n° 2004-12

Aggregation of Heterogeneous Beliefs, Assets Pricing and Risk Sharing in Complete Financial Markets

L. CALVET1

J.-M. GRANDMONT2

I. LEMAIRE3

Les documents de travail ne reflètent pas la position de l'INSEE et n'engagent que leurs auteurs.

Working papers do not reflect the position of INSEE but only the views of the authors.

1 Department of Economics, Harvard University, Cambridge, USA.

2 CNRS-CREST, 15 Boulevard Gabriel Péri, 92245 Malakoff Cedex, France, ICEF, Venice International University, Italy.

3 Direction Générale des Impôts, INSEE, Paris, France.
Aggregation of Heterogeneous Beliefs, Asset Pricing and Risk Sharing in Complete Financial Markets*

Laurent CALVET¹, Jean-Michel GRANDMONT², Isabelle LEMAIRE³

1st version : May 1999
This version : July 2004

¹Department of Economics, Harvard University, Cambridge, USA.
²CNRS - CREST, 15 Boulevard Gabriel Péri, 92245 MALAKOFF Cedex, France, ICEF, Venice International University, Italy.
³Direction Générale des Impôts, INSEE, Paris, France.
We propose a method to aggregate heterogeneous individual beliefs, given a competitive equilibrium in complete asset markets, into a single “market probability” such that it generates, if commonly shared by all investors, the same marginal valuation of assets by the market (the same equilibrium prices) as well as by each individual investor. As a result of the aggregation process, the market portfolio may have to be scalarly adjusted, upward or downward, a reflection of an “aggregation bias” due to the diversity of beliefs. From a “dual” viewpoint, the standard construction of an “expected utility maximizing aggregate investor” designed to “represent” the economy in equilibrium, is shown to be also valid in the case of heterogeneous beliefs, modulo the above scalar adjustment of the market portfolio, thereby generating an “Adjusted” version of the “Consumption based Capital Asset Pricing Model” (ACCAPM). The allocation of aggregate and individual risks (mutualization) is then analyzed in relation to deviations of individual beliefs from the aggregate “market probability”. Finally, we identify the channels through which the distributions, among investors, of individual beliefs and of other microeconomic characteristics (incomes, attitudes toward risk), do affect pricing of risky assets and thus may, or may not, contribute to explaining such challenges as the so-called “equity premium puzzle”.

JEL Classification numbers : D50, D80, G11, G12

Keywords : Asset pricing, risk sharing, mutualization, heterogeneity, beliefs, aggregation, representative agent, general equilibrium, equity premium.
Agrégation de croyances hétérogènes, valorisation d’actifs et partage des risques dans des marchés financiers complets

Laurent CALVET, Jean-Michel GRANDMONT et Isabelle LEMAIRE
(Université de Harvard, CNRS-CREST, Paris et ICEF, Université Internationale de Venise, et INSEE, Paris)

Résumé

Nous proposons une méthode pour agréger des croyances individuelles hétérogènes, étant donné un équilibre concurrentiel sur des marchés financiers complets, en une seule “probabilité de marché” de telle sorte qu’elle engendre, si elle est partagée par tous les agents, la même valuation à la marge des actifs par le marché (les mêmes prix d’équilibre) ainsi que par chaque investisseur individuel. Cette procédure d’agrégation peut nécessiter un ajustement scalaire, à la hausse ou à la baisse, du portefeuille de marché, qui retèle un “biais d’agrégation” dû à l’hétérogénéité des croyances. D’un point de vue “dual”, on montre que la construction standard d’un agentagrégé, doté de préférences décrites par une espérance d’utilité, qui “représenterait” l’économie en équilibre, peut s’étendre au cas des croyances hétérogènes, modulo l’ajustement scalaire ci-dessus du portefeuille de marché : on engendre ainsi une version “Ajustée” du modèle de valorisation des actifs fondée sur la consommation (ACCAPM). L’allocation des risques agrégés et individuels (mutualisation), est alors analysée en relation avec les déviations des croyances individuelles par rapport à la “probabilité de marché” agrégée. Finalement, nous identifions les canaux par lesquels les distributions, parmi les investisseurs, des croyances individuelles et d’autres caractéristiques microéconomiques (revenus, attitudes vis à vis du risque), influencent la valorisation des actifs risqués et par suite peuvent contribuer à expliquer certaines questions comme la “prime de risque des actions”.

Classification JEL : D50, D80, G11, G12

Mots-Crés : Valorisation d’actifs, partage des risques, mutualisation, hétérogénéité, croyances, agrégation, agent représentatif, équilibre général, prime de risque.
1 Introduction

The main purpose of the present paper is to analyze how one could extend, and modify, the traditional “expected utility maximizing representative agent approach” in order to cover the case, that appears to be empirically most relevant, of heterogeneous beliefs.

While modern general treatments of competitive equilibrium under uncertainty do not require particular assumptions on the beliefs of economic agents about the occurrence of “states of nature” (Arrow (1953), Debreu (1959)), many applications do rest on the specification that agents are expected utility maximizers, forecast correctly equilibrium contingent prices or asset returns, and assign the same subjective probabilities to states of nature (homogeneous subjective probabilities). Under the assumption of complete markets, equilibrium prices are then identical to those that would arise in the (no trade) equilibrium of “a model economy” composed of a single, aggregate “representative agent” who would get the aggregate endowment and would maximize an appropriately defined expected utility (Negishi (1960), Wilson (1968), M. Rubinstein (1974), Breeden and Litzenberger (1978), Constantinides (1982)). This “expected utility maximizing representative agent” approach has been since the basis for many developments in finance and so-called “consumption based” capital asset pricing (Ingersoll (1987), Huang and Litzenberger (1988), Du¢e (1996)). It has also become a significant cornerstone of theoretical and applied macroeconomics (R.E. Lucas (1978)).

This framework has been fruitful, owing in particular to its simplicity of use, despite persistent doubts about the empirical relevance of some of its key features, notably about expectation formation. It has been in particular repeatedly argued that diversity of investors’ forecasts (due possibly but not exclusively, to differences of information and/or of priors) is an important part of any proper understanding of the workings of asset markets (Lintner (1969), M. Rubinstein (1975, 1976), Gonedes (1976), E. Miller (1977), J. Williams (1977), J.arrow (1980), Mayshar (1981, 1983), Cragg and Malkiel (1982), Varian (1985, 1989), Detemple and Murthy (1994)). In the same vein, it has been advocated that consideration of “noise traders” whose beliefs and strategies are not completely determined by fundamentals but influenced by gurus, imitation, fads, technical analysis and other “popular models”, may help in understanding asset markets “excess volatility” or “irrational exhuberance” (Shiller (1981, 1989, 2000), Black (1986), Shleifer and Summers (1990)).

A related strand of research emphasizes similarly that learning along sequences of temporary equilibria may be sluggish, never converge
and that “bounded rationality” may be an important fact of life (see, e.g. Brock and Hommes (1997), Grandmont (1977, 1998), Kurz (1997), Sargent (1993)). A nalogous “evolutionist” arguments suggest that, while “boundedly rational” agents may be driven eventually out of the market in the ideal case where capital markets are perfect (Araujo and Sandroni (1999), Sandroni (2000)), they are likely to have a persistent and significant influence in the real world situation where arbitrage is limited and risky due to capital market imperfections (De Long, Shleifer, Summers and Waldman (1989, 1990, 1991), Blume and Easley (1992)).

As a particular example that is relevant to the topics that will occupy us specifically here, we note also that researchers working on some empirical challenges such as the “equity premium puzzle” (Mehra and Prescott (1985), Weil (1989)), have been increasingly led to amend the framework of a complete markets, expected utility maximizing, fully rational representative agent, within which the “puzzle” was initially formulated. Beyond the introduction of incomplete markets and uninsurable heterogeneous individual risks (Weil (1992), Constantinides and Duç e (1996), Angeletos and Calvet (2001)), of habit persistence (Abel (1990), Constantinides (1990), Campbell and Cochrane (1999)), researchers have in particular been led to introduce “distorted” and/or “noisy” beliefs (subjective probabilities), either directly postulated (Abel (2002), Cecchetti, Lam and Mark (2000)), or associated to “cautious” nonexpected utility behavior (Epstein and Wang (1994), Chauveau and Nalpas (1998), Hansen, Sargent and Tallarini (1999)).

There seems accordingly to exist compelling, both empirical and theoretical, reasons to incorporate in our representations of the economy, some significant and persistent doses of “boundedly rational”, “noisy” expectations. The issue of heterogeneity of beliefs is then unescapable: although “bounded rationality” may involve some systematic patterns among economic agents, it is most likely to be associated also with some dispersion of individual beliefs. Our aim in the present paper is to analyze the consequences of facing the issue of heterogeneous individual subjective probabilities in an otherwise standard competitive, complete markets economy operating under uncertainty (while keeping at this stage the assumption that traders do forecast correctly contingent equilibrium prices or asset returns). We address these issues in the simplest framework, described in Section 2, of a static exchange economy where individual investors trade today among themselves portfolios of assets generating (positive) income for tomorrow (with the hope that it may not be too difficult to extend progress made in that simple framework to more sophisticated intertemporal setups). The first set of issues we investigate...
is whether it is possible to construct a “market probability”, that would “aggregate” in a meaningful way heterogeneous individual subjective probabilities, and to define a version of an “expected utility maximizing aggregate investor”, that would “represent” an equilibrium of this economy, although this approach fails atly as soon as there is any degree of diversity of individual beliefs. We give a positive answer to these questions in Sections 3 and 4. Given a competitive equilibrium, we propose a method to aggregate heterogeneous individual beliefs into a single “market probability” such that it is able, if commonly shared by all investors, to “mimic” marginal asset pricing by every agent in equilibrium, i.e. to generate the same equilibrium prices and the same marginal valuation of assets (the same marginal expected utility of income) by each individual investor (Section 3). As a result of the aggregation process, the market portfolio may have to be scalarly adjusted, upward or downward, a reflection of an “aggregation bias” due to the diversity of beliefs. The “primal” approach of Section 3 borrows intentionally little from the assumption of complete markets (in the hope to keep the door open to a possible extension to the case of incomplete markets). We take in Section 4 a “dual” viewpoint that exploits fully the complete markets structure. We show there that the standard construction of an “expected utility maximizing aggregate investor”, can be extended to the case of heterogeneous subjective probabilities, provided that 1) this aggregate investor is assigned the same aggregate “market probability” as was found in the previous section, and that 2) the market portfolio (aggregate consumption) is scalarly adjusted upwardly or downwardly as in section 3. The proposed aggregation procedure generates accordingly, in the case of complete markets, an “Adjusted” version of the standard “Consumption based Capital Asset Pricing Model” (ACCAPM).

We extend the analysis in Section 5 by studying the influence of diverse beliefs on risk sharing. When beliefs are homogeneous, complete markets lead to the well known “mutuality principle”: in the case of state independent utilities, equilibrium consumptions of individual investors depend only on aggregate income (risk) and vary positively with it, in proportion of the relative contribution of their individual absolute risk tolerance to aggregate absolute risk tolerance. In the case of diverse beliefs, that principle fails and the available modified mutuality principles are then weak, as exemplified by Varian (1985, 1989), Ingersoll (1987, Ch.9). Our construction of an equivalent aggregate “market probability” allows us to achieve much sharper modified mutuality principles in that case. Equilibrium consumptions of individual investors are obtained by risk sharing rules that are increasing functions of aggregate income (risk) and of relative deviations of individ-
ual beliefs from the constructed aggregate "market probability". These risk sharing rules reduce, when individual probabilities coincide with the "market probability", to the optimal risk sharing rules one would get from the application of the standard mutuality principle if all investors shared commonly the constructed "market probability". That approach will allow us further to quantify "globally", and to give 2nd order evaluations of (Section 5.6), the allocation of individual risks when beliefs are heterogeneous, and in particular of their deviations from the standard mutuality principle, as a function of the distributions among individual investors of beliefs, incomes and attitudes toward risk. The application of the approach to the HARA family, that plays a focal role in this field, where all investors display linear absolute risk tolerance with a common marginal risk tolerance, will permit a precise quantitative evaluation of how much individual equilibrium portfolios depart in that case from the standard "two funds separation" property (individual portfolios are linear combinations of the market portfolio and of the risk free asset) in relation with deviations of individual beliefs from the constructed aggregate "market probability" (Example 5.4).

The approach will allow us to identify in the final section 6 three main channels through which diversity of individual beliefs may generate a positive risk premium heterogeneity aggregation bias, by lowering the evaluation of the risk premium of the market portfolio, or of assets that vary positively with aggregate income, when using the constructed "market probability", by comparison with the evaluation of that risk premium by an outside observer using an hypothetical "true" probability. In order to fix ideas, we take this "true" probability equal the arithmetic mean in the population of the individual beliefs. These three channels are: 1) a "pessimism effect" when investors having larger absolute risk tolerances tend to assign larger probabilities to "bad" states with lower returns, 2) a "doubt effect", when the dispersion of individual beliefs among investors is larger for good states involving larger returns, and 3) an "adjustment effect" that quantifies the impact of heterogeneity of beliefs on the risk premium through the scalar adjustment of the market portfolio implied by our aggregation procedure. The application of the approach to the HARA family, in particular to the case of Constant Absolute Risk Aversion (CARA), generates explicit closed form solutions showing by way of example how these effects may contribute to explaining such challenges as the so-called "equity premium puzzle" (Mehra and Prescott (1985)).

Conclusion and a few hints for further research are gathered in the last Section 7.
2 Equilibrium Portfolio Selection

We consider a collection of individual investors of different “types” indexed by a. Each individual investor solves a standard one-period portfolio selection problem: he has a current income $b_a = 0$ that he wishes to invest in financial assets (available on the market to all) indexed by $j = 1; \ldots; n$. A unit of asset j generates income d_{hj} (in units of account or in kind) tomorrow in various states of the world h. To simplify matters, we assume a finite number of states. If x_{aj} is the number of units of asset j purchased, and p_j the unit price of that asset, the investor’s current budget constraint is $\sum_j p_j x_{aj} = b_a$. A portfolio $x_a = (x_{aj})$ generates the income $y_{ah} = \sum_j d_{hj} x_{aj}$ in each state.

We impose the constraint that income in each state h has to be nonnegative, i.e. $y_{ah} = 0$; and assume that the investor maximizes his preferences among random income streams $y_a = (y_{ah}) = 0$ represented (up to an increasing affine transformation) by the expected utility function $E_0 \left[u_{ah}(y_{ah}) \right] p$ where $\frac{1}{q_{ah}} > 0$ is the subjective probability he attaches to state h, with $\frac{1}{q_{ah}} = 1$. Although we shall interpret primarily the model in terms of a standard portfolio selection problem where utility is usually supposed to be independent of the state, we allow for state dependent Von Neuman Morgenstern (VNM) utilities $u_{ah}(y_{ah})$ because the analysis can also be applied to insurance problems where the realization of some events (e.g. disease) may affect directly individual welfare. We assume throughout

(2.a) Each (possibly state dependent) von Neumann-Morgenstern (VNM) utility $u_{ah}(y_{ah})$ is defined and continuous for $y_{ah} = 0$; continuously differentiable up to order 3 for $y_{ah} > 0$; with $u_{ah}^0(y_{ah}) > 0$; $u_{ah}^{00}(y_{ah}) < 0$.

We shall also focus on the case of interior solutions where each individual investor has a positive income in every state. In particular, we shall assume when needed

(2.b) Marginal utilities of income go to $+1$ as income goes to 0, and to 0 when income goes to $+1$; i.e. $\lim_{y \uparrow 0} u_{ah}^0(y) = +1$ and $\lim_{y \downarrow 0} u_{ah}^0(y) = 0$.

We suppose that all investors face the same price system (p_j) for the traded assets (markets are competitive) and that they all anticipate the same payoffs matrix $D = (d_{hj})$. We assume also complete markets, i.e. the number of states is n; while the payoff matrix $D = (d_{hj})$ is $n \times n$ and has full rank with n, 2: In the absence of arbitrage opportunities (a condition that will have to be satisfied in equilibrium), this means that all investors face the same (and unique) implicit system of state prices $q = (q_h)$; with $q_h > 0$; such that each asset j is valued according to $q_h d_{hj} = p_j$. Then for any
arbitrary income \(b_p = 0 \); and any such price system \(p \) (or equivalently \(q \)); the income \(y_{ah} = \sum_j a_{ij} x_{aj} = 0 \) generated in each state by the choice of an optimal portfolio \(x_a = (x_{aj}) \) can be viewed equivalently as a demand \(y_{ah} (q; b_a; 1/4) \) for the corresponding Arrow-Debreu security, which yields one unit of income in state \(h \) and none otherwise. The choice of a portfolio is then equivalent to choosing a vector of demands \(y_a (q; b_a; 1/4) = (y_{ah} (q; b_a; 1/4)) \) for Arrow-Debreu securities so as to maximize expected utility under the budget constraint \(q \cdot y_a = \sum_h q_h y_{ah} = b_a \). In what follows, we shall always work directly with the markets for Arrow-Debreu (AD) securities. With this convention, the income of an investor of type \(a \) is seen as implicitly derived from an initial portfolio of AD assets, \(b_a = 0; b_a \neq 0 \); so that \(b_a = q \psi_a > 0 \):

To simplify matters, we assume that the set of types is finite, and let \(\psi_a > 0 \) be the proportion of investors who belong to type \(a \), with \(\sum_a \psi_a = 1 \) (the analysis extends without difficulty, modulo a few technicalities, to a continuum of types, e.g. when the set of types is a complete separable metric space). In what follows, we shall freely use the notation \(E_a [z_a] = \sum_a \psi_a z_a \) to describe the average (or per capita, market or aggregate value) in the population of a variable \(z_a \); \(\text{var}_a [z_a] \) to represent its variance and so on, although there is no randomness, in our interpretation, in the allocation of investors among types. We shall assume without any loss of generality (2.c) The market portfolio of AD securities \(\top = E_a [!_a] \); has all its components positive, i.e. \(\top_h > 0 \) for every state \(h = 1; \ldots; n \):

With this notation, a competitive exchange equilibrium is a vector of state prices \(q^e \); with \(q^e_h > 0 \) for every state \(h \) such that all markets clear, \(E_a [y_a (q^e; q^e \psi_a; 1/4)] = \top \); We shall focus exclusively on interior equilibria, such that individual equilibrium portfolios satisfy \(y^e_{ah} = y_{ah} (q^e; q^e \psi_a; 1/4) > 0 \) for every investor and every state. It is known that under assumptions (2.a), (2.b) and (2.c), there exists at least one equilibrium, and that all equilibria are interior. An equilibrium price vector \(q^e \) is of course defined only up to a positive scalar factor (absence of money illusion).

3 Equilibrium Aggregation of Heterogeneous Beliefs

Consider a fixed (interior) competitive equilibrium, defined by the system of positive state prices \(q^e \): We show here that it is possible to aggregate
heterogeneous individual subjective probabilities $\frac{1}{q_a}$ into a single “market probability” $\frac{1}{q^m}$; in such a way that it is able to generate, if commonly shared by all investors, the same marginal valuation of every asset by the market and by every agent in equilibrium. The aggregation procedure may necessitate, however, a possible scalar adjustment of the market portfolio from $\frac{1}{q^m}$ to r^\pm; where the scalar adjustment coefficient $r^\pm > 0$ is a reflection of an “aggregation bias” due to the heterogeneity of beliefs.

The approach we propose is to define another “equivalent” equilibrium in which all investors would share the same probability $\frac{1}{q^m}$. The first invariance requirement we impose is that such a common probability equivalent equilibrium should generate the same equilibrium price system q^m as in the observed equilibrium with heterogeneous beliefs, so that every asset gets the same valuation by the market (the same price) in both equilibria. Specifically, if $\frac{1}{q^m}$ is an arbitrary reference market portfolio of AD securities (that may at this stage differ from the actual market portfolio $\frac{1}{q^m}$); with $\frac{1}{q^m} > 0$ for every state, and if (b^m) is the corresponding income distribution among individual investors (at this stage arbitrary but satisfying $E_a\left[b^m\right] = q^m \cdot 1$); we require that the individual portfolios $y^m_a = y_a(\frac{1}{q^m}; b^m; \frac{1}{q^m})$ satisfy $E_a[y^m_a] = \hat{z}^m$ in the common probability equivalent equilibrium.

Our second invariance requirement is that every individual investor should value assets at the margin in the same way in the observed equilibrium (using his own subjective probability $\frac{1}{q_a}$) and in the equivalent equilibrium (using the common probability $\frac{1}{q^m}$); Specifically, consider the FOC characterizing the interior individual portfolios $y^m_a = y_a(\frac{1}{q^m}; b^m; \frac{1}{q^m})$ in the observed equilibrium

\[(3.1) \quad \frac{1}{q^m} u_{ah}^0(y^m_{ah}) \cdot \hat{q}^m = \hat{z}^m, \]

where $\hat{z}^m = \hat{z}_a(\frac{1}{q^m}; q^m \cdot 1; \frac{1}{q^m})$ is the corresponding marginal expected utility of income. This condition means that the investor is indifferent at the margin between all AD securities and by extension between all assets. Indeed, the investor’s marginal expected utility of any (virtual) marginal portfolio generating the return R_h in each state (thus satisfying $\hat{z}^m \cap R_h = 1$)

\[(3.2) \quad \hat{z}^m_a = E_{\frac{1}{q^m}} [R_h u_{ah}^0(y^m_{ah})] = E_{\frac{1}{q^m}} [R_h] E_{\frac{1}{q^m}} [u_{ah}^0(y^m_{ah})] + \text{cov}_{\frac{1}{q^m}} [R_h, u_{ah}^0(y^m_{ah})]
\]

is independent of that portfolio. The same marginal indiscernibility holds of course at a common probability equivalent equilibrium. There the interior equilibrium portfolios $y^m_a = y_a(\frac{1}{q^m}; b^m; \frac{1}{q^m})$ are characterized by

\[(3.3) \quad \frac{1}{q^m} u_{ah}^0(y^m_{ah}) \cdot \hat{q}^m = \hat{z}^m, \]

\[9\]
where \(\vec{\gamma} = \vec{\gamma}(\vec{q}'; \vec{b}_0'; \vec{\gamma}) \) is again the corresponding marginal expected utility of income, and the investor values equally, at the margin, all assets

\[
(3.4) \quad \vec{\gamma} = E_{\vec{\gamma}} [R_h U_{ah} (y_{ah})] = E_{\vec{\gamma}} [R_h] E_{\vec{\gamma}} [U_{ah} (y_{ah})] + \text{cov}_{\vec{\gamma}} [R_h; U_{ah} (y_{ah})].
\]

Our second invariance requirement means that marginal asset valuations of each investor should be the same not only within each equilibrium as in (3.2) and (3.4) but also across equilibria, so that

\[
(3.5) \quad \vec{\gamma} = \vec{\gamma}(\vec{q}'; \vec{b}_0'; \vec{\gamma}) = \vec{\gamma}(\vec{q}'; \vec{b}_0'; \vec{\gamma});
\]

(3.5) For every marginal portfolio generating the returns \(R_h \); thus satisfying

\[
E_{\vec{\gamma}} [R_h U_{ah} (y_{ah})] = E_{\vec{\gamma}} [R_h] E_{\vec{\gamma}} [U_{ah} (y_{ah})] + \text{cov}_{\vec{\gamma}} [R_h; U_{ah} (y_{ah})]
\]

Given a reference market portfolio \(\vec{q}_0 \), one may view the common probability \(\vec{q} \) as adjusting so as to bring markets into equilibrium at the state prices \(\vec{q} \); i.e., \(E_{\vec{\gamma}} [y_{ah}(\vec{q}; \vec{b}_0'; \vec{\gamma})] = \vec{q}_0 \) for a given income distribution \((\vec{b}_0' \vec{\gamma}) \). One can show that there is indeed a unique probability \(\vec{q} \) that satisfies this first invariance requirement for \(\vec{q}_0 \). For a given income distribution \((\vec{b}_0' \vec{\gamma}) \), one may view next all individual incomes as moving from \(\vec{q}_0 \) to \(\vec{b}_0' \vec{\gamma} \) in order to compensate the changes of individual probabilities from \(\vec{q}_0 \) to \(\vec{q} \), so as to achieve the marginal asset valuation equalities (3.5), or

\[
\vec{\gamma} = \vec{\gamma}(\vec{q}'; \vec{q}_0 \vec{b}_0'; \vec{\gamma}) = \vec{\gamma}(\vec{q}_0; \vec{b}_0'; \vec{\gamma}) = \vec{\gamma}(\vec{q}'; \vec{b}_0'; \vec{\gamma}) = \vec{\gamma}(\vec{q}_0'; \vec{b}_0'; \vec{\gamma})
\]

for every individual. It is clear that one is short here of one degree of freedom, since the adjusting individual incomes \(\vec{b}_0' \vec{\gamma} \) are linked by \(E_{\vec{\gamma}} [\vec{b}_0' \vec{\gamma}] = \vec{q}_0 \vec{b}_0' \vec{\gamma} \) when \(\vec{q}_0 \) is fixed. One may then hope, intuitively, to achieve at most proportionality of all investors' marginal assets valuations \(\vec{\gamma} \) and \(\vec{\gamma} \). To bring about equality, as stipulated in our second invariance requirement, one needs generally one additional degree of freedom, namely to \(\vec{q} \) the composition, but not the scale, of the reference portfolio. The next result states that the outcome of our aggregation procedure is indeed uniquely determined by our two invariance requirements, when one considers reference market portfolios of the form \(\vec{q} \vec{r} \vec{\gamma} \), where \(\vec{r} \) is a vector of AD securities (satisfying for instance the normalization \(\vec{r} \vec{r} = 1 \)), but where the scalar coe cient \(\vec{r} \) is free to adjust.

The final requirement we impose is that the aggregation procedure should be unbiased, i.e. generate the “correct” result when investors share initially the same beliefs. Specifically, we think of the reference vector \(\vec{q}_0 \) and the actual market portfolio \(\vec{r} \) as \(\vec{q}_0 \) (where \(\vec{r} \) satisfies the normalization \(\vec{r} \vec{r} = 1 \)) and consider the outcomes of the aggregation procedure
when the other characteristics of the economy, in particular the individual subjective probabilities $\frac{1}{4}a$ and the equilibrium price vector q°, are free to vary. The unbiasedness requirement is that when individual probabilities happen to coincide, i.e. $\frac{1}{4}a = \frac{1}{4}$ for every type, the aggregation procedure should then generate the same probability $\frac{1}{4}a = \frac{1}{4}$. This final requirement imposes, not too surprisingly, $!^* = +$.

Theorem 3.1. Suppose that every type satisfies (2.a) and (2.b), that the market portfolio $!^*$ satisfies (2.c), and consider an equilibrium vector q° of state prices. Let $!^* = (\text{AD})$ be an arbitrary reference market portfolio of AD securities, with positive components, satisfying the normalization $\sum_h !^* h = \sum_h +^*_h$. There is a unique probability $\frac{1}{4}a$ with positive components, a unique coefficient of adjustment r^*_a of the reference market portfolio, and a unique distribution of incomes (b^*_a) satisfying $E_{!^*} [b^*_a] = q^\circ (r^* a)$; such that

1) q° is an equilibrium price system relatively to the common probability $\frac{1}{4}a$; the adjusted reference market portfolio $r^* !^*$, and the income distribution (b^*_a); i.e. $E_{!^*} [y^* (b^*_a, r^* !^*)] = r^* !^*$;

2) Individual marginal valuations of assets remain the same before and after the aggregation procedure, i.e. for every investor and every asset generating the returns R_h, thus satisfying $\sum_h q^\circ R_h = 1$

$$E_{\frac{1}{4}a} [R_h u^0_a (y^\circ_a)] = E_{\frac{1}{4}a} [R_h u^0_a (y^a)]$$

where $y^\circ_a = y_a (q^\circ, b^*_a, \frac{1}{4}a)$ and $y^a = y_a (q^\circ, b^*_a, \frac{1}{4}a)$ are the corresponding equilibrium portfolios.

Let the actual market portfolio $+^*$ and the reference portfolio $!^* = (\text{AD})$ be fixed, and consider the outcome of the above aggregation procedure when the other characteristics of the economy are free to vary. The procedure generates $\frac{1}{4}a = \frac{1}{4}$ when individual probabilities $\frac{1}{4}a$ coincide with $\frac{1}{4}a$ if and only if $!^* = +^*$.

The proof of that statement is given in Appendix A. Its principle is simple and instructive. One remarks that the invariance requirement for individual marginal asset valuations can be equivalently formulated, when applied to AD securities, for every state h and every investor a

$$\frac{1}{4}a u^0_a (y^\circ_a) = \frac{1}{4}a u^0_a (y^a)$$

These relations determine endogenously the portfolios $y^\circ_a = (y^\circ_a)$ as functions of the unknown common probability $\frac{1}{4}a$ alone, $y^a = y^a (\frac{1}{4}a)$: The corresponding adjusted individual incomes b^*_a become then also endogenous and functions of the unknown probability $\frac{1}{4}a$, through $b^*_a (\frac{1}{4}a) = q^\circ \phi y^\circ_a (\frac{1}{4}a)$: Given
a reference market portfolio \(\vec{!} \); the scalar adjustment coefficient \(r^\pm \) may be also viewed as endogenous and function of the unknown probability \(\frac{1}{\phi} \); determined by
\[
r^\pm(\frac{1}{\phi}) = E[a[b_\phi^\pm(\frac{1}{\phi})]A (q^* c!)]
\]
A common probability equivalent equilibrium may then be defined by a probability \(\frac{1}{\phi} \) that brings all markets for AD securities into equilibrium, i.e. that solves the equations

\[
E[a[y^\pm_a(\frac{1}{\phi})]] = r^\pm(\frac{1}{\phi})! \quad r^\pm(\frac{1}{\phi}) = E[a[q^* c y^\pm_a(\frac{1}{\phi})]A (q^* c!)]
\]

Existence is shown by a standard fixed point argument borrowed from general equilibrium theory (Arrow and Debreu (1954), McKenzie (1954), Debreu (1959)) with the probability \(\frac{1}{\phi} \) playing here the role of prices there. Unicity is implied by a property of individual demands for AD securities as functions of probabilities, originating from the separability of VNM utilities, that is a mirror image of the gross substitutability property in general equilibrium theory (Arrow and Hahn (1971)).

The fixed point argument suggests in principle the possibility to design constructive algorithms to compute the common probability \(\frac{1}{\phi} \); solution of (3.7), from the knowledge of the observed equilibrium with heterogeneous beliefs \(\frac{1}{\phi} \).

To sum up, the three invariance requirements (invariance of the equilibrium price vector, invariance of individual marginal valuations of assets, unbiasedness) pin down the outcome of the aggregation procedure. We shall call an equilibrium defining a common probability \(\frac{1}{\phi} \) by conditions 1) and 2) in Theorem 3.1 with an arbitrary reference portfolio \(\vec{!} \); the common probability equivalent equilibrium corresponding to the reference portfolio \(\vec{!} \). When \(\vec{!} = \vec{!} \) and if there is no risk of confusion, we shall drop any mention of the reference portfolio and speak simply of “the” common probability equivalent equilibrium.

4 The Adjusted Consumption Based Capital Asset Pricing Model (ACCAPM)

The “primal” aggregation procedure presented in the preceding section was deliberately couched in terms of invariance conditions on marginal asset pricing by the market and by every individual investor, that borrowed little from the assumption of complete markets (with the hope that the construction might be transposed to incomplete markets as well). We adopt now a “dual” viewpoint that exploits fully the complete market structure, by looking at the standard construction of an expected utility maximizing equilibrium “representative” investor, which is valid in the case of homogeneous
subjective probabilities, and analyze how the associated Consumption based Capital Asset Pricing Model (CCAPM) must be modified to account for heterogeneous individual probabilities, modulo a possible scalar “adjustment” of the market portfolio.

Consider an equilibrium with heterogeneous beliefs \(\frac{1}{a} \) defined by the system of state prices \(q^a \) and let \(y^a = y_a(q^a; q^a \notin a; \frac{1}{a}) \) be the corresponding individual optimum portfolios. It is convenient to introduce the following normalization of individual von Neumann Morgenstern (VNM) utilities

\[
(4.1) \quad v_{ah}(y_{ah}) = u_{ah}(y_{ah}) A E_{1/a} [u_{ah}(y_{ah}^a)]:
\]

The normalization (4.1) generates a unique (up to the addition of an arbitrary constant) representation of the underlying preferences by the condition

\[
E_{1/a} [v_{ah}(y_{ah}^a)] = 1; \quad \text{or equivalently (by application of the FOC (3.2) with these normalized utilities) by the property that every individual investor’s marginal valuation, in the observed equilibrium, of an asset with returns \(R_h \) satisfying \(\frac{1}{a} q^h R_h = 1 \), is not only independent of that asset, but is actually equal to the equilibrium gross rate of return of the riskless asset giving one unit of income in every state, i.e. to \(R_0 = 1 A q^h \)
\]

\[
(4.2) \quad E_{1/a} [R_h v_{ah}(y_{ah}^a)] = E_{1/a} [R_h] + \text{cov}_{1/a} [R_h; v_{ah}(y_{ah}^a)] = R_0^a:
\]

We recall first the construction of an expected utility maximizing equilibrium “representative” aggregate investor involved in the standard CCAPM when all individual subjective probabilities happen to coincide, i.e. \(\frac{1}{a} = \frac{1}{4} \) for all \(a \). In that construction, the preferences of the equilibrium “representative” aggregate investor are described by the VNM utilities, for every state \(h \)

\[
(4.3) \quad U_h(y_h) = \max E_a [v_{ah}(y_{ah})] \text{ subject to } E_a [y_{ah}] = y_h:
\]

Under the hypothesis that the above leads to an interior solution \(y_{ah} > 0 \) for all \(a \) (this will be guaranteed for every \(y_h > 0 \) under assumption (2.b)), it will be characterized by \(U_{1/a}^a(y_h) = v_{ah}^a(y_{ah}) \) for all \(a \). The fact that this procedure defines an equilibrium “representative” investor when \(\frac{1}{a} = \frac{1}{4} \) for every \(a \); comes then from the property that the solutions to (4.3) when \(y_h = T_h > 0 \); generate an allocation \(y_a = (y_{ah}) \) that coincides with the observed equilibrium individual portfolios \(y_{ah}^a \) (for both \(v_{ah}^a(y_{ah}) = U_{1/a}^a(T_h) \) and \(v_{ah}^a(y_{ah}^a) = q^a R_0 A \frac{1}{a} \) are then independent of \(a \) for every state \(h \). Since marginal utilities \(v_{ah}^a \) are decreasing, one gets \(y_{ah} = y_{ah}^a \) for some investor \(b \) in some state \(h \) if and only if the same inequality prevails \(y_{ah} = y_{ah}^a \) for all investors \(a \); then the equalities \(y_{ah} = y_{ah}^a \) for all \(a; h \); follow from the common
equilibrium conditions $E_a[y_{ah}] = \tau_h = E_a[y_{ah}^0]$: Therefore the aggregate investor defined in (4.3) does "represent" the observed market equilibrium when $\frac{1}{q_h} = \frac{1}{q} \forall a$; not only in the usual sense that the market portfolio τ maximizes his preferences, or his expected utility $E[a][U_h(y_{ah})]$ under the market budget constraint $q^a = q^a \forall a$; but actually in the stronger sense that the aggregate investor's and all individual investors' (normalized through (4.1)) marginal valuations of an arbitrary asset in the observed equilibrium, are identical.

\begin{equation}
(4.4) \text{(The standard CCAPM for homogeneous beliefs)} \end{equation}

When $\frac{1}{q_h} = \frac{1}{q} \forall a$; under the individual normalizations (4.1) and the specification (4.3) of the aggregate VNM utilities, for every asset generating the returns R_h; thus satisfying

$$E[a][R_h U^0_h(\tau_h)] = E[a][R_h V^0_{ah}(y_{ah})] = R^a_o.$$

Therefore, the specification (4.3) involves in the case of homogeneous beliefs, the normalization $E[a][U^0_h(\tau_h)] = 1$ or equivalently, the equilibrium marginal asset valuation $E[a][R_h U^0_h(\tau_h)] = R^a_o$; that is identical to the individual normalizations (4.1). It defines accordingly a normalized representation of the aggregate investor's underlying preferences that is not only independent of the particular choices of the individual VNM utilities (u_{ah}); but is in fact (again similarly to the individual normalized utilities (v_{ah}) defined in (4.1)) unique up to the addition of an arbitrary constant.

We show now that the same CCAPM construction does apply to the case of heterogeneous beliefs $\frac{1}{q_h} \forall a$; modulo a possible scalar "adjustment" of the aggregate portfolio.

Let us go back to an observed market equilibrium with heterogeneous beliefs $\frac{1}{q_h} \forall a$; described by the system of state prices q^a and the corresponding individual optimum portfolios $y^a_{ah} = y_a(q^a; q^a \notin a; \frac{1}{q_h})$: We keep the individual normalizations (4.1) and still define by (4.3) the VNM utilities of a (potentially) "representative" equilibrium investor. Given an arbitrary reference market portfolio τ_h^\pm satisfying the normalization $E[a][\tau_h^\pm] = \tau_h^\pm$ as in Theorem 3.1, a natural extension of the above CCAPM construction is to say that the aggregate investor does indeed "represent" at the margin all individual investors, when endowed with the probability $\frac{1}{q_h}$ and with the possibly scalarly adjusted reference market portfolio $r^\pm \tau_h^\pm$; not only in the sense that the adjusted portfolio $r^\pm \tau_h^\pm$ maximizes his preferences under the market budget constraint $q^a c_y = q^a c(r^\pm \tau_h^\pm)$; but under the stronger sense that the aggregate investor, under the specification (4.3), does give then the
same marginal evaluation of every arbitrary asset as each normalized individual investor in the observed equilibrium (exactly as in (4.4) above, but with \(\frac{1}{n} \) replaced by \(\frac{1}{n'} \) and \(\frac{1}{n'} \) by \(n' \))

(4.5) For every asset generating the returns \(R_h \); thus satisfying

\[
E_{\frac{1}{n'}} [R_h U_{a h}^0 (r_{\frac{1}{n'}})] = E_{\frac{1}{n}} [R_h U_{a h} (y_{a h})] = R_{0a}.
\]

Here again, (4.5) involves the equilibrium normalization

\[
E_{\frac{1}{n'}} [U_{a h}^0 (r_{\frac{1}{n'}})] = 1.
\]

The specification (4.3) defines accordingly also here in the case of heterogeneous beliefs, a normalized representation of the aggregate investor's underlying preferences that is unique up to the addition of an arbitrary constant.

It is easily seen that this extension of the standard CCA construction to the case of heterogeneous beliefs does coincide with the notion of a common probability equilibrium relative to a reference market portfolio \(r_{\frac{1}{n'}} \) described in the preceding section (Theorem 3.1). Let indeed \(y_{a h}^0 = (y_{a h}^0) \) be the portfolios determined by the solutions of (4.3) when \(y_h = r_{\frac{1}{n'}} h > 0 \): Under the maintained hypothesis of interior solutions, these portfolios are characterized by \(U_{a h}^0 (r_{\frac{1}{n'}}) = U_{a h} (y_{a h}) \): Rewriting (4.5) by using that fact, in terms of the original individual utilities \(u_{a h} \) so as to facilitate a direct comparison with the analysis of the previous section, generates the characterization

(4.6) For any asset with returns \(R_h \) satisfying

\[
P_h q_h R_h = 1;
\]

\[
E_{\frac{1}{n'}} [R_h U_{a h}^0 (r_{\frac{1}{n'}})] = E_{\frac{1}{n}} [R_h U_{a h} (y_{a h})] = R_{0a}.
\]

This is equivalent to the facts that (1) the price system \(q^0 \) is an equilibrium relative to the adjusted reference market portfolio \(r_{\frac{1}{n'}} \) and the income distribution \(b_{a h}^0 = q^0 c y_{a h}^0 \) when all investors share the common probability \(\frac{1}{n'} \); for we have \(y_{a h}^0 = y_{a h} (q^0; b_{a h}^0; \frac{1}{n'}) \) and \(E_a [y_{a h} (q^0; b_{a h}^0; \frac{1}{n'})] = r_{\frac{1}{n'}} \); and that (2) individual marginal valuations of assets are the same in both equilibria. That is, the proposed construction of a representative equilibrium investor generates exactly the common probability equivalent equilibrium relative to the reference portfolio \(r_{\frac{1}{n'}} \) as specified in 1), 2) of Theorem 3.1.

This analysis also provides us with an alternative marginal asset evaluation invariance requirement, involving the aggregate representative investor, to characterize the common probability equivalent equilibrium introduced in Theorem 3.1. We know that the standard CCA construction applies to a common probability equilibrium since there all investors share the probability \(\frac{1}{n'} \). The normalized VNM utilities of the corresponding representative investor are thus defined (up to the addition of an arbitrary constant) by
(4.7) \(U_h^\pm(y_h) = \max E_a [v_{ah}^\pm (y_{ah})] \) subject to \(E_a [y_{ah}] = y_h; \)

where \(y_h^\pm = y_a (q'; b_0^\pm; \nu^\pm) \) are the corresponding equilibrium portfolios, and \(v_{ah}^\pm (y_{ah}) = u_{ah} (y_{ah}) \hat{a} E_{\nu^\pm} [u_{ah}^0 (y_{ah}^\pm)] \) are the associated normalized individual VNM utilities. Then it is clear that in our definition of a common probability equivalent equilibrium, our second invariance requirement, i.e. 2) of Theorem 3.1, means that the individual normalized VNM utility functions corresponding to both equilibria, are identical, \(v_{ah} (y) = v_{ah}^\pm (y) : \) This is equivalent to the property that the outcomes obtained through (4.7) are identical to those obtained by the application of the same construction, through (4.3), to the observed equilibrium: the representative investor's normalized VNM utilities in (4.7) are the same (again, up to the addition of an arbitrary constant) as those in (4.3), so that marginal asset valuations by both representative investors are identical, while the solutions \(y_{ah} = \sigma_{ah}^\pm (y_h) \) and \(y_{ah} = \sigma_{ah} (y_h) \) of both programs (4.7) and (4.3) are equal for all \(y_h: \)

The next Proposition summarizes the above discussion.

Proposition 4.1 (The Adjusted CCAPM). Suppose that every type satisfies (2.a), that the market portfolio \(\pi \) satisfies (2.c), and consider an equilibrium vector of state prices \(q^\pi \); with the corresponding \(y_h^\pi = y_a (q^\pi; q_p^\pi \nu); \) individual optimum portfolios.

Let \(\pi^\pm \) be an arbitrary reference portfolio of AD securities, with positive components, satisfying the normalization \(y_h^\pi = y_h^\pi y_h \). Under the hypothesis that all portfolios under consideration are interior, the following statements are equivalent:

A) \(\nu^\pm \) and \(r^\pm \) are the equivalent common probability and the adjustment coefficient of the reference portfolio, defined by the invariance requirements 1) and 2) of Theorem 3.1, with \(y_a^\pm = y_a (q^\pi; b_0^\pi; \nu^\pm) \) being the corresponding individual equilibrium portfolios.

B) The aggregate investor defined by (up to the addition of an arbitrary constant) the normalized VNM utilities

\[
(4.8) \quad U_h(y_h) = \max E_a [v_{ah} (y_{ah})] \text{ subject to } E_a [y_{ah}] = y_h;
\]

where the individual VNM utilities \(v_{ah} (y_{ah}) = u_{ah} (y_{ah}) \hat{a} E_{\nu^\pm} [u_{ah}^0 (y_{ah}^\pm)] \) have been normalized, is an equilibrium representative investor, when endowed with the common probability \(\nu^\pi \) and the adjusted portfolio \(r^\pi; \) in the sense that the portfolio \(r^\pi; \) maximizes his expected utility \(E_{\nu^\pi} [U_h (y_h)] \) under the
market budget constraint \(q^\top \phi = q^\top (r + \beta) \); and that he evaluates every asset, at the margin, as does every individual investor in the observed equilibrium (4.9) For every asset generating the returns \(R_h \), thus satisfying \(\mathbb{P} \phi_h q_i R_h = 1 \):

\[
E_{\varphi} [R_h U_0^a (r + \beta)] = E_{\varphi} [R_h V_0^a (y_{ah})] = R_0^a
\]

where \(R_0^a = 1 = \mathbb{P}^a \) is the gross rate of return of the riskless asset giving one unit of income in every state. The equilibrium portfolios \(y_{ah}^a \) are then the solutions of (4.8) for \(y_h = r^a + \beta_h^a \):

C) 1) The rst invariance requirement, i.e. 1) of Theorem 3.1, holds and 2) The application of the standard CCAPM to the corresponding common probability equilibrium

\[
U_1^a (y_h) = \max E_a [V_{ah}^a (y_{ah})] \text{ subject to } E_a [y_{ah}] = y_h;
\]

where the \(V_{ah}^a (y_{ah}) = u_{ah} (y_{ah}) \cdot E_{\varphi} [u_{ah}^a (y_{ah}^a)] \) are the corresponding individual normalized VNM utilities, generates the same outcomes as those obtained, through (4.8), by application of the same construction to the observed equilibrium: both programs generate identical solutions \(y_{ah} = o_{ah}^a (y_h) \) and \(y_{ah} = o_{ah}^a (y_h) \); as well as identical aggregate VNM marginal utilities \(U_1^a (y_h) \) and \(U_0^a (y_h) \) (hence identical marginal valuations of assets) of both representative investors in (4.10) and (4.8).

The Adjusted CCAPM obtains when one adds the unbiasedness requirement, i.e. \(\nu_a = \nu \) for all \(a \) implies \(\beta = \beta \) that is when the reference portfolio is equal to the market portfolio \(\beta^a = \beta \):

The analysis of this section leads also to an alternative simple “dual” argument to demonstrate the existence, and unicity, of a common probability equivalent equilibrium relative to a given reference market portfolio \(\beta^{a} \) that was stated in Theorem 3.1. We outline it now, as it is instructive on its own right. From B) of the foregoing Proposition, we know that the corresponding probability \(\nu^a \) and adjustment coefficient \(\beta^a \) are characterized by (4.9) which, when applied to AD securities, yields the FOC : \(\beta^a U_1^a (r + \beta) = q_i^a = R_0^a \). This suggests the following constructive argument. Fix an arbitrary adjustment coefficient \(\beta > 0 \), and compute a corresponding probability \(\nu^a (r) \) from \(\nu^a (r) = \nu^a (r^a + \beta) \cdot U_1^a (r + \beta) \), where \(\nu^a (r) = 1 = \mathbb{P}^a (q_i^a = U_0^a (r + \beta)) \). If we consider the portfolios \(y_{ah} (r) = (y_{ah} (r)) \) (assumed to be interior, e.g. because of assumption (2.b)), solutions of (4.8) for \(y_h = r^a + \beta_h^a \), hence satisfying
$U^0_h(r_1, r_2) = v_{ah}(y^u_{ah}(r_1, r_2))$; we have by construction that for every asset generating the returns R_h with $q^h R_h = 1$

$$E_{r_1}(R_h U^0_h(r_1, r_2)) = E_{r_1}(R_h v_{ah}(y^u_{ah}(r_1, r_2))) = \frac{\gamma}{\gamma}(r_1, r_2):$$

This means that the portfolios $y^u_{ah}(r_1, r_2)$ are equilibrium portfolios relative to the price system q^h; the aggregate portfolio r_1^0 and the income distribution $b^h_0(r_1, r_2) = q^h c^h y^u_{ah}(r_1, r_2)$; when all investors share the common probability $\gamma^h(r_1, r_2)$; i.e. $y^u_{ah}(r_1, r_2) = y_{ah}(c^h; b^h_0(r_1, r_2); \gamma^h(r_1, r_2))$ and $E_a[y^u_{ah}(r_1, r_2)] = r_1^0$. Moreover, in that equilibrium, individual marginal valuations of assets are given by (in terms of the original VNM utilities $u_{ah}(y_{ah})$)

$$E_{r_1}(R_h u_{ah}(y^u_{ah}(r_1, r_2))) = \frac{\gamma}{\gamma}(r_1, r_2) E_{r_1}(u_{ah}(y^u_{ah})(r_1, r_2));$$

and are thus proportional but not generally equal to those associated to the observed equilibrium, i.e. to $\gamma^h = E_{r_1}(R_h u_{ah}(y^u_{ah}(r_1, r_2))) = R_{0}^a E_{r_1}(u_{ah}(y^u_{ah}(r_1, r_2)));$ The equilibrium adjustment coefficient γ we are looking for achieves by definition equality of these marginal valuations, and therefore solves

$$\gamma(r_1, r_2) = 1 A_{r_1}^{-1} \left[q^h A_{r_2} U^0_h(r_1, r_2)\right] = R_{0}^a. $$

The corresponding equivalent common probability is $\gamma(r_1, r_2)$.

Now each utility $U_h(y_{ah})$ defined in (4.8) is concave, so that $\gamma(r_1, r_2)$ is a decreasing function. In fact, the solution to (4.8) is determined by the FOC:

$$V^0_h(y_{ah}) = u_{ah}(y_{ah}) \dot{A} [E_{r_1}(u_{ah}(y^u_{ah}(r_1, r_2)));$$

where $T_{ah}(y_{ah}) = u^0_{ah}(y_{ah}) \dot{A} u^0_{ah}(y_{ah})$ is the coefficient of absolute risk tolerance of the individual VNM utility $u_{ah}(y_{ah}); T_{ah}(y_{ah}) = u^0_{h}(y_{ah}) \dot{A} u^0_{h}(y_{ah})$ is similarly the coefficient of absolute risk tolerance of the aggregate VNM utility $U_h(y_{ah}),$ while all $T_{ah}(y_{ah})$ are evaluated at the solution of (4.8). Furthermore, it is easy to see from the FOC $U^0_h(y_{ah}) = u^0_{ah}(y_{ah}) \dot{A} u^0_{ah}(y_{ah}) = E_{r_1}(u^0_{ah}(y^u_{ah}(r_1, r_2))),$ that $U_h(y_{ah})$ satisfies also assumption (2.b) whenever all individual utilities u_{ah} do (if y_{ah} tends to 0, all y_{ah} tend to 0, while if y_{ah} goes to +1, all y_{ah} must go to +1). Therefore, under assumption (2.b), $\gamma(r_1, r_2)$ decreases from +1 to 0 when r increases from 0 to +1, and there is a unique r such that $\gamma(r_1, r_2) = R_{0}^a,$ which completes the proof.

The above “dual” argument generates also simple explicit formulas to determine the equivalent common probability γ and the corresponding adjustment coefficient r; once one knows the normalized VNM utilities of the representative investor. The first order characterization (4.9), applied to AD securities gives for every state

$$\gamma^h U^0_h(r_1, r_2) = \frac{\gamma^h}{\gamma^h} u^0_{ah}(y^u_{ah}(r_1, r_2)) = \frac{\gamma^h}{\gamma^h} u^0_{ah}(y^u_{ah}(r_1, r_2)) = R_{0}^a q^h = \frac{\gamma^h}{\gamma^h};$$

18
where \(\hat{q} = (\frac{1}{2}) \) is the usual “risk adjusted”, or “risk neutral” probability associated with the observed equilibrium state price \(q \) (by definition, it gives every asset with returns \(R_h \) the same expected return \(E_{\hat{q}}[R_h] = \frac{1}{2} R_h = R_h^\alpha \)). One gets then immediately

Corollary 4.2. Given an equilibrium with heterogeneous beliefs and a reference market portfolio \(\pi^\pi_t \), to determine the corresponding equivalent common probability \(\hat{q} \) and the adjustment coefficient \(r^\pi_t \) of Proposition 4.1, one can first solve for \(r^\pi_t \) the scalar equation \(E_{\hat{q}}[1=U^0_k(r^\pi_t \frac{\hat{q}}{\pi^\pi_t})] = 1 \), where the normalized VNM utilities of the representative investor \(U^0_k(y) \) are specified by (4.8), and \(\frac{1}{2} \) = \(R_o^\alpha \) are the “risk adjusted” or “risk neutral” probabilities associated with the observed equilibrium state prices. The common probability \(\frac{1}{2} \) is then given by \(\frac{1}{2} \) = \(\frac{1}{2} \) \(\hat{q} \) \(A U^0_k(r^\pi_t \frac{\hat{q}}{\pi^\pi_t}) \):

Example 4.3. The Hyperbolic Absolute Risk Aversion (HARA) family.

We apply now the foregoing “dual” argument (essentially Corollary 4.2) to the HARA family, that is to the special case where utilities are state independent and display linear absolute risk tolerance, i.e. \(T_{ah}(y) = \mu_a + \gamma y > 0 \); where the marginal risk tolerance \(T^\prime_{ah}(y) = \gamma \) is constant and commonly shared by all investors. When \(\gamma > 0 \); marginal utilities of income are of the form \(U^0_{ah}(y) = (\mu_a + \gamma y)^\frac{1}{1=\gamma} \); while they are \(U^0_{ah}(y) = e^{\gamma y \mu_a} \) in the case of Constant Absolute Risk Aversion (CARA), i.e. when \(\gamma = 0 \): The case usually considered empirically most relevant in the literature corresponds to an absolute risk tolerance that is increasing with income (\(\gamma > 0 \)); and to coefficients of relative risk aversion \(\frac{1}{2} \) = \(i \) \(y \) \(U^0(y) A U^0(y) \) that decrease with income (\(\mu_a < 0 \)): The case of Constant Relative Risk Aversion (CRRA) corresponds to \(\mu_a = 0 \); in which case \(\frac{1}{2} \) (\(y \) = 1=\(\gamma \):

This configuration, often considered in the finance literature because it generates a neat aggregation of individual behaviors when all investors share the same beliefs, leads also here to important simplifications. The main reason is that in such a case, the aggregate investor has VNM utilities that belong to the same HARA family.\(^9\) Indeed, these are defined in a standard manner through (4.8) or (4.10). From (4.11), which is also valid here, one gets that aggregate absolute risk tolerance \(T_h(y) = i U^0_h(y) A U^0_h(y) \) is given by

\[
T_h(y) = E_a[T_{ah}(y_{ah})] = E_a[\mu_a + \gamma y_{ah}] = \bar{\mu} + \gamma y_h:
\]

So the marginal utilities \(U^0_h(y_h) \) of that aggregate investor are proportional (up to a common multiplicative normalizing factor) to \(\mu + \gamma y_h \) when
6 0 and to $e^{\gamma_{\text{CARA}}}$ in the CARA case $\gamma = 0$: The next result exploits that feature, states what is the explicit form of the normalized aggregate VNM utilities (4.8) in that case, and shows how to use them in order to determine along the lines of Corollary 4.2, the adjustment coefficient r^\pm and the equivalent common probability γ_{CARA}^\pm, involved in the Adjusted CCAPM.

Corollary 4.4. Assume that individual VNM utilities are state independent and belong to the HARA family, with $T_{ah}^{\prime}(y) = \mu + \gamma > 0$: Let $(\gamma_{\text{CARA}}^\pm; r^\pm)$ be the common probability and adjustment coefficient associated to a given equilibrium with heterogeneous beliefs $(q^{'a}; (y_0^{'a}))$ as in Proposition 4.1, with the reference portfolio equal to the actual market portfolio, $! = ^!$: Assume interior solutions throughout. $R_0^a = 1A^{\gamma_{\text{CARA}}^\pm}q^a$ denotes the gross rate of return of the riskless asset, and $\gamma_{\text{CARA}}^\pm = R_0^{\gamma_{\text{CARA}}^\pm}$ are the corresponding risk adjusted probabilities.

1) The representative investor defined by (4.8) in Proposition 4.1 belongs to the same HARA family, with $T_{ah}^{\prime}(y) = \mu + \gamma > 0$; and $\mu = \mathbb{E}_{a}[\mu_a]:$

2) When $\gamma = 0$; the normalized VNM marginal utilities of the aggregate investor (4.8) are

\[U_0^h(y_h) = i i^{\mu + \gamma - \mu_{\text{CARA}}} \Delta \theta \]

with $\theta = \mathbb{E}_{a}[\theta_a]$ and

\[\theta_a = \frac{\mu_a + \gamma_{\text{CARA}}^{\prime}}{(\gamma_{\text{CARA}}^\pm \gamma_{\text{CARA}})} = \frac{\mu_a + \gamma_{\text{CARA}}^{\prime} \Delta \theta_a}{\mathbb{E}_{a}[(\gamma_{\text{CARA}}^\prime \gamma_{\text{CARA}})]} \]

The adjustment coefficient r^\pm is then determined as in Corollary 4.2 by

\[E_{\gamma_{\text{CARA}}}^{\gamma_{\text{CARA}}} \Delta \theta + r^\pm \gamma_{\text{CARA}}^{\prime} \Delta \theta_a \Delta \theta = ^! \]

3) In the CARA configuration $\gamma = 0$; the normalized VNM marginal utilities of the aggregate investor (4.8) are

\[U_0^h(y_h) = e^{i (\gamma_{\text{CARA}}^{\prime}) \gamma_{\text{CARA}}} \]

with $\theta = \mathbb{E}_{a}[\theta_a]$ and

\[\theta_a = \gamma_{\text{CARA}}^{\prime} i \mu_a \Delta \theta_a \]

In particular,
(4.18) \[U_h^0(y_h) = \frac{1}{\gamma_h} e^{(y_h \tau_h - \mu_h) \mu} e^{E_x[(\mu_h - \mu) \log \gamma_h]} , \]

so that the adjustment coefficient \(r^\pm \) determined as in Corollary 4.2, is obtained directly from the fundamentals through

(4.19) \[p_k e^{(r^\pm \tau_h - \mu)} e^{E_x[(\mu_h - \mu) \log \gamma_h]} = 1 ; \]

4) Given the adjustment coefficient \(r^\pm \); the common probability \(\gamma_h \) is in all cases obtained as in Corollary 4.2, by \(\gamma_h = \frac{1}{\gamma_h} A U_h^0(r^\pm \tau_h) \); In the CARA case \(\gamma = 0 \); one gets

\[\gamma_h = e^{(r^\pm \tau_h - \mu)} e^{E_x[(\mu_h - \mu) \log \gamma_h]} ; \]

Proof. When \(\gamma = 0 \); it is easily seen from the individual FOC that normalized individual marginal VNM utilities \(\nu_{ah}(y_{ah}) = U_{ah}^0(y_{ah}) A E_{a}[u_{ah}(y_{ah})] \) in the observed equilibrium, are given by \(\nu_{ah}(y_{ah}) = R_{ah}^0(\mu_a + y_{ah}) A \gamma_{ah}^0 \); where \(\gamma_{ah}^0 \) is determined by (4.14). The normalized VNM utilities of the aggregate investor defined in (4.8) satisfy then \(U_{h}^0(y_h) = \nu_{ah}(y_{ah}) \); hence \(\gamma_{ah}^0(U_{h}^0(y_h)) = \mu_a + y_{ah} \) (where the \(y_{ah} \) are solutions of (4.8)), which gives (4.13) by aggregation over all types \(a \). The adjustment coefficient is obtained by solving \(E_{ah}[1A U_h^0(r^\pm \tau_h)] = 1 \) as in Corollary 4.2, which gives (4.15).

When \(\gamma = 0 \); the same procedure shows that normalized individual VNM utilities are given by \(\nu_{ah}(y_{ah}) = e^{y_{ah} \mu_a \mu} A e^{\gamma_{ah}^0 \mu_a} \) where \(\gamma_{ah}^0 \) is determined by (4.17), and one gets by aggregation over investors the general expression (4.16) of \(U_{h}^0(y_h) \): The specific expression (4.18) is obtained by using the first equality for \(\gamma_{ah}^0 \) in (4.17). Then it is immediate from (4.18) that the equation \(E_{ah}[1A U_h^0(r^\pm \tau_h)] = 1 \) to determine \(r^\pm \); as in Corollary 4.2, is (4.19).

The last statement of the Proposition is also immediate. Q.E.D.

We take now advantage of the simplicity of the explicit equations (4.15) or (4.19) that determine the adjustment coefficient \(r^\pm \) in the case of the HARA family, to have a first look at the conditions leading to \(r^\pm > 1 \); \(r^\pm = 1 \) or \(r^\pm < 1 \); It turns out these three configurations occur respectively when the marginal risk tolerance \(\gamma \) is less than, equal to or greater than 1. The determining case \(\gamma = 1 \) corresponds to logarithmic utilities \(u_{ah}(y) = \log (\mu_a + y) \) and lends itself to a very simple argument. Indeed (4.15) is then linear, \(\mu a + \gamma = R_{ah} \gamma \mu a \); whereas one gets from (4.14) \(\gamma = \mu_a + R_{ah} \gamma \mu a \); hence \(R_{ah} \gamma = E_a(\gamma a) = \mu a + R_{ah} \gamma \mu a \). So clearly \(\gamma = 1 \) implies \(r^\pm = 1 \): The arguments showing that \(\gamma < 1 \) implies \(r^\pm > 1 \) and that \(\gamma > 1 \) implies \(r^\pm < 1 \); go along similar lines. They rest in exact on the convexity or concavity of the
function \(f(x) = x^\gamma \); \(x > 0 \) (or \(\log x \) for the CARA configuration \(\gamma = 0 \)); and Jensen's inequality. We shall get a deeper insight into the reasons underlying this result when going back to the issue in the next section, for general specifications of the agents' utilities.

Corollary 4.5. (Adjustment coefficient). In the HARA family as in Corollary 4.4, there is no adjustment of the market portfolio, i.e. \(r^\pm = 1 \); in the case of logarithmic utilities \(\gamma = 0 \); and \(r^\pm > 1 \); when \(\gamma < 1 \) and in the CARA configuration \(\gamma = 0 \); and downward, i.e. \(r^\pm < 1 \); when \(\gamma > 1 \):

Proof. When \(\gamma \neq 0 \); we get from (4.15) that \(r^\pm < 1 \) if and only if

\[
E_a \left[\frac{1}{1+\gamma} \left(\frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) \right)^{\gamma - 1} \right] > 1.
\]

But aggregating over investors the FOC (4.14) gives that

\[
E_a \left[\frac{1}{1+\gamma} \left(\frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) \right)^{\gamma - 1} \right] = \frac{1}{E_a (y)} \frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) = 1.
\]

So we get \(r^\pm < 1 \) if and only if

\[
X_k \frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) > E_a (y).
\]

It is easily seen that this inequality is verified when \(\gamma > 1 \);: Indeed since the function \(f(x) = x^\gamma \) is in that case increasing and convex for \(x > 0 \); one has that \(E_a \left[\left(\frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) \right)^{\gamma - 1} \right] > E_a \left[\frac{\partial }{\partial a} \frac{\partial }{\partial a} (E a[y]) \right] \); hence the desired result by summing over \(k \): A similar (symmetric) direct reasoning shows that this inequality is reversed, and that one gets accordingly \(r^\pm > 1 \); when \(\gamma < 1 \); \(\gamma \neq 0 \) and also for the CARA configuration. Q.E.D.

4.6. Remark: Aggregate risk aversion

We used in (4.11) an elementary fact, namely that absolute risk tolerance of the equilibrium representative investor defined in (4.8), i.e. \(T_a(y) = i \ U_a(y) \ A \ U_a(y) \); is the average in the population of the degrees of absolute risk tolerance, \(T_a(y) = i \ \frac{\partial }{\partial a} \frac{\partial }{\partial a} (y) \ A \ \frac{\partial }{\partial a} \frac{\partial }{\partial a} (y) \):

\[
(4.20) \quad T_a(y) = E_a [T_a(y) \circ a]; \text{ where } y = \circ a(y) \text{ are solutions of (4.8)}.
\]

We gather here for later reference a few other elementary facts about how individual degrees of relative risk aversion \(\frac{1}{1+\gamma} (y) \) are related to the representative investor's corresponding degrees of relative risk aversion, \(\frac{1}{1+\gamma} (y) = i \ y \ U_a(y) \ A \ U_a(y) : A \); A simple reformulation of (4.20) shows that aggregate "relative" risk tolerances \(\frac{1}{1+\gamma} (y) = 1\ \frac{1}{1+\gamma} (y) = T_a(y) \Rightarrow y \) are weighted averages of individual "relative" risk tolerances \(\frac{1}{1+\gamma} (y) = 1\ \frac{1}{1+\gamma} (y) = T_a(y) \Rightarrow y \), each individual investor being weighted by its share in total income \(y \Rightarrow y \).
\[\dot{z}_h(y) = E_a \frac{\dot{\omega}(\omega)}{y_h} \frac{y_{ah}}{y_h} ; \text{where } y_{ah}^* = \omega_{ah}(y_h) \text{ are solutions of (4.8)}. \]

Equally elementary by straight differentiation of (4.20), under the maintained assumption of interior solutions, is the fact that income derivatives of aggregate absolute risk tolerances, \(T_0^h(y_h) \); are also averages of the corresponding income derivatives of individual absolute risk tolerances, \(T_0^ah(y_{ah}) \); each investor being weighted this time by \(\omega_{ah}(y_{ah}) = T_{ah}(y_{ah}) \tilde{T}_h(y_h) \):

\[T_0^h(y_h) = E_a \frac{T_0^ah(y_{ah}) T_{ah}(y_{ah})}{T_h(y_h)} ; \text{where } y_{ah}^* = \omega_{ah}(y_h) \text{ are solutions of (4.8), with } \omega_{ah}(y_{ah}) = T_{ah}(y_{ah}) \tilde{T}_h(y_h). \]

The implication is that when all individual absolute risk tolerances are increasing with income (the most likely configuration in practice), so does aggregate absolute risk tolerance, or more generally \(T_0^ah(y_{ah}) = \dot{\omega} \) (resp. \(T_0^ah(y_{ah}) \gg \dot{\omega} \)) for all \(a \) implies \(T_0^h(y_h) = \dot{\omega} \) (resp. \(T_0^h(y_h) \gg \dot{\omega} \)).

The above simple facts about aggregation of individual absolute risk tolerances (or absolute risk aversions) and of their income derivatives, under an "optimal" risk sharing scheme as in (4.8), are standard (Wilson (1968)). We show now a still elementary but apparently less widely known fact, namely that whenever individual absolute risk tolerances are increasing, microeconomic heterogeneity introduces an aggregation bias toward decreasing aggregate relative risk aversion, even though such a property may be weak or even absent at the microeconomic level. In particular, if all individual investors have Constant Relative Risk Aversion (CRRA) VNM utilities that are different, aggregate relative risk aversion is decreasing. This fact is most conveniently seen by reformulating (4.22) in terms of the elasticities of absolute and relative risk tolerances for the aggregate and individual investors.

Lemma 4.7. (Aggregate relative risk aversion) Under the assumptions of Proposition 4.1, the elasticities of aggregate absolute and relative risk tolerances "\(\tau_h(y) = y \tau_0^h(y) \tilde{T}_h(y) \) and "\(\dot{\tau}_h(y) = \tau_h(y) - 1 \); are related to the corresponding individual elasticities "\(\tau_{ah}(y) = y\tau_0^ah(y) \tilde{T}_{ah}(y) \) and "\(\dot{\tau}_{ah}(y) = \tau_{ah}(y) - 1 \) through

\[(4.23) \quad \dot{\tau}_h(y_h) = E_a \frac{\dot{\tau}_{ah}(y_{ah})}{\dot{\tau}_h(y_h)} \frac{y_{ah}}{y_h} + E_a \frac{\dot{\tau}_{ah}(y_{ah})}{\dot{\tau}_h(y_h)} - 1 \frac{y_{ah}}{y_h} ; \]

where \(y_{ah}^* = \omega_{ah}(y_h) \) are solutions of (4.8). If "\(\dot{\tau}_{ah}(y_{ah}) = \pm \)for all investors, then
which exceeds ± by a positive variance term when individual absolute risk tolerance is increasing, i.e. when \(T_{ah}(y_{ah}) = 1 + \pm > 0 \); and whenever individual degrees of relative risk aversion \(\frac{\zeta_{ah}(y_{ah})}{\zeta_{h}(y_{h})} = 1 \) differ at the microeconomic level. In particular, if all investors have different Constant Relative Risk Aversion (CRRA) VNM utilities, \(\zeta_{ah}(y) \ ' = 0 \) for all \(a \), aggregate relative risk aversion is decreasing.

The inequality in (4.24) is reversed when \(\zeta_{ah}(y_{ah}) < 0 \); and microeconomic heterogeneity generates an opposite bias toward increasing aggregate relative risk aversion when individual absolute risk tolerance is decreasing, i.e. when \(T_{ah}(y_{ah}) = 1 + \pm < 0 \):

The statements from (4.24) until the end of the lemma are then immediate. Q.E.D.

C. Hara and C. Kuzmics (2002) have independently proved a result along the same line, according to which non-increasing individual relative risk aversions do generate the same property in the aggregate, with the representative investor’s relative risk aversion being actually decreasing when individual attitudes toward risk are heterogeneous. As quoted in C. Hara and C. Kuzmics, the result in the specific CRRA configuration was independently found by S. Benninga and J. Mayshar (2000). That sort of aggregation bias appears to comfort the use of specifications with decreasing aggregate relative degrees of risk aversion, despite the fact that, while empirical studies appear to point toward microeconomic increasing absolute risk tolerance, the evidence on individual decreasing relative risk aversion seems to be more mixed.\(^{11}\)
5 Monotone Risk Sharing Rules and Individual Heterogeneity

We presented in the previous two sections two equivalent approaches toward the aggregation of diverse beliefs that relied exclusively on pricing and marginal asset evaluations of assets by individual investors, as well as by an appropriately defined “equilibrium aggregate representative investor”. We take in this section a third, equivalent viewpoint, in terms of the allocation of risks to individuals. When individual beliefs are homogeneous, individual investors trading in competitive complete asset markets do insure themselves mutually and bear only aggregate risks: their individual equilibrium consumptions (final risks) y_{ah}^a are monotonically increasing functions of aggregate incomes (risks) T_h; $y_{ah}^a = o_{ah}(T_h)$; that reflect their attitudes (tolerances) toward risk. In the case of state independent VNM utilities, this is the well known “mutuality principle”. That sort of conclusion fails in the case of diverse beliefs (Varian (1985, 1989), Ingersoll (1987, Ch. 9)). We show here that in such a case, our construction of a common probability equivalent equilibrium (where we set the reference portfolio r^+ equal to the actual market portfolio r) amounts to a decomposition of the allocation of final individual risks y_{ah}^a in the observed equilibrium, in two parts. The first part describes the allocation of risks in the common probability equilibrium, $y_{ah}^a = o_{ah}(r^+ T_h)$; and is identical to the standard optimal risk sharing rule, as recalled above, when investors share the homogeneous belief $\frac{1}{T}$; modulo a possible scalar adjustment of the market portfolio from r^+ to r^+: The second part views the allocation of the residual risks, $y_{ah}^a - y_{ah}^a$; resulting from the heterogeneity of beliefs, as monotonically increasing functions of the deviations $\frac{1}{T} - \frac{1}{T}$ of individual beliefs from the common probability, that vanish, i.e. $y_{ah}^a - y_{ah}^a = 0$; whenever $\frac{1}{T} - \frac{1}{T} = 0$: Specifically, final individual risks in the observed equilibrium with heterogeneous beliefs are viewed as the outcome of a risk sharing rule of the form $y_{ah}^a = i_{ah}(\frac{1}{T} - \frac{1}{T}, r^+ - r^+)$; where the function i_{ah} is increasing in both arguments, and coincides with the standard common probability risk sharing rule o_{ah} when $\frac{1}{T} = \frac{1}{T}$; i.e. $i_{ah}(1; y_{h}) = o_{ah}(y_{h})$: The cost to be paid to get such a monotone decomposition being that the aggregate risks to be allocated in the risks sharing rules i_{ah} and o_{ah} add up to a possibly scalarly adjusted market portfolio r^+; the adjustment coefficient r^+ reflecting here again an “aggregation bias” due to the diversity of beliefs $\frac{1}{T}$ (Proposition 5.1). One can then analyze risk sharing, in particular the deviations $y_{ah}^a - y_{ah}^a$ and $(1 - r^+)$ from the common probability configuration, in relation to aggregate risks, and to the heterogeneity of beliefs, of attitudes toward risk and of incomes (Proposi-
tion 5.2, Corollary 5.3). In the specific configuration of the HARA family as in Example 4.3 above, the approach permits an evaluation of failures of individual observed portfolios to satisfy the so-called “two funds separation theorem” (i.e. to be combinations of the market portfolio and of the riskless asset), in relation to the heterogeneity of individual beliefs (Example 5.4). In the focal specification where VNM utilities are state independent, the application of our aggregation method generates in the case of a small heterogeneity of beliefs and of small aggregate risks, a complete second order approximate evaluation of all the necessary modifications to the “mutuality principle” due to heterogeneity of beliefs, in relation with the distributions of individual characteristics (beliefs, risk attitudes, incomes) in the population (Section 5.6).

Specifically, consider an equilibrium $q^*_h; (y^*_a)$ with heterogeneous beliefs ν^*_a. It is known that such an equilibrium is a Pareto optimum given these beliefs, or more precisely that the individual portfolios (y^*_a) are the solutions of the maximization problem
\[
(5.1) \quad \text{Max} \ E_a [E_{\nu} [\nu(y_{ah})]] \text{ subject to } E_a [y_a] = y;
\]
when y is equal to the market portfolio π; where individual VNM utilities $\nu_{ah}(y_{ah}) = u_{ah}(y_{ah}) A E_{\nu} [u_{ah}(y^*_a)]$ have been normalized as in (4.8) of Proposition 4.1. Indeed, this problem splits into independent maximization problems, for each state h

\[
(5.2) \quad W_h(y_h; (\nu^*_h)) = \text{Max} \ E_a [\nu_{ah}(y_{ah})] \text{ subject to } E_a [y_{ah}] = y_h;
\]
Assuming interior portfolios throughout, the solution to (5.2) is characterized by $\nu^*_ah(y_{ah}) = W_0^h(y_h; (\nu^*_h))$; which implies $y_{ah} = y^*_ah$ for every a when $y_h = \pi_h$ (because $\nu^*_ah(y_{ah}) A \nu^*_ah(y^*_ah)$ are then independent of a and $E_a [y_{ah}] = E_a [y^*_ah]$); and therefore

\[
(5.3) \quad \nu^*_ah(y^*_ah) = W_0^h(\pi_h; (\nu^*_h)) = q^h \pi R^*_h = \pi^*_h
\]
where π^*_h is the risk adjusted or risk neutral probability of state h in the observed equilibrium. The aggregate investor with separable (but non VNM expected) utility $W_h(y_h; (\nu^*_h))$ does accordingly “represent” the economy in equilibrium, in the sense that the market portfolio π maximizes his preferences under the aggregate budget constraint $q^h \pi = q^h \pi^*_h$; and that he values at the margin every asset with returns (R_h) as does every individual investor, i.e. $E_{\nu} [R_h \nu_{ah}(y_{ah})] = \pi_h W_0^h(\pi_h; (\nu^*_h))$: Our construction in the previous section of an equilibrium representative investor who would
maximize an expected utility of the form $E_{\gamma_a} [U_h(y_{ah})]$ relied explicitly on
the same marginal asset valuation equivalence. We switch here viewpoints
by focussing on the allocation of “… nal risks” y_{ah} to individual investors. Indeed (5.3)
means that the competitive equilibrium mechanism generates a
risk sharing rule

$$
y_{ah} = C_{ah}(\tau_h; (\gamma_{th})) = (v_{ah})^{-1}(W_{0h}(\tau_h; (\gamma_{th})) - \gamma_{ah})$$

that is (Pareto) optimal, conditionnally upon the investors’ beliefs (γ_{th}):

Such a Pareto optimal risk sharing rule displays attractive monotonicity
properties whenever all individual investors share the same belief, i.e. $\gamma_a = \gamma_h$
for all a: In that case, the aggregate utilities $W_h(y_h; (\gamma_{th}))$ in (5.2) coincide
with $\gamma_{h}U_h(y_h)$ where $U_h(y_h)$ are the normalized VNM utilities of the aggregate
investor involved in the CCAPM, as in (4.8) of Proposition 4.1. The corresponding equilibrium sharing rule becomes then quite simple and has
the property, when VNM utilities are state independent, that an investor’s
consumption y_{ah} depends only on aggregate wealth τ_h; and increases with
τ_h in proportion of the relative contribution of the individual absolute risk
tolerance to aggregate absolute risk tolerance.

(5.4) (Risk sharing with homogeneous beliefs). Consider an interior equi-
librium $q; (y_{ah})$ with homogeneous beliefs, i.e. $\gamma_a = \gamma_h$ for all investors a: The corresponding risk sharing rule is given by

$$
y_{ah} = o_{ah}(\tau_h) = (v_{ah})^{-1}(U_{0h}(\tau_h)) = (v_{ah})^{-1}(\gamma_{ah} - \gamma_{ah})$$

where normalized individual and aggregate investors’ VNM utilities (v_{ah}) and
(U_h) are de ned as in (4.8) of Proposition 4.1, and $\gamma_a = R_{ah}^{-1}q_{ah}$
are the equilibrium risk adjusted or risk neutral state probabilities. The risk sharing rule
$^0_{ah}(y) = (v_{ah})^{-1}(U_{0h}(y))$ is increasing, with $^0_{ah}(y) = T_{ah}(^0_{ah}(y)) - \gamma_{ah}(y) > 0$; where $T_{ah}(y) = i v_{ah}(y) \gamma_{ah}(y)$ and $T_{h}(y) = i U_{0h}(y) \gamma_{ah}(y) =$

$E_a[T_{ah}(^0_{ah}(y))]$ are the individual and aggregate degrees of absolute risk tolerance.

When all VNM utilities are state independent, so is the risk sharing rule
$^0_{a}(y) = (v_{ah})^{-1}(U_{0h}(y))$: In that case, individual consumption $y_{ah} = ^0_{ah}(\tau_h)$
depends only on aggregate consumption τ_h and increases with aggregate consumption in the sense that $y_{ah} \gamma_{ah} = ^0_{ah}(\tau_k) \gamma_{ah} = 0$ if and only if
$\tau_k = \tau_h$ (mutuality principle).
When individual beliefs $\frac{1}{a}$ are heterogeneous, the risk sharing rule θ_{ah} (5.4) is still increasing in $\frac{1}{a}$; provided that one keeps fixed all investors' beliefs ($\frac{1}{a}$): So in the particular case where VNM utilities are state independent, one does get a weak form of the mutuality principle (Varian (1985, 1989)), in the sense that if one considers two states, one will get $y_{ah}^v = y_{ah}^u$ (resp. $y_{ah}^v > y_{ah}^u$) when $\frac{1}{a} = \frac{1}{a}$ (resp. $\frac{1}{a} > \frac{1}{a}$) provided however that the distribution of beliefs ($\frac{1}{a}$) and ($\frac{1}{a}$) among investors is the same in both states, which is a significant limitation. We show now that the construction of an equivalent common probability equilibrium, can be reinterpreted as a decomposition of the equilibrium risk sharing rule (5.4) in two parts displaying characteristic attractive monotonicity properties, and sharper mutuality principle features.

The first part is the risk sharing rule $y_{ah} = \frac{o_{ah}^+}{o_{ah}} (y_h)$ that can be defined as in (5.5) above for any interior common probability equilibrium satisfying the invariance requirement 1) of theorem 3.1, with the reference portfolio $\frac{1}{a}$ equal to the actual market portfolio $\frac{1}{a}$: That rule is defined, as in part C of Proposition 4.1, as the solution of $U_{ah}^{\frac{1}{a}} (y_h) = \frac{1}{a} \max E_{a} [v_{ah}^{\frac{1}{a}} (y_{ah})]$ subject to $E_{a} [y_{ah}] = y_h$; or of the corresponding FOC $v_{ah}^{\frac{1}{a}} (\frac{o_{ah}^+}{o_{ah}} (y_h)) = U_{ah}^{\frac{1}{a}} (y_h)$; where the individual VNM utilities $v_{ah}^{\frac{1}{a}} (y_{ah}) = u_{ah} (y_{ah}) E_{ah} [u_{ah}^{\frac{1}{a}} (y_{ah})]$ have been normalized as usual in the common probability equilibrium. That first part generates by construction the same simple mutuality principles, as in (5.5), for the common probability equilibrium portfolios $y_{ah}^{\frac{1}{a}} = \frac{o_{ah}^+}{o_{ah}} (r^{\frac{1}{a}})$

The second part evaluates the allocation of the "residual risks" $y_{ah}^{\frac{1}{a}} i y_{ah}^{\frac{1}{a}}$ as being the result of the deviation $\frac{1}{a} i y_{ah}^{\frac{1}{a}}$ of individual beliefs from the common probability. The FOC characterizing both equilibria is $\frac{1}{a} v_{ah}^{\frac{1}{a}} (y_{ah}) = \frac{1}{a} V_{ah}^{\frac{1}{a}} (y_{ah}) = \frac{1}{a}$; where again the VNM utilities $v_{ah} (y_{ah}) = u_{ah} (y_{ah}) E_{ah} [u_{ah}^{\frac{1}{a}} (y_{ah})]$ have been normalized in the observed equilibrium. So, nal equilibrium consumptions (risks) are given by $y_{ah}^{\frac{1}{a}} = i_{ah} (\frac{1}{a} \frac{1}{a}) (r^{\frac{1}{a}})$

The rule (5.6) evaluates nal equilibrium individual risks in the observed equilibrium as determined by aggregate income (risk) y_h, and by the relative deviations of individual beliefs from the constructed common probability $(\frac{1}{a} i y_{ah}^{\frac{1}{a}})$. The additional feature that characterizes our definition of the equivalent common probability equilibrium, i.e. the second invariance requirement of theorem 3.1, is equivalent to the property that normalized individual VNM utility functions in both equilibria coincide, i.e. $v_{ah} (y) \sim v_{ah}^{\frac{1}{a}} (y)$
(up to arbitrary constants). It is clear from (5.6) that this requirement is equivalent to the property that the allocation of individual risks in the observed equilibrium coincides with the risk sharing rule of the equivalent common probability equilibrium if and only if relative deviations of individual beliefs from the common probability vanish, i.e. if and only if

\[
\left(\frac{1}{2} a h \right) A \left(\frac{1}{2} h \right) = 0
\]

In other words, from the standpoint of risk allocation, the characteristic property of an equivalent common probability equilibrium is that the risk sharing rules \(i_{ah}(1; y_h) \) reduce to \(o_{ah}(y_h) \) for all \(a; h \): The cost to be paid in order to get such a monotone decomposition being here as elsewhere that the risks in the common probability equilibrium add up to a possibly scalarly adjusted market portfolio \(r \) instead of the actual one, the adjustment coefficient reflecting an aggregation bias due to the diversity of beliefs.

The formulation (5.6) generates sharper mutuality principles than those following from a formulation such as (5.4), that does not refer to a common probability. By construction the sharing rules \(i_{ah} \) and \(o_{ah} \) are increasing functions of both arguments. In the case of state independent VNM utilities, the rules \(i_{ah} \) and \(o_{ah} \) are actually independent of the state \(h \). Then individual consumption in state \(h \) in the observed equilibrium \(y_{ah} = i_a \left(\frac{1}{2} ah \right) A \left(\frac{1}{2} h \right) \) depends on the state only through the relative belief deviation \(\left(\frac{1}{2} ah \right) A \left(\frac{1}{2} h \right) \) and aggregate income \(\sum h \) in that state, and is an increasing function of these two variables.

Proposition 5.1 (Monotone risk sharing rules). Assumes (2.a), that the market portfolio \(T \) satisfies (2.c), and consider an equilibrium price system \(q \) with heterogeneous beliefs \(\frac{1}{2} \), where the corresponding equilibrium portfolios are \(y_{ah} = y_a(q; q \cdot I_a; \frac{1}{2}) \) : Assume interior portfolios throughout.

Consider a common probability equilibrium where the rest invariance requirement 1) of Theorem 3.1 is met with the reference portfolio \(\frac{1}{2} = \) equal to the market portfolio \(T \); i.e. \(q \) is still an equilibrium price system when investors share the common probability \(\frac{1}{2} \); the market portfolio \(T \) is scalarly adjusted to \(r \); and the income distribution \(b \) satis.es \(E_a[b] = r \cdot \alpha \cdot \frac{1}{a}; \) so that \(E_a[y_{ah}] = r \cdot \alpha \) for the common probability equilibrium portfolios \(y_{ah} = y_a(q; b; \frac{1}{2}) \) : Let \(y_{ah} = o_{ah}(y_{ah}) \) be the corresponding risk sharing rule, defined as the solution of the standard CCAPM construction applied to the common probability equilibrium

\[
U_{ah}(y_{ah}) = \max \left[v_{ah}(y_{ah}) \right] \text{ subject to } E_a[y_{ah}] = y_{ah};
\]

where the \(v_{ah}(y_{ah}) = u_{ah}(y_{ah}) A E_{ae} [U_{ah}(y_{ah})] \) are the corresponding individual normalized VNM utilities, or \(v_{ah}(o_{ah}(y_{ah})) = U_{ah}(y_{ah}) \).
The risk sharing rule defined by the heterogeneous beliefs equilibrium determines the equilibrium portfolios \(y_{ah} \) as functions of individual deviations of individual beliefs \(\frac{1}{a} h \) from the common probability \(\frac{1}{a} r \) and of adjusted aggregate endowments \(r = r_h \) through \(y_{ah} = \frac{1}{a} h \) with

\[
(5.8) \quad i_{ah} \left(\frac{1}{a} h ; y_h \right) = \left(\frac{1}{a} h \right) \cdot \left(\frac{1}{a} r \right) v_{ah}^{\circ} (\circ_{ah} (y_h)) ;
\]

where the \(v_{ah} (y_{ah}) = u_{ah} (y_{ah}) \cdot \frac{1}{a} E_{ah} \left[u_{ah}^{0} (y_{ah}) \right] \) are the corresponding individual normalized VNM utilities in the observed equilibrium.

The second invariance requirement 2) of Theorem 3.1 that characterizes the equivalent common probability equilibrium, is equivalent to the property that the heterogeneous beliefs risk sharing rule (5.8) coincides with the common probability risk sharing rule (5.7) when deviations of beliefs vanish, \(\frac{1}{a} h = \frac{1}{a} r \); or

\[
(5.9) \quad i_{ah} (1; y_h) = \left(\frac{1}{a} h \right) \cdot \circ_{ah} (y_h) \text{ for all } a; h \text{ and } y_h > 0:
\]

The heterogeneous beliefs risk sharing rule \(i_{ah} (\frac{1}{a} h, \frac{1}{a} r; y_h) \) in (5.8) is monotonically increasing in each argument and is independent of the state \(h \) when VNM utilities are state independent (modified mutuality principle with diverse beliefs).

We assume from now on that the two invariance requirements, that characterize an equivalent common probability equilibrium, i.e. 1) and 2) of Theorem 3.1, are satisfied, with \(\circ = \circ_{ah} \): In that case, the normalized individual VNM utility functions in that equilibrium, \(v_{ah} (y) \); and in the observed equilibrium, \(v_{ah} (y) \); are identical. In particular, the application of the standard CCAPM to the observed equilibrium through

\[
(5.10) \quad U_h (y_h) = \mathbf{M} \max E_{ah} [v_{ah} (y_{ah})] \text{ subject to } E_{ah} [y_{ah}] = y_h
\]

generates risk sharing rules \(y_{ah} = \circ_{ah} (y_h) \); as solutions of the FOC \(v_{ah}^{\circ} (\circ_{ah} (y_h)) = U_{ah}^{\circ} (y_h) \); that coincide with \(\circ_{ah} \) as defined in (5.7) above. The allocation of risks in the observed equilibrium is then given by \(y_{ah} = i_{ah} (\frac{1}{a} h, \frac{1}{a} r; r = r_h) \) where

\[
(5.11) \quad i_{ah} \left(\frac{1}{a} h ; y_h \right) = \left(\frac{1}{a} h \right) \cdot \left(\frac{1}{a} r \right) v_{ah}^{\circ} (\circ_{ah} (y_h))
\]

as in (5.8) with \(v_{ah}^{\circ} \neq v_{ah} \):
We wish to get further insight into the way in which deviations of individual beliefs $\frac{1}{T_{ah}} \frac{1}{\mu}$ from the common probability affect the allocation of "residual risks" y_{ah}^i, y_{ah}^p; or the corresponding income shifts $a_i b_{ah}$; and the sign and size of the scalar adjustment $1_i \frac{r}{\mu}$ of the market portfolio. Our strategy will be to consider exact (global) 2nd order Taylor expansions of

\[
(5.12) \quad y_{ah}^i y_{ah}^p = g_{ah} \left(\frac{1}{T_{ah}} \right) g_{ah} \left(\frac{1}{\mu} \right) \quad \text{with} \quad g_{ah} \left(\frac{1}{T_{ah}} \right) = \frac{i}{ah} \frac{1}{T_{ah}} \cdot r^{\pm h}
\]

where the $\frac{1}{T_{ah}}$ are considered as "free" variables while $\frac{1}{\mu}$ and y_{ah}^p are "fixed". We know indeed that there exist b_{ah} in the intervals $[1/\mu, \frac{1}{T_{ah}}]$ such that

\[
(5.13) \quad y_{ah}^i y_{ah}^p = \left(\frac{1}{T_{ah}} \right) \left(\frac{1}{\mu} \right) g_{ah}^p \left(\frac{1}{\mu} \right) + \frac{1}{2} \left(\frac{1}{T_{ah}} \right) \left(\frac{1}{\mu} \right)^2 g_{ah}^p \left(b_{ah} \right)
\]

One verifies by direct inspection that $g_{ah}^p \left(\frac{1}{\mu} \right) = T_{ah} (g_{ah} \left(\frac{1}{T_{ah}} \right)) A \frac{1}{\mu}$; where $T_{ah} (y) = i u_{ah} (y) A u_{ah}^p (y)$ is the individual coefficient of absolute risk tolerance, so that $g_{ah}^p \left(\frac{1}{\mu} \right) = T_{ah} \left(g_{ah} \left(\frac{1}{T_{ah}} \right) \right)$, with $T_{ah} = T_{ah} (y_{ah}^p)$: The 1st (linear) term in the right hand side of (5.13) is therefore positive when $\frac{1}{T_{ah}}$ exceeds $\frac{1}{\mu}$ and negative otherwise. By contrast, the second (nonlinear) term has the sign of $g_{ah}^p \left(b_{ah} \right) = T_{ah} (g_{ah} \left(b_{ah} \right)) (T_{ah}^p (g_{ah} \left(b_{ah} \right))) A b_{ah}^2$: It contributes therefore to a negative portfolio deviation y_{ah}^i, y_{ah}^p for any individual belief $\frac{1}{T_{ah}} \leq \frac{1}{\mu}$ whenever individual absolute risk tolerance increases with income (the empirically plausible case), but not too fast, that is when $T_{ah}^p (y) \leq 1$; so that $g_{ah} (\frac{1}{\mu})$ is a concave function, i.e. $g_{ah}^p (\frac{1}{\mu}) < 0$. On the other hand this second nonlinear term will contribute to a positive portfolio deviation in the opposite consideration where absolute risk tolerance increases fast enough, $T_{ah}^p (y) \geq 1$; i.e., when $g_{ah} (\frac{1}{\mu})$ is convex. Even though the two terms in the right hand side of (5.3) may have different signs, the 1st linear term is bound to dominate since, by construction of the common probability equivalent equilibrium, the function $g_{ah} \left(\frac{1}{T_{ah}} \right)$ is increasing and is equal to y_{ah}^p for $\frac{1}{T_{ah}} = \frac{1}{\mu}$: an upward individual belief deviation $\frac{1}{T_{ah}} \frac{1}{\mu}$ does result in an upward portfolio shift $y_{ah}^i, y_{ah}^p = 0$ and conversely.

The same approach gives a way to evaluate the impact of individual belief deviations on the income compensating changes $q^a c^a i \ b_{ah} = q^a c^a u_{ah}^a i \ c^a u_{ah}^p$ needed to keep individual marginal asset valuations invariant when constructing the equivalent common probability equilibrium. Summing over states the expressions (5.13) multiplied by the risk adjusted probability $\frac{1}{\mu} = R^\mu_{ah} q^\mu$ gives

\[
(5.14) \quad R^\mu_{ah} (q^a c^a i \ b_{ah}^c) = E_{\mu} \left[\frac{1}{T_{ah}} \frac{1}{\mu} \right] T_{ah}^p + \frac{1}{2} E_{\mu} \left[\frac{1}{T_{ah}} \frac{1}{\mu} \right]^2 g_{ah}^p \left(b_{ah} \right)
\]
Since both probabilities \(\frac{1}{4}h \) and \(\frac{1}{2}h \) sum to 1, the linear part in the right hand size of (5.14) involves positive and negative terms and therefore does not necessarily dominates the nonlinear terms here. In fact this linear part has an ambiguous sign: we are going to see that it vanishes in particular when all individual utilities are state independent and if there is no aggregate risk. Indeed in that case the equivalent common probability \(\frac{1}{2}h \) coincides with the risk adjusted probability \(\frac{1}{2}h \) (for then aggregate VNM utilities are also state independent, so that \(u_h^0(r^\pm h) \) is independent of \(h \) when \(r^\pm h = r^\pm k \)). Corollary 4.2 implies then that \(\frac{1}{2}h \) are equal to \(\frac{1}{2}h \): All individual investors are then fully insured in the equivalent common probability equilibrium, i.e. \(y_h^s = y_h^\pm \); and the linear part of (5.14) vanishes because \(T_{ah} = \text{independent of the state } h \). Compensating income changes in (5.14) will be therefore dominated by the corresponding squared deviations terms in that case. In particular, individual observed income will have to be adjusted upward when constructing the equivalent common probability equilibrium, i.e. \(q\frac{1}{1} = \text{independent of the state } h \), if absolute risk tolerance does not increase too fast, \(T_{ah}^0(y) < 1 \); so as to ensure that \(g_{ah} \) is concave. By continuity, this picture is unaltered when aggregate risk and dependence of VNM utilities on states are "small" while the belief deviations \(\frac{1}{4}h \) are "significant".

Proposition 5.2. Suppose that every type satisfies (2.a) and that the market portfolio satisfies (2.c). Consider an interior equilibrium vector \(q^e \) of state prices and the corresponding interior common probability equivalent equilibrium defined by \((\frac{1}{2}h; r^e) \); with the reference portfolio equal to the market portfolio, \(! = T \); and where \(y_h^s = y_a(q^e; q^e \! c! a; \frac{1}{2}h) \) and \(y_h^p = y_a(q^e; b^2 \frac{1}{2}h) \) are the associated equilibrium individual portfolios. For each investor, let \(y_h^{\pm} = y_{ah}^\pm (y_h^{\pm}) \); where \(T_{ah} = \text{independent of the state } h \); \(u_{ah}^0(y) \! A u_{ah}^0(y) \) are the degrees of absolute risk tolerance.

There exist \(b_{ah} \) in the intervals \([\frac{1}{4}h; \frac{1}{2}h] \) such that individual equilibrium portfolio adjustments \(y_h^{\pm} \) are linked to deviations of individual beliefs \(\frac{1}{4}h \) through

\[
(5.15) \quad y_h^{\pm} = \frac{1}{2}h i \frac{1}{2}h T_{ah}^\pm + \frac{1}{2}h \frac{1}{2}h b_{ah}^{\pm} p_{ah} \frac{1}{2}h ;
\]

where the degrees of absolute risk tolerance \(p_{ah} = T_{ah} (y_{ah}^\pm) \) and their derivatives \(p_{ah} = T_{ah}^0 (y_{ah}^\pm) \) are evaluated at the portfolios defined by \(b_{ah}^0 (y_{ah}^\pm) = \frac{1}{2}h b_{ah}^{\pm} p_{ah} \frac{1}{2}h \): Income shifts needed to maintain individual marginal asset valuations when constructing the equivalent common probability equilibrium are in turn given by
As noted earlier, a substantial issue to ascertain is whether the adjustment coefficient \(r^\pm \) is greater or less than 1: modifying the mean and variability of aggregate wealth has consequences on aggregate risk aversion and asset pricing. The approach taken here should generate some insights into the matter since aggregation of individual portfolios in (5.15) yields (1 \(r^\pm \) \(T_n = E_{a'[r^\pm]} = E_{a'[y^\pm_{ah}]} \); while working with incomes in (5.16) gives (1 \(r^\pm \) \(q^i \cdot \{ a^i \ b^i \} = E_{a'[q^i \cdot \{ a^i \ b^i \}]}. From the above analysis, one should expect accordingly this coefficient \(r^\pm \) to be greater than 1 if, for instance, aggregate risk and state dependence of VNM utilities are not too large, every investor's absolute risk tolerance does not increase too fast with income and when there is a significant dispersion of beliefs in the population.\(^{12}\)

Aggregation of individual portfolios in (5.15) or (5.13) gives

\[
(5.18) \quad (1 \cdot r^\pm) T_n = E_{a'[r^\pm]} = E_{a'y^\pm_{ah} y^\pm_{ah}} + \frac{1}{2} E_{a'[r^\pm]} = E_{a'[y^\pm_{ah}]} \cdot (1 \cdot r^\pm)^2 \cdot g^0_{ah} (b_{ah}) \cdot (b_{ah}) \cdot \]

We know that the contribution of the second order nonlinear terms is negative, and thus tends to make \(r^\pm > 1 \) if the functions \(g^0_{ah} \) are concave, i.e. if
absolute risk tolerance does not increase too fast with income \((T_{0h} < 1)\): On the other hand, the contributions of the .rst order linear terms are ambiguous since they may be positive for some states and negative for others. A convenient, symmetric way to proceed is to aggregate over states the expressions (5.18), premultiplied by \(\frac{1}{2}T_\pm \), where \(T_\pm = E[a[T_{ah}]]\) are the degrees of absolute risk tolerance \(T_h(y) = i \cdot U_h^a(y) \cdot U_h^{0}(y)\) of the representative equilibrium investor defined in (5.10) evaluated at the adjusted market portfolio, i.e. \(T_\pm = T_h(r_\pm h)\): If the representative investor’s degrees of relative risk aversion are noted \(\frac{1}{2} \) with \(\frac{1}{2} = \frac{1}{2}(r_\pm h) = \frac{1}{2}(r_\pm)\) and measures the average contribution, in the population, of the covariance of the relative deviations of individual beliefs from the equivalent common probability, i.e. \((\frac{1}{2}h y) \cdot \frac{1}{2}h\), with the relative deviations of individual absolute risk tolerance from the average degree of absolute risk tolerance in the market, evaluated at the equivalent common probability equilibrium, i.e. \((T_\pm - T_h) \cdot \frac{1}{2}h\): The sign of this term is ambiguous, but it will vanish, for instance, if the ratios \(T_\pm \) are, for every investor, independent of the state. We know already that this will be the case if there is no aggregate risk and if all investor’s VNM utilities are state independent, since then \(T_\pm\) and \(T_h\) are actually independent of the state \(h\) (individual investors and the representative investor are fully insured in the common probability equilibrium). We shall see shortly that this configuration occurs also in another important special case, namely when VNM utilities are state independent and display linear absolute risk tolerance as in the HARA family considered in Example 4.3. This will be a simple restatement of the so-called “two funds separation theorem”. In all these cases, i.e. when the .rst order linear term in (5.19) vanishes, the sign of \((1 - r_\pm)\) is entirely determined by the second order terms, i.e. by the convexity or concavity of the functions \(g_{ah}\): For instance, one gets in such a case that \(r_\pm > 1\) if there is some dispersion of beliefs, when every investor’s absolute risk tolerance does not increase too fast with income, i.e. when \(T_{0h} < 1\) for all \(a; h\): If the .rst order covariance term is not too large, one should expect this picture to be unchanged: for example one should still get \(r_\pm > 1\) if \(T_{0h} < 1\) for all \(a; h\); with \(\gamma\) low and
if the variance of beliefs in the population is signiﬁcant. The following result sums up and make precise these intuitions.

Corollary 5.3. Under the assumptions and notations of Proposition 5.2, let the degrees of absolute risk tolerance of the representative equilibrium investor deﬁned in (4.8) of Proposition 4.1, be given by

\[T_h(y) = -\frac{U_h}{U_0} h(y) \quad \text{and} \quad \frac{1}{T_h} = \frac{1}{T_h} (r^\pm h) = E_a \left[T_h^\pm ah \right] \]

with

\[T^\pm h = T_h (r^\pm h) = E_a [T^\pm ah] \]

Let also the representative investor’s degrees of relative risk aversion be noted

\[\frac{1}{R_h}(y) = -\frac{y U_0}{U_0 h(y)} \quad \text{and} \quad \frac{1}{R_h} = \frac{1}{R_h} (r^\pm h) \]

with

\[\frac{1}{R^\pm h} = \frac{1}{R_h} (r^\pm h) \]

The adjustment coeﬃcient \(r^\pm \) of the market portfolio is given by

\[
1 - r^\pm = \frac{1}{r^\pm} E_{\frac{U}{V}} [\frac{1}{T_h}] = E_a \cdot \text{cov}_{\frac{U}{V}} \left(\frac{Y^h}{V^h} \right) T^\pm h \left(\frac{1}{T^\pm h} \right) + \frac{1}{2} E_{\frac{U}{V}, a} \left(\frac{1}{T^\pm h} \right) \frac{1}{b_{ah}} E_{\frac{U}{V}} \left[\text{var}_{a \left[\frac{1}{T^\pm h} \right]} \right]
\]

The covariance term vanishes when the ratios \(T^\pm ah \) are independent of the states for every investor. This happens in particular when all investors have state independent VNM utilities and when there is no aggregate risk. Then \(r^\pm > 1 \) when \(\frac{p_{ah}}{p_{0h}} < 1 \) for all \(a; h \); whereas \(r^\pm < 1 \) when \(\frac{p_{ah}}{p_{0h}} > 1 \) for all \(a; h \); if there is some dispersion of beliefs.

Assume that individual absolute risk tolerance is bounded above and away from 0, i.e. \(0 < \mu_m 5 \frac{p_{ah}}{p_{0h}} 5 \mu_M \) for all states and investors.

A) If absolute risk tolerance does not increase fast with income, i.e. \(\frac{p_{0h}}{p_{0h}} < 1 \) for all \(a; h \)

\[
1 - r^\pm = \frac{1}{r^\pm} E_{\frac{U}{V}} [\frac{1}{T_h}] = E_a \cdot \text{cov}_{\frac{U}{V}} \left(\frac{Y^h}{V^h} \right) T^\pm h \left(\frac{1}{T^\pm h} \right) + \frac{1}{2} E_{\frac{U}{V}, a} \left(\frac{1}{T^\pm h} \right) \frac{1}{b_{ah}} E_{\frac{U}{V}} \left[\text{var}_{a \left[\frac{1}{T^\pm h} \right]} \right]
\]

so that \(r^\pm > 1 \) if the ﬁrst order covariance term is not too great whereas \(\frac{1}{R_h} \) is signiﬁcantly less than 1 and if there is a signiﬁcant dispersion of beliefs in the population (\(\text{var}_{a \left[\frac{1}{T^\pm h} \right]} \) is signiﬁcant).

B) If absolute risk tolerance increases fast enough with income, i.e. \(\frac{p_{0h}}{p_{0h}} = \frac{1}{R_h} > 1 \) for all \(a; h \)

\[
1 - r^\pm = \frac{1}{r^\pm} E_{\frac{U}{V}} [\frac{1}{T_h}] = E_a \cdot \text{cov}_{\frac{U}{V}} \left(\frac{Y^h}{V^h} \right) T^\pm h \left(\frac{1}{T^\pm h} \right) + \frac{1}{2} E_{\frac{U}{V}, a} \left(\frac{1}{T^\pm h} \right) \frac{1}{b_{ah}} E_{\frac{U}{V}} \left[\text{var}_{a \left[\frac{1}{T^\pm h} \right]} \right]
\]

so that \(r^\pm < 1 \) if the ﬁrst order covariance term is not too great while \(\frac{1}{R_h} \) is large and if there is a signiﬁcant dispersion of beliefs in the population (\(\text{var}_{a \left[\frac{1}{T^\pm h} \right]} \) is signiﬁcant).
Proof. (5.20) is nothing else than (5.19) in the text. Then (5.21) and (5.22) follow directly by bounding the right hand side of (5.20), using $b = ah$ and the fact that $E_a \left(\frac{1}{2} \right)^2 = \text{var}_a \left(\frac{1}{2} \right)$: Q.E.D.

The above analysis is global, as it relies upon an exact 2nd order Taylor expansion of $y_{ah} \cdot y_{ah}$ around $\frac{1}{2}$; that is then aggregated over investors and across states. One may note, incidentally, that if one is willing to neglect 3rd order terms involving $(\frac{1}{2} - \frac{1}{2}^3)$, e.g. in practical applications, one can obtain approximate evaluations of individual portfolio deviations in (5.15), of individual income shifts in (5.16), or of the aggregate portfolio adjustment coefficient r^\pm in (5.20), by substituting $\frac{1}{2}$ to $b = ah$ in these expressions. We shall use systematically this “local” approach in Section 5.6 below in order to give complete second order approximate evaluations not only of the residual risks $y_{ah} \cdot y_{ah}$, but also of the equivalent common probability $\frac{1}{2}$ and of the portfolios y_{ah}, when VNM utilities are state independent and aggregate risks are small.

Example 5.4. Risk sharing in the HARA family

We focus again on the specific case considered in example 4.3, where individual VNM utilities are state independent and display linear risk tolerance, i.e. $T_{ah}(y) = \mu_a + \gamma y > 0$ and where all investors share the same marginal risk tolerance $T_{ah}(y) = \gamma$. This involves a well known simplification when beliefs are homogeneous, called “two funds separation” : every investor holds in equilibrium a portfolio that is a combination of the market portfolio and of the riskless asset. This property holds by construction in the equivalent common probability equilibrium since all investors are supposed to share the same belief $\frac{1}{2}$; it is actually expressed, as we shall see shortly, by the fact that the ratios $T_{ah}^- \cdot T_{ah}^+$ are, for each investor, independent of the state. It is a standard result (Wilson (1968)) that this two funds separation property is actually equivalent to the linearity of the (state independent) risk sharing rule $y_{ah} = o_a(y)$ solution of the CCAPM (5.10). This can be easily seen by further differentiating the sharing rule along the lines of (5.5), which generates

\[
(5.23) \quad o_a(y) = \frac{T_a(y_{ah})}{(T(y))^2} (T_a^0(y_{ah}) \cdot T^0(y));
\]

so that $o_a(y) \sim 0$ if and only if $T_a(y)$ is linear with a derivative $T_a^0(y) = \gamma$ that is common to all members of the family (from (4.22), $T^0(y)$ is a weighted average of all $T_a^0(y_{ah})$):
It is easy to see that in the HARA family, one still gets linearity with respect to aggregate income \(r^{\pm} \) of the sharing rule \(y_{ah}^{\pm} = i _{a} (\frac{1}{a} gh \to \frac{1}{a} ; r^{\pm}) \) in the case of heterogeneous beliefs. The two funds separation property fails however in that case for the observed equilibrium portfolios \(y_{a}^{\pm} \). Our approach permits nevertheless a neat evaluation of individual departures from this two funds separation property in the observed equilibrium, by comparing the portfolios \(y_{a}^{\pm} \) to their common probability counterparts \(y_{a}^{\pm} \) in relation with the deviations of individual beliefs \(\frac{1}{a} \) from \(\frac{1}{a} \).

As far as compensating income shifts from \(\frac{1}{a} \) a to \(b_{a}^{\pm} \) are concerned, the analysis in this particular con...guration will con...rm the general nding previously established in Proposition 5.2, namely that income is shifted upward, i.e. \(\frac{1}{a} \) a \(b_{a}^{\pm} < 0 \); when absolute risk tolerance does not increase too fast, \(\frac{1}{a} < 1 \); for all beliefs \(\frac{1}{a} \) when there is no aggregate risk, and when \(\frac{1}{a} \) diverges signi...cantly from \(\frac{1}{a} \) when there is some (not too large) aggregate risk. The new feature that will appear here is that in the latter case, the direction of the income shift will be reversed if \(\frac{1}{a} \) is equal or close enough to \(\frac{1}{a} \). Finally, the fact that the ratios \(T_{ah}^{pm} = T_{ah}^{pm} \) are independent of the state in the HARA family implies that the covariance term in (5.20) of Corollary 5.3 vanishes “globally”, no matter what is the size of aggregate risks and for all distributions of beliefs \(\frac{1}{a} \); with the consequence that the adjustment coef cient \(r^{\pm} \) is greater than 1 if and only if the common marginal risk tolerance \(T_{ah}^{pm} (y) = \frac{1}{a} \) is less than 1. This brings into the open the connexion of that result, already ob...ained directly in the HARA family through mere analytical manipulation in Corollary 4.5, with the two funds separation property for that family under common homogeneous beliefs.14

Our point of departure is here again the FOC \(\frac{1}{a} \) that underly the risk sharing rule (5.11), where \(\frac{1}{a} = R_{ah}^{p} q^{a} \) are the risk adjusted probabilities. These FOC for the HARA family when \(\frac{1}{a} \) 0 are obtained by applying (4.14) in Corollary 4.4 to both equilibrium portfolios \(y_{a}^{\pm} \) and \(y_{a}^{\pm} \):

\[
\begin{align*}
\phi_{a}^{\pm} &= \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})} = \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})} \\
&= \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})} = \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})} \\
&= \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})} = \frac{\mu_{a} + \sqrt{\sigma_{a}^{2}}}{(\frac{1}{a} \to \frac{1}{a})}
\end{align*}
\]
In the same way, in the CARA configuration \(\gamma = 0 \) one gets from (4.17) in Corollary 4.4,

\[
(5.25) \quad \frac{\alpha_a}{\bar{a}} = y_{ah} - \mu_b \log \left(\frac{1}{\bar{a}} \right) = R_{\alpha} \frac{\alpha_a}{\bar{a}} + \mu_b E_{\frac{1}{\bar{a}}} \left[\log \left(\frac{1}{\bar{a}} \right) \right] = R_{\alpha} \frac{\alpha_a}{\bar{a}} + \mu_b E_{\frac{1}{\bar{a}}} \left[\log \left(\frac{1}{\bar{a}} \right) \right].
\]

Then a straightforward manipulation of these FOC generates the following facts.

Corollary 5.5. Consider the HARA family as in Corollary 4.4. Let an observed equilibrium and the corresponding equivalent common probability equilibrium, assumed both to be interior, with the reference portfolio equal to the market portfolio. Then

A) (Two funds separation) In the equivalent common probability equilibrium, investors hold a portfolio \(y_{ah} - \mu_b \log \left(\frac{1}{\bar{a}} \right) \) that is a (possibly investor dependent) combination of the market portfolio \(\bar{a} \) and of the riskless asset that gives one unit of income in every state. When \(\gamma \neq 0 \); this is expressed by the fact that the ratios

\[
(5.26) \quad \frac{T_{ah}}{T_{\bar{a}}} = \frac{\mu_b + \frac{y_{ah}}{\bar{a}}}{\mu + \frac{R_{\alpha} \frac{\alpha_a}{\bar{a}}}{\bar{a}}} = \frac{\mu_b + \frac{R_{\alpha} \frac{\alpha_a}{\bar{a}}}{\bar{a}}}{\mu + \frac{R_{\alpha} \frac{\alpha_a}{\bar{a}}}{\bar{a}}} = \frac{\alpha_a}{\bar{a}},
\]

where \(T_{\bar{a}} = E_a \left[T_{ah} \right] \) and \(\frac{\alpha_a}{\bar{a}} = E_a \left[\frac{\alpha_a}{\bar{a}} \right] \); are independent of the state. In the CARA configuration \(\gamma = 0 \)

\[
(5.27) \quad y_{ah} \frac{1}{\mu} - \frac{R_{\alpha} \frac{\alpha_a}{\bar{a}}}{\mu} = R_{\alpha} \frac{\alpha_a}{\bar{a}} \frac{\mu}{\mu} = \frac{\alpha_a}{\bar{a}} \frac{\mu}{\mu},
\]

In both cases the common probability risk sharing rule \(y_{ah} = \frac{\alpha_a}{\bar{a}} \left(r - \bar{a} \right) \) is linear in aggregate income \(\bar{a} \): Departures of individual portfolios \(y_{ah} \) in the observed equilibrium from this two funds separation property are measured by

\[
(5.28) \quad \frac{\mu_b + \frac{y_{ah}}{\bar{a}}}{\mu} = \frac{\mu}{\mu} \frac{1}{\bar{a}} \frac{1}{\bar{a}}.
\]

when \(\gamma \neq 0 \) and by

\[
(5.29) \quad y_{ah} \frac{1}{\mu} - y_{ah} = \mu_b \left(\log \frac{1}{\bar{a}} \right) \left(\log \frac{1}{\bar{a}} \right)
\]

in the CARA configuration \(\gamma = 0 \): In both cases, the risk sharing rule \(y_{ah} = \frac{\alpha_a}{\bar{a}} \left(\frac{1}{\bar{a}} \right) \left(r - \bar{a} \right) \) is linear in aggregate income \(\bar{a} \):

B) (Compensating income shifts) Income variations needed to keep invariant individual marginal asset valuations in both equilibria are given by
\[
\frac{\mu_b + \gamma R^a \xi a}{\mu_a + \gamma R^a b_a} = \frac{E_{1/\gamma} [\left(\frac{1}{\gamma_a} \rightarrow \frac{1}{\gamma_f}\right)^\gamma]}{E_{1/\gamma} [\left(\frac{1}{\gamma_f} \rightarrow \frac{1}{\gamma_a}\right)^\gamma]}
\]

when \(\gamma \geq 0 \) and by

\[
R^a_{(\xi a)} = \mu_b E_{1/\gamma} [\text{Log}_{1/\gamma_a} (\xi a)]
\]

in the CARA configuration. As a consequence,

B.1) There is no compensating income variation, i.e. \(\xi a \xi a = b_a \), in the case of logarithmic VNM utilities \(\gamma = 1 \):

B.2) Assume that absolute risk tolerance does not increase too fast, i.e. \(\gamma < 1 \): If there is no aggregate risk, then \(\frac{1}{\gamma} \) coincides with the risk adjusted probability \(\frac{1}{\gamma_a} = R^a \xi a \) and \(\xi a < b_a^\gamma \) for all beliefs \(\frac{1}{\gamma} \neq \frac{1}{\gamma_a} \). If there is some small aggregate risk so that \(\frac{1}{\gamma} \) is different but not far from \(\frac{1}{\gamma_a} \); one still has \(\xi a < b_a^\gamma \) if \(\frac{1}{\gamma} \) differs significantly from \(\frac{1}{\gamma_a} \); but the inequality is reversed i.e. \(\xi a > b_a^\gamma \) if \(\frac{1}{\gamma} \) is equal or close enough to \(\frac{1}{\gamma_a} \):

B.3) The same statements hold with reverse inequalities throughout when \(\gamma > 1 \):

C) (Adjustment coefficient). In the HARA family, with the notations of Corollary 5.3,

\[
(5.32) \quad \frac{r^\gamma}{r^\gamma} = \left[\frac{1}{2} \right] E_{a/\gamma} \left[\frac{1}{\gamma_a} \right] = \frac{1}{2} E_{a/\gamma} \left[\frac{1}{\gamma_a} \right] = \frac{1}{2} E_{a/\gamma} \left[\frac{1}{\gamma_a} \right] = \frac{1}{2} T_h^{\gamma^{\prime}}.
\]

The adjustment coefficient \(r^\gamma \) is therefore greater than, equal to or less than 1 according to whether \(\gamma \leq 1 \); \(\gamma = 1 \); or \(\gamma > 1 \):

Proof. The two funds separation property (5.26) or (5.27) is obtained by aggregating over all investors the FOC condition in (5.24) or (5.25) that is relative to the equivalent common probability equilibrium, and by taking into account \(E_a [\gamma_a] = r^\gamma \) and \(E_a [b_a] = r^\gamma \xi a \). Then individual deviations from the two funds separation (5.28) or (5.29), as well as the income compensations (5.30) or (5.31), are obtained by division in (5.24) (subtraction in (5.25)) of the FOC relative to one equilibrium by the FOC corresponding to the other.

The other statements in part A about linearity of the sharing rules are then immediate.
Statement B.1 about the fact that there is no income shift when $\gamma = 1$ is immediate since the denominator and numerator of the right hand side of (5.30) are both equal to 1 when $\gamma = 1$ for any γ_a, γ_e:

We detail the proof of B.3 when $\gamma > 1$; the argument is similar for B.2 when $\gamma < 1$: if $\gamma > 1$, since the function $f(x) = x$ is convex and increasing for $x > 0$, the right hand side (RHS) of (5.30) is bounded below by

$$E_{\gamma_a} \left[\left(\gamma_a \hat{A} \gamma_e \right) \gamma \right] = \frac{1}{E_{\gamma_a} \left[\left(\gamma_a \hat{A} \gamma_e \right) \gamma \right]},$$

and the minimum is actually reached if and only if $\gamma_a = \gamma_e$: So if there is no aggregate risk, one has $\gamma_e = \gamma_a$; the RHS of (5.33) is equal to 1: the left hand side (LHS) is thus greater than 1, hence $q^\alpha \gamma_a \gamma_{\gamma} > \beta_{\gamma}^e$ for every $\gamma_a \in [\gamma_e]$: If there is some aggregate risk, so that $\gamma_e \notin [\gamma_a]$; the RHS of (5.33) is less than 1. By continuity, the LHS of (5.33) still exceeds 1, hence one still has $q^\alpha \gamma_a \gamma_{\gamma} > \beta_{\gamma}^e$; if γ_a is close to γ_e (the RHS is close to 1) and γ_a differs significantly from γ_e(the LHS is significantly far from the RHS in (5.33)). But if γ_a is equal or close enough to γ_e and $\gamma_a \notin [\gamma_e]$; the LHS of (5.33) is equal or close to the RHS and is therefore less than 1, so one gets $q^\alpha \gamma_a \gamma_{\gamma} < \beta_{\gamma}^e$; Similar arguments go through when $\gamma < 1$ or in the CARA configuration $\gamma = 0$:

For part C, (5.32) is nothing else the general expression given in (5.20) in Corollary 5.3, in this particular case where the ratios $T_{\gamma_a} \equiv T_{\gamma_e}$ are independent of the state h: The conclusion of part C is then obvious. Q.E.D.

5.6. State independent VNM utilities : 2nd order approximations

We employed up to now purposedly a “global” approach, in particular in order to be able to reach global conclusions (valid for all distributions of heterogeneous beliefs), notably in the cases of no aggregate risk or of the HARA family. We focus now on the case of relatively small heterogeneity of beliefs and aggregate risks, and give a complete 2nd order evaluation of the allocation of risks in the case of state independent VNM utilities, which leads to significant simplifications. We establish first a second order evaluation of the risk sharing rule $y_{\gamma_a}^e = \circ_{\alpha} \left(r \equiv_{\gamma_a} \right)$ in the common probability equivalent equilibrium, and next a second order approximate evaluation of the allocation of residual risks $y_{\gamma_a}^e \gamma_{\gamma_a}$ and of income shifts $b_{\gamma_a}^e \gamma_{\gamma_a}$: We shall .nd that the “global” result about income shifts obtained in the HARA family, namely that the direction of income shifts depends not only on the position of
marginal risk tolerance T_{ah0} with respect to 1, but also on whether individual belief $\frac{1}{\alpha}$ are close to, or distant from the risk adjusted probability $\frac{1}{\alpha}$; has its natural “local” counterpart for general VNM utilities, that we shall be able to characterize completely quantitatively (up to 3rd order terms). We shall give also a second order approximate evaluation of deviations of the common probability from the risk adjusted probability, $(\frac{1}{\alpha} - \frac{1}{\alpha}) = \frac{1}{\alpha}$; along the lines of Corollary 4.2. Finally, a second order approximate evaluation of the adjustment coefficient r^\pm will allow us to show that a result we already established “globally” in the case of no aggregate risk and for the HARA family, namely that $r^\pm > 1$ when all derivatives of absolute risk tolerances are small $T_{ah0} < 1$; with $r^\pm < 1$ when $T_{ah0} > 1$ for all a; has it natural “local” counterpart, up to 3rd order terms, in the focal configuration where the distribution among individual beliefs $\frac{1}{\alpha}$ is independent of the distribution of incomes and of attitudes toward risk.

Proposition 5.7. Let the assumptions of Proposition 5.2 hold and assume that VNM utilities are state independent. Let heterogeneity of beliefs $(\frac{1}{\alpha})$ and aggregate risks (T_h) be relatively small so that 3rd order terms involving individual belief deviations $\frac{1}{\alpha}$ and deviations T_h of aggregate consumption from the risk free aggregate income $\frac{1}{\alpha}$ may be neglected. For each investor, let $T_{ah0} = T_a(R_{\alpha}^\pm c^\pm a)$ and $\frac{1}{\alpha} = T_{ah0}(R_{\alpha}^\pm c^\pm a)$; where $T_a(y) = \varphi(y) = u_a^\prime(y)$ are the degrees of absolute tolerance.

A) The risk sharing rule $y_{ah0}^\pm = \varphi_a(r^\pm T_h)$ in the equivalent common probability equilibrium is approximated by

$$y_{ah0}^\pm w R_{\alpha}^\pm b^\pm + (T_h \varphi_a) \varphi_a^\prime + \frac{1}{2} (T_h \varphi_a)^2 \varphi_a^\prime \varphi_a$$

where $\varphi_a = T_a^\prime = E_a[T_a]$ and $\varphi_a = E_a[T_a\varphi_a] = E_a[T_a]$; the second order term vanishes, $\varphi_a = 0$; in the case of the HARA family, $\varphi_a = 0$ for all a.

B) The allocation of residual risks $y_{ah0}^\pm i$, $y_{ah0}^\pm a$, is in turn approximated by

$$y_{ah0}^\pm w \frac{\varphi}{2} \frac{1}{\alpha} \frac{1}{\alpha} (T_a^\prime + (T_h \varphi_a)^2 \varphi_a^\prime) \varphi_a + \frac{1}{2} \frac{\varphi}{2} \frac{1}{\alpha} \frac{1}{\alpha} a$$

while income compensating shifts are given by

$$R_{\alpha}^\pm (b^\pm i, c^\pm a) w \frac{T_a(1 \varphi^\prime a) \varphi}{2} \varphi_a^\prime \varphi_a + \frac{1}{2} \frac{\varphi}{2} \frac{1}{\alpha} \frac{1}{\alpha} a$$

41
When \(\frac{\alpha}{\alpha} < 1 \), individual income is shifted upward if the individual belief is distant enough from the risk adjusted probability \(\frac{\alpha}{\alpha} \) to overcome the contrary influence of aggregate risk. Directions of income shifts are reversed when \(\frac{\alpha}{\alpha} > 1 \). There is no income shift, \(\frac{\alpha}{\alpha} = 0 \); up to terms of order 3, when \(\frac{\alpha}{\alpha} = 1 \):

C) The equivalent common probability \(\frac{\alpha}{\alpha} \) and the adjustment coefficient \(r^\pm \) are approximated by

\[
\frac{2}{\alpha} \left(\frac{\alpha}{\alpha} \right) \frac{1}{E_a[T^2_a]} (T^h, i, \pi) + \frac{1}{2} \frac{1}{E_a[T^2_a]} (T^h, i, \pi) \frac{1}{E_a[T^2_a]} (T^h, i, \pi) \frac{1}{E_a[T^2_a]} (T^h, i, \pi) \frac{1}{E_a[T^2_a]} (T^h, i, \pi)
\]

The term in \(\text{cov}_a \) vanishes when there is no aggregate risk \((T^h = 0 \text{ for all } a) \); or in the case of the HARA family \((\frac{\alpha}{\alpha} = 0 \text{ for all } a) \); or when the distribution of beliefs \(\frac{\alpha}{\alpha} \) among investors is independent of the distributions of incomes \(\pi \) and of attitudes toward risk. In all these cases,

\[
(\frac{\alpha}{\alpha}) \left(\frac{\alpha}{\alpha} \right) \frac{1}{E_a[T^2_a]} w \frac{1}{E_a[T^2_a]} (1, \pi) \frac{1}{E_a[T^2_a]} (1, \pi) \frac{1}{E_a[T^2_a]} (1, \pi)
\]

so that, up to 3rd order terms, \(\frac{\alpha}{\alpha} < 1 \) for all \(\alpha \) implies \(r^\pm > 1 \); while \(\frac{\alpha}{\alpha} > 1 \) for all \(\alpha \) implies \(r^\pm < 1 \) when there is some heterogeneity of beliefs.

Proof. A) From Proposition 5.2 and Corollary 5.3, income shifts \(\pi \delta \frac{\alpha}{\alpha} \) and the scalar adjustment \(r^\pm \) are of second order. Then a second order Taylor development of the risk sharing rule \(\gamma_{ah}^\pm = \frac{\alpha}{\alpha} (r^\pm T^h) = (\frac{\alpha}{\alpha})^\pm (U^0(r^\pm T^h)) \) leads to (using the expression of \(\frac{\alpha}{\alpha} \) and \(\frac{\alpha}{\alpha} \) given in (5.5) and (5.23), and the fact that the derivative of the risk tolerance of the aggregate investor \(T^0(y) \) is a weighted average of the derivatives of individual risk tolerances, as stated in (4.22)):

\[
\gamma_{ah}^\pm w \left(\frac{\alpha}{\alpha} (r^\pm T^h) \right) + \left(\frac{\alpha}{\alpha} \right)^2 \frac{1}{2} (T^h, i, \pi) \frac{1}{E_a[T^2_a]} (T^h, i, \pi)
\]

Taking the expectation with respect to the risk adjusted probability \(\frac{\alpha}{\alpha} \) gives then

\[
R_{ah}^\pm = E_{\pi} [\gamma_{ah}^\pm] w \left(\frac{\alpha}{\alpha} (r^\pm T^h) \right) + \frac{1}{2} \frac{\alpha}{\alpha} \frac{\alpha}{\alpha} \frac{1}{E_a[T^2_a]} (T^h)
\]

hence (5.34). It is clear from (4.22) that \(\frac{\alpha}{\alpha} = 0 \) in the case of the HARA family where \(\frac{\alpha}{\alpha} = \frac{\alpha}{\alpha} \) for all investors \(\alpha \):
B) The expression (5.35) for the approximate allocation of residual risks $\gamma_{ah}^i \gamma_{ah}^o$ is obtained by reformulating (5.15) in Proposition 5.2 as a second order approximate Taylor development at $\gamma_{ah} = \gamma_a^i$; and by noting that a first order approximation of T_{ah}^o is $T_{ah}^o = T_a^o + (T_{ah}^i \gamma_a^i) (T_a^i \gamma_a^i)$. The expression (5.36) for the approximate income shift is obtained from a (tedious) manipulation of the same kind of approximate reformulation of (5.16) in Proposition 5.2, by decomposing $\gamma_{ah}^i \gamma_{ah}^o = (\gamma_{ah}^i \gamma_{ah}^o) \gamma_a^i \gamma_a^o$ and by using the approximation of $\gamma_{ah}^i \gamma_{ah}^o$ given in part C, (5.37).

C) The approximate 2nd order evaluation of $(\gamma_a^a \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o)$ is obtained by applying Corollary 4.2. One has

$$\frac{\gamma_a^a}{\gamma_{ah}^o} = \frac{1}{U_0(r^aT_a^i)} \frac{1}{U_0(r^aT_a^i)} \frac{1}{E_a[\gamma_a^i \gamma_a^o]} \frac{1}{2} \left(1 + \frac{1}{E_a[T_a^2]} (T_{ah}^i \gamma_a^i) \right)^2$$

where in the second order Taylor development of $U_0(r^aT_a^i)$; one has used again the fact that $r^a \gamma_a^i \gamma_a^o$ is of second order. The equation that determines $r^a \gamma_a^i \gamma_a^o$ is $E_{\gamma a} \left[1 A U_0(r^aT_a^i) \right] = 1$ and this gives

$$\frac{1}{U_0(r^aT_a^i)} \frac{1}{E_a[T_a^2]} \frac{1}{2} \left(1 + \frac{1}{E_a[T_a^2]} (T_{ah}^i \gamma_a^i) \right)^2 \text{Var}_{\gamma a} [T_a^i].$$

Hence (5.37). Finally, the evaluation (5.38) is obtained by reformulating (5.20) in Corollary 5.3 as a second order approximation, and by noting that a first order approximation of $T_{ah}^o \gamma_{ah}^i \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o$ is $\gamma_{ah}^i \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o \gamma_a^i \gamma_{ah}^o$. The final statements of C are then immediate.

Q.E.D.

6 Heterogeneity of beliefs and asset pricing

We focus in this section on a few implications of heterogeneity of individual beliefs and of tastes, for asset pricing, with the aim, among others, to identify the main channels through which heterogeneity of this sort may contribute toward explaining some phenomena such as the so-called “equity premium puzzle”.

We focus on the special case where individual beliefs $\gamma_a^i \gamma_a^o$ are distributed in the population of investors as the result of some noise around a “true” probability. We show that heterogeneity of beliefs may then contribute to a positive
risk premium aggregation bias for an asset essentially through three channels. First, when investors with larger risk tolerances tend to assign larger probabilities to “bad” states, i.e. involving low returns. Second, in the case where absolute risk tolerances do not increase too fast \(T^0_{ah} < 1 \) for all \(a; h \); when the dispersion of beliefs among investors tends to be significantly larger for “good” states (involving large returns). We term these two effects “pessimism” and “doubt” respectively, as they seem to reflect distortions of the aggregate common probability \(\frac{1}{N} \) generated by features of the distribution of beliefs, that remind us of those introduced by Abel (2002) (see also Chauveau and Nalpas (1998), Ceccheti, Lam and Mark (2000)). The third effect generates a positive risk premium aggregation bias through the scalar adjustment \(r^\pm \) of the market portfolio involved in our aggregation procedure, whenever there is an upward adjustment, \(r^\pm > 1 \); VNM utilities are state independent and aggregate relative risk aversion is decreasing (Proposition 6.1). We give also a thorough evaluation of such possible risk premium aggregation biases and of the global interaction of these three effects in the specific case of the HARA family (Example 6.4).

Specifically, we consider an observed equilibrium with heterogeneous beliefs \(\frac{1}{N} \), as described by the vector of state prices \(q^a \) and the corresponding equilibrium portfolios \(y^a \); and apply our aggregation procedure with the reference portfolio equal to the market portfolio, i.e. \(\frac{1}{N} = 1 \): We know from the adjusted CCAPM presented in Section 4 that, under the maintained assumption of interior equilibria, there is a representative investor with normalized VNM utilities \(u^a_{eh}(y) \) who, when endowed with the common probability \(\frac{1}{N} \) and the adjusted market portfolio \(r^\pm \), has for every asset generating the returns \(R_{eh} \), a marginal valuation

\[
(6.1) \ E_{\frac{1}{N}} [R_{eh} u^0_{eh}(r^\pm_{eh})] = E_{\frac{1}{N}} [R_{eh}] + \text{cov}_{\frac{1}{N}} [R_{eh}; u^0_{eh}(r^\pm_{eh})] = R^u
\]

that is by construction identical to the marginal asset valuation of every individual investor in the observed equilibrium

\[
(6.2) \ E_{\frac{1}{N}} [R_{eh} v^0_{ah}(y^a_{ah})] = E_{\frac{1}{N}} [R_{eh}] + \text{cov}_{\frac{1}{N}} [R_{eh}; v^0_{ah}(y^a_{ah})] = R^v,
\]

where individual VNM utilities have been normalized by \(v_{ah}(y) = u_{ah}(y) \). The representative investor’s evaluation of risk premia is therefore given by the usual formulation (in view of the normalization \(E_{\frac{1}{N}} [u^0_{eh}(r^\pm_{eh})] = 1 \))

\[
(6.3) \ E_{\frac{1}{N}} [R_{eh}] = \text{cov}_{\frac{1}{N}} [R_{eh}; u^0_{eh}(r^\pm_{eh})] \hat{A} E_{\frac{1}{N}} [u^0_{eh}(r^\pm_{eh})].
\]
Heterogeneity of beliefs may thus contribute to explain something like the equity premium puzzle if, when applied to the market portfolio with returns $R^M_h = \tau_h \hat{A} q^\alpha \Phi^\gamma$ (and to the case of state independent VNM utilities), it generates a lower evaluation by the representative investor, of the corresponding risk premium $E_{\hat{Y}_h} [R^M_h]$ through (6.3), by comparison to the evaluation of an econometrician using an hypothetical "true" probability $\frac{1}{2} \theta \Phi^\gamma$: the econometrician would have then to assume "too much" risk aversion while trying to fit a standard CCAPM formulation like

$$E_{\hat{Y}_h} [R^M_h] = \frac{1}{2} \theta \Phi^\gamma$$

for some specification $\theta(y)$ of the VNM marginal utility of an hypothetical representative investor in order to explain the "large" risk premium (6.4). We wish to identify in what follows all possible channels through which diversity of beliefs may indeed generate such a positive "heterogeneity aggregation bias" by decreasing the representative investor's risk premium evaluations (6.3) of the market portfolio, or more generally of assets generating returns that vary positively with aggregate income, for instance by putting cautiously more weight $\frac{1}{2} \theta$ on states involving lower than average aggregate incomes, than would be justified by an hypothetical "true" reference probability $\frac{1}{2} \theta$:

Assessing fully such an issue would require an explicit dynamic analysis of the genesis of the distribution of individual beliefs, in particular in terms of differential access to information, processing and learning. We focus here on the specific simple case where the distribution of individual beliefs $\frac{1}{2} \theta$ among investors is the result of the presence of some "noise" around a "true" probability, taken as the average belief in the population $\tau^\alpha = \frac{1}{2} \hat{A} [\frac{1}{2} \theta]$; We are thus looking for mechanisms that may contribute to a positive risk premium aggregation bias

$$E_{\tau^\alpha}[R_h] \quad E_{\frac{1}{2} \hat{A} [\frac{1}{2} \theta]} [R_h] = \frac{\text{cov}_{\tau^\alpha} [\frac{1}{2} \hat{A} [\frac{1}{2} \theta], R_h]}{\sqrt{\frac{1}{2} \hat{A} [\frac{1}{2} \theta]}} > 0$$

for the market portfolio and more generally for assets with returns positively related with aggregate income (we used in (6.5) the change of probability formula as in Footnote 13).

We employ here again a variation on the exact second order Taylor expansion introduced in the previous section in particular to analyse the determinants of the adjustment coefficient r^\pm. With the notations of Proposition 5.2 and Corollary 5.3, aggregation of individual portfolios in (5.15) leads to
(5.18), which gives after dividing by aggregate risk tolerance $T_h^\pm = E_a[T_{ah}^\pm]$ in the equivalent equilibrium and rearranging:

\[
\frac{\nu_i}{\nu_i^\pm} = \frac{1}{2} \frac{\text{cov}_a}{\frac{1}{2} \text{Var}_h} + \frac{1}{2} E_a \left[\mu \frac{1}{2} \frac{1}{(\frac{1}{2} + i) \text{cov}_a \frac{\nu_i^\pm}{b_{ah}} \frac{p_{ah}^3}{T_h^\pm} \frac{r_i}{r_i^\pm}} \frac{1}{i} \frac{p_{ah}^0}{r_i} \right].
\]

That relation allows to inventory the three main channels through which heterogeneity of beliefs may affect the risk premium aggregation bias (6.5). Taking the covariance, according to the common probability $\frac{1}{2}$, of an asset’s returns R_h with the relative belief deviations $(\nu_{ah} - \frac{1}{2}) \bar{A}$ $\frac{1}{2}$, as expressed in (6.6), generates three terms.

The first term $A = \frac{1}{2} \frac{\text{cov}_a}{\frac{1}{2} \text{Var}_h} \frac{R_h}{\frac{1}{2} \text{Var}_h} \frac{1}{2} E_a \left[\mu \frac{1}{2} \frac{1}{(\frac{1}{2} + i) \text{cov}_a \frac{\nu_i^\pm}{b_{ah}} \frac{p_{ah}^3}{T_h^\pm} \frac{r_i}{r_i^\pm}} \frac{1}{i} \frac{p_{ah}^0}{r_i} \right]$ is going to be positive if the term in cov_a is larger for “bad” states (defined by lower returns R_h), i.e. when investors with higher risk tolerances (with larger $T_{ah}^\pm \bar{A} T_{ah}^\pm$ in the common probability equilibrium) tend to assign larger probabilities ν_{ah} to those bad states. This term, which we may call “pessimism”, is in principle of first order when heterogeneity of beliefs and aggregate risks are small.

The second term $B = \frac{1}{2} \frac{\text{cov}_a}{\frac{1}{2} \text{Var}_h} \frac{R_h}{\frac{1}{2} \text{Var}_h} \frac{1}{2} E_a \left[\mu \frac{1}{2} \frac{1}{(\frac{1}{2} + i) \text{cov}_a \frac{\nu_i^\pm}{b_{ah}} \frac{p_{ah}^3}{T_h^\pm} \frac{r_i}{r_i^\pm}} \frac{1}{i} \frac{p_{ah}^0}{r_i} \right]$ will tend to be positive, when $T_{ah}^\pm < 1$ for all investors, provided that the terms in E_a are larger for “good” states (large returns R_h); in particular when the dispersion of beliefs $\text{Var}_a[\nu_{ah} - \frac{1}{2}]$ is significantly larger for good states than for bad states. For this reason, we say that this term measures the contribution of “doubt” in the population of investors to the risk premium heterogeneity aggregation bias. For small heterogeneity of beliefs, this contribution is of second order.

The third term $C = \frac{1}{2} \frac{\text{cov}_a}{\frac{1}{2} \text{Var}_h} \frac{R_h}{\frac{1}{2} \text{Var}_h} \frac{1}{2} E_a \left[\mu \frac{1}{2} \frac{1}{(\frac{1}{2} + i) \text{cov}_a \frac{\nu_i^\pm}{b_{ah}} \frac{p_{ah}^3}{T_h^\pm} \frac{r_i}{r_i^\pm}} \frac{1}{i} \frac{p_{ah}^0}{r_i} \right]$ measures the influence of heterogeneity of beliefs through the scalar adjustment of the market portfolio. For an asset with returns that are increasing with aggregate income T_h, that term will be positive when $r_i > 1$ provided that $\frac{1}{2}$ decreases with T_h. In the case of state independent utilities, this will occur if aggregate relative risk aversion $\frac{1}{2}(y)$ is decreasing. We know from Lemma 4.7 that heterogeneity of individual attitudes toward risk will tend to favour this configuration. For small aggregate risks and a small heterogeneity of beliefs, and for state independent utilities, this term is of order 3.
Proposition 6.1. (Risk premium aggregation bias) Under the assumptions and notations of Propositions 5.2 and Corollary 5.3, let $\frac{1}{\alpha} = E_a[\frac{1}{\alpha}]$ be the average belief among investors and consider an arbitrary asset with returns R_h: The corresponding risk premium aggregation bias is the sum of three terms

$$E_{\frac{1}{\alpha}}[R_h] = E_{\frac{1}{\alpha}}[R_h] = \frac{1}{\alpha} = A + B + C$$

1) ("Pessimism") The first term $A = i \text{cov}_{\frac{1}{\alpha}} R_h; \text{cov}_a \frac{1}{\alpha} \frac{T_{ah}}{T_h}$ will be positive if the terms in cov_a is larger for bad states involving lower returns R_h; i.e. when investors with larger risk tolerances T_{ah} in the common probability equilibrium tend to assign larger probabilities $\frac{1}{\alpha}$ to those bad states. A is the sum of two terms $A_1 + A_2$; where

$$A_1 = i \text{cov}_a E_{\frac{1}{\alpha}}[R_h]; E_{\frac{1}{\alpha}} \frac{T_{ah}}{T_h}; A_2 = i E_a \text{cov}_{\frac{1}{\alpha}} \frac{1}{\alpha} \frac{R_h}{R_k}; \frac{T_{ah}}{T_h}$$

The term A_1 will be positive if people having on average higher absolute risk tolerances T_{ah} in the equivalent common probability equilibrium, have also a more pessimistic evaluation of the expected return of that asset $E_{\frac{1}{\alpha}}[R_h]$: The term A_2 vanishes if the ratios $T_{ah}^A T_{ah}^T$ are independent of the state h; e.g. when VNM utilities are state independent, if there is no aggregate risk or in the case of the HARA family (two funds separation). So when VNM utilities are state independent and if pessimism is significant, the term $A_1 > 0$ dominates the term A_2 provided that aggregate risk, and/or departure from the HARA family specification, is small.

2) ("Doubt") The second term

$$B = \frac{1}{2} \text{cov}_{\frac{1}{\alpha}} R_h; E_a \frac{1}{\alpha} \frac{1}{\alpha} \frac{1}{\alpha} \frac{T_{ah}}{T_h} \frac{T_{ah}}{T_h}$$

will be positive, when absolute risk tolerance does not increase too fast with income, $T_{ah}^0 < 1$ for all $a; h$; if the dispersion of beliefs $\text{var}_a[\frac{1}{\alpha}]$ is significantly larger for "good" states (involving larger returns R_h) than for "bad" states.

3) (Adjustment coefficient) The third term

$$C = i ((r^x 1) \text{cov}_{\frac{1}{\alpha}} R_h; \frac{1}{\alpha})$$

measures the direct influence of the heterogeneity of beliefs through the corresponding scalar adjustment of the market portfolio. For an asset with returns that are increasing with aggregate income T_h, an upward adjustment coefficient $r^x > 1$ contributes to a positive risk premium heterogeneity aggregation bias if VNM utilities are state
independent and aggregate relative risk aversion $\frac{1}{2}(y)$ is decreasing with income. If in addition aggregate risks are small, the approximate evaluation of this term, $A w \left(r \pm \frac{1}{2}(r \mp E_{\frac{\varphi}{\gamma_{\delta}}} [R_{h}; T_h]) \right) \text{ cov} \left[R_{h}, \varphi \right]$; is positive but of 3rd order.

The above decomposition into these three channels is useful when we wish to get a 2nd order approximate evaluation of the risk premium aggregation bias in the case of relatively small heterogeneities of beliefs and of relatively small aggregate risks, when VNM utilities are state independent, in relation with distributions of beliefs and of other individual characteristics in the population of investors. Under the assumptions and notations of Proposition 5.7, a 2nd order approximation of $T_{a\frac{\varphi}{\gamma_{\delta}}} = T_{a\frac{\varphi}{\gamma_{\delta}}}$ in the “pessimism” term is then $\frac{\varphi}{\gamma_{\delta}} A_1 + (\frac{\varphi}{\gamma_{\delta}} A_2)$: So all terms in $\text{cov} \varphi$ in the evaluation of the “pessimism effect” A_1; will disappear up to 3rd order terms in the focal configuration where the distribution of beliefs $\frac{\varphi}{\gamma_{\delta}}$ among investors, is independent of the distributions of endowments $\frac{\varphi}{\gamma_{\delta}}$ and of attitudes toward risk u_a: Since under these assumptions, the adjustment coefficient effect C is of 3rd order, the only effect remaining under these circumstances in a second order evaluation is the “doubt effect” B_1: It is easy to see from (6.6) that $\frac{\varphi}{\gamma_{\delta}}$ is then of second order, with the consequence that a second order approximation of the term in $E_{\frac{\varphi}{\gamma_{\delta}}}$ there is $\frac{1}{2} \text{Var} \left(1 \pm \frac{\varphi}{\gamma_{\delta}} (\text{E}_{\frac{\varphi}{\gamma_{\delta}}} \left(\frac{\varphi}{\gamma_{\delta}} \right)) \right)$ under the maintained assumption that beliefs $\frac{\varphi}{\gamma_{\delta}}$ are distributed in the population of investors independently of other individual characteristics $\left(\frac{\varphi}{\gamma_{\delta}}; u_a \right)$: So we get:

Corollary 6.2. Assume a relatively small heterogeneity of beliefs and relatively small aggregate risks so that 3rd order terms may be neglected as in Proposition 5.7. Assume that VNM utilities are state independent.

In that case the “adjustment coefficient effect” C in Proposition 6.1 is of 3rd order. Under the additional assumption that individual beliefs $\frac{\varphi}{\gamma_{\delta}}$ are distributed in the population of investors independently of individual endowments and attitudes toward risk $\left(\frac{\varphi}{\gamma_{\delta}}; u_a \right)$; the “pessimism effect” term A_1 is also of 3rd order. In that case the only effect remaining in a 2nd order evaluation of the risk premium heterogeneity aggregation bias is the “doubt effect” term B_1 with $\frac{1}{2} \text{Var} \left(1 \pm \frac{\varphi}{\gamma_{\delta}} (\text{E}_{\frac{\varphi}{\gamma_{\delta}}} \left(\frac{\varphi}{\gamma_{\delta}} \right)) \right)$ under the maintained assumption that beliefs $\frac{\varphi}{\gamma_{\delta}}$ are distributed in the population of investors independently of other individual characteristics $\left(\frac{\varphi}{\gamma_{\delta}}; u_a \right)$:

Remark 6.3 (State prices). The above framework may be used to study
how prices q^*_k of Arrow-Debreu securities, or equivalently risk adjusted probabilities $\frac{1}{q^*_k} = R^*_k q^*_k$; are affected by aggregate endowments τ^*_h and/or distributions of beliefs $\frac{1}{q^*_h}$ across states, along the lines of Varian (1985, 1989) and more recently Gollier (2003). These authors consider a representative investor who maximizes a (non VNM expected) utility $\ln \left(\frac{1}{q^*_h} \right)$ as in (5.2). Assuming interior portfolios throughout, consideration of the FOC (5.3) shows that equilibrium state prices $q^*_k R^*_k = W^*_0(\tau^*_h ; \left(\frac{1}{q^*_h} \right))$ are "decreasing functions of aggregate consumption τ^*_h and increasing functions of anyone individual's probability beliefs" (Varian (1985, 1989)). More precisely, in the particular case of state independent utilities, the equilibrium prices associated with two different states k and h will satisfy $q^*_k > q^*_h$ (resp. $q^*_k < q^*_h$) when $\tau^*_k = \tau^*_h$ (resp. $\tau^*_k > \tau^*_h$) provided that all individual beliefs $\left(\frac{1}{q^*_k} \right)$ and $\left(\frac{1}{q^*_h} \right)$ are the same in both states. Similarly, one will get $q^*_k = q^*_h$ (resp. $q^*_k > q^*_h$) when $\tau^*_k = \tau^*_h$ (resp. $\tau^*_k > \tau^*_h$) for some b provided that aggregate consumption is the same in both states, $\tau^*_k = \tau^*_h$; and all beliefs other than those of b are also invariant, $\tau^*_k = \tau^*_h$ for all investors $a \in A$.

Similarly, by rewriting individual FOC (5.3) with unnormalized VNM utilities $u_{ah}(y_{ah})$; one gets $y^*_ah = (u^*_ah)^{-1}(q^* R^*_ah \hat{\theta}_{ah})$; where individual beliefs $\hat{\theta}_{ah} = \frac{1}{q^*_ah} E_{\nu_a} [u^*_ah(y^*_ah)]$ are "normalized" (weighted by $\frac{1}{q^*_ah} = \frac{1}{q^*_ah}$): When utilities are state independent and all investors have identical tastes, one gets by adopting the same VNM utility representation $u_{ah}(y) = u(y)$ for all $y_{ah} = (u^*_ah)^{-1}(q^* R^*_ah \hat{\theta}_{ah}) = f (q^* R^*_ah \hat{\theta}_{ah})$ hence by aggregation $\tau^*_h = E_a [f (q^* R^*_ah \hat{\theta}_{ah})]$; Therefore a "mean preserving spread", in the sense of Rothschild and Stiglitz (1970), Mas-Colell, Whinston and Green (1995, section 6.D), when comparing state h to state k; of the distribution of weighted individual probabilities from $(\hat{\theta}_{ah})$ to $(\hat{\theta}_{ah})$; given the same aggregate consumption $\tau^*_k = \tau^*_h$; will decrease the equilibrium state price, i.e. imply $q^*_k < q^*_h$; provided that the function $f (q^* R^*_ah \hat{\theta}_{ah})$ considered as a function of $\hat{\theta}_{ah}$; is concave or equivalently if absolute risk tolerance does not increase too fast, i.e. $T^0(y) = f (\hat{\theta}_{ah})$ $u_{ah}(y) < 1$ (Varian (1985, 1989), see also the exposition in Ingersoll (1987, Chap. 9)). The reason why the condition $T^0 < 1$ arises in Varian's analysis as well as in ours, should be clear since both express the concavity of the function $q_{ah}(\frac{1}{q^*_h})$ demonstrated in (5.12). Gollier (2003) pursued this line of inquiry by looking at the effect of "increasing divergence of beliefs" on state prices, and at the possible implication for asset pricing and a large equity premium when divergence of beliefs is concentrated on "booms", a condition that appears to be related to the "doubt effect" identified in Proposition 6.1.

A systematic analysis of these issues within our framework is beyond the
scope of the present paper. We may note already nevertheless that consideration of the equivalent common probability equilibrium should be helpful. Since there is then an expected VNM utility maximizing representative investor, application of the adjusted CCAPM as in Proposition 4.1 or Corollary 4.2 gives states prices \(q_h^* \) or risk adjusted probabilities \(\frac{1}{q_h^*} \) through the FOC

\[
\frac{1}{q_h^*} U_0^{\beta}(r^{\pm} f_h) = \frac{1}{q_h} V_{ah}^0(y_{ah}^*) = \frac{1}{q_h}.
\]

Equilibrium state prices are then decreasing functions of aggregate consumption \(T_h \) and increasing functions of the common equivalent probability \(\frac{1}{q_h} \): The analysis of this section, in particular (6.6) and the arguments leading to Proposition 6.1 and its Corollary 6.2 may then presumably be reformulated so as to generate evaluations of deviations \(\frac{1}{q_h} - \frac{1}{q_h^*} \), hence of state prices through (6.7), in relation with various features of the distribution of beliefs \(q_h^* \) in the population.

Example 6.4. Asset pricing with heterogeneous beliefs in the HARA family

We go back to the HARA family where VNM utilities are state independent with individual absolute risk tolerance given by \(T_{ah}(y) = \mu_a + y > 0 \) and thus aggregate absolute risk tolerance \(T_h(y) = \mu + y > 0 \) with \(\mu = E_a[\mu_a] \): The empirically plausible case where absolute risk tolerance increases corresponds to \(y > 0 \): Aggregate relative risk aversion \(\frac{1}{y} \) is then decreasing (for \(y > 0 \)) if and only if \(\mu < 0 \):

The simpler specification to consider is the case of logarithmic utilities \(\gamma = 1 \): We know that there is then no scalar adjustment of the market portfolio in the common probability equivalent equilibrium \((r^* = 1) \); so that the second and third terms in (6.6) and Proposition 6.1 disappear (as well as the term \(A_2 \); that vanishes for the HARA family). In fact, there is no income compensation in that case, i.e. \(b_{\beta}^* = \gamma \) \(q^* \) \(\gamma \); so that from (5.26) in Corollary 5.5, \(T_{ah} A \ T_h^* = (\mu_a + \gamma q^* \gamma) \ A - \mu + R_0^\gamma q^* \gamma \): Therefore

\[
\frac{1}{q_h^*} i \ \frac{1}{q_h^*} = i \ \text{COV}_{\beta} \ \frac{1}{q_h}, \frac{1}{q_h^*} \ \frac{1}{q_h^*} + \frac{1}{q_h^*} \ \mu + R_0^\gamma q^* \gamma \ ;
\]

which implies

Lemma 6.5. (Risk premium aggregation bias : logarithmic utilities \(\gamma = 1 \)) Consider an asset with returns \(R_h \); In the case of logarithmic utilities
the risk premium aggregation bias reduces to the pessimism effect and takes the form
\[
E[R_h] = \frac{\mu_b + R^a q^a \cdot \phi}{\mu + R^a q^a \cdot \phi^a}.
\]
It is equal to 0 for every asset (i.e. if the distribution of beliefs in the population is independent of the distribution of risk attitudes and of endowments). For a particular asset with returns \(R_h\), the risk premium aggregation bias will be positive if investors with larger risk tolerance and/or income, i.e. with larger \(q^a \mu_b + q^a \phi\), are more pessimistic about the expected return of the asset.

The case of logarithmic utilities \(\gamma = 1\) involves only the “pessimism effect” identified in 1) of Proposition 6.1. The other case that is amenable to explicit global calculations, i.e. the CARA configuration, \(\gamma = 0; \mu_b > 0\); has the potential for a richer interaction between the two other effects. We know from Corollary 4.5 that this CARA specification implies an upward scalar adjustment coefficient \(r^a > 1\) since the common probability \(\gamma^a\) is given by
\[
b_h = \frac{1}{\alpha_A} \cdot e^{\left(\frac{r^a}{\gamma^a} + \frac{\gamma^a}{\mu_b A} \right)} = E_a \frac{\mu_b A \mu}{P} \cdot \text{Log} \frac{1}{\gamma^a h} \\
\]
with \(b_h < E_a \frac{\mu_b A \mu}{\gamma^a h}\), and therefore \(b_h < 1\) from the concavity of the Log function. This specification displays the unpleasant feature of an increasing relative risk aversion, with the consequence that the contribution of the adjustment effect to the risk premium aggregation bias is negative for assets with returns positively related to aggregate consumption: for the market portfolio, for instance, the adjustment effect term in Proposition 6.1 is \(C = \gamma^a \cdot \text{Var}_{\gamma^a} [R_h] \cdot \mu_b A \mu \cdot \phi^a \cdot \phi^a < 0\). On the other hand, the pessimism effect term identified in Proposition 6.1 reduces here to \(A_1 = i \cdot \text{Cov}_{\gamma^a} [R_h]; \mu_b A \mu\) and will disappear again if we assume that the distributions of beliefs \(\gamma^a\) and of risk tolerance \(\mu_b\) are independent in the population. The potential for interactions with the second “doubt effect” is nevertheless much richer as the following example is going to show.

To this end, we shall allow in our calculations for a continuum of states and at some point also for a continuum of agents, although our theoretical analysis is not strictly speaking quite valid in these cases. Specifically, we assume that \(h\) is any positive real number and set \(\gamma^a = h > 0\): To take advantage of the fact that the common probability \(\gamma^a\) is a weighted harmonic mean of individual beliefs, we assume that each individual probability \(\gamma^a(h)\) is a two parameters \((\alpha_b > 0; \gamma_a > 0)\) gamma distribution, with density
\[
\gamma^a(h) = h^{\alpha_b} \cdot 1 \cdot e^{h^A \gamma_a A} \cdot \left(\frac{\alpha_b}{\gamma_a} - 1\right) \left(\alpha_b\right)\);
where \(j(\omega) = \int_0^\infty x^\omega e^{-x} dx \) is the “complete gamma function” (see Johnson, Kotz and Lalakrishnan (J K L), 1994, Ch. 17). The equivalent common probability \(\frac{1}{n} \) is then also a two parameter \((\omega, \bar{a})\) gamma distribution. The mean and variance of a \((\omega, \bar{a})\) gamma distribution being \(\omega \bar{a} \) and \(\omega \bar{a}^2 \) respectively, evaluating the risk premium aggregation bias associated with the market portfolio \(\mathcal{T}(h) \) means computing the difference between \(\mathbb{E}(\pi[h] \mid h) = \mathbb{E}\left[\mathbb{E}\left[\pi[h] \mid a\right] \mid a\right] \) and \(\mathbb{E}(\pi[h] \mid h) = \omega^2 \). We are going to see that (under the assumption that \(\bar{a} \) is lognormally distributed in the population) increasing the variance of the distribution of \(\omega \) and/or of \(\bar{a} \) among investors does increase, as expected, the scalar adjustment coefficient \(r^\pm > 1 \) of the market portfolio. This contributes to a negative, and larger in absolute value, adjustment effect on the risk premium aggregation bias for the market portfolio, as identified in Proposition 6.1. Yet some dispersion in the distribution of the parameter \(\bar{a} \) in the population, associated with a much smaller variance of the distribution of \(\omega \), generates an overall positive risk premium aggregation bias for the market portfolio, i.e. \(\mathbb{E}(\pi[h] \mid h) > 0 \): a positive “doubt effect” overcomes in that case the negative “adjustment effect” implied by an increasing relative risk aversion involved in the CARA specification.

Lemma 6.6 (Risk premium aggregation bias in the CARA - gamma configuration). Assume that a state \(h \) is any positive real number, that each individual belief \(\frac{1}{n}(h) \) has a \((\omega, \bar{a}) \) gamma distribution and that \(\mathcal{T}(h) \) has: Let \(\omega = \mathbb{E}_a[\mu A \mu \bar{a}] ; 1A^- = \mathbb{E}_a[\mu A \mu (1A^- \bar{a})] \) : Then the equivalent common probability \(\frac{1}{n} \) has a \((\omega^*, \bar{a}^-)\) gamma distribution with \(\omega^* = \omega \) and

\[
1A^- = e^{\mathbb{E}_a[\mu A \mu \bar{a}] \log(1A^- \bar{a})} e^{\log(\omega) \mathbb{E}(\log(1A^- \bar{a}))} \mathbb{E}_a[\mu A \mu (1A^- \bar{a})] ;
\]

the corresponding adjustment coefficient being given by

\[
r^\pm \mu = \mu((1A^- \bar{a}) ; 1A^- \bar{a}) > 0:
\]

Assume further that risk tolerance \(\mu \) and the parameters \(\omega, \bar{a} \) are independently distributed in the population, and moreover that \(\bar{a} \) has a lognormal distribution with \(\log(\bar{a}) \sim N(\mu \bar{a}, \nu^2 \bar{a}) \); so that \(\omega = \mathbb{E}_a[\omega] \) and \(1A^- = \mathbb{E}_a[1A^- \bar{a}] = e^{\mu \bar{a} - \nu^2 \bar{a} / 2} \):

1) One gets then

\[
1A^- = e^{\mu \bar{a} - \nu^2 \bar{a} / 2} e^{\mathbb{E}_a[\log(\omega)] \mathbb{E}_a[\log(\bar{a})] \bar{a}} \mathbb{E}_a[\mu A \mu (1A^- \bar{a})] ;
\]

52
The function \log being strictly convex, the mean $\bar{\alpha}$ and the variance $\alpha(\bar{\alpha})^2$ of the equivalent common probability $\bar{\alpha}$; as well as the adjustment coefficent $r > 1$; increase following a mean-preserving spread of the distribution of the parameter α. The adjustment coefficent r also increases with the variance v^2 of the distribution among investors of the parameter $\log \bar{\alpha}$.

2) The contribution to the risk premium aggregation bias, of the "pessimism effect" term $A = i \text{cov}_a [R_h]; \mu \bar{\alpha}$ in Proposition 6.1 vanishes for all assets when $(\alpha, \bar{\alpha})$ and μ are assumed to be independently distributed as here. For the market portfolio (assuming its market value to be normalized to 1), the corresponding adjustment coefficent $C = i (r \bar{\alpha} 1)$ $\text{var}_a [h \bar{\alpha}] \mu = i (r \bar{\alpha} 1) \alpha(\bar{\alpha})^2 \bar{\alpha}$ is negative and increases in absolute value with v^2 and with a mean-preserving spread of the distribution of α.

On the other hand, the overall market portfolio risk premium aggregation bias is

$$E_{\gamma} [h | E_{\gamma} [h] = \alpha e^{r \bar{\alpha}} e^{2 \bar{\alpha}^2} i \ e^{(\log \alpha \ i} E_a (\log (\bar{\alpha})) \bar{\alpha} \ ^{\infty}$$

It decreases with a mean-preserving spread of the distribution of $\bar{\alpha}$; but increases with v^2: In particular, it is positive if there is some dispersion in the distribution of $\bar{\alpha}$, $v^2 > 0$ whereas the variance of the distribution of α is small.

Proof. The property that $\bar{\alpha}$ has a gamma distribution comes from the fact that

$$\log \bar{\alpha} (h) = (r \bar{\alpha}) i \ h \bar{\alpha} + E_a \ i \ \mu \bar{\alpha} \mu \ \log \bar{\alpha} (h)$$

together with

$$\log \bar{\alpha} (h) = (\alpha \ i \ 1) \ I \ h \bar{\alpha} \ (h \bar{\alpha}) \ i \ \log (\bar{\alpha})$$

The expressions for the parameters α; $\alpha \ ^{\infty}$ are then obtained by direct inspection.

The properties stated in 1) and 2) use a few elementary facts that we recall now. First, if x is a normal random variable distributed as $N(\bar{\alpha} \ ^{\infty})$; then for every real number $t; E [e^{x}] = e^{2 \bar{\alpha}^2}$ (by direct inspection). Equivalently, if y is lognormal, with $\log y$ distributed as $N(\bar{\alpha} \ ^{\infty})$; then again for every real number $t; E [e^{y}] = e^{2 \bar{\alpha}^2}$: This implies indeed that $1 \bar{\alpha} = E_a [1 \bar{\alpha} \ ^{\infty}] = e^{n} e^{2 \bar{\alpha}^2}$ as stated in the Lemma, and also $E_a [\bar{\alpha} \ ^{\infty}] = e^{n} e^{2 \bar{\alpha}^2}$, which is used in 2).
The results rest essentially on the property that the function \(\log \) is strictly convex. This follows from the fact that the “psi” or “digamma” function
\[
\psi(\theta) = \frac{d}{d\theta} \log(\theta) = \int_0^{Z+1} \frac{1}{(1 + t) \theta} \frac{dt}{t}
\]
is increasing, or equivalently that the “trigamma” function
\[
\psi_0(\theta) = \int_0^{Z+1} \frac{te^{\theta t}}{1 - e^{\theta t}} dt
\]
is positive (Abramowitz and Stegum (1965), Ch. 6, (6.3.21) and (6.4.1)).

The fact that \(\log \) is strictly convex implies that \(E_a[\log(\theta)] \) exceeds \(\log(\theta) \) where \(\theta = E_a[\theta_a] \); and that it increases following a mean-preserving spread of the distribution of the \(\theta_a \) (in the sense of Rothschild and Stiglitz (1970), see Mas-Colell, Whinston and Green (1995, section 6.D)). All the comparative statics statements about the consequences of increasing the dispersion of the distributions of the parameters \(\theta_a, \theta_a^- \), follow then by direct inspection.

The fact that when focusing attention on the market portfolio, a significant dispersion of the distribution of the parameter \(\theta_a^- \) generates a positive “doubt effect” that overcomes in this case the negative “adjustment coefficient effect” when the dispersion of the distribution of \(\theta_a \) is small, may be intuitively understood if one remarks that the corresponding term in Proposition 6.1 may be approximated when neglecting third order terms, by
\[
B \cdot \frac{1}{Z} \text{cov}_{\theta_h} \left\{ h; E_a \left\{ \left((\frac{1}{2} \theta_a(h)) \hat{\alpha} \hat{\theta}(h) \right)^2 \right\} \right\};
\]
where in fact \(\hat{\theta}_a(h) \) can in turn be approximated by \(\log(\theta_a(h)) \hat{\theta}(h)^2 \). For large \(h \); the average \(E_a[\hat{\theta}] \) is dominated by \(E_a \left\{ (1 \hat{\theta}_a)^2 \right\} \); while for small \(h > 0 \); this average behaves like \(\text{var}_{\theta_a}(\theta_a)(\log h)^2 \). Thus if \(\theta_a \) has a small dispersion in the population, the covariance in \(B \) will tend to be dominated by the terms involving large \(\hat{\theta}(h) = h \) and thus to be positive, if the variance of the distribution of the parameters \(\theta_a^- \) is significant.

The foregoing analysis of a few special cases of the HARA family illustrates the possible interactions between the three effects identified in Proposition 6.1, that may contribute to a positive risk premium aggregation bias, in particular for the market portfolio. It would be useful to supplement it with studies of other configurations, notably in the case where absolute risk tolerance does not increase too fast, \(0 < \gamma < 1 \); and where aggregate relative risk
aversion decreases with aggregate income, i.e. $\bar{\mu} < 0$; since we know that the adjustment coefficient $r^2 > 1$ contributes in that case to a positive risk premium aggregation bias for the market portfolio. As the adjustment coefficient exactly vanishes in the HARA family in the case of a CRRA utility ($\mu_b = 0$; individual and aggregate VNM utilities coincide with $\gamma_Z = \gamma_c = 1 = \gamma$); another case of interest would be for instance the configuration where investors have different CRRA utilities ($T_a(y) = \mu_b + \gamma_a y$ with $\mu_b = 0$) since we know (from Lemma 4.7) that aggregate relative risk aversion should be then decreasing. We leave this for further research.17

7 Conclusions

It seems most relevant to incorporate heterogeneous, “noisy” beliefs in our representations of the workings of actual economies. The methods proposed in this paper show that it is possible indeed to achieve this goal while retaining the analytical simplicity of being able to describe a particular equilibrium through a single, commonly shared “aggregate market probability”. In a complete markets framework, the proposed approach allows the standard construction of an “expected utility maximizing representative agent”, designed so as to mimic equilibrium prices and marginal asset valuations by individual investors, to be extended to cover the case of diverse beliefs. Heterogeneity of individual portfolios, or of risk sharing, can then be studied in particular in relation with deviations of individual beliefs from the “aggregate market probability” so constructed. The proposed design of an aggregate probability may require a scalar adjustment of the market portfolio, that reflects an aggregation bias due to the heterogeneity of beliefs, and generates accordingly an “Adjusted” version of the “Consumption based Capital Asset Pricing Model” (ACCAPM). We also identified the main channels through which diversity of individual beliefs could contribute to a positive risk premium aggregation bias.

Our study was made in the deliberately oversimplified setup of a static (one period) asset exchange economy with finitely many states of the world, in order to keep the technical apparatus down so as to be able to focus on ideas. It remains to be seen whether the approach developed here can be fruitfully extended to more realistic and more applied frameworks.

In particular, it would appear important to include intertemporal choice (portfolio selection), with a finite or infinite horizon, discrete or continuous time, in order to see if and how our approach of the consequences of heterogeneous beliefs, can be related to more traditional theoretical and/or applied
models in the finance and the macroeconomics literature, that employ the convenient but presumably counterfactual assumption of homogeneous beliefs (for a first attempt in that direction, see Jouini and Napp (2002)). Our results, in particular existence and unicity of a common probability equivalent equilibrium, relied also heavily on the explicit assumption that incomes had to be positive, or equivalently that returns were bounded below. Allowing for unbounded returns (above and below) would appear important for practical applications involving for instance normal distributions. A cursory glance at a specific example with CARA utilities and normal distributions shows easily that unicity of a common probability equivalent equilibrium does not survive the incorporation of such unbounded returns. This raises interesting technical and conceptual issues to be studied further (in particular, what is the meaning of the existence of several “equivalent aggregate probabilities”?). While the construction of an “expected utility maximizing representative agent” is presumably closely tied to the specific assumption of complete markets, our construction of an equivalent aggregate market probability in terms of marginal asset pricing invariance requirements (section 3) may perhaps be fruitfully extended to the case of incomplete markets (but one may lose also unicity there?). Finally, it should be worth exploring thoroughly the welfare implications of heterogeneity of beliefs, which were only tangentially alluded to here.
Appendix A

Equilibrium Aggregation of Heterogeneous Beliefs

We give in this appendix a proof of Theorem 3.1. We state and prove first a preliminary result of independent interest. As said in Section 3, the first invariance requirement we impose is that, given an equilibrium vector \(q^e\) of state prices, the "equivalent" probability \(\frac{1}{4}\) is such that \(q^e\) is still an equilibrium when all investors share the common probability \(\frac{1}{4}\): The next fact states that this approach is indeed feasible even when one fixes arbitrarily a "reference" market portfolio \(!^*\) and its distribution among investors, for an arbitrary (not necessarily equilibrium) vector of positive state prices.

Proposition A.1. Suppose that every type satisfies (2.a) and (2.b), and consider an arbitrary vector of state prices \(q^e\); with positive components. Let \(!^*\) be an arbitrary reference market portfolio of AD securities, with \(!^*_h > 0\) for every state, and let \(b^a > 0\) be an arbitrary distribution of income among investors, satisfying \(E_a[b^a] = q^e b^a\). There is a unique probability \(\frac{1}{4}\) such that \(q^e\) is an equilibrium price vector relative to that reference market portfolio and that income distribution when all investors share the common probability \(\frac{1}{4}\); i.e. such that \(E_a[y^a(q^e; b^a; \frac{1}{4})] = !^*\). The common probability \(\frac{1}{4}\) assigns a positive weight \(\frac{1}{4}_h > 0\) to every state.

Proof. Let \(\zeta\) be the set of probabilities \(\frac{1}{4}\) defined by \(\frac{1}{4}_h = 0\); \(\frac{1}{4}_h = 1\). Under the assumption that all investors share such a probability \(\frac{1}{4}\) the vector of market excess demands for AD securities, corresponding to the reference market portfolio \(!^*\), and the income distribution \((b^a)\); is \(z(\frac{1}{4}) = E_a[y^a(q^e; b^a; \frac{1}{4})]\); where \(y^a(q^e; b^a; \frac{1}{4})\) is the vector of demands for AD securities resulting from the maximization of the expected utility \(E_{\frac{1}{4}}u^a(y^a)\) under the budget constraint \(q^e c_y = b^a\). From the budget identity of each investor, one gets \(q^e c_y(\frac{1}{4} = 0\). Note that \(z(\frac{1}{4})\) is well defined and continuous even on the frontier of \(\zeta\). The common probability \(\frac{1}{4}\) we are looking for is characterized by \(z(\frac{1}{4}) = 0\).

The proof employs routine techniques from general equilibrium analysis (Arrow and Debreu (1954), McKenzie (1954), Debreu (1959)), with the probability \(\frac{1}{4}\) playing here the role of prices there. For every \(\frac{1}{4}\) in \(\zeta\); let \(\frac{1}{4}\) be in \(\zeta\) that minimizes \(\frac{1}{4}\) \(z(\frac{1}{4})\) (this mimics a "tâtonnement" process, where we try to decrease an initially positive aggregate excess demand by lowering the probability of the corresponding state). The correspondence so defined from
the income distribution the reference portfolio may be scalarly adjusted from the price system no probability vector consider another candidate probability a common probability equilibrium defined by substitutability (Arrow and Hahn (1971, Theorem 9.7.7)). In short, consider the argument employed in general equilibrium analysis in the case of gross up, that would be true for every y constraint z on h. However, if $\frac{1}{h} = 0$; then $y_{ak}(q; b^*_h; \frac{1}{h}) = 0$ for every type, hence $z_h^* = \frac{1}{h} \neq 0$; a contradiction. So it must be that $z = 0$: Moreover, one has $\frac{1}{h} > 0$ for every state since by the foregoing argument, $\frac{1}{h} = 0$ would imply $z_h^* < 0$.

To prove unicity, we remark that the vector of market excess demands $z(\frac{1}{h})$ is homogenous of degree 0 in the vector $\frac{1}{h}$ when we relax the constraint $h \frac{1}{h} = 1$; and that it satisfies the gross complementarity property $\mathcal{Q} @ \mathcal{A} @ h < 0$ for $h \neq k$: This can be easily seen by considering the rst order condition (FOC) characterizing the individual demands for AD securities $y_{ah}(q; b^*_h; \frac{1}{h})$; i.e. $\frac{1}{h} u^0_{ah}(y_{ah}) = \frac{1}{h} u^0_{ak}(y_{ak}) = \frac{1}{h} h$. If for some $k \neq h$, y_{ak} increased or stayed constant when the component $\frac{1}{h}$ of the vector $\frac{1}{h}$ goes up, that would be true for every $j \neq h$; with the consequence that y_{ah} itself would increase. But that would contradict the fact that $q^* e y_h = b^* h$ has to stay constant since incomes are x. Thus when $h \neq k$, one has $\mathcal{Q} @ \mathcal{A} @ h < 0$ for all a; hence $\mathcal{Q} @ \mathcal{A} @ h < 0$. Unicity then follows from the argument employed in general equilibrium analysis in the case of gross substitutability (Arrow and Hahn (1971, Theorem 9.7.7)). In short, consider a common probability equilibrium defined by $\frac{1}{h} z = 0$ and consider another candidate probability $\frac{1}{h} \neq \frac{1}{h}$: By using the homogeneity of degree 0 of $z(\frac{1}{h})$; we may ignore the constraint $h \frac{1}{h} = 1$; say that $\frac{1}{h}$ is actually a vector (non colinear to $\frac{1}{h}$) and normalize it so as to ensure $\frac{1}{h} \neq \frac{1}{h}$ and $\frac{1}{h} = \frac{1}{h}$ for some k: Then one can go from the vector $\frac{1}{h}$ to the vector $\frac{1}{h}$ by decreasing sequentially the components h such that $\frac{1}{h} < \frac{1}{h}$: From the gross complementarity property, one gets $z_h(\frac{1}{h}) > z_k(\frac{1}{h}) = 0$: So no probability $\frac{1}{h} \neq \frac{1}{h}$ can generate a common probability equilibrium with the price system q^* and the income distribution b^*_h Q.E.D.

The following proof of Theorem 3.1 proceeds along similar lines, with the additional feature that, in order to satisfy our second invariance requirement, the reference portfolio may be scalarly adjusted from $! $ to $r^{\frac{1}{h}}$ and that the income distribution (b^*_h) is now variable under the constraint $E_a[b^*_h] = r^{\frac{1}{h}} q^!$.
Proof of Theorem 3.1.

We fix an arbitrary reference market portfolio \(\pi \) with the normalization \(\pi_h \pi_t = \pi \). Let \(\pi \) be the set of probabilities \(\pi_a = 0 \) such that \(\pi_h \pi_t = 1 \). For any \(\pi \) in \(\pi \), let \(y_{ah}(\pi) \) be given by (3.6), i.e. \(\pi_{ah} u_{ah}^a(y_{ah}) = \pi_t u_{ah}^t(y_{ah}) \) when \(\pi_t > 0 \) and \(y_{ah} = 0 \) otherwise. By construction, the vector \(y_{ah}(\pi) \) stands for the demands of AD securities \(y_a(\pi^a; b_h(\pi^a); \pi) \) where individual income has been adjusted to keep invariant the investor’s marginal valuation of incomes; i.e. to achieve \(y_{ah}(\pi) \) such that \(\pi_t > 0 \) and \(y_{ah} = 0 \). By construction, the vector \(y_{ah}(\pi) \) satisfies (1) and (2), or

\[
E_{ah} u_{ah}^a(y_{ah}) = \pi_t u_{ah}^t(y_{ah})
\]

for all states \(h \), and assumption that \(\pi_t > 0 \) and \(y_{ah} = 0 \) otherwise.

For any \(\pi \) in \(\pi \), we have \(\pi_{ah} u_{ah}^a(y_{ah}) = \pi_t u_{ah}^t(y_{ah}) \) when \(\pi_t > 0 \) and \(y_{ah} = 0 \) otherwise. By construction, the vector \(y_{ah}(\pi) \) stands for the demands of AD securities \(y_a(\pi^a; b_h(\pi^a); \pi) \) where individual income has been adjusted to keep invariant the investor’s marginal valuation of incomes; i.e. to achieve \(y_{ah}(\pi) \) such that \(\pi_t > 0 \) and \(y_{ah} = 0 \). By construction, the vector \(y_{ah}(\pi) \) satisfies (1) and (2), or

\[
E_{ah} u_{ah}^a(y_{ah}) = \pi_t u_{ah}^t(y_{ah})
\]

for all states \(h \).

Existence of such a probability \(\pi \); and the fact that it involves only positive components \(\pi_a > 0 \); is proved by exactly the same .xed point argument as in the proof of Proposition A.1. To prove unicity, .x such a probability \(\pi \); thus generating the equilibrium portfolios \(y_{ah}^a = y_{ah}(\pi) \); and consider another probability \(\pi \) in \(\pi \); By construction, for every state \(h \); \(\pi_{ah} u_{ah}^a(y_{ah}^a) = \pi_t u_{ah}^t(y_{ah}^a) \); so that \(\pi_t > \pi_t \) implies \(y_{ah}(\pi) > y_{ah}(\pi) \) for all investors, thus

\[
E_a[y_{ah}(\pi)] > r^a \pi^a, \quad \text{while} \quad \pi_t < \pi_t \implies E_a[y_{ah}(\pi)] < r^a \pi^a
\]

by the same argument. Therefore \(\pi \) cannot give rise to a common probability equilibrium satisfying (1) and (2), or \(z(\pi) = E_a[y_{ah}(\pi)] \); \(r(\pi^a) = 0 \); since there the ratios \(E_a[y_{ah}(\pi)] \) would have to be equal to the same number \(r(\pi) \) for all states \(h \).

To prove the last part of the Theorem, let us .x \(\pi \) and \(\pi \) satisfying the normalization \(\pi_h \pi_t = 1 \); and assume that \(\pi_t = 1 \) for all \(a \); Then it is clear that the unique common probability equivalent equilibrium generates \(\pi^a = \pi^a \) if and only if \(y_{ah}^a = y_{ah}^a \) for all \(a \); A necessary and sufficient condition for that is clearly that \(\pi = E_a[y_{ah}^a] = 1 \) (implying \(r^a = 1 \)); Q.E.D.
Footnotes

* We had stimulating conversations, in particular with Bernard Salanié who read carefully and commented on an earlier version, with Denis Fougère and Francis Kramarz who provided useful references about univariate distributions for section 6.4, and with Guy Laroque, Jerry Green, Philippe Aghion, Guido Cazzavillan, Cuong Le Van, Mark Machina, at various stages of this research project. Comments from participants in seminars in Harvard, Paris (CREST, Fourgeaud-Roy), Venice, Bologna, Padova, Taiwan (Académica Sinica and NTU in Taipei, Hua Lien), Hong Kong (HKST, CUHK), Tokyo (Keio, Hitotsubashi), Kyoto, Marseille (GREQAM), Toulouse, Montréal (UQAM), Louvain la Neuve (CORE), Copenhagen, are gratefully acknowledged. We also acknowledge discussions at the conferences: 2002 NBER on “General Equilibrium Theory” in Minneapolis; 2002 European Workshop on “General Equilibrium Theory” in Athens; CeNDEF (Amsterdam) 2002 Workshop on “Economic Dynamics”, University of Leiden; 2002 Summer Workshop on “Stochastic Models of Dynamic Economic Equilibrium”, SITE, Stanford; and “Belief Formation and Fluctuations in Economic and Financial Markets”, supported by the Volkswagenstiftung, in Heidelberg, Dec. 2002. A particular mention is due to Andrea, Mario, Stefano, ... who kept on refueling the engine with expressos during the many times when this research work failed to be “in progress” on Piazza San Marco. Special thanks are also due to Nadine Guedj for her kind and efficient typing assistance.

1. It should be clear that the notion of a “representative agent” used in this discussion and in fact in the whole paper, holds only in equilibrium. It should not be confused with the more demanding notion of an aggregate agent who would represent the economy even out of equilibrium, i.e. for every price system, as in Gorman (1953).

2. There is actually a sizeable literature that explores conditions implying that it would be in fact “rational” for all agents to coordinate their beliefs and strategies on signals that are indeed not perfectly correlated with fundamentals, generating in this way excess volatility and endogenous business cycles due to “sunspots”, “self-ful…lling prophecies”, “animal spirits”, “market psychology” or “endogenous uncertainty” (see Benhabib and Nishimura (1979, 1985), Benhabib and Day (1982), Cass and Shell (1983), Azariadis (1981, 1993), Farmer (1993), Kurz (1997) and among others, various symposia in the Journal of Economic Theory (1986, 1994, 1998a, 1998b, 2001) or Economic Theory (1996)). As many of these models involve a large multiplicity and indeterminacy of deterministic and stochastic intertemporal equilibria, one should then expect a persistent and significant heterogeneity of
“noisy” individual beliefs due to exacting expectations coordination problems (Grandmont (1985)).

3. For an extension along these lines to a dynamical setting, see Jouini and Napp (2002).

4. We are implicitly placing ourselves in a framework where, although $\frac{1}{a}$ is a specific “subjective” probability, an agent’s preferences are defined over the whole space of lotteries over “consequences” defined as $(h; y_{ah})$; so that the respective roles of probabilities and of state dependent VNM utilities can be identified, as in Herstein and Milnor (1953), Grandmont (1972, Section 4).

5. By definition (of a “return”), the current market value of a portfolio generating the incomes R_h in each state h, is equal to 1. These returns can be duplicated by holding a portfolio of R_h units of A.D securities for each state. The value of that duplicating portfolio, $\sum_h q_h R_h$, must be equal to 1 by the absence of arbitrage opportunities property, that is necessarily satisfied in equilibrium.

6. Unicity may be tied to the assumption of complete markets, and may be lost when trying to extend this approach to incomplete markets. The assumption of returns that are bounded below ($y_{ah} = 0$) is also important. We give in section 6 an analytical example involving unbounded returns, where the aggregation procedure generates a non-unique outcome.

7. We come back to this issue of how to compute, or give approximations of $(\frac{1}{a}; r^2)$; in section 5 when studying more specifically the allocation of aggregate and individual risks in the presence of diverse beliefs. We look also at this issue in the following Section 4 by taking advantage of the existence of an aggregate “representative” investor in complete markets.

8. The construction of an equilibrium “expected utility maximizing representative investor” in the case of homogeneous beliefs is standard, see Huang and Litzenberger (1988, ch. 5), Duc e (1996, ch. 1, section E).

9. This elementary fact is standard, at least since the work of Wilson (1968).

10. Aggregation of heterogeneous beliefs in the CARA configuration, leading to an aggregate probability having the form of a weighted harmonic mean of individual probabilities as here, was performed along similar lines.
some time ago by Huang and Litzenberger (1988, section 5.26), without any scalar adjustment of the market portfolio, however.

11. Empirical evidence in finance seems to favor decreasing relative risk aversion at the microeconomic level, see e.g. Friend and Blume (1975), Morin and Suarez (1983). Yet evidence coming from other types of data is more mixed, see e.g. the discussion in Peress (2000). Arrow (1970) produces a theoretical argument showing that bounded VNM utilities implies a degree of relative risk aversion below 1 for small wealth and above 1 for large wealth, with the consequence that relative risk aversion, if monotone, should be increasing (or that it varies non-monotonically).

12. We note already that this goes in the same direction as the result established in Corollary 4.5 directly for the HARA family, for which \(r^* > 1 \) if and only if \(T_{ah}^0 \neq 1 \): We shall get further insight into this connection when going back to the HARA family in Example 5.4 below.

13. We use here the change of probability formula

\[
E_{\hat{\gamma}}[x_h] = E_{\gamma^*} \frac{1}{\gamma_h} x_h = E_{\gamma^*}[x_h] + \frac{1}{\gamma_h} \gamma_h x_h
\]

14. Our results imply that exact aggregation of diverse individual probabilities is possible without any shift of individual income (\(\alpha = \beta \)) and any scalar adjustment of the market portfolio (\(r^* = 1 \)) in the case of logarithmic utilities \(\gamma = 1 \); confirming the results obtained some time ago by M. Rubinstein (1976) in this specific case.

16. We remark that under the stated assumptions, if the distribution of beliefs among investors does not display any specific pattern across states \(h \), for instance if the distribution of \(1/\gamma_h = \gamma_h \) among traders is the same for every state, the above 2nd order evaluation of the doubt effect would also vanish. It would be interesting to analyze which effect among the three that were identified in Proposition 6.1, would stand out under such conditions, when going to a 3rd order evaluation. We leave this to further research.

17. One may note an alternative interesting formulation, where for instance the “true” probability \(\gamma \) belongs to a particular class indexed by a vector of parameters \(\alpha \); corresponding actually to a particular vector \(\alpha \); and
where individual beliefs \hat{a} are also all members of that class of probabilities, each being indexed by a vector \mathbf{a} with $E_{a}[\mathbf{a}] = \mathbf{e}$ (with the interpretation that investors receive, say, unbiased signals about the “true” vector of parameters \mathbf{e}). The risk premium aggregation bias would then be $E_{a[R_h]} \equiv E_{Y_a[R_h]}$; where \mathbf{a} may now differ from the average $\mathbf{a} = E_{a[Y_a]}$. Such a formulation may be interesting to study despite the fact that it is not invariant to a nonlinear change of variables. For instance, in the particular CARA - gamma specification of Lemma 6.6, the market portfolio risk premium aggregation bias would then be $E_{a[R_h]} \equiv E_{a[y_a]}$; where \mathbf{a} and \mathbf{y} are the parameters of the “true” gamma distribution. If agents receive an unbiased signal about \mathbf{a} then $E_{a[y_a]} = E_{a[a]} = \mathbf{e}$. If they get an unbiased signal about \mathbf{y}; then $E_{a[y_a]} = E_{a[a]} = \mathbf{e}$. If on the other hand the signal is about relative deviations of \mathbf{a}; i.e. with $E_{a[\log y_a]} \equiv \log \mathbf{e}$; the market portfolio risk premium aggregation bias $E_{a[y_a]} \equiv \mathbf{e}$ is dominated by the effect of the adjustment coefficient r^+, which is negative since aggregate relative risk aversion is increasing in the CARA specification.

18. Specifically, consider the CARA specification with the state h being any positive and negative real number and $\mathbf{T}(h)$ as in Lemma 6.6. Let $\mathbf{a}[h]$ be normally distributed as $N(m_{a,h}; \sigma_{a,h})$. One verifies then by direct inspection from (6.9) that $E_{a[h]}$ also normally distributed as $N(m_{a,h}^*, \sigma_{a,h}^*)$; where $1 = \frac{\sigma_{a,h}^*}{\sigma_{a,h}} = E_{a} \mu_{a} = \mu_{a}(1 = \frac{\sigma_{a,h}^*}{\sigma_{a,h}})$; m^* and r^* are related by

\[(m^*)^2 = E_{a} \mu_{a} \mu_{a} = \mu_{a} \frac{1 - r^*}{1 + r^*} m_{a}^* \]

and m^* (or r^*) is solution of the second degree equation

\[(m^*)^2 = E_{a} \mu_{a} \mu_{a} = \mu_{a} \frac{1 - r^*}{1 + r^*} m_{a}^* \]

The term after the minus sign is less than $\log 1 = 0$; since the function \log is concave, so $(m^*)^2$ is greater than the first term of the right hand side of the equation, which exceeds itself m^2. Therefore $(m^*)^2 > m^2$. There are two solutions, one involving $m^* > m$ and $r^* > 1$; the other $m^* < m$ and $r^* < 1$. This feature seems due to the fact that $\mathbf{T}(h)$ can take here any unbounded positive and negative value, while the assumption that $\mathbf{T}(h)$ was bounded below by 0 played a crucial role to get unicity in the general analysis of the text. One gets a similar ambiguity when looking at the risk premium aggregation bias $E_{a[h]} \equiv E_{a[m_a]} = E_{a[m_a]}$ for the market portfolio (assuming here again its market value to be normalized to 1). If the moments m_a and $\sigma_{a,h}$, as well as risk attitudes μ_a, are distributed independently in the population, $E_{a[m_a]} = m$ and the risk premium aggregation bias is positive.
if and only if \(r^\pm < 1 \), in agreement with what one would expect from the adjustment effect alone, since aggregate relative risk aversion is increasing in the CARA configuration.
References

“Symposium on Rational Beliefs and Endogenous Uncertainty” (1996), Economic Theory, 8, 383-....

