros JEL: D81.



1 Introduction

In many problems of choice under uncertainty, some information is available to the decision
maker. Yet, this information is often far from being sufficiently precise to allow the decision
maker to come up with an estimate of a probability distribution over the relevant states of nature.
The archetypical example of such a situation is the so-called Ellsberg paradox (Ellsberg (1961)),
in which subjects are given some imprecise information concerning the composition of an urn
and are then asked to choose among various bets on the color of a ball drawn from that urn. Less
anecdotal is the issue of climate change (see Intergovernmental Panel on Climatic Change (2001)
for a thorough exposition): there, uncertainty is ubiquitous, as long recognized by experts. In
this issue of utmost importance, recommendations to the authors for assessing and reporting
uncertainties (Moss and Schneider (2000)) are particularly interesting to look at. While ac-
knowledging at the outset that “the Bayesian paradigm is a formal and rigorous language to
communicate uncertainties”, the authors insist on carefully linking the prior belief with quan-
titative distributions when possible. Actually, most of the recommendations have to do with
justifying the probability judgement made, if available. In particular, in case of disagreement
among experts, the report insists on the necessity to communicate all the information available
and not an aggregate of it:

“In developing a best estimate, authors need to guard against aggregation of results
(...) if it hides important regional or inter-temporal differences. It is important
not to combine automatically different distributions into one summary distribution.
For example, most participants or available studies might believe that the possible
outcomes are normally distributed, but one group might cluster its mean far from the
mean of another group, resulting in a bimodal aggregated distribution. In this case,
it is inappropriate to combine these into one summary distribution, unless it is also
indicated that there are two (or more) “schools of thought”.” Moss and Schneider
(2000), p.42.

This creates a tension with the general recommendation to use the Bayesian paradigm.
Indeed, the usual argument in favor of aggregating the data is that decision makers cannot deal
with sets of probability distributions.1 Finally, even if experts agree, it may well be the case that
available data only allows to identify a set of probability distributions (see, e.g., Manski (2003)
and Walley (1991)); this is indeed what happens in Ellsberg’s experiments. In that case, it might
be difficult to subjectively assess a single prior, and there is no reason, besides tractability, to
require experts or decision makers to come up with such a probabilistic assessment.2 One may

1For an interesting methodological discussion of these issues in a practical case –the problem of sea level rise–,
see Titus and Narayanan (1996).

2Moss and Schneider (2000) give the following argument: if experts did not give a probability distribution to
the policy maker, the latter will do it by himself, because he is unable to process something else than probabilistic
information.
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however consider the problem the other way around: what tools can we provide to the decision
maker so that he can deal with the brute information that experts deliver or with situations in
which data only identify a set of distributions? In other words, is there a way to keep a formal
and rigorous language to communicate uncertainties, that is still tractable but does not assume
that probabilistic prior beliefs can always be formed?

In this paper, we develop a formal model of decision making under uncertainty which may
provide a partial answer to this question. More precisely, we model a decision maker who reacts
to imprecision of the available data in a given choice problem. We do so assuming that data
can be represented by sets of probability distributions. Thus, we define preferences as a binary
relationship on the cross product of acts (mappings from states of the world to –probability
distributions over– outcomes) and available information (sets of probability distributions over the
state space). Compared to the approach developed in Gilboa and Schmeidler (1989), we enrich
the space on which preferences are defined. Denoting P the set of probability distributions over
the state space that represents the information available to the decision maker, preferences bear
on couples (f,P) where f is an act in the usual sense. This means that, at least conceptually,
we allow agents to compare the same acts in different informational settings. In Gilboa and
Schmeidler (1989), the (un-modelled) prior information that the decision maker has is fixed.
Our general representation theorem axiomatizes a class of functional of the maxmin expected
utility type à la Gilboa and Schmeidler (1989), where the revealed set of priors is a subset
of the available information. For each set of probability distributions representing available
information, we get a revealed set of priors. We prove that under our axioms, the revealed
sets of priors satisfy a certain number of consistency requirements when information is changed.
More precisely, the general decision criterion we axiomatize takes the following form: for two
sets of probability distributions P and Q and two acts f and g, (f,P) � (g,Q) if, and only if,

min
p∈F(P)

∫
u ◦ fdp ≥ min

p∈F(Q)

∫
u ◦ gdp.

In this expression F(P) is the revealed set of priors when information is given by P. Our
representation result imposes some consistency conditions on how F(P) is related to P. These
conditions (e.g., F(P) ⊂ P) are obtained with an economy of axioms. The main axiom in this
construction is one of aversion to imprecision which, loosely speaking, states that the decision
maker always prefers to act in a setting in which he possesses more information. An advantage of
having defined preferences on pairs (act,information) is to be able to simply capture imprecision
aversion as aversion towards a “garbling” of the information at hand. At this stage, we simply
remark that the notion we adopt of what it means for a set of probability distributions to be
more imprecise than another one is rather weak and partial in the sense that it does not enable
one to compare many sets (this will be discussed at length and illustrated via an example when
we introduce our axiom); yet this axiom has clear behavioral content and can easily be tested.
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Based on this representation theorem, one can characterize a comparative notion of aversion
towards imprecision, with the nice feature that it can be completely separated from risk attitudes.
We say that a decision maker b is more imprecision averse than a decision maker a if whenever
a prefers to bet on an event when the information is given by a (precise) probability distribution
rather than some imprecise information, b prefers the bet with the precise information as well.
This notion captures in rather natural terms a preference for precise information, which does
not require the two decision makers that are compared to have the same risk attitudes, the latter
being captured, as we show, by the concavity of the utility function.3 Our result states that
two decision makers can be compared according to that notion if and only if the revealed set of
priors of one of them is included in the other’s. A Bayesian decision maker (that is, a subjective
expected utility maximizer) will have a revealed set of priors reduced to a singleton, while
an extremely imprecision averse decision maker will have a revealed set of priors that exactly
correspond to the set compatible with available information. Whenever the sets of probability
distributions representing the information have some underlying symmetric structure (which
we’ll define precisely), it is possible to define absolute and relative imprecision premia that
characterize this notion of aversion towards imprecision.

The representation theorem described above does not pin down a functional form but rather
a class of functional forms compatible with aversion towards imprecision. If one is willing to
assume extra properties of the preference relation, one can come up with more precise func-
tional forms. For instance, a convenient one consists of taking the convex combination of the
minimum expected utility with respect to all the probability distributions compatible with prior
information, with the expected utility with respect to a particular probability distribution in
this set. The coefficient in the convex combination has then a direct interpretation in terms
of attitude towards imprecision. As it turns out, this functional form can be axiomatized in a
natural way for a large class of sets of probability distributions (including notably cores of beliefs
functions), the extra axiom being one of constant relative imprecision premium. This gives rise
to the following representation: (f,P) � (g,Q) if, and only if,

θmin
p∈P

∫
u ◦ fdp+ (1− θ)

∫
u ◦ fdcP ≥ θmin

p∈Q

∫
u ◦ gdp+ (1− θ)

∫
u ◦ fdcQ.

where cP is the, suitably defined, center of the family P and θ is the value of the constant relative
imprecision aversion premium that allows all the attitudes towards imprecision from paranoic
pessimism (θ = 1) to Bayesianism (θ = 0).

Our approach, we believe, might be of interest for economic applications where imprecision
about the data is the rule. First, our theory can provide orderings that permit to develop results
of comparative statics in the spirit of comparative statics for risk based on second order stochastic
dominance. Here, two kinds of ordering matter: first, when can we say that a situation is more

3Whenever information is precise in the sense that it is compatible with only one probability distribution, our
axioms imply that the decision maker is maximizing expected utility.
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imprecise? and second, when can we say that a prospect is more risky? We propose some first
insights about unanimity ordering of imprecision (defined by saying that P is unanimously more
imprecise than Q if all decision makers that satisfy our axioms are such that (f,P) � (f,Q) for
any act f) that can be used to rank interesting classes of sets of probability distributions. For
instance, we give an ordering for cores of beliefs functions. We also give a more complete ordering
for a restricted class of preferences which display increasing absolute imprecision premium. We
also consider how the second order stochastic dominance conditions can be extended in our
framework.

Second, the separation of attitude towards risk and attitude towards imprecision that we
achieve, paves the way for exploring the respective consequences of these two features in economic
situations. Take for instance contracting models. These models usually assume that the principal
and the agent have expected utility preferences with the same probabilistic beliefs and different
attitudes towards risk. The shape of the optimal contract is crucially dependent on these two
features. Our model could be used to study the equivalent of contractual “risk sharing” optimal
arrangements in an environment where not only risk but also imprecision is present. More
generally, one could reconsider risk/uncertainty-sharing optimal arrangements in the light of
this model. The specification we develop in this paper could be meaningfully used to assess the
effect of different attitudes towards imprecision on the set of Pareto optimal allocations or on
equilibrium allocations, something that is not feasible using the two decision models mentioned
above (see e.g., Chateauneuf, Dana, and Tallon (2000), Mukerji and Tallon (2001).) Although
we do not develop these ideas in full generality in this paper, we provide a simple example of
risk-sharing analysis in an economy with imprecision averse decision makers. This example,
although a little contrived, illustrates a third point of interest of our model, namely to clearly
separate the information agents have from their revealed beliefs, which might be different even
when they have the same information. Our example shows that when agents have no information
(all probability distributions are compatible), Pareto Optimal allocations are comonotone, even
though revealed beliefs can differ across agents.

Organization of the paper
The paper is organized as follows. The next subsection discusses some related literature.

The following section describes the setup and establishes the notation. Section 3 is divided in
three. In the first subsection we introduce and discuss our axioms. In particular, we provide a
lengthy discussion of our axiom of aversion to imprecision. In the second subsection we state our
representation theorem and discusses some of its implications; the last subsection defines and
characterizes a notion of comparative imprecision aversion and subsequently the usual notion
of comparative risk aversion transposed to our model. Section 4 contains an exploration of
more specific functional forms based on constant relative imprecision premium. In Section 5, we
provide economic applications, first to unanimity rankings of imprecision and risk and then to
optimal risk sharing. All proofs are gathered in the Appendix.
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Comparison with the related literature
We end this introduction by mentioning some related literature, whose precise relationship

with our model and results will be discussed further in the text. We also make clear what are
the main conceptual differences between our approach and much of the recent literature.

Our model incorporates explicitly information as an object on which the decision maker has
well defined preferences. To the best of our knowledge, Jaffray (1989) is the first to axiomatize
a decision criterion that takes into account “objective information” in a setting that is more
general than risk. In his model, preferences are defined over belief functions. The criterion
he axiomatizes is a weighted sum of the minimum and of the maximum expected utility. This
criterion prevents a decision maker from behaving as an expected utility maximizer, contrary to
ours, which obtains as a limit case the expected utility criterion. Interest in this approach has
been renewed recently, in which object of choices are sets of lotteries (Ahn (2003), Olszewski
(2002), Stinchcombe (2003)). More closely related to our analysis, and actually a point of in-
spiration of this paper, is Wang (2003). In his approach the available information is explicitly
incorporated in the decision model. That information takes the form of a set of probability dis-
tributions together with an anchor, i.e., a probability distribution that has particular salience.
As in our analysis, he assumes that decision makers have preferences over couples (act, infor-
mation). However, his axiom of ambiguity aversion is much stronger than ours and forces the
decision maker to be a maximizer of the minimum expected utility taken over the entire set
of probability distributions. There is no scope in his model for less extreme attitude towards
ambiguity. Following Wang’s approach, we proposed in Gajdos, Tallon, and Vergnaud (2004) a
weaker version of aversion towards imprecision still assuming that information was coming as a
set of priors together with an anchor.

The notion of aversion towards imprecision that we develop here is based on the one analyzed
in our previous work and is different from the one defined in Gilboa and Schmeidler (1989)
and Schmeidler (1989) and the subsequent literature. There, aversion towards ambiguity is
defined via a preference for hedging, while ours is defined via a preference for information
precision. Thus, in Gilboa and Schmeidler (1989), uncertainty aversion is only indirectly revealed
by a preference for hedging, while our approach is in some sense more direct. This is because
we observe the preference for different “objective information”. This point is of theoretical
importance, as it allows us to define aversion towards ambiguity or imprecision as a reaction of
the decision maker to a change in the information he possesses. Taking this view might also shed
new light on the debate around the right notion of “ambiguity aversion”4 which is symptomatic
of a lack of “objective” definition of what really constitutes “ambiguity”. Indeed, contrary to
risk aversion, which was first defined as the existence of a risk premium – whose computation
is based on a given probability distribution– and then defined in a purely subjective framework

4See Ghirardato and Marinacci (2002), Epstein (1999) and the thorough, conceptual discussion in Ghirardato
(2004)
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(Yaari (1969)), ambiguity aversion was directly defined in a subjective framework, without a
clear view of what kind of data would constitute an instance of ambiguous data.

Our notion of comparative imprecision aversion could itself be compared to the one found in
Epstein (1999) and Ghirardato and Marinacci (2002). The latter define comparative ambiguity
aversion using constant acts. They therefore need to control for risk attitudes in a separate
manner and in the end, can compare (with respect to their ambiguity attitudes) only decision
makers that have the same utility functions.5 Epstein (1999) uses in place of our bets in the
definition of comparative uncertainty aversion, acts that are measurable with respect to an
exogenously defined set of unambiguous events. As a consequence, in order to be compared,
preferences of two decision makers have to coincide on the set of unambiguous events. If the
latter is rich enough, utility functions then coincide. Our notion of comparative imprecision
aversion, based on the comparison of bets under precise and imprecise information does not
require utility functions to be the same when comparing two decision makers.

The functional form that we axiomatize appears in some previous work (Gajdos, Tallon,
and Vergnaud (2004) and Tapking (2004)). In independent work, Hayashi (2003) provides, in
the same set up as ours, a different axiomatization of essentially the same decision criterion.
His approach is different in at least one important direction. Hayashi’s axiomatization of the
equivalent of our general decision criterion rests on a notion of imprecision aversion that is based
on gains via hedging, much as in Gilboa and Schmeidler (1989). Thus, imprecision aversion is not
defined in terms of properties of the preferences when comparing various informational settings.
Hence, one could argue that this definition does not take advantage of the full strength of the
general setting adopted. On the other hand, Hayashi’s main theorem is concerned with the more
specific functional form discussed above, i.e., the convex combination of the minimum expected
utility with respect to all the probability distributions compatible with prior information, with
the expected utility with respect to a particular probability distribution, which, in his approach,
turns out to be the Steiner point of this set. His main extra axiom is a geometric axiom stating
that the decision maker’s preferences are “invariant to similarity reshuffles”. The latter are a
generalization of the notion of permutation. His axiom has little behavioral content in the sense
that it is difficult to interpret it as reflecting some kind of aversion towards imprecision even
though it mechanically gives this result in the functional form axiomatized. In particular, it is
not clear what kind of conceptual information about a decision maker’s preferences one could
extract from the fact that he does not obey Invariance to Similarity Reshuffle. Indeed, we give
in this paper an example of a decision maker whose preferences are compatible with the general
representation but not with the specific functional form (thus violating Invariance to Similarity
Reshuffles). As we argue then, it is not clear on what behavioral grounds such preferences should
be ruled out. We believe our approach provides a deeper understanding of how imprecision of

5They actually mention that if one wants to compare two decision makers with different utility functions, one
has first to completely elicit them.
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the data might or might not affect a decision maker’s behavior.
Finally, we compare our approach with Klibanoff, Marinacci, and Mukerji (2003). They

provide a fully subjective model of ambiguity aversion, in which attitude towards ambiguity is
captured by a smooth function over the expected utilities associated with a set of priors. The
latter, as in Gilboa and Schmeidler (1989) is subjective. Hence, although their model allows for
a flexible and explicit modelling of ambiguity attitudes, there is no link between the subjective
set of priors and the available information. Interestingly, part of Klibanoff, Marinacci, and
Mukerji (2003)’s motivation is similar to ours, that is disentangling ambiguity attitude from the
information the decision maker has. Formally, however, this separation holds in their model only
if one makes the extra assumption that subjective beliefs coincide with the objective information
available. In particular, comparative statics is more transparent in our model, as information
can be exogenously changed. At a more conceptual level, Klibanoff, Marinacci, and Mukerji
(2003)’s approach assumes that all uncertainty is eventually reduced to subjective probabilities,
although on two different levels: essentially, the decision maker has in mind a second order
probability distribution, but does not perform reduction of lotteries. The criterion they obtained
is smooth and appeals only to probabilistic tools, which should make it easy to use in economic
applications. Besides the different specific modelling choices, our conceptual departure from
their approach is that we do not assume that, even subjectively, imprecise information can be
reduced to probabilities (even of a second or higher order). In that sense we are more in line with
?’s view, that when a decision maker lacks a determinate probability distribution over states,
“there will correspond [to any available option], in general, a set of expected utility values,
among which he cannot discriminate in terms of definite probabilities”.

2 Setup and notation

Let S be a countably infinite set of states of nature, that we will identify to N. We assume that
prior information in any given decision problem comes as a set of probability distributions over
that state space. We restrict attention to sets of probability distributions with finite support.
Let P be the set of non-empty, closed (in the weak convergence topology) sets of priors with
finite support, and PC the set of convex elements of P. Denote P a generic element of P, and
S(P) = ∪p∈PSupp(p) the finite support of P. For any subset E of S, let ∆(E) be the simplex
on E, that is the set of probability distributions p with Supp(p) ⊂ E.

As Gilboa and Schmeidler (1989) among others we use the framework of Anscombe and
Aumann (1963). This is mostly for sake of simplicity, as it enables us to formally build on their
representation theorem. Let X be a set (the set of outcomes) and let Y be the set of distributions
over X with finite supports (roulette lotteries). An act f is a mapping from S to Y . We denote
by A the set of acts (horse lotteries) and Ac the set of constant acts. The decision maker’s
preferences is a binary relation � over A × P, that is, on couples (f,P). As usual, � and ∼
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denote the asymmetric and symmetric parts, respectively, of �.
Before stating the axioms we impose on the decision maker’s preferences, we need to introduce

some further notation. For E ⊂ S, let fEg be the act giving f(s) if s ∈ E and g(s) otherwise.
Define the mixture of two acts αf+(1−α)g as usual, i.e., it is the act giving f(s) with probability
α and g(s) with probability (1− α) in state s.

For any ϕ onto mapping from S to S, for any f ∈ A, we say that f is ϕ-measurable if
f(s) = f(s′) for all s, s′ ∈ S such that ϕ(s) = ϕ(s′). For a ϕ-measurable act f , define the act
fϕ on ϕ(S) by fϕ(s) = f(s′) where s′ ∈ ϕ−1(s) for all s ∈ S. fϕ is the act f “translated”
on a different part of the state space. A similar operation for the available information can be
defined as follows. For any p ∈ ∆(S) and P ∈ P and ϕ onto mapping from S to S, pϕ is defined
by pϕ(s) = p(ϕ−1(s)) for all s ∈ ϕ(S) and Pϕ is defined by Pϕ = {pϕ|p ∈ P}. If ϕ is a bijection,
note that for all p ∈ ∆(S), there is a unique q ∈ ∆(S) such that qϕ = p. Let (fϕ,Pϕ) be denoted
for short (f,P)ϕ.

For any P,P ′ ∈ P, define αP + (1 − α)P ′, the convex combination of P and P ′, to be the
set: {

q
∣∣q = αp+ (1− α)p′, p ∈ P, p′ ∈ P ′}

For any P ∈ P, any α ∈ [0, 1], and any bijection ϕ from S to S such that ϕ(S(P))∩S(P) = ∅,
let R[P, α, ϕ] be defined by

{q|q = αp+ (1− α)pϕ, p ∈ P}

We now state a technical axiom, which could be dispensed with at the cost of greatly complicating
notation, without gaining much conceptual insights.

Axiom 1 (Act mixture) For all P ∈ P, for all α ∈ [0, 1] and bijection ϕ : S → S, for all f, g ∈ A
such that f(s) = g(s) for all s ∈ S \ S(P),

(αf + (1− α)g,P) ∼ (fS(P)g
ϕ, R[P, α, ϕ])

Note that in this axiom, fS(P)g
ϕ(s) = f(s) = g(s) for all s ∈ S \ (S(P) ∪ ϕ(S(P)).

The role of this axiom is simply to use the full strength of Gilboa and Schmeidler’s technical
analysis, which is cast in the Anscombe-Aumann setting and rests on a mixture operation.
Formally, we do not need to cast our analysis in the Anscombe-Aumann setting since ours has a
probabilistic structure already built in. However, doing so simplifies the proofs and the notation.

3 Axioms and Representation Theorem

In this section, we introduce our axioms, provide an extensive discussion of our main axiom
(aversion towards imprecision) and give our representation theorem. We next provide a definition
and a characterization of a notion of comparative imprecision aversion and introduce a notion
of imprecision premium. We finally provide a characterization of risk aversion in our setting.
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3.1 Axioms

We begin by assuming that the preference relation is a weak order.

Axiom 2 (Weak order) � is complete and transitive.

The second axiom states that preferences are invariant to some intuitive changes: changing
the outcome of an act on part of the state space that has zero probability according to all
distributions in P does not alter preferences; relabeling the states of the world is also immaterial
as far as preferences are concerned.

Axiom 3 (Equivalence indifference) For all f, g ∈ A, P ∈ P,

• (f,P) ∼ (fS(P)g,P)

• if ϕ is an onto mapping from S to S such that

– f is ϕ-measurable,

– whenever
∣∣ϕ−1(s)

∣∣ ≥ 2, p(ϕ−1(s)) = p′(ϕ−1(s)) for all p, p′ ∈ P,

then (f,P) ∼ (f,P)ϕ.

Axiom 3 implies in particular that for all constant act f ∈ Ac, for all P,P ′ ∈ P, (f,P) ∼
(f,P ′). To illustrate the second part of the axiom, take P = {(p, 1

2 −p,
p
2 ,

1−p
2 , 0, ...)|p ∈ [0, 1/2]}

and define ϕ : S → S by ϕ(1) = ϕ(2) = 1 and ϕ(i) = i − 1, i ≥ 3. Then, the axiom states
that, for any f such that f(1) = f(2), (f,P) ∼ (f,P)ϕ. Note also that if ϕ is a permutation of
the states that leaves P unchanged (i.e., P = Pϕ) then (f,P) ∼ (fϕ,P). If, for instance, P is
a simplex, then any permutation of the states in its support will continue to yield the simplex,
and therefore (f,P) ∼ (fϕ,P) for any act f .

Note that Axiom 3 does not force the decision maker to be indifferent between betting on
drawing a red ball from an urn in which there are red, blue and green balls in unknown proportion
and betting on red from an urn in which there are red and blue balls in unknown proportion.
In particular, our model does not assume that the decision maker evaluates a couple (f,P) only
through the probability distributions induced over outcomes.6

The next axiom is an independence axiom in which the mixing operation bears on the sets
of priors.

Axiom 4 (Independence) For all P1,Q1,P2,Q2 ∈ P, and for all f, g ∈ A,

(f,P1) � (�)(g,Q1)
(f,P2) � (g,Q2)

}
⇒ (f, αP1 + (1− α)P2) � (�)(g, αQ1 + (1− α)Q2)

6Our model thus cannot be reduced to a model in which objects of choice are sets of lotteries.
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When sets of priors are reduced to singletons this is the usual independence axiom. Its
interpretation is the usual one: the set αP1 +(1−α)P2 can be seen as the outcome of a process
in which nature chooses the “true” probability distribution over S with probability α from P1

and (1− α) from P2.
The next axiom is a continuity axiom on acts, keeping information constant.

Axiom 5 (Continuity) For all f , g, h ∈ A, and all P ∈ P, if (f,P) � (g,P) � (h,P), then
there exist α and β in (0, 1) such that :

(αf + (1− α)h,P) � (g,P) � (βf + (1− β)h,P).

Note that � induces a preference relation �`P on Y which is simply the restriction of � on
Ac ×P. The next axiom states that the order � should be monotonic when comparing couples
(f,P) and (g,P) in which the act-component is ranked according to the �`P order.

Axiom 6 (Monotonicity) For all f, g ∈ A, and all P ∈ P, if f(s) �`P g(s) for all s ∈ S(P),
then (f,P) � (g,P).

The next axiom simply requires that no matter what the available information is, there exists
a pair of acts that are not indifferent.

Axiom 7 (Non-degeneracy) For all P ∈ P, there exist f ,g ∈ A such that (f,P) � (g,P).

The next axiom is a Pareto axiom that states that if f is judged better than g according to
any distribution p ∈ P, then f is judged better according to the whole set P.

Axiom 8 (Pareto) For all P ∈ P, if for all p ∈ P, we have (f, {p}) � (g, {p}), then (f,P) �
(g,P).

Our main axiom is an axiom of aversion towards imprecision. Compared to Gilboa and
Schmeidler (1989)’s Uncertainty Aversion axiom and Hayashi (2003)’s Gains via Hedging axiom,
ours deal with the problem in a more direct manner. According to their axiom, uncertainty
aversion is revealed whenever the mixture of two indifferent acts is preferred to any of these
acts. Our axiom of aversion towards imprecision directly points what kind of information the
decision maker values to reduce imprecision of a set of probability distributions. This is in line
with our view that aversion towards imprecision should be based on a notion of imprecision that
has some content independently of the decision maker’s preferences.

Axiom 9 (Aversion towards imprecision) For all f ∈ A, P ∈ P, α ∈ [0, 1], and for all one-to-
one function ϕ : S → S such that ϕ(S(P)) ∩ S(P) = ∅,

(f,R[P, α, ϕ]) � (f, αP + (1− α)Pϕ)

10



In this axiom, the decision maker compares the same act in two different informational
settings. The axiom states that he prefers acting with the information given by R[P, α, ϕ]
rather than with the information given by αP + (1 − α)Pϕ. This suggests to define a (very
partial) order on families of probability distribution as follows. Say that P ′ is more imprecise
than P if there exist a set Q of probability distributions, a scalar α and a bijection ϕ such that
ϕ(S(Q)) ∩ S(Q) = ∅, such that P = {αq + (1− α)qϕ|q ∈ Q} and P ′ = αQ+ (1− α)Qϕ.

Let us illustrate this notion by means of an example. Consider two urns made of a hundred
balls, that could be black, red, white or yellow. The available information for urn I is the
following: there are 50 balls that are black or white in unknown proportion, and 50 balls that
are red or yellow in unknown proportion. The available information for urn II is the following:
there are 50 balls that are black or white in unknown proportion, and 50 balls that are red
or yellow in unknown proportion, and the number of black balls is the same as the number
of red balls, and the number of white balls is the same as the number of yellow balls. Our
partial order would assess that the urn II is more precise than urn I. Indeed, all the information
available for urn I is also available for urn II, and there is some extra information for urn II.
This extra information has a symmetric flavor: the ratio between black and red is the same
as the ratio between white and yellow. Formally, if one encodes the color as follows: Black
is state 1, White state 2, Red state 3 and Yellow state 4, the two urns can be described as
follows. Let Q = ∆({1, 2}) and define ϕ by ϕ(1) = 3, ϕ(2) = 4, ϕ(3) = 1, ϕ(4) = 2, and
ϕ(s) = s, s > 4. Then, Urn I is described by P ′ = 1

2Q + 1
2Q

ϕ, while Urn II is described by
P = {1

2q + 1
2q
ϕ|q ∈ Q} = R[Q, 1

2 , ϕ].
Graphically, the (projection on pR and pB of the) set of priors describing urn I is given by

the square in figure 1, while it consists only of the diagonal in urn II.

Fig. 1: Possible distributions in urn I (left figure) and urn II (right figure)

This symmetry is important for the axiom, as the decision maker is required to prefer any
act in the more precise situation compared to the less precise situation. On the other hand, the
initial symmetry in the composition of the urn in this example is not necessary. Consider urn
III in which there are 60 balls that are black or white in unknown proportion, and 40 balls that
are red or yellow in unknown proportion and compare it with urn IV in which there are 60 balls
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that are black or white in unknown proportion, and 40 balls that are red or yellow in unknown
proportion, and the ratio of black balls to red balls is the same as the ratio of white balls to
yellow balls. Then, our partial order is able to rank these two urns and say that urn IV is more
precise than urn III.

This order on sets of probability distributions is admittedly very partial. For instance sin-
gletons are not necessarily “more precise” than the description of urn I. To illustrate this point,
consider the singleton set {(pB, pW , pR, pY ) = (2/3, 0, 1/6, 1/6)}; the order defined does not rank
this set with respect to urn I (or any urn introduced above for that matter). From a behavioral
viewpoint this makes sense as it seems obvious in that case that the decision maker will prefer
to bet on white in urn I rather than on white in this urn.

Taken with the other axioms, our aversion towards imprecision has some extra implications
that we will discuss in more details after the representation theorem. For instance, although we
cannot deduce from that axiom alone that the decision maker would prefer any act when he is
told that the composition of the urn is given by {(pB, pW , pR, pY ) = (1/4, 1/4, 1/4, 1/4)} to the
same act with urn I, this will be implied by the representation theorem. Note finally that the
examples developed above can be used to test Axiom 9. According to that axiom the decision
maker will prefer any bet involving urn II (resp. urn IV) to the same bet in urn I (resp. urn III).
This provides an easy and direct way to test the axiom, which has a clear behavioral content.

3.2 Representation theorem and discussion

The following theorem provides a characterization of our set of axioms, in which the notion of
uncertainty aversion is captured by aversion towards information imprecision.

Theorem 1 Axioms 1 to 9 hold if, and only if, there exists an unique (up to a positive linear
transformation) affine function u : Y → R, and a unique function F : P → PC satisfying, for
all P,Q ∈ P:

1. F(P) ⊆ co(P)

2. For all onto mapping ϕ from S to S such that
∣∣ϕ−1(s)

∣∣ ≥ 2 implies p(ϕ−1(s)) = p′(ϕ−1(s))
for all p, p′ ∈ P, F(Pϕ) = (F(P))ϕ

3. For all α ∈ [0, 1], F(αP + (1− α)Q) = αF(P) + (1− α)F(Q)

4. For all R[P, α, ϕ], F(R[P, α, ϕ]) = R[F(P), α, ϕ]

such that for all (f,P), (g,Q) ∈ A× P, (f,P) � (g,Q) if, and only if,

min
p∈F(P)

∫
u ◦ fdp ≥ min

p∈F(Q)

∫
u ◦ gdp.

12



The general functional form axiomatized in this theorem is of the multiple prior class, with
restrictions on admissible sets of revealed priors. Conditions 1 to 4 provide the link between
the revealed set of priors and prior information. The first condition states that the available
information constitutes an “upper bound” as to which revealed set of priors is admissible. To
illustrate the second condition take ϕ to be a permutation of states in the support of P. Then, the
revealed set of priors of the permutation is the permutation of the revealed set of priors. Thus,
if one starts with say the simplex on states 1, 2, and 3, the only admissible sets of revealed priors
will be sets that are invariant to a permutation of states 1, 2, and 3. In particular, they have
to include the point (1/3, 1/3, 1/3). Actually, an implication of this condition is that, on that
example, the only singleton that is admissible as a set of prior is that point of equiprobability.
This is in fact a more general consequence of Condition 2. Say that P is symmetric if for any
permutation ϕ on the support of P, P = Pϕ. Let cP , the center of P, be the probability
distribution in P that has the property that cP = cϕP = cPϕ for any permutation ϕ on states in
the support of P; it is the probability distribution putting weight 1/|S(P)| on any s ∈ S(P) and
0 on any other state. Then, Condition 2 implies that the only singleton set that is admissible as
a revealed set of priors of a symmetric P is its center cP . In Ellsberg three-color urn example,
this condition implies that Bayesian decision makers would have beliefs

(
1
3 ,

1
3 ,

1
3

)
, as intuition

suggests.
More generally, consider the family S which is the closure of all the symmetric sets in P under

the two operations we defined overs sets of probabilities, namely the convex combination and the
R-operation. Note that this family includes cores of belief functions. For any symmetric sets P1

and P2 and coefficient α, define the center of αP1+(1−α)P2 as cαP1+(1−α)P2
= αcP1 +(1−α)cP2 .

For a symmetric set P, define the center of R[P, α, ϕ], cR[P,α,ϕ] to be equal to αcP +(1−α)αcPϕ .
Then, the center of a set of probability distributions made of finite convex combinations and
R-operation over symmetric sets is well defined and Condition 2 asserts that it will always
belong to the revealed set of priors. For Bayesian decision makers, this center is their subjective
probabilistic beliefs. For cores of beliefs functions this is nothing but the Shapley value.

Condition 3 is a direct consequence of the independence axiom. For sets of probability
distributions that can be decomposed in the convex combination of other sets, it allows to
recover the revealed priors from the revealed priors of these other sets. This is useful to extend
properties from “well behaved” sets, like simplices, to sets that can be decomposed in these
nicely behaved sets, like cores of beliefs functions. Condition 4 also enables one to recover the
revealed set of priors for sets that are linked through the R operation, i.e., if Q = R[P, α, ϕ],
then the revealed set of prior for Q can be deduced from the revealed set for P. Condition 4
together with Condition 3 yields that F(R[P, α, ϕ]) ⊆ F(αP + (1 − α)Pϕ), thus establishing
that the order implicit in Axiom 9 is preserved when one looks at the revealed sets of priors.

Note finally that, if one were to assume imprecision seeking instead of imprecision aversion,
then the representation theorem would be the same with the min operator replaced by the max
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operator. A Bayesian decision maker would also reduce any set of priors to a singleton, while
an extreme imprecision seeker would evaluate an act by taking the maximum expected utility
with respect to the entire set of probability distributions representing prior information.

3.3 Comparative imprecision aversion and risk aversion

Based on this representation theorem, one can study how imprecision and risk attitudes are
captured by the revealed set of priors. For sake of simplicity and in line with the literature on
risk attitude, we will restrict our definitions to Savagian type of acts, that is the set AX of acts
f for which the outcomes f(s) are degenerate lotteries for all s. With a slight abuse of notation,
we will consider that these acts are mappings from S to X. Furthermore, we will denote x a
constant act that gives consequence x ∈ X in all states.

3.3.1 Comparative imprecision aversion

For x̄ and x two prizes in X and for the event E ⊂ S, x̄Ex denotes the act f in AX that gives
x̄ for all s in E and x otherwise.

Definition 1 Let �a and �b be two preference relations defined on A× P. Suppose there exist
two prizes, x̄ and x in X such that both a and b strictly prefer x̄ to x.7 We say that �b is more
averse to imprecision than �a if for all E ⊂ S, P ∈ P, and {p} ∈ P,

(x̄Ex, {p}) �a [�a](x̄Ex,P) ⇒ (x̄Ex, {p}) �b [�b](x̄Ex,P)

That is, b is more averse to imprecision than a if whenever a prefers to bet on E with a
precise probabilistic information rather than an imprecise one, b does as well. Note that this
definition differs from definitions of comparative aversion to ambiguity that can be found in
Ghirardato and Marinacci (2002), Epstein (1999), and subsequently in Klibanoff, Marinacci,
and Mukerji (2003), or Hayashi (2003) for instance, in that we restrict attention to binary acts.
This is essential to characterize this notion independently of risk attitudes, which are captured
by the shape of the utility function.

Theorem 2 Let �a and �b be two preference relations defined on A× P, satisfying all axioms
of Theorem 1. Then, the following assertions are equivalent:

(i) �b is more averse to imprecision than �a
(ii) for all P ∈ P, Fa(P) ⊂ Fb(P).

An interesting feature of this notion of aversion to imprecision is that it ranks preferences
that do not necessarily have the same attitudes towards risk. This is of particular interest in
applications if one wants to study the effects of risk aversion and imprecision aversion separately.

7In the sense that x̄ �`P x for the two agents and all P.
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For instance, one might want to compare portfolio choices of two agents, one being less risk
averse but more imprecision averse than the other. This type of comparison cannot be done if
imprecision attitudes can be compared only among preferences that have the same risk attitude,
represented by the utility function. To the best of our knowledge, there is no available result in
the literature that achieves this separation of the characterization of comparative ambiguity or
imprecision attitudes from risk attitudes.

We end that section by characterizing further this notion of comparative imprecision aversion
when the sets of probability distributions are in the set S defined in the previous section. First
define a notion of imprecision premium which captures how much an agent is “willing to lose”
when betting on an event in order to be in a probabilistically precise situation. More precisely,
consider a preference relation � and let x̄ and x be two prizes in X such that x̄ � x. For any
event E ⊂ S, let q be the probability distribution such that (x̄Ex,P) ∼ (x̄Ex, {q}). Under
our set of axioms, such a probability distribution exists and is independent of x̄ and x, since
(x̄Ex,P) ∼ (x̄Ex, {q}) if, and only if, q(E) = minp∈F(P) p(E). Thus, the absolute imprecision
premium, cP(E) − q(E), can be interpreted as the mass of probability on the good event E
that the agent is willing to forego (compared to the center of P) in order to act on a precise
information rather than on the imprecise P. An analogy with the risk premium can be drawn
as follows: cP plays the role of the expectation of the risky prospect while q(E) plays the role
of the certainty equivalent. The relative imprecision premium is defined to be the quantity
cP(E)− q(E) normalized by cP(E)−Minp∈Pp(E).

Definition 2 For any P ∈ S and for any event E ⊂ S such that cP(E) > 0.
The absolute imprecision premium, πA(E,P) is defined by cP(E)−q(E) where q is such that

(x̄Ex,P) ∼ (x̄Ex, {q})
The relative imprecision premium, πR(E,P) is defined by πA(E,P)

cP (E)−Minp∈Pp(E) .

An imprecision averse agent always exhibits positive imprecision premia. The relative pre-
mium is equal to zero for a Bayesian agent, and to one for an extremely averse agent. Note
that the definition of the imprecision premia for any sets in P would require to fix a benchmark
probability which would be the one used by Bayesian decision makers. Theorem 1 does not
allow to identify uniquely such a benchmark outside of sets in S. Restricting our attention to S,
we can now complete the previous result:

Theorem 3 Let �a and �b be two preference relations defined on A× S, satisfying all axioms
of Theorem 1. Then, the following assertions are equivalent:

(i) �b is more averse to imprecision than �a
(ii) for all P ∈ S, Fa(P) ⊂ Fb(P)
(iii) for all P ∈ S, for all event E ⊂ S such that cP(E) > 0 , πAb (E,P) ≥ πAa (E,P)
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3.3.2 Risk aversion

In this subsection, we take X to be equal to [0,M ] ⊂ R. For any act f ∈ AX and {p} ∈ P,
denote Epf the expected value of act f .

Definition 3 Let � be a preference relation defined on A× P. Say that � is risk averse if for
all f ∈ AX and {p} ∈ P, (Epf, {p}) � (f, {p}).

In our setting, risk aversion is characterized through the restriction of preferences to situa-
tions in which the information is probabilistic (the set of probability distributions representing
prior information is reduced to a singleton).

Definition 4 Let �a and �b be two preference relations defined on A×P. Say that �b is more
risk averse than �a if for all f ∈ AX , x ∈ X and {p} ∈ P,

(x, {p}) �a [�a](f, {p}) ⇒ (x, {p}) �b [�b](f, {p})

We obtain the classical characterization:

Theorem 4 Let �a and �b be two preference relations defined on A× P, satisfying all axioms
of Theorem 1.

(i) �a is risk averse if, and only if, ua is concave on X = [0,M ],
(ii) �b is more risk averse than �a if, and only if, ub is more concave than uaon X = [0,M ].

Taken with Theorem 2, we thus obtain a clear cut separation of attitudes towards risk and
imprecision, in which one can, for instance compare imprecision attitudes of two decision makers,
one being risk seeking the other being risk averse. In our model, a decision maker is an expected
utility maximizer whenever confronted to a situation of risk. Hence, there is no scope for for
probabilistic risk aversion as captured say by the Rank Dependent Utility model.

4 Functional forms

The representation theorem we gave does not pin down a very specific functional form, as we
did not establish a univocal mapping from prior information to the revealed set of priors. This
general approach can be further specified to yield functional forms that are more “user friendly”
for economic applications.

We start by providing here some examples of how a simplex over a finite set N = {1, . . . , n}
could be transformed. Essentially, Theorem 1 states that, in this case, any revealed family
is possible provided it is symmetric around the center of the simplex, that is the point of
equiprobability. In particular, consider the family whose extreme points are all the possible
permutations of the probability distribution (1

2 ,
1
2 , 0, . . . , 0). An act f such that f(1) ≤ f(2) ≤
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· · · ≤ f(n) together with the simplex is then evaluated by 1
2u(f(1)) + 1

2u(f(2)). This of course
generalizes to any permutation of the probability distribution ( 1

m ,
1
m , . . . ,

1
m , 0, . . . , 0) for any

m ≤ n, yielding that that same act f is evaluated by
∑m

i=1
1
mu(f(i)). This type of functional

would hence correspond to first truncating the act in its upper part (that is cutting its best
consequences out) and then applying an expected utility computation with equal weights on the
remaining states.

Another obvious instance of a possible way to construct the revealed set of priors when
starting from a simplex is to consider the homothetic reduction (or contraction) of that simplex
around the point of equiprobability. Actually, this intuition could be extended to any symmetric
set of probability distribution, and more generally, to arbitrary sets in S. We now turn in more
details to this possibility and give an axiomatic foundation for a decision criterion in which
the revealed set of priors is the contraction of the set of priors around its center. The general
approach we take here parallels the usual approach in expected utility theory, in which specific
classes of utility functions are defined by characterizing some properties of the risk premium.
Thus, we specify our general functional form by imposing the following property, called constant
relative imprecision premium.

Definition 5 An agent is said to have constant relative imprecision premium θ if for any P ∈ S
and for any event E ⊂ S such that cP(E) > 0, πR(E,P) = θ.

Proposition 1 Consider an agent satisfying axioms 1 to 9. The following two assertions are
equivalent:

(i) the agent has constant relative imprecision premium θ

(ii) for all P ∈ S, F(P) = θP + (1− θ) {cP}

Therefore, if an agent has constant relative imprecision premium θ, then the representation
theorem takes the form: (f,P) � (g,Q) if, and only if,

θmin
p∈P

∫
u ◦ fdp+ (1− θ)

∫
u ◦ fdcP ≥ θmin

p∈Q

∫
u ◦ gdp+ (1− θ)

∫
u ◦ gdcQ.

Thus, in this setting, �b is more averse towards imprecision than �a if, and only if, θa ≤ θb.
This parametrization of imprecision aversion is hence extremely simple and convenient to do
comparative static exercises in applications. This functional form was axiomatized, although in
a different manner, in Gajdos, Tallon, and Vergnaud (2004) and subsequently in Hayashi (2003).
The latter actually is more general in the sense that he considers any possible set of priors and
not only those in S. We could also extend our result by defining our imprecision premium for
any set of prior taking the Steiner point as the benchmark probability (note that it reduces to
the center for sets in S.)

Although convenient, this functional form does not have an axiomatic justification of the
same nature as the general form of Theorem 1. Relative constant imprecision premium is not
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an axiom that have strong normative content. It should be viewed merely as a testable property
that preferences might or might not satisfy. Similarly, Hayashi (2003)’s geometric axiom is not
very telling as to what behavior it is meant to capture.

To better understand what is implied by this functional form and the underlying axioms that
is not implied by the previous ones, consider the following example. Take P = ∆({1, 2, 3}) and
consider f and g such that u(f(1)) = u(g(1)) = 0, u(f(2)) = 1, u(g(2)) = 3/2, and u(f(3)) = 2,
u(g(3)) = 3/2. Under the representation of Proposition 1, one has

θmin
P

∫
u ◦ fdp+ (1− θ)

∫
u ◦ fdcP = θmin

P

∫
u ◦ gdp+ (1− θ)

∫
u ◦ gdcP = 1− θ

Consider now preferences that do not satisfy constant risk premium, giving rise to the following
revealed set of priors:

F(∆123) = co

(
(
1
2
,
1
2
, 0), (0,

1
2
,
1
2
), (

1
2
, 0,

1
2
)
)

According to the functional form of Theorem 1, one has minF(P)

∫
u ◦ fdp = 1

2u(f(1)) +
1
2u(f(2)) = 1

2 , while g is strictly better than f since minF(P)

∫
u (g) dp = 3

4 . Note that in
this case, the relative imprecision premium is not constant since πR({1} ,∆123) = 1 while
πR({1, 2} ,∆123) = 1/4. Both preferences seem reasonable. Hence, although the functional
form has the nice feature of summarizing the attitude towards imprecision in a single parame-
ter, the underlying axiom reflects an attitude towards imprecision that is not to be expected to
hold for all decision makers.

5 Applications

We consider two applications of our approach. One is concerned with defining a partial ordering
on sets of probability distributions on which all decision makers satisfying our set of axioms
agree. Another partial ordering can be defined based on unanimity of risk averters. The second
application deals with optimal risk sharing in an economy with imprecision.

5.1 Unanimity ranking for imprecision

In view of Theorem 1, one can define a ranking of sets of probability distributions based on
unanimity of decision makers: say that Q is unanimously more imprecise than P if for all
preference relations that satisfy Axioms 1 to 9 and for all act f , (f,P) � (f,Q). This order
can be characterized for specific classes of sets of probability distributions, such as the cores of
belief functions B. Let Σ be the set of simplices with finite support on S and denote generically
a simplex by ∆i, then

B = {P ∈ P|∃(αi)i=1,...,n ∈ [0, 1] and (∆i)i=1,...,n ∈ Σ s.th.
∑
i

αi = 1,P =
∑
i

αi∆i}
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The following is a direct consequence of Theorem 1: for any P ∈ B, {cP}, which is the
Shapley value, is unanimously more precise than P. This follows from the fact that the center
of a simplex has to belong to the revealed set of priors associated to that simplex (by convexity
of F(∆i) and Condition 2), and therefore, cP ∈ F(P) by Condition 3. This establishes that, for
all act f ,

∫
u ◦ fdcP ≥ minp∈F(P)

∫
u ◦ gdp.

Consider next sets that can be written as the combination of a simplex with its center, that
is P = α∆i+(1−α) {c∆i}. These are sets that are contractions of the simplex around its center.
By Condition 3, F(P) = αF(∆i) + (1− α) {c∆i}. Since c∆i ∈ F(∆i), this establishes that P is
unanimously more imprecise than {c∆i} but unanimously less precise than ∆i, i.e.,∫

u ◦ fdcP ≥ min
p∈F(P)

∫
u ◦ gdp ≥ min

p∈F(∆i)

∫
u ◦ gdp

Furthermore, it is possible to compare two contractions of the same simplex: if P = α∆i + (1−
α) {c∆i} and Q = β∆i + (1− β) {c∆i} with α ≤ β, then P is unanimously more precise than Q.
This discussion extends to cores of beliefs functions in a straightforward manner, using Condition
3: the linear combination of contractions of simplices is unanimously more precise than the linear
combination of the simplices themselves, and unanimously less precise than the Shapley value.
Similarly, if two sets can be decomposed as a linear combination of the contractions of the same
simplices, the contractions for the first set being larger than for the second set, then the latter
is unanimously less precise. The following proposition gives a way to check whether two cores
of belief functions can be compared according to that order.

Proposition 2 Assume unanimity is based on preferences satisfying Axioms 1 to 9. Let P,Q ∈
B. Then, P is unanimously more imprecise than Q if, and only if,

(i) cP = cQ

(ii) There exists a collection (∆i)i=1,...,n in Σ, and positive coefficients αi, βi such that P =∑
i αi∆i, Q =

∑
i βi∆i, and for all i such that |S(∆i)| ≥ 2, αi ≥ βi.

Much of the analysis we have done in this subsection for cores of belief functions extends
to more general combinations of symmetric sets of probability distributions, i.e., for sets in S.
Take a symmetric set P. Condition 2 in Theorem 1 implies that cP ∈ FP . Then, sets that can
be written as βP + (1− β){cP}, i.e., contractions of P around its center, are unanimously more
precise than P and unanimously less precise than cP . Using Condition 3 allows to generalize
the analysis to any combination of symmetric sets.

We now give a characterization of unanimity ranking for decision makers that satisfy an
extra property, dubbed increasing absolute imprecision premium.

Definition 6 An agent is said to have increasing absolute imprecision premium if for any
P,Q ∈ S such that cP = cQ and Q ⊂ P, for any event E ⊂ S such that cP(E) > 0, πA(E,P) ≥
πA(E,Q).
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An equivalent way of saying that an agent has increasing absolute imprecision premium is
to say that whenever P and Q are such that cP = cQ and Q ⊂ P, he finds P more imprecise
than Q.

Proposition 3 Assume that unanimity is based on preferences satisfying increasing absolute
imprecision premium, and let P,Q ∈ S. Then, P is unanimously more imprecise than Q if, and
only if,

(i) cP = cQ

(ii) Q ⊂ P.

5.2 Unanimity ranking for risk

Let us consider here X to be equal to [0,M ] ⊂ R. In risky situations, second order stochastic
dominance was proven by Rothschild and Stiglitz (1970) to be the unanimity order for risk
averse expected utility maximizers. These results were extended by Scarsini (1992) for Choquet
Expected Utility maximizers. He showed for instance that the classical integral condition for
second order stochastic dominance must hold with respect to the Choquet integral. Inspired by
these results, can we answer the following question: when can we say that act g is more risky
than act f and hence when can we say that f is unanimously preferred to g by all risk averse
decision makers? More formally, we will say that (g,P) is unanimously more risky than (f,P)
if for all risk averse preference relations that satisfy Axioms 1 to 9,8 (f,P) � (g,P).

In the particular case where P is a simplex, we have the following result:

Proposition 4 Assume unanimity is based on preferences satisfying Axioms 1 to 9. Let ∆ ∈
Σ. Then, (g,∆) is unanimously more risky than (f,∆) if, and only if, act f second order
stochastically dominates g with respect to the probability distribution c∆, that is, for all t ∈ [0,M ],
M∫
t

c∆({s|f(s) > x})dx ≥
M∫
t

c∆({s|g(s) > x})dx.

For the particular case of simplices, one has just to check whether second order stochas-
tic dominance holds for the equiprobability distribution. For more general information, the
characterization is not so simple. Below, we give a characterization restricting our attention
to the particular class of preferences satisfying the supplementary property of constant relative
imprecision premium.

Proposition 5 Let P ∈ B. Assume that unanimity is based on preferences satisfying Axioms 1
to 9 and constant relative imprecision premium. Then, (g,P) is unanimously more risky than
(f,P) if, and only if,

(i) f second order stochastically dominates g with respect to the probability distribution cP

8We also assume that the preference are increasing in X, that is, agents prefers the certainty of a bigger x.
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(ii) f second order stochastically dominates g with respect to the family P, that is, ∀t ∈ [0,M ],

min
p∈P

M∫
t

p({s|f(s) > x})dx ≥ min
p∈P

M∫
t

p({s|g(s) > x})dx

5.3 Optimal risk sharing

We study, in a specific economy, how risk sharing is affected by the presence of imprecision
when agents behave according to the criterion axiomatized in the previous section. Consider an
economy made of H agents, h = 1, . . . ,H and one good. There are n states, s ∈ N = {1, . . . , n}.
There is no available information, i.e., P = ∆N . Denote Csh household h’s consumption in state s,
and Ch = (C1

h, . . . , C
n
h ). Household h has preferences represented by Vh(Ch) = θh mins uh(Csh)+

(1 − θh)Eπuh(C̃h), where θh ∈ (0, 1) is h’s aversion towards imprecision, p is the equiprobable
distribution on N , i.e., p = (1/n, . . . , 1/n), uh is h’s utility function, that is assumed smooth,
strictly increasing and strictly concave. Let es denote aggregate endowment in state s and
assume that e1 < e2 < · · · < en.

Proposition 6 Any Pareto optimal allocation of the economy described is comonotone, that is,
C1
h ≤ C2

h ≤ · · · ≤ Cnh for all h = 1, . . . ,H.

Note the result does not fall into known results in the literature. In particular, it is not
a special case of Chateauneuf, Dana, and Tallon (2000) since here, the risk-sharing analysis is
done in a model which amounts to a (particular and well structured case of) model with maxmin
expected utility maximizers with different sets of revealed priors. To the best of our knowledge
there is no available results for this class of economies.9 In a sense, the result of Proposition
6 provides a natural extension of what is known in the von Neumann-Morgenstern case: when
there is a given probability, Pareto optimal allocations are comonotone, regardless of the degrees
of risk aversion of the agents. Here, when the same information is known to all, Pareto optimal
allocations are also comonotone, regardless of the degrees of imprecision aversion of the agents.
The result however does not extend straightforwardly if one moves away from total absence of
information (i.e. if the information is not represented by the simplex).

We pursue the analysis of risk sharing in this economy by looking at only two agents with
CARA utility functions. Thus, uh(Ch) = e−ahCh

−ah where ah is the constant degree of risk aversion
of agent h = 1, 2. The Pareto optimal allocations in this case are the following, where λ is a
parameter in (0, 1) giving the weight put on agent 1 and K = log 1−λ

λ : C1
1 = 1

a1+a2

[
a2e

1 −K − log
θ2+

1−θ2
S

θ1+
1−θ1
S

]
C1

2 = 1
a1+a2

[
a1e

1 +K + log
θ2+

1−θ2
S

θ1+
1−θ1
S

]
Cs1 = 1

a1+a2

[
a2e

s −K − log 1−θ2
1−θ1

]
Cs2 = 1

a1+a2

[
a1e

s +K + log 1−θ2
1−θ1

]
s = 2, . . . , n

9Wakai (2004) shows that Pareto optimal allocations are comonotone when agents have homogeneous multiple
priors, when their utility function is of the HARA type.
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If θ1 = θ2, risk sharing proceeds as in the von Neumann Morgenstern case. For instance, if
one looks at the egalitarian case, λ = 1/2 and K = 0, the optimal risk sharing arrangement is to
split the aggregate endowment state by state according to a fixed rule; give a2/(a1 +a2) percent
to agent 1 and a1/(a1 + a2) percent to agent 2. In presence of differential imprecision aversion,
this is not the optimal arrangement any longer. Assume for instance θ1 > θ2, i.e., agent 1 is

strictly more imprecision averse than agent 2. In this case, log 1−θ2
1−θ1 > 0 while log θ2+

1−θ2
S

θ1+
1−θ1
S

< 0.

Then, agent 1’s consumption is higher (compared to the vNM case) in state 1, but lower in all the
other states. It is as if 1 were subscribing a contract, with premium log 1−θ2

1−θ1 , that pays off only if

state 1 occurs (it then pays log 1−θ2
1−θ1 − log

θ2+
1−θ2
S

θ1+
1−θ1
S

). The less imprecise averse agent is providing

some insurance against the worst possible realization. This “contract” is of course very much
dependent of the fact that there is no available information; the example simply illustrating
that new optimal risk sharing arrangement can emerge in our setting. Note however, that this
risk sharing arrangement could not be reproduced in the von Neumann Morgenstern nor in the
Rank Dependent Utility setting (unless one assumes different beliefs to begin with). A more
thorough investigation of risk sharing in our setting is left for further research.
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Appendix: proofs

We start with an extension of the multiple prior model of Gilboa and Schmeidler (1989) taking
into account the information given to the decision maker (Theorem 5 below) and then use it
to prove Theorem 1. Gilboa and Schmeidler (1989) have six axioms, four of which are already
included in our construction (Axioms 2, 5, 6, and 7). The other two are:

Axiom 10 (Certainty-Independence) For all f, g ∈ A, h ∈ Ac, P ∈ P, α ∈]0, 1[,

(f,P) � (g,P) ⇔ (αf + (1− α)h,P) � (αg + (1− α)h,P)

Axiom 11 (Uncertainty aversion) For all f, g ∈ A, P ∈ P, and all α ∈]0, 1[,

(f,P) ∼ (g,P) ⇒ (αf + (1− α)g,P) � (f,P)

Gilboa and Schmeidler have proved that Axioms 2, 5, 6, 7, 10, 11 hold if, and only if, for all
P ∈ P there exist an unique (up to a positive linear transformation) affine function uP : Y → R,
and an unique, non-empty, closed and convex set F(P) of probability measures on 2S , such that
for all f, g ∈ A, (f,P) � (g,P) if and only if: minp∈F(P)

∫
uP ◦ fdp ≥ minp∈F(P)

∫
uP ◦ gdp. In

the next theorem, we extend the representation for variable P.

Theorem 5 Axioms 2, 3, 5, 6, 7, 10, and 11 hold iff there exists an unique (up to a positive
linear transformation) affine function u : Y → R, and a unique function F : P → PC satisfying,
for all P ∈ P:

1. ∀p ∈ F(P), p(S(P)) = 1,

2. For all onto mapping ϕ from S to S such that
∣∣ϕ−1(s)

∣∣ ≥ 2 implies that p(ϕ−1(s)) =
p′(ϕ−1(s)) for all p, p′ ∈ P, F(Pϕ) = (F(P))ϕ,

such that ∀(f,P), (g,P) ∈ A× P, (f,P) � (g,Q) iff minp∈F(P)

∫
u ◦ fdp ≥ minp∈F(Q)

∫
u ◦ gdp.

Proof. [Theorem 5] The necessity part of the theorem is straightforward to verify. We
only prove sufficiency. Let P,Q ∈ P. Gilboa and Schmeidler’s theorem implies that the decision
maker is an expected utility maximizer over constant acts. Axiom 3 implies that uP and uQ

represent the same expected utility over constant acts (which implies that �`P=�`Q=�`). Hence,
they can be taken so that uP = uQ = u.

To show that the representation can be extended to compare acts associated to different sets
P, let (f,P) � (g,Q). Since S(P) and S(Q) are finite and f(s) and g(s) have finite support,
there exist x and x in X such that for all s ∈ S(P)∪S(Q), for all x ∈ Supp(f(s))∪Supp(g(s)),
δx �` δx �` δx. Hence, by Axioms 3 and 6 we know that (kx,P) � (f,P) �

(
kx,P

)
and

(kx,Q) � (g,Q) �
(
kx,Q

)
where kx (resp. kx) is the constant act giving δx (resp. δx) in all
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states. By Axioms 2 and 5, there exists λ such that (f,P) ∼ (λkx + (1 − λ)kx,P). Similarly,
there exists µ such that (g,Q) ∼ (µkx + (1− µ)kx,Q). Thus,

(f,P) � (g,Q) ⇔ (λkx + (1− λ)kx,P) � (µkx + (1− µ)kx,Q)
⇔ λkx + (1− λ)kx �` µkx + (1− µ)kx

Now, (f,P) ∼ (λkx+(1−λ)kx,P) implies that minp∈F(P)

∫
u◦fdp = u(λδx+(1−λ)δx). We also

have that minp∈F(Q)

∫
u ◦ gdp = u(µδx+(1−µ)δx) and u(λδx+(1−λ)δx) ≥ u(µδx+(1−µ)δx),

which implies that

min
p∈F(P)

∫
u ◦ fdp ≥ min

p∈F(Q)

∫
u ◦ gdp

We now turn to Condition 1. Let p∗ ∈ F(P) and suppose that p∗(S(P)) = q 6= 1. Consider
x and x in X such that u(δx) > u(δx) and let f be defined by f(s) = δx for all s ∈ S(P),
f(s) = δx for all s ∈ S\S(P), and g by g(s) = δx for all s ∈ S. Then,

min
p∈F(P)

∫
u ◦ fdp ≤

∫
u ◦ fdp∗ = qu(x) + (1− q)u(x) < u(x) = min

p∈F(P)

∫
u ◦ gdp

Hence, (g,P) � (f,P), a violation of Axiom 3 since g = fS(P)g. Thus, ∀p ∈ F(P), p(S(P)) = 1.
We finally prove Condition 2. Let P ∈ P and ϕ be an onto mapping from S to S such that∣∣ϕ−1(s)

∣∣ ≥ 2 implies p(ϕ−1(s)) = p′(ϕ−1(s)) for all p, p′ ∈ P.
We first prove that F(Pϕ) ⊆ (F(P))ϕ. Assume there exists p∗ ∈ F(Pϕ) such that p∗ /∈

(F(P))ϕ. Since F(P) is a convex set, (F(P))ϕ is also convex. Hence, using a separation argu-
ment, we know that there exists a function φ : S → R such that

∫
φdp∗ < minp∈(F(P))ϕ

∫
φdp.

Since S(Pϕ) is a finite set, there exist numbers a, b with a > 0, such that ∀s ∈ S(Pϕ),
(aφ(s) + b) ∈ u(Y ). Then, for all s ∈ S(Pϕ) there exists y(s) ∈ Y such that u(y(s)) = aφ(s)+ b.
Define f by f(s) = y(s) for all s ∈ S(Pϕ), f(s) = δx for all s ∈ S\S(Pϕ), where x ∈ X. Define
g by gϕ = f . Since for all p ∈ F(P),

∫
u ◦ gdp =

∫
u ◦ gϕdpϕ, we have:

min
p∈F(P)

∫
u ◦ gdp = min

p∈(F(P))ϕ

∫
u ◦ gϕdp = min

p∈(F(P))ϕ

∫
u ◦ fdp

Condition 1 implies that minp∈(F(P))ϕ
∫
u ◦ fdp = minp∈(F(P))ϕ

∫
(aφ+ b)dp. But:

min
p∈(F(P))ϕ

∫
(aφ+ b)dp >

∫
(aφ+ b)dp∗ ≥ min

p∈F(Pϕ)

∫
u ◦ fdp

and therefore (g,P) � (f,Pϕ) which is a violation of Axiom 3.
A similar argument may be used to prove that F(Pϕ) ⊇ (F(P))ϕ.

Lemma 1 Assume that Axioms 3, 4, 5 and 6 hold. Let P ∈ P, f, g ∈ A and ϕ a bijection from
S to S such that ϕ(S(P) ∩ S(P) = ∅. Then,

∀α ∈ [0, 1], (f,P) ∼ (g,P) ⇒ (f,P) ∼ (g,P) ∼
(
fS(P)g

ϕ, αP + (1− α)Pϕ
)
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Proof. [Lemma 1] Let (f,P) and (g,P) be given, such that (f,P) ∼ (g,P). Let ϕ be a
bijective function from S to S such that (ϕ(S(P)))∩S(P) = ∅. By Axiom 3, since ϕ is a bijection,
(gϕ,Pϕ) ∼ (g,P). Therefore, applying Axiom 3 again, we have: (fS(P)g

ϕ,Pϕ) ∼ (g,P) ∼ (f,P).
On the other hand, we also have (still applying Axiom 3) (fS(P)g

ϕ,P) ∼ (f,P). Therefore:{
(fS(P)g

ϕ,Pϕ) ∼ (f,P)
(fS(P)g

ϕ,P) ∼ (f,P)

Therefore Axiom 4 implies for all α ∈ [0, 1], (fS(P)g
ϕ, αP + (1 − α)Pϕ) ∼ (f, αP + (1 − α)P).

Finally, since S(P) is finite and f(s) has finite support, there exist x and x in X such that for
all s ∈ S(P)), for all x ∈ Supp(f(s)), δx �` δx �` δx. Hence, by Axioms 3 and 6 we know that
(kx,P) � (f,P) �

(
kx,P

)
where kx (resp. kx) is the constant act giving δx (resp. δx) in all

states. By Axioms 2 and 5, there exists λ such that (f,P) ∼ (λkx+(1−λ)kx,P). Furthermore,
by Axiom 3, (λkx + (1 − λ)kx,P) ∼ (λkx + (1 − λ)kx, {p}) for all p ∈ P. Therefore, by Axiom
4, (f, αP + (1 − α)P) ∼ (λkx + (1 − λ)kx, α{p} + (1 − α){p}) ∼ (λkx + (1 − λ)kx, {p}), from
which it follows that (f,P) ∼ (f, αP + (1− α)P). Hence, (fS(P)g

ϕ, αP + (1− α)Pϕ) ∼ (f,P),
the desired result.

Lemma 2 Axioms 1, 3, 4, 5, 6 and 9 imply Axioms 10 and 11.

Proof. [Lemma 2] We first check Axiom 10. Let (f,P) � (g,P) and h ∈ Ac (i.e., h is a
constant act). Let ϕ : S → S be a bijection such that S(Pϕ) ∩ S(P) = ∅ and ψ : S → S be an
onto mapping such that ψ(s) = s for all s ∈ S(P), and (ψ◦ϕ)(S(P)) = {s∗}, with s∗ ∈ S \S(P).
Finally, let p∗ be the probability distribution defined by p∗(s∗) = 1.

By Axiom 3, (αf + (1 − α)h,P) ∼ (αfS(P)h + (1 − α)h,P). Since (αfS(P)h)(s) = h(s) for
all s ∈ S \ S(P), Axiom 1 implies:

(αfS(P)h+ (1− α)h,P) ∼
(
fS(P)h

ϕ, R[P, α, ϕ]
)

Therefore, (αf + (1− α)h,P) ∼
(
fS(P)h

ϕ, R[P, α, ϕ]
)

Since fS(P)h
ϕ is ψ−measurable, Axiom 3 implies:(

fS(P)h
ϕ, R[P, α, ϕ]

)
∼

(
fS(P)h

ϕ, R[P, α, ϕ]
)ψ

and therefore:
(αf + (1− α)h,P) ∼

(
fS(P)h

ϕ, R[P, α, ϕ]
)ψ (1)

The same reasoning holds with g instead of f , and therefore we also have:

(αg + (1− α)h,P) ∼
(
gS(P)h

ϕ, R[P, α, ϕ]
)ψ (2)

On the other hand, by Axiom 3,

(f,P) ∼
(
(fS(P)h

ϕ)ψ,P
)

and (g,P) ∼
(
(gS(P)h

ϕ)ψ,P
)
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Therefore, (f,P) � (g,P) if and only if
(
(fS(P)h

ϕ)ψ,P
)
�

(
(gS(P)h

ϕ)ψ,P
)

Since
(
fS(P)h

)ψ (s) =
(
gS(P)h

ϕ
)ψ (s) for all s ∈ S \ S(P) and s∗ ∈ S \ S(P), Axiom 4 implies

that (f,P) � (g,P) if and only if:(
(fS(P)h

ϕ)ψ, αP + (1− α){p∗}
)
�

(
(gS(P)h

ϕ)ψ, αP + (1− α){p∗}
)

(3)

But observe that (R[P, α, ϕ])ψ = αP + (1− α){p∗}. Therefore, equation (3) is equivalent to:(
fS(P)h

ϕ, R[P, α, ϕ]
)ψ � (

gS(P)h
ϕ, R[P, α, ϕ]

)ψ (4)

Finally, substituting equations (1) and (2) in (4), we obtain that (f,P) � (g,P) if and only if:

(αf + (1− α)h,P) � (αg + (1− α)h,P)

thus proving Axiom 10.

We now check that Axiom 11 holds as well. Let (f,P) and (g,P) be given, such that
(f,P) ∼ (g,P). According to Lemma 1, we have that

(f,P) ∼ (g,P) ∼
(
fS(P)g

ϕ, αP + (1− α)Pϕ
)

Axiom 9 implies that
(
fS(P)g

ϕ, R[P, α, ϕ]
)
�

(
fS(P)g

ϕ, αP + (1− α)Pϕ
)

Since by Axiom 1, we have that (αf + (1− α)g,P) ∼
(
fS(P)g

ϕ, R[P, α, ϕ]
)
, it follows that

(αf + (1− α)g,P) � (f,P) ∼ (g,P)

Hence, Axiom 11 is satisfied.
We are now in a position to prove Theorem 1.

Proof. [Theorem 1]
1. Sufficiency. By Lemma 2, we know that Axioms 1, 3, 4, 5, 6 and 9 imply Axioms 10 and
11. Hence, we can invoke Theorem 5 to prove that there exists an unique (up to a positive affine
transformation) affine function u : Y → R, and for a unique function F : P → PC such that for
all (f,P), (g,Q) ∈ A× P, (f,P) � (g,Q) if, and only if:

min
p∈F(P)

∫
u ◦ fdp ≥ min

p∈F(Q)

∫
u ◦ gdp

Furthermore, for all ϕ onto mapping from S to S, F(Pϕi ) = (F(P))ϕ. We will now show
that the axioms imply Conditions 1 to 4 of the theorem.

Condition 1: Suppose Condition 1 does not hold, that is there exists P ∈ P such that F(P) *
co(P). Then, there exists p∗ ∈ F(P) such that p∗ /∈ co (P). Since co (P) is a convex set,
using a separation argument, we know there exists a function φ : S → R such that

∫
φdp∗ <

minp∈co(P)

∫
φdp. Note that since Axiom 8 implies that (f,P) ∼ (fS(P)g,P), we have that
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Condition 1 in Theorem 5 holds and thus, for all p ∈ F(P), p(S(P)) = 1. Thus Supp(p∗) ⊆ S(P)
and since S(P) is a finite set, there exist numbers a, b with a > 0, such that ∀s ∈ S(P),
(aφ(s) + b) ∈ u(Y ). Then, for all s ∈ S(P) there exists y(s) ∈ Y such that u(y(s)) = aφ(s) + b.
Define f by f(s) = y(s) for all s ∈ S(P), f(s) = δx for all s ∈ S\S(P) where x ∈ X. Note that
minp∈co(P)

∫
(aφ+ b)dp ∈ Y and thus there exists y∗ such that u(y∗) = minp∈co(P)

∫
(aφ+ b)dp.

Define g by g(s) = y∗ for all s ∈ S. Observe that for all p ∈ ∆(S) such that p ∈ P, p ∈ co (P)
and thus ∫

u ◦ fdp ≥ min
p∈co(P)

∫
u ◦ fdp = min

p∈co(P)

∫
(aφ+ b)dp = u(y∗) =

∫
u ◦ gdp

So for all p ∈ ∆(S) such that p ∈ P, (f, {p}) � (g, {p}). Yet

min
p∈F(P)

∫
u ◦ fdp ≤

∫
u ◦ fdp∗ =

∫
(aφ+ b)dp < min

p∈co(P)

∫
(aφ+ b)dp = u(y∗) = min

p∈F(P)

∫
u ◦ gdp

and thus (f,P) ≺ (g,P) which is a violation of Axiom 8.

Condition 2 was proved in Theorem 5.

Condition 3: Consider P,Q ∈ P and α ∈ [0, 1].

Step 1. F(αP + (1− α)Q) ⊇ αF(P) + (1− α)F(Q)
Suppose that there exist p∗ ∈ F(P) and q∗ ∈ F(Q) such that r∗ = αp∗ + (1 − α)q∗ /∈

F(αP + (1 − α)Q). Since F(αP + (1 − α)Q) is a convex set, using a separation argument, we
know there exists a function φ : S → R such that

∫
φdr∗ < minp∈F(αP+(1−α)Q)

∫
φdp. Since

S(P) and S(Q) are finite sets, there exist numbers a, b with a > 0, such that ∀s ∈ S(P)∪S(Q),
(aφ(s) + b) ∈ u(Y ).10 Then, for all s ∈ S(P) ∪ S(Q) there exists y(s) ∈ Y such that u(y(s)) =
aφ(s)+b. Define f by f(s) = y(s) for all s ∈ S(P)∪S(Q), f(s) = δx for all s ∈ S\ (S(P) ∪ S(Q)),
where x ∈ X. Since for all p ∈ F(αP+(1−α)Q), p (S(αP + (1− α)Q)) = p (S(P) ∪ S(Q)) = 1,

min
p∈F(αP+(1−α)Q)

∫
u ◦ fdp = min

p∈F(αP+(1−α)Q)

∫
(aφ+ b)dp

>

∫
(aφ+ b)dr∗ = α

∫
u ◦ fdp∗ + (1− α)

∫
u ◦ fdq∗ (5)

Since
∫
u ◦ fdp∗ ∈ u(Y ) and

∫
u ◦ fdq∗ ∈ u(Y ) there exist y1, y2 ∈ Y such that u(y1) =

∫
u ◦

fdp∗ and u(y2) =
∫
u ◦ fdq∗. Let ϕ : S → S a bijective mapping such that ϕ(S(P)∩S(Q)) = ∅.

Define g by g(s) = y1 for all s ∈ ϕ(S(P)), g(s) = y2 for all s ∈ S(Q) and g(s) = δx for all
s ∈ S \ (S(P) ∪ ϕ(S(Q))), with x ∈ X. We have:

min
p∈F(Pϕ)

∫
u ◦ gdp = u(y1) =

∫
u ◦ fdp∗ ≥ min

p∈F(Q)

∫
u ◦ fdp

and
min

p∈F(Q)

∫
u ◦ gdp = u(y2) =

∫
u ◦ fdq∗ ≥ min

p∈F(Q)

∫
u ◦ fdp

10Completeness and continuity imply that u(Y ) is convex.
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Therefore, (g,Pϕ) � (f,P) and (g,Q) � (f,Q). Therefore, by Axiom 4,

(g, αPϕ + (1− α)Q) � (f, αP + (1− α)Q) (6)

On the other hand,

α

∫
u ◦ fdp∗ + (1− α)

∫
u ◦ fdq∗ = αu(y1) + (1− α)u(y2) = min

p∈F(αPϕ+(1−α)Q)

∫
u ◦ gdp

where the last equality follows from Condition 1.
Therefore, (5) implies (f, αP + (1− α)Q) � (g, αPϕ + (1− α)Q), which contradicts (6).

Step 2. Assume that S(P) ∩ S(Q) = ∅. Then, F(αP + (1− α)Q) ⊆ αF(P) + (1− α)F(Q)

Suppose that there exists r∗ ∈ F(αP + (1 − α)Q) such that r∗ /∈ αF(P) + (1 − α)F(Q).
By Condition 1, there exist p∗ ∈ P and q∗ ∈ Q such that r∗ = αp∗ + (1 − α)q∗. Assume, for
instance, that p∗ /∈ F(P). Since F(P) is a convex set, using a separation argument, we know
there exists a function φ : S → R such that

∫
φdp∗ < minp∈F(P)

∫
φdp. Since S(P) is a finite

set, there exist numbers a, b with a > 0 such that (aφ(s) + b) ∈ u(Y ) for all s ∈ S(P). Then,
for all s ∈ S(P), there exists y(s) ∈ Y such that u(y(s)) = aφ(s) + b. There also exists y∗ ∈ Y
such that u(y∗) = minp∈P

∫
aφ + bdp. Define f by f(s) = y(s) for all s ∈ S(P), f(s) = y∗ for

all s ∈ S \ S(P), and define g by g(s) = y∗ for all s ∈ S. Since Condition 1 applies, we have:

min
p∈F(P)

∫
u ◦ fdp = min

p∈F(Q)

∫
u ◦ fdp

min
p∈F(P)

∫
u ◦ gdp = min

p∈F(Q)

∫
u ◦ gdp = u(y∗)

Thus, (f,P) ∼ (g,P) ∼ (f,Q) ∼ (g,Q). By Axiom 3, (f,P) ∼ (fS(P)g,P). By Axiom 4,
(fS(P)g, αP+(1−α)Q) ∼ (f, αP+(1−α)Q) and (fS(P)g, αP+(1−α)Q) ∼ (g, αP+(1−α)P),
establishing that:

(f, αP + (1− α)Q) ∼ (g, αP + (1− α)Q) (7)

Since g is a constant act, we have minp∈F(αP+(1−α)Q)

∫
u ◦ gdp = u(y∗). Yet,

min
p∈F(αP+(1−α)Q)

∫
u ◦ fdp ≤

∫
u ◦ fdr∗ = α

∫
u ◦ fdp∗ + (1− α)

∫
u ◦ fdq∗

= α

∫
(aφ+ b)dp∗ + (1− α)u(y∗)

< α min
p∈F(P)

∫
(aφ+ b)dp+ (1− α)u(y∗) = u(y∗)

which contradicts equation (7).

Step 3. F(αP + (1− α)Q) ⊆ αF(P) + (1− α)F(Q)

Suppose that there exists r∗ ∈ F(αP + (1 − α)Q) such that r∗ /∈ αF(P) + (1 − α)F(Q).
By Condition 1, there exist p∗ ∈ P and q∗ ∈ Q such that r∗ = αp∗ + (1 − α)q∗. Since
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αF(P) + (1 − α)F(Q) is a convex set, using a separation argument, we know there exists a
function φ : S → R such that∫

φdr∗ = α

∫
φdp∗ + (1− α)

∫
φdq∗ (8)

< min
p∈αF(P)+(1−α)F(Q)

∫
φdp

= α min
p∈F(P)

∫
φdp+ (1− α) min

p∈F(Q)

∫
φdp

Since S(P) ∪ S(Q) is a finite set, there exist numbers a, b with a > 0, such that ∀s ∈
S(P)∪S(Q), (aφ(s) + b) ∈ u(Y ). Then, for all s ∈ S(P)∪S(Q) there exists y(s) ∈ Y such that
u(y(s)) = aφ(s) + b. Let f be defined by f(s) = y(s) for all s ∈ S(P) ∪ S(Q), and f(s) = δx,
with x ∈ X, for all s /∈ S(P) ∪ S(Q).

Let ϕ and ψ be two bijective mappings on S, such that: ϕ(S(P))∩(S(P)∪S(Q)∪ψ(S(Q))) =
∅ and ψ(S(Q)) ∩ (S(P) ∪ S(Q) ∪ ϕ(S(P))) = ∅

Define g by g(s) = f(ϕ−1(s)) if s ∈ ϕ(S(P)), g(s) = f(ψ−1(s)) if s ∈ ψ(S(Q)), and g(s) = δx,
with x ∈ X otherwise. By Axiom 2, we have: (g,Pϕ) ∼ (f,P) and (g,Qψ) ∼ (f,Q). Therefore,
Axiom 3 implies:

(f, αP + (1− α)Q) ∼ (g,Pϕ + (1− α)Qψ) (9)

On the other hand, since S(Pϕ) ∩ S(Qψ) = ∅, Steps 1 and 2 imply:

F(αPϕ + (1− α)Qψ) = αF(Pϕ) + (1− α)F(Qψ) = α(F(P))ϕ + (1− α)(F(Q))ψ

where the last equality follows from condition 2. Therefore:

min
p∈F(αPϕ+(1−α)Qψ)

∫
gdp = min

p∈αF(Pϕ)+(1−α)F(Q)ψ

∫
u ◦ gdp

= α min
p∈(F(P))ϕ

∫
u ◦ gdp+ (1− α) min

p∈(F(Q))ψ

∫
u ◦ gdp

= α min
p∈F(P)

∫
u ◦ fdp+ (1− α) min

p∈F(Q)

∫
u ◦ fdp

> α

∫
(aφ+ b)dp∗ + (1− α)

∫
(aφ+ b)dq∗

= α

∫
u ◦ fdp∗ + (1− α)

∫
u ◦ fdq∗

≥ min
p∈F(αP+(1−α)Q)

∫
u ◦ fdp

where the strict inequality follows from equation (8). Therefore, (g, αPϕ+(1−α)Qψ) � (f, αP+
(1− α)Q), which contradicts equation (9).

Condition 4: Before proving Condition 4, we establish that for all P ∈ P, α ∈ [0, 1], and all
one-to-one function ϕ : S → S such that S(P)∩ϕ(S(P)) = ∅, F(R[P, α, ϕ]) ⊆ F(αP+(1−α)Pϕ)
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Let P ∈ P, α ∈ [0, 1], and ϕ : S → S a one-to-one function such that S(P) ∪ ϕ(S(P)) =
∅. Assume that F(R[P, α, ϕ]) * F(αP + (1 − α)Pϕ). This implies that there exists p∗ ∈
F(R[P, α, ϕ]) such that p∗ /∈ F(αP + (1 − α)Pϕ). Since F(αP + (1 − α)Pϕ) is a convex
set, using a separation argument, we know that there exists a function φ : S → R such that∫
φdp∗ < minp∈F(αP+(1−α)Pϕ)

∫
φdp. Since S(αP+(1−α)Pϕ) is a finite set, there exist numbers

a, b with a > 0 such that (aφ(s) + b) ∈ u(Y ) for all s ∈ S(αP + (1 − α)Pϕ). Then, for all
s ∈ S(αP + (1 − α)Pϕ), there exists y(s) ∈ Y such that u(y(s)) = aφ(s) + b. Define f by
f(s) = y(s) for all s ∈ S(αP + (1 − α)Pϕ), and f(s) = δx for all s ∈ S \ S(αP + (1 − α)Pϕ),
where x ∈ X. Note that S(αP + (1− α)Pϕ) = (R[P, α, ϕ]). We thus have:

min
p∈F(R[P,α,ϕ])

∫
u ◦ fdp ≤

∫
u ◦ fdp∗ =

∫
(aφ+ b)dp∗

< min
p∈F(αP+(1−α)Pϕ)

∫
(aφ+ b)dp = min

p∈F(αP+(1−α)Pϕ)

∫
u ◦ fdp

which implies that (f, αP + (1− α)Pϕ) � (f,R[P, α, ϕ]), which is a violation of Axiom 9.
We can now proceed to the proof of Condition 4.

Step 1. F(R[P, α, ϕ]) ⊆ R[F(P), α, ϕ]

Let P ∈ P , and R[P, α, ϕ] with α ∈ ]0, 1[.11 Suppose that there exists p∗ ∈ F(R[P, α, ϕ])
such that p∗ /∈ R[F(P), α, ϕ]. By Condition 3 and the result we just established, we have that
F(R[P, α, ϕ]) ⊆ F(αP + (1−α)Pϕ), F(αP + (1−α)Pϕ) = αF(P) + (1−α)F(Pϕ). Therefore,
there exist p∗1, p

∗
2 ∈ F(P) such that p∗ = αp∗1 + (1 − α)p∗ϕ2 . Note that p∗1 6= p∗2, since otherwise

p∗ ∈ R[F(P), α, ϕ].
Thus, there exist E1, E2 ⊂ S(P) such that E1 ∩ E2 = ∅, E1 ∪ E2 = S(P), p∗1(E1) > p∗2(E1)

(and thus p∗1(E2) = (1− p∗1(E1)) < p∗2(E2) = (1− p∗1(E2))). There also exist x and x such that
u(δx) > u(δx).

Assume first that α ≥ 1
2 . Define f by f(s) =

(
2α−1
α

)
δx +

(
1−α
α

)
δx for all s ∈ E1, f(s) = δx

for all s ∈ E2, f(s) = αδx+(1−α)δx for all s ∈ S\S(P) and define g by g(s) = δx for all s ∈ E1,
g(s) = δx for all s ∈ E2, g(s) = αδx+(1−α)δx for all s ∈ S\ {s1, s2}. One can easily check that
(αf + (1− α)g) (s) = αδx + (1− α)δx for all s ∈ S(P). And thus

min
p∈F(P)

∫
u ◦ (αf + (1− α)g) dp = u

(
αδx + (1− α)δx

)
= αu(δx) + (1− α)u(δx)

11For α = 0 we have trivially R[P, 0, ϕ] = P and for α = 1, Condition 4 can be deduced from Condition 2.

30



Consider now fS(P)g
ϕ. We have:

min
p∈F(R[P,α,ϕ])

∫
u ◦ fS(P)g

ϕdp ≤
∫
u ◦ fS(P)g

ϕdp∗ = α

∫
u ◦ fdp∗1 + (1− α)

∫
u ◦ gdp∗2

= α

[
p∗1(E1)u(

(
2α− 1
α

)
δx +

(
1− α

α

)
δx) + p∗1(E2)u(δx)

]
+ (1− α)

[
p∗2(E1)u(δx) + p∗2(E2)u(δx)

]
= αu(δx) + (1− α)u(δx)

+ (1− α) (p∗2(E1)− p∗1(E1)) (u(δx)− u(δx))

< αu(δx) + (1− α)u(δx)

and thus (αf + (1− α)g,P) �
(
fS(P)g

ϕ, R[P, α, ϕ]
)

which is a violation of Axiom 1.
A similar reasoning applies in the case α ≤ 1

2 .

Step 2. F(R[P, α, ϕ]) ⊇ R[F(P), α, ϕ]

Suppose that there exists p∗ ∈ F(P) such that αp∗ + (1 − α)p∗ϕ /∈ F(R[P, α, ϕ]). Since we
just proved that F(R[P, α, ϕ]) ⊆ R[F(P), α, ϕ] for all p ∈ F(R[P, α, ϕ]), there exists pϕ−1 ∈
F(P) such that p = αpϕ−1 + (1 − α)

(
pϕ−1

)ϕ. Consider Q =
{
pϕ−1 |p ∈ F(R[P, α, ϕ])

}
. Since

F(R[P, α, ϕ]) is convex, Q is also convex and p∗ /∈ Q. Hence, using a separation argument, we
know there exists a function φ : S → R such that

∫
φdp∗ < minp∈Q

∫
φdp. Since S(P) is a finite

set, there exist numbers a, b with a > 0, such that ∀s ∈ S(P), (aφ(s) + b) ∈ u(Y ). Then, for all
s ∈ S(P) there exists y(s) ∈ Y such that u(y(s)) = aφ(s) + b. Define f by f(s) = y(s) for all
s ∈ S(P), f(s) = δx for all s ∈ S\S(Pϕ), where x ∈ X. Observe that for all p ∈ F(R[P, α, ϕ]),∫

u ◦ fS(P)f
ϕdp =

∫
u ◦ fS(P)f

ϕd
(
αpϕ−1 + (1− α)

(
pϕ−1

)ϕ)
= α

∫
u ◦ fdpϕ−1 + (1− α)

∫
u ◦ fϕd

(
pϕ−1

)ϕ
=

∫
u ◦ fdpϕ−1 =

∫
(aφ+ b)dpϕ−1

Thus

min
p∈F(P)

∫
u ◦ fdp ≤

∫
u ◦ fdp∗ =

∫
(aφ+ b)dp∗ < min

p∈Q

∫
(aφ+ b)dp

= min
p∈Q

∫
u ◦ fdp = min

p∈F(R[P,α,ϕ])

∫
u ◦ fS(P)f

ϕdp

which shows that
(
fS(P)f

ϕ, R[P, α, ϕ]
)
� (f,P), a violation of Axiom 1.

2. Necessity. The axioms to check are Axioms 1, 4, 8, and 9 since the others hold by Theorem
5.
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Axiom 1: Consider P ∈ P, R[P, α, ϕ], and f, g ∈ A such that f(s) = g(s) for all s ∈ S\S(P).
Since Conditions 3 and 4 hold,

min
p∈F(R[P,α,ϕ])

∫
u ◦ fS(P)g

ϕdp = min
p∈F(P)

∫
u ◦ fS(P)g

ϕd(αp+ (1− α)pϕ)

For all p ∈ F(P),∫
u ◦ fS(P)g

ϕd(αp+ (1− α)pϕ) = α

∫
u ◦ fS(P)g

ϕdp+ (1− α)
∫
u ◦ fS(P)g

ϕdpϕ

= α

∫
u ◦ fdp+ (1− α)

∫
u ◦ gdp

=
∫
u ◦ (αf + (1− α)g)dp

and thus minp∈F(P)

∫
u ◦ fS(P)g

ϕd(αp+ (1− α)pϕ) = minp∈F(P)

∫
u ◦ (αf + (1− α)g)dp which

shows that (αf + (1− α)g,P) ∼
(
fS(P)g

ϕ, R[P, α, ϕ]
)
.

Axiom 4: Let P1,Q1,P2,Q2 ∈ P, α ∈ [0, 1], and f, g ∈ A such that (f,P1) � (g,Q1) and
(f,P2) � (g,Q2). By Condition 3, F(αP1 +(1−α)P2) = αF(P1)+ (1−α)F(P2) and F(αQ1 +
(1− α)Q2) = αF(Q1) + (1− α)F(Q2). Therefore,

min
p∈F(αP1+(1−α)P2)

∫
u ◦ fdp = min

p∈αF(P1)+(1−α)F(P2)

∫
u ◦ fdp

= α min
p∈F(P1)

∫
u ◦ fdp+ (1− α) min

p∈F(P2)

∫
u ◦ fdp

Similarly,

min
p∈F(αQ1+(1−α)Q2)

∫
u ◦ gdp = α min

p∈F(Q1)

∫
u ◦ gdp+ (1− α) min

p∈F(Q2)

∫
u ◦ gdp

Therefore, (f, αP1 + (1 − α)P2) � (g, αQ1 + (1 − α)Q2). Moreover, if (f,P1) � (g,Q1), then
(f, αP1 + (1− α)P2) � (g, αQ1 + (1− α)Q2). Hence, Axiom 4 is satisfied.

Axiom 8: Consider f, g ∈ A and P ∈ P such that (f, {p}) � (g, {p}) for all p ∈ P. Remark that
for all p ∈ co (P) there exist p1, p2 ∈ ∆(S) and α ∈ [0, 1] such that p = αp1 + (1− α)p2. Thus,∫

u ◦ fd (αp1 + (1− α)p2) = α

∫
u ◦ fdp1 + (1− α)

∫
u ◦ fdp2

≥ α

∫
u ◦ gdp1 + (1− α)

∫
u ◦ gdp2

=
∫
u ◦ gd (αp1 + (1− α)p2)

and hence
∫
u◦fdp ≥

∫
u◦gdp. Since by Condition 1, F(P) ⊆ P, we get that

∫
u◦fdp ≥

∫
u◦gdp

for all p ∈ F(P), and thus minp∈F(P)

∫
u ◦ fdp ≥ minp∈F(P)

∫
u ◦ gdp, which implies that

(f,P) � (g,P).
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Axiom 9: By Conditions 3 and 4, for all P ∈ P, α ∈ [0, 1], and all one-to-one function ϕ : S → S,
such that ϕ(S(P)) ∩ S(P) = ∅, F(R[P, α, ϕ]) ⊆ F(αP + (1− α)Pϕ). Therefore, for all f ∈ A,

min
p∈F(αP+(1−α)Pϕ)

∫
u ◦ fdp ≤ min

p∈F(R[P,α,ϕ])

∫
u ◦ fdp

and therefore (f,R[P, α, ϕ]) � (f, αP + (1− α)Pϕ), which proves Axiom 9.

Proof. [Theorem 2] [(i) ⇒ (ii)] Let P ∈ P and assume that Fa(P) 6⊂ Fb(P), i.e., there
exists p∗ ∈ Fa(P) such that p∗ 6∈ Fb(P). Using a separation argument, there exists a function
φ : S → R such that

∫
φdp∗ < min

p∈Fb(P)

∫
φdp. Note that we can choose by normalization ua and

ub such that ua(x̄) = ub(x̄) > ua(x) = ub(x). Since S(P) is a finite set, there exist numbers
k > 0 and `, such that for all s ∈ S(P), kφ(s) + ` ∈ [ua(x), ua(x̄)]. W.l.o.g, suppose that
S(P) = {1, .., n}. Consider the event

E =
⋃

k=1,..,n

 ⋃
i=1,..,2(k−1)

 ⋃
j=0,..,2n−k−1

{
k + (i− 1)n+ 2kjn

}
Let αi = kφ(i)+`−ua(x)

ua(x̄)−ua(x) . Let ψk for k = 1, .., n be the following one to one function: ψk(s) =
s+2(k−1)n for all s ∈

{
1, .., 2(k−1)n

}
, ψk(s) = s−kn for all s ∈

{
1 + 2(k−1)n, .., 2kn

}
, ψk(s) = s

otherwise. Define pn∗ recursively: p1∗ = α1p
∗ + (1 − α1) (p∗)ψ

1

and for n ≥ k ≥ 2, pk∗ =

αkp
(k−1)∗ + (1 − αk)

(
p(k−1)∗)ψk . Next, define Pn recursively: P1 = R[P, α1, ψ

1], and for n ≥
k ≥ 2, Pk = R[P(k−1), αk, ψ

k]
Using Axiom 1, one can check that (x̄Ex,Pn) ∼a (f,P) and (x̄Ex,Pn) ∼b (f,P) where

f(i) = αiδx̄ + (1−αi)δx for i = 1, .., n, (therefore ua(f(i)) = ub(f(i)) = kφ(i) + `) and f(i) = δx

otherwise. One can also check that (x̄Ex, pn∗) ∼a (f, p∗) and (x̄Ex, pn∗) ∼b (f, p∗). Since by
assumption we have that (f, p∗) ≺b (f,P) and (f, p∗) �a (f,P), then (x̄Ex, pn∗) ≺b (x̄Ex,Pn)
while (x̄Ex, pn∗) �a (x̄Ex,Pn) which is a contradiction with the fact that �b is more averse to
imprecision than �a.

[(ii) ⇒ (i)] Straightforward.

Proof. [Theorem 3] Equivalence between (i) and (ii) was proved in theorem 2.
[(ii) ⇒ (iii)] Consider P ∈ S and E ⊂ S such that cP(E) > 0.

Since πAa (E,P) = cP(E)−Minp∈Fa(P)p(E) and πAb (E,P) = cP(E)−Minp∈Fb(P)p(E), Fa(P) ⊂
Fb(P) implies that πAb (E,P) ≥ πAa (E,P).

[(iii) ⇒ (i)] Consider prizes x̄ and x in X such that both a and b strictly prefer x̄ to x and
let P ∈ S and E ⊂ S.

Fist consider the case where cP(E) = 0. Since P ∈ S, this implies that for all q ∈ P, q(E) = 0
and therefore by axioms 3 and 8, for agent i = a, b, (x̄Ex, {p}) �i [�i](x̄Ex,P) if and only if
p(E) ≥ [>]0. We therefore trivially have

(x̄Ex, {p}) �a [�a](x̄Ex,P) ⇒ (x̄Ex, {p}) �b [�b](x̄Ex,P)

33



Let us suppose now that cP(E) > 0. Then for any p ∈ S, for any agent i = a, b, (x̄Ex, {p}) �i
[�i](x̄Ex,P) if, and only if, πAi (E,P) ≥ [�]cP(E)−p(E). Therefore since πAb (E,P) ≥ πAa (E,P),
it implies that we have

(x̄Ex, {p}) �a [�a](x̄Ex,P) ⇒ (x̄Ex, {p}) �b [�b](x̄Ex,P)

which complete the proof that �b is more averse to imprecision than �a.

Proof. [Proposition 1] [(i) ⇒ (ii)] Let P ∈ S, let p be a boundary point p of co(P) and
consider

θ = Sup
{
θ′|θ′ ∈ [0, 1] s.th.

(
θ′p+ (1− θ)cP

)
∈ F(P)

}
Then p = θp+(1−θ)cP is a boundary point of F(P) since F(P) is closed. Since it is convex

as well, there exists a function φ : S → R such that
∫
φdp = min

p∈F(P)

∫
φdp.

Using the notation and definitions introduced in the proof of Theorem 2 in order to define
the act f , the probabilities pn, cnP , pn and the sets Pn and F(P)n, we have, by Condition 4 of
Theorem 1, that pn ∈ F(P)n = F(Pn). We have (f, {p}) ∼ (f,P).

Using Axiom 1, one can check that (x̄Ex, {pn}) ∼ (f, {p}) and (x̄Ex,Pn) ∼ (f,P). Therefore
(x̄Ex, {pn}) ∼ (x̄Ex,Pn) and

πR(E,Pn) =
cPn(E)− pn(E)

cPn(E)−Minq∈Pnq(E)
≤ cPn(E)− pn(E)
cPn(E)− pn(E)

= θ

If θ > θ we get a contradiction with the fact that πR(E,Pn) = θ. Therefore, for any boundary
point q of co(P), θ (q) = Sup {θ′|θ′ ∈ [0, 1] s.th. (θ′q + (1− θ)cP) ∈ F(P)} is such that θ (q) ≥
θ. Let p be a boundary point of co(P) such that θ (p) ≥ θ (q) for all q boundary point of
co(P). Then, there exists a function φ : S → R such that

∫
φdp = min

q∈P

∫
φdq. Define p =

θ(p)p+(1− θ(p))cP and consider now q′ ∈ F(P). There exists a boundary point q of co(P) and
θ′ < θ(p) such that q′ = θ′q + (1− θ′)cP .

Let us use again the notation and definition introduced in the proof of Theorem 2. Since∫
uofdp ≤

∫
uofdq and

∫
uofdp ≤

∫
uofdcP , we have that

∫
uofdp ≤

∫
uofdq′. Thus∫

uofdp = min
q′∈F(P)

∫
uofdq′ while

∫
uofdp = min

q∈P

∫
uofdq. Therefore

πR(E,Pn) =
cPn(E)− pn(E)

cPn(E)−Minq∈Pnq(E)
= θ (p)

and thus θ (p) = θ. Thus, for all boundary point q of co(P), θ (q) = θ which proves that
F(P) = θP + (1− θ) {cP}.

[(ii) ⇒ (i)] Let consider P ∈ S and E ⊂ S such that cP(E) > 0. We have that

min
p∈F(P)

p(E) = θmin
p∈P

p(E) + (1− θ)cP(E)
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and therefore

πR(E,P) =
cP(E)−Minp∈F(P)p(E)
cP(E)−Minp∈Pp(E)

= θ

Proof. [Proposition 2]
1. Necessity. Let P,Q ∈ B satisfy condition (i) and (ii). Note that condition (i) means that∑

i/|S(∆i)|=1

αic∆i +
∑

i/|S(∆i)|≥2

αic∆i =
∑

i/|S(∆i)|=1

βic∆i +
∑

i/|S(∆i)|≥2

βic∆i

and therefore
∑

i/|S(∆i)|=1 αic∆i =
∑

i/|S(∆i)|=1 βic∆i −
∑

i/|S(∆i)|≥2 αi(1 −
βi
αi

)c∆i . Hence, we

have that Q =
∑

i/|S(∆i)|=1 αi∆i +
∑

i/|S(∆i)|≥2 αi

[
βi
αi

∆i + (1− βi
αi

) {c∆i}
]

since for all i such
that |S(∆i)| ≥ 2, αi ≥ βi while P =

∑
i/|S(∆i)|=1 αi∆i +

∑
i/|S(∆i)|≥2 αi∆i. Since for all all i

such that |S(∆i)| ≥ 2, ∆i is unanimously more imprecise than βi
αi

∆i + (1− βi
αi

) {c∆i}, Axiom 4
implies that P is unanimously more imprecise than Q.

2. Sufficiency. Let P,Q ∈ B and P be unanimously more imprecise than Q. Given that a
Bayesian decision maker for whom F(∆i) = {c∆i} for all simplex ∆i and F(P∗) = {cP∗} for all
P∗ ∈ B satisfy Axioms 1 to 9, condition (i) has to hold since otherwise, we could find an act f
for which such a Bayesian decision maker would strictly prefer (f, {cP}) to (f, {cQ}).

Let us suppose now that condition (ii) does not hold, that is, P =
∑

i αi∆i, Q =
∑

i βi∆i

with positive or null coefficients αi, βi, and there exists j such that |S(∆j)| ≥ 2, αj < βj . Then
consider a decision maker for whom F(∆i) = {c∆i} for all simplex ∆i such that |S(∆i)| 6=
|S(∆j)|, F(∆i) = ∆i for all simplex ∆i such that |S(∆i)| = |S(∆j)| and which satisfies Axioms
1 to 9. Therefore, F(P) =

∑
i/|S(∆i)|6=|S(∆j)| αi {c∆i} +

∑
i/|S(∆i)|=|S(∆j)| αi∆i while F(Q) =∑

i/|S(∆i)|6=|S(∆j)| βi {c∆i}+
∑

i/|S(∆i)|=|S(∆j)| βi∆i. Since αj < βj , F(Q) * F(P) and we could
find an act f for which such a decision maker would strictly prefer (f,P) to (f,Q).

Proof. [Proposition 3]
1. Necessity.

Let P,Q ∈ S satisfy condition (i) and (ii). We show that for any agent satisfying increasing
absolute imprecision premium, F(Q) ⊂ F(P). Consider an agent such that F(Q) * F(P).
Let p ∈ F(Q)\F(P) . There exists a function φ : S → R such that min

p∈F(Q)

∫
φdp ≤

∫
φdp <

min
p∈F(P)

∫
φdp. Using the notation and definitions introduced in the proof of Theorem 2, we have

that (f,P) � (f, {p}) % (f,Q) and (x̄Ex,Pn) � (x̄Ex, {pn}) % (x̄Ex,Qn).
Therefore,

πA(E,Pn) = cPn(E)− min
p∈F(Pn)

p(E) < cPn(E)− pn(E)

while
πA(E,Qn) = cQn(E)− min

p∈F(Qn)
p(E) ≥ cQn(E)− pn(E)
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Note that cPn(E) = cQn(E) and therefore

cQn(E)− pn(E) = cPn(E)− pn(E)

which proves that πA(E,Pn) < πA(E,Qn). Therefore, such an agent does not satisfy increasing
absolute imprecision premium.

2. Sufficiency. Given that a Bayesian decision maker satisfies increasing absolute imprecision
premium, condition (i) must apply. Note also that an extremely imprecision averse decision
maker, that is, for whom F(P) = P for all P, also satisfies increasing absolute imprecision
premium. Therefore, condition (ii) must also apply.

Proof. [Proposition 4] [(i) ⇒ (ii)] Since expected utility maximizers w.r.t. the proba-
bility distribution c∆ constitute a subclass of the agents we consider, second order stochastic
dominance w.r.t. this equiprobability distribution is necessary.

[(ii) ⇒ (i)] W.l.o.g, suppose that S(∆) = {1, .., n} and let us consider an agent with a
revealed set F(∆) and an increasing and concave u. Let us consider two comonotone acts f and
g, such that ∃i, j ∈ {1, .., n} such that f(i) = g(i) + ε, f(j) = g(j) − ε′, f(s) = g(s) otherwise,
g(i) < g(j) and ε > ε′. There exists p∗ such that

∫
u ◦ fdp∗ = minp∈F(∆)

∫
u ◦ fdp∗. We have

that p∗(i) ≤ p∗(j). Indeed, consider otherwise the permutation ϕ that exchange i and j and
left all other s unmodified. Then we would have

∫
u ◦ fdp∗ >

∫
u ◦ fd (p∗)ϕ which would be a

contradiction with the fact that (p∗)ϕ ∈ F(∆) since F(∆) is invariant to permutation. Therefore∫
u ◦ fdp∗ ≥

∫
u ◦ gdp∗ ≥ minp∈F(∆)

∫
u ◦ fdp∗ which proves that the agent prefers f to g. Since

for all comonotone acts f and g such that f second order stochastically dominates g w.r.t. c∆,
f differs from g by a finite series of such simple transfers, the agent prefers f to g. Since F(∆)
is invariant to permutation, this holds also when f and g are not comonotone.

Proof. [Proposition 5] Consider P ∈ B where P =
∑

i αi∆i. Condition (i) is a necessary
condition since expected utility maximizers w.r.t. cP are a subclass of the agents we consider,
second order stochastic dominance w.r.t. this equiprobability distribution is necessary. A second
subclass of agents are those for which F(P) = P. Since P is the core of a belief function,
the multi-prior model is equivalent to the Choquet Expected utility model and we can apply
Scarsini’s results, that is, f must second order stochastically dominates g w.r.t. the Choquet
capacity that corresponds to P. The second order dominance conditions can be written as
follows: ∀t ∈ [0,M ],

M∫
t

pf ({s|f(s) > x})dx ≥
M∫
t

pg({s|g(s) > x})dx

where pf and pg are the probability distribution such that ∀s ∈ S(P), pf (s) =
∑

i∈Jf (s) αi

and pg(s) =
∑

i∈Jg(s) αi where Jf (s) = {i|@s′ ∈ S (∆i) s.th.f(s′) < f(s) or s.th.f(s′) =
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f(s) and s′ < s} and Jg(s) = {i|@s′ ∈ S (∆i) s.th. g(s′) < g(s) or s.th. g(s′) = g(s) and s′ <
s}.

Clearly, for all t ∈ [0,M ], minp∈P
M∫
t

p({s|f(s) > x})dx =
M∫
t

pf ({s|f(s) > x})dx, and

minp∈P
M∫
t

p({s|g(s) > x})dx =
M∫
t

pg({s|g(s) > x})dx, which shows that condition (ii) is a re-

statement of Scarsini’s results.
Since we focus on functionals of the form θminp∈P

∫
u ◦ fdp+ (1− θ)

∫
u ◦ fdcP , conditions

(i) and (ii) are clearly sufficient.

Proof. [Proposition 6] We first show that C1
h ≤ Csh for all h and all s 6= 1.

Assume this is not the case. W.l.o.g. assume that C1
1 > Cs1 for some s 6= 1. It must then be

the case that there exists h 6= 1, say h = 2, such that C1
2 < C1

1 , since otherwise one cannot have
that

∑
hC

1
h = e1 <

∑
hC

s
h = es. Consider the allocation C̄ equal to C, except for the following

changes C̄1
1 = C1

1 − ε, C̄1
2 = C1

2 + ε, C̄s1 = C1
1 + ε′, C̄s2 = Cs2 − ε′, where ε, ε′ are positive real

numbers small enough so that the ranking is preserved. Taking Taylor expansion, one has:

V1(C̄1)− V1(C1) =
(
θ1 +

1− θ1
S

)
ε′u′1(C

s
1)−

1− θ1
S

εu′1(C
1
1 ) + ε′α(ε′)− εβ(ε)

where α(ε) and β(ε) tend to zero when ε→ 0.
For h = 2, two cases have to be considered, depending on whether Cs2 is the lowest consump-

tion across all states or not. In the first case,

V2(C̄2)− V2(C2) =
(
θ2 +

1− θ2
S

)
εu′2(C

1
2 )− 1− θ2

S
ε′u′2(C

s
2) + εα(ε)− ε′β(ε′)

In the second case,

V2(C̄2)− V2(C2) =
1− θ2
S

εu′2(C
1
2 )− 1− θ2

S
ε′u′2(C

s
2) + εα(ε)− ε′β(ε′)

We simply report the argument in the first case, but a similar argument holds for the second
case. The allocation C̄ Pareto dominates C if it is possible to find ε, ε′ such that

(
θ1 + 1−θ1

S

)
ε′u′1(C

s
1)− 1−θ1

S εu′1(C
1
1 ) > 0(

θ2 + 1−θ2
S

)
εu′2(C

1
2 )− 1−θ2

S ε′u′2(C
s
2) > 0

or, equivalently, 
ε′

ε

θ1+
1−θ1
S

1−θ1
S

>
u′1(C1

1 )

u′1(C̄s1)

ε
ε′
θ2+

1−θ2
S

1−θ2
S

>
u′2(Cs2)

u′2(C̄1
2 )

The right hand side of the two inequalities are less than 1 by construction and concavity of
the uhs. Hence a sufficient condition for these inequalities to be satisfied is that the left hand
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side terms are greater than 1. These conditions can be written

θ2 + 1−θ2
S

1−θ2
S

>
ε′

ε
>

1−θ1
S

θ1 + 1−θ1
S

Hence, the existence of ε, ε′ such that this holds is always ensured since θ1 6= 0. This establishes
that C1

h ≤ Csh for all h and all s 6= 1.

Next, we show that Pareto optimal allocations are such that C2
h ≤ C3

h ≤ · · · ≤ Cnh . This can
be done directly (for a similar argument see the proof of Proposition 4.1. in Chateauneuf, Dana,
and Tallon (2000)), or noticing that agents respect second-order stochastic dominance (w.r.t. p
conditioned on {2, . . . , S}) and invoke Landsberger and Meilijson (1994) results.
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