
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES 
Série des Documents de Travail du CREST 

(Centre de Recherche en Economie et Statistique) 
 
 
 
 
 

 
 
 
 
 

n° 2004-11 
 

Partial Identification in Monotone  
Binary Models : 

Discrete Regressors and Interval 
Data 

 

T. MAGNAC1 
E. MAURIN2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Les documents de travail ne reflètent pas la position de l'INSEE et n'engagent que 
leurs auteurs. 
 
Working papers do not reflect the position of INSEE but only the views of the authors. 

                                                 
1 University of Toulouse (INRA and IDEI) and CREST-INSEE. Email : tmagnac@ens.fr  
Address : 21 Allée de Brienne, 31000 Toulouse, France. http://www.inra.fr/ESR/UR/lea/magnac.htm  
2 CREST-INSEE, 15 Boulevard Gabriel Péri, 92245 Malakoff Cedex, France. maurin@ensae.fr  



Partial Identi…cation
in Monotone Binary Models:

Discrete Regressors and Interval Data.

Thierry Magnac¤ Eric Mauriny

First version: February 2004
This version: May 2004

Abstract

We investigate inference in semi-parametric binary regression models, y = 1(x¯ +
v +² > 0) when ² is assumed uncorrelated with a set of instruments z, ² is independent
of v conditionally on x and z, and the conditional support of ² is su¢ciently small
relative to the support of v. We characterize the set of observationally equivalent
parameters ¯ when interval data only are available on v or when v is discrete. When
there exist as many instruments z as variables x, the sets within which lie the scalar
components ¯k of parameter ¯ can be estimated by simple linear regressions. Also, in
the case of interval data, it is shown that additional information on the distribution of
v within intervals shrinks the identi…cation set. Namely, the closer to uniformity the
distribution of v is, the smaller the identi…cation set is. Point identi…cation is achieved
if and only if v is uniform within intervals.
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1 Introduction1

Data on covariates that researchers have access to, are very often discrete or interval-valued.

There are many such examples in applied econometrics. Variables such as gender, levels of

education, occupation, employment status or household size of survey respondents typically

take a discrete number of values. In contingent valuation studies, prices are set by the

experimenter and they are in general discrete, 1, 10, 100 or 1000 euros. It would sound

funny to ask a person whether she wants to buy a salmon-…shing permit for 15 euros and 24

cents. There are also many examples of interval-valued data. They are common in surveys

where, in case of non-response to an item, follow-up questions are asked. Manski & Tamer

(2002) describe the example of the Health and Retirement Study. If a respondent does

not want to reveal his wealth, he is then asked whether it falls in a sequence of intervals

(“unfolding brackets”). Another reason for interval data is anonymity. Age is a continuous

covariate which could in theory be used as a source of continuous exogenous variation in

many settings. For con…dentiality reasons however, the French National Statistical O¢ce, for

instance, censors this information in the public versions of household surveys, by transforming

dates of birth into months (or years) of birth only. French statisticians are afraid that the

exact date of birth along with other individual and household characteristics might reveal

the identity of households responding to the survey.

The problem is that discrete (or interval-valued) covariates tend to render inference in

regressions very di¢cult. When all covariates are discrete or when only interval data are

available, point identi…cation of parameters of popular index models is lost whatever the

identifying restrictions (Manski (1988)).2 When all covariates (denoted x) are discrete,

Bierens and Hartog (1988) have shown that there exists actually an in…nite number of single-

index representations for the mean regression of a dependent variable, y, i.e. E(y j x) =

'µ(xµ). Speci…cally, under weak conditions, the set of observationally equivalent parameters

µ is dense in its domain of variation, £.

A recent contribution by Manski and Tamer (2002) considers a less general framework
1We thank participants at seminars at LSE and CEMFI for helpful comments. The usual disclaimer

applies.
2Though other parameters of interest such as the non-parametric mean regression might remain identi…ed

(see Angrist, 2001, and discussion).
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where the non-parametric mean regression E(y j x) is assumed monotonic with respect

to at least one particular regressor, say v. They show that this assumption restricts the

magnitude of under-identi…cation when the “special” regressor, v, is not perfectly observed,

i.e., when interval-data only are available on v. Under a quantile-independence assumption,

what is identi…ed is a non-empty, convex set of observationally equivalent values that they

characterize. In other words, they achieve set-identi…cation. Among other results, they

also show that identi…ed “sets” can be estimated by a modi…ed maximum score technique

(Manski, 1985).

In this paper, we explore the route of another weak identifying restriction in the semi-

parametric binary models that has recently been introduced by Lewbel (2000). Consider the

binary response model,

y = 1(x¯ + v + ² > 0)

where y is the observed binary dependent variable, x = (x1; :::; xp) are covariates, v is an

observed continuous explanatory variable (whose coe¢cient is set equal to 1 by normalisa-

tion) and ² is an unobserved random variable. Lewbel proposed a simple estimator of ¯

under the combination of an uncorrelated-error assumption (i.e., E(x0²) = 0) with a partial

independence assumption (i.e., F²(² j x; v) = F²(² j x)) and a large support assumption

(Supp(¡x¯ ¡ ") ½ Supp(v)).3 By adapting the partial independence assumption, Lewbel

also developed an IV version of his estimator when ², though correlated with x; is uncorre-

lated with a set of instrumental variables z. Recently, Honoré and Lewbel (2002) presented

a …xed-e¤ect version of this estimator. Generally speaking, these estimators are very ap-

pealing: they permit general form of endogeneity and conditional heteroskedasticity; Their

implementation only requires estimating a conditional density function and a linear regres-

sion which means that no optimization is needed; They are root-n consistent under general

conditions. Moreover, we showed in Magnac and Maurin (2003) that the set of latent mod-

els satisfying uncorrelated-errors (UE), large-support (LS) and partial-independence (PI)

assumptions is isomorphic to the set of monotone-in-v non-parametric models where the
3 In these semi-parametric models, the identi…cation of ¯ requires that the distribution of the regressors has

a su¢ciently rich support. See Horowitz (1998) for a discussion on identi…cation under quantile-independence
when the support of the regressors is bounded. Magnac and Maurin (2003) provide alternative identifying
assumptions under which ¯ remains identi…ed under partial independence even when v does not satisfy the
large support assumption.
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probability of success E(y j x; v) varies between 0 and 1 (inclusive) over the support of

v. As it turns out, the partial-independence assumption is congruent to the monotonicity

assumption made by Manski & Tamer (2002).

In this paper, we investigate how these properties are translated when the special regressor

is not continuous. To begin with, we show that the class of binary outcomes which can

be analyzed through latent models satisfying (UE), (P I) and (LS) has exactly the same

structure when v is discrete as when it is continuous. Speci…cally, any binary outcome such

that the probability of success increases from 0 and 1 over the support of v can be analyzed

through such latent models. The structural parameters of latent models satisfying (UE),

(PI) and (LS) are “set”-identi…ed if, and only if, the probability of success (conditional on

x) is observed increasing from 0 to 1 (inclusive) over the support of v. In the discrete case,

the identi…cation is not exact anymore, however. The uncorrelated-error, large-support and

partial-independence assumptions do not restrict the model parameters to a singleton (as

when v is continuous and perfectly observed), but to a non-empty, convex set. We explain

how simple linear regression methods provide estimates of the bounds of the intervals in

which lie each scalar components ¯k of parameter ¯.

We next ask whether it is possible to relax the large-support assumption (LS). This

speci…c assumption restricts the domain of application of the latent models to the analysis of

phenomena such that low-v (high-v) persons all give the same response, namely y = 0 (y = 1),

which is arguably restrictive. In Magnac and Maurin (2003), we studied the continuous case

and proposed alternative assumptions on the distribution of ² which combination with (UE)

and (PI) restores (exact) identi…cation, whatever the support of v. In the discrete case,

the question is whether it is possible to restore set-identi…cation when the support of v is

not large, i.e., when the support of (¡x¯ ¡ ") is not included in the support of v. The

answer is positive. As a matter of fact, the only additional assumption that is needed for

set-identi…cation (on top of UE and PI) is that the support of (¡x¯¡ ") is included in some

…nite interval [v0; vK+1], regardless of whether this set coincides or not with the support of

v actually observed in the data. Put di¤erently, what is necessary for set-identi…cation is

not to observe E(y j x; v) = 0 (E(y j x; v) = 1) at the minimum (maximum) value of v

observed in the available data, but to be able to impose these conditions as priors on the
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data generating process of y at values of v that are not necessarily observed in the data:

As exampli…ed below, this result makes it possible to analyze a class of binary phenomena

which is substantially more general than when the support of v is assumed to be large.

We next analyse the case where v is continuous, but only observed by intervals. In

such a case, the uncorrelated-error, large-support and partial-independence assumptions still

restricts the model parameters to a non-empty, convex set (as in the discrete case), but the

shape of this set and the methods for estimating it are somehow di¤erent from the discrete

case.

Lastly, we analyze the case where some information is available on the distribution of

v within intervals. Most interestingly, the “size” of the identi…cation set diminishes as the

distribution of the special regressor within intervals becomes closer to uniformity. When v is

uniformly distributed within intervals, the identi…cation set is a singleton and the parameter

of interest ¯ is exactly identi…ed. This property is particularly interesting when one has

control over the process of censoring the continuous data on v (e.g. the birthdate) into

interval data (e.g. month of birth). In order to minimize the size of the identi…cation set,

one should censor the data in such a way that the distribution of the censored variable is

the closest as possible to a uniform distribution within the resulting intervals.

The paper is organized as follows : The …rst section sets up notations and models. The

second section examines the discrete case, the third section analyzes the case of interval

data, the fourth section reports Monte Carlo experiments and the last section concludes. All

proofs are in appendices.

Since the case where the x are endogenous is not more complex than the case where they

are exogenous, we will consider right from the start the endogenous case where ², though

potentially correlated with the variables x, is uncorrelated with a set of instruments z.

2 The Set-Up

Let the “data” be given by the distribution of the following random variable4:

! = (y; v; x; z)
4We only consider random samples and we do not subscript individual observations by i.
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where y is a binary outcome, while v , x and z are covariates and instrumental variables

which role and properties are speci…ed below. We …rst introduce some regularity conditions

on the distribution of !. They will be assumed valid in the rest of the text.

Assumption R(egularity):

R:i. (Binary model) The support of the distribution of y is f0; 1g
R:ii: (Covariates & Instruments) The support of the distribution, Fx;z of (x; z) is Sx;z ½

Rp£ Rq . The dimension of the set Sx;z is r · p+q where p+q¡ r are the potential overlaps

and functional dependencies.5 The condition of full rank, rank(E(z0x)) = p, holds.

R:iii: (Special Regressor) The support of the conditional distribution of v conditional on

(x; z) is v ½ R almost everywhere-Fx;z (a.e Fx;z). This conditional distribution; denoted

Fv(: j x; z); is de…ned a.e. Fx;z . In the remainder we will assume either v = fv1; ::; vKg
(discrete case) or v = [v1; vK[ (interval case) where v1 and vK are …nite. In both cases 0

v

will denote [v1; vK[.

R:iv. (Functional Independence) There is no subspace of v £ Sx;z of dimension strictly

less than r + 1 which probability measure, (Fv(: j x; z):Fx;z), is equal to 1.

Assumption R:i de…nes a binary model where there are p explanatory variables and q

instrumental variables (assumption R:ii). Given assumption R:ii, we could denote the func-

tionally independent description of (x; z) as u and this notation could be used interchangeably

with (x; z).6 In assumption R:iii; the support of the special regression, v, is assumed to be

independent of variables (x; z). If this support is an interval in R (including R itself) and

v is perfectly observed, we are back to the case studied by Lewbel (2000) and Magnac &

Maurin (2003). In the next section (section 3), this support is assumed to be discrete so that

the special regressor is said to be discrete. In section 4, the support is assumed continuous,

but v is observed imperfectly, through censoring. In such a case, the special regressor is said

to be interval-valued. In all cases, Assumption R:iv avoids the degenerate case where v and

(x; z) are functionally dependent.
5With no loss of generality, the p explanatory variables x can partially overlap with the q ¸ p instrumental

variables z. Variables (x; z) may also be functionally dependent (for instance x, x2, log(x),...). A collection
(x1; :; xK) of real random variables is functionally independent if its support is of dimension K (i.e. there is
no set of dimension strictly lower than K which probability measure is equal to 1).

6Denoting (x; z) as u is used by Lewbel (2000) and leads to more exact arguments below at the cost of
an additional notation. We prefer to stick to the more parsimonious notation (x;z).
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Assuming that the data satisfyR:i¡R:iv, the basic issue adressed in this paper is whether

they can be generated by the following semi-parametric latent variable index structure :

y = 1fx¯ + v+ ² > 0g; (LV)

where 1fAg is the indicator function that equals one if A is true and zero otherwise and

where the random shock ² satis…es the properties introduced by Lewbel (2000) and Honoré

and Lewbel (2002),

Assumption L(atent)

(L:1) (Partial independence) The conditional distribution of ² given covariates x and

variables z is independent of the covariate v :

F"(: j v; x; z) = F"(: j x; z)

The support of " is denoted "(x; z):

(L:2) (Large support) The support of ¡x¯ ¡ " is a subset of 0
v as de…ned in R(iii).

(L:3) (Moment condition) The random shock " is uncorrelated with variables z: E(z0²) =

0:

The index parameter ¯ 2 Rp is the unknown parameter of interest. The distribution

function of the error term, ², is also unknown and may be considered as a nuisance parameter.

Assumptions L:1 ¡ L:3 and some examples are commented in Lewbel (2000) or Magnac

and Maurin (2003). Once v is perfectly observed and continuously distributed, the latter

paper shows that assumptions L:1¡ L:3 are su¢cient for exact identi…cation of both ¯ and

F"(: j x; z): There is only a minor di¤erence between assumptions (L:1¡L:3) and the set-up

introduced by Lewbel (2000), namely we do not restrain the distribution function F" to have

mass points. When the special regressor is discrete or interval-valued, it is much easier than

in the continuous case to allow for such discrete distributions of the unobserved factor7.

In the remainder, any (¯; F"(: j x; z)) satisfying (L:1 ¡ L:3) is called a latent model.

Identi…cation is studied in the set of all such (¯; F"(: j x; z)).
7Given that F"(: j x; z) is potentially discrete and assuming that all distribution functions are CADLAG

(i.e., continuous on the right, limits on left), the large support assumption (L:2) has to be slightly rephrased,
however, in order to exclude a mass point at ¡x¯ ¡ vK :
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3 The Discrete Case

In this section, the support of the special regressor is supposed to be a discrete set given by:

Assumption D(iscrete): v = fv1; :; vKg; vk < vk+1 for any k = 1; :;K ¡ 1:

To begin with, we are going to explore the properties that a conditional probability distri-

bution Pr(y = 1 j v; x; z) necessarily satis…es when it is generated by a latent model (¯;

F"(: j x; z)) that satis…es conditions (L1-L3). The issue is to make explicit the class of binary

outcomes which can actually be analyzed through the latent models under consideration.

3.1 Characterizing the Conditional Distribution

As de…ned by (L:1) and (L:2), partial-independence and large-support assumptions restrict

the class of binary outcomes that can actually be analyzed. Restrictions are characterized

by the following lemma :

Lemma 1 Under partial independence (L:1) and large support (L:2) conditions:

(NP:1) (Monotonicity) The conditional probability Pr(yi = 1 j v; x; z) is non decreasing

in v (a.e. Fx;z).

(NP:2) (Support) The conditional probability P r(yi = 1 j v; x; z) varies from 0 to 1 when

v varies over its support:

Pr(yi = 1 j v = v1; x; z) = 0; Pr(yi = 1 j v = vK; x; z) = 1:

Proof. See Appendix A

If a binary outcome does not satisfy (NP:1) or (NP:2) then there exists no latent model

generating the reduced form Pr(y = 1 j v; x; z). In other words, the monotonicity condition

(NP:1) and the support condition (NP:2) are necessary conditions for the identi…cation of

the latent models considered in this paper. The next section studies whether the reciprocal

holds true, i.e. whether (NP:1) and (NP:2) are su¢cient conditions for identi…cation.

3.2 Set-identi…cation

We consider a binary reduced-form Pr(y = 1 j v; x; z) satisfying the monotonicity condition

(NP1) and the support condition (NP2) and ask whether there exists a latent model (¯;
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F"(: j x; z)) generating this reduced-form through the latent variable transformation (LV ).

To anticipate, we show that the answer is positive. The admissible latent model is not

unique, however. There are many possible latent models which parameters are observation-

ally equivalent.

We begin with a one-to-one change in variables which will allow us to characterize the set

of observationally equivalent parameters through simple linear moment conditions. Denote,

for k 2 f2; :;K ¡ 1g :

±k = (vk+1 ¡ vk¡1)=2

pk(x; z) = P r(v = vk j x; z):

Using these notations, the counterpart adapted to the discrete case of the transformation

of the binary response variable introduced by Lewbel (2000) is de…ned as:8

~y =
±k:y
pk(x; z)

¡ vK + vK¡1
2

if v = vk; for k 2 f2; :;K ¡ 1g; (1)

~y = ¡vK + vK¡1
2

if v = v1 or v = vK;

If v was continuous, the set of latent models satisfying (L:1¡ L:3) and generating Pr(y =

1 j v; x; z) through transformation (LV ) would be reduced to a singleton (Magnac and

Maurin, 2003) and the parameter of interest ¯ would be uniquely de…ned by the instrumental

regression of the transformation of the dependent variable on covariates. When v is discrete,

the identi…cation of ¯ is not exact anymore as stated in the following theorem:

Theorem 2 Consider a conditional probability distribution, P r(y = 1 j v = vk; x; z); de-

noted Gk(x; z), which satis…es conditions of monotonicity (NP:1) and support (NP:2): The

two following statements are equivalent,

(i) there exists a vector of parameters ¯ and there exists a latent random variable "

such that the latent model (¯; F"(: j x; z)) satis…es conditions (L:1 ¡ L:3) and such that

fGk(x; z)gk=1;:;K is its image through the transformation (LV );

(ii) there exists a vector of parameters ¯ and there exists a measurable function u(x; z)

from Sx;z to R which takes its values in the interval (a.e.Fx;z)

I(x; z) =] ¡¢(x; z);¢(x; z)];
8For almost all (v; x; z) in its support, which justi…es that we divide by pk (x; z). Division by zero is a

null-probability event. Obviously, this argument might need some adaptation in practice in …nite samples.
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where

¢(x; z) = 1
2

KX

k=2

[(vk ¡ vk¡1)(Gk(x; z)¡Gk¡1(x; z))] ;

and such that,

E(z0(x¯ ¡ ey) = E(z0u(x; z)): (2)

Proof. See Appendix A.

Theorem 2 characterizes the set of all observationally equivalent values of parameter ¯.

We shall denote B this identi…cation set as the set of parameters ¯ which satis…es equation

(2). As discussed in Appendix A, the proof of Theorem 2 also leads to a characterization of

the set of observationally equivalent distribution functions F"(: j x; z).
Before moving on to a more detailed discussion of the characteristics of set B, it is

possible to provide an clarifying sketch of its proof by analyzing the trivial case, K = 2:

Consider (¯; F") satisfying (L:1¡ L:3) and its associated reduced form Gk(x; z) for k = 1; 2.

By Lemma 1 and (NP 2), trivially, G1(x; z) = 0 and G2(x; z) = 1. Restriction (L:2) implies:

v1 · ¡(x¯ + ") < v2

When K = 2; ey is equal to ¡(v2 + v1)=2 whatever v and the previous condition can be

rewritten:

¡(v2 ¡ v1)=2 · ¡(x¯ + ") + ey < (v2 ¡ v1)=2 = ¢(x; z)

Hence, if we de…ne u(x; z) = ¡E(ey ¡ x¯ ¡ " j x; z), it belongs to ] ¡ ¢(x; z);¢(x; z)] and

satis…es (2), as stated by Theorem 2.

Reciprocally, assume that there exists u(x; z) in ]¡(v2¡v1)=2; (v2 ¡v1)=2] which satis…es

condition (2). Consider a random variable ¸ taking values in ]0; 1] and such that:

E(¸ j x; z) = 1
2
+
u(x; z)
v2 ¡ v1

Then consider the random variable, " = ¡x¯ ¡ (1¡¸)v1 ¡¸v2. By construction, it satis…es

v1 < ¡(x¯+") · v2. Hence, the model (¯; F") satis…es (L:1¡L:2) and generatesG1(x; z) = 0

and G2(x; z) = 1 through (LV ): The only remaining condition to check is (L:3); namely " is

uncorrelated with z. It is shown using condition (2) and the de…nition of ¸:

Figure 1 provides an illustration of the results stated in Theorem 2. Given some (x; z),

the nodes represent the conditional probability distribution G(v; x; z) as a function of the
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special regressor, v. In this example, v satis…es (NP:2), namely the conditional probability

is equal to 0 at the lower bound (v = ¡1) and equal to 1 at the upper bound (v = 1).

The other observed values are at v = ¡:5; 0; 0:5. By construction, if (¯; F") generates G

through (LV ), it satis…es 1 ¡ F"(¡x¯ ¡ v j x; z) = G(v; x; z). Hence, the only compatible

distribution functions of the shock " are such that 1¡F"(¡x¯ ¡ v j x; z) is passing through

the nodes at v = ¡:5; 0; 0:5. The only other restrictions are that these distribution functions

are non-decreasing within the rectangles between the nodes. An example is reported in the

graph but it is only one among many other possibilities. The total surface of the rectangles

is given by function 2¢(x; z) and it measures the degree of our ignorance on the distribution

of ".

The following section builds on Theorem 2 to provide a more detailed description of B;

the set of observationally equivalent parameters:

3.3 Bounds on Structural Parameters and Overidenti…cation

This section builds on Theorem 2 to provide a more detailed description of B; the set of ob-

servationally equivalent parameters. We focus on the case where the number of instruments

z is equal to the number of variables x (the exogenous case z = x being the leading example).

At the end of the section, we will brie‡y indicate how the results could be extended to the

case where the number of instruments z is larger that the number of x.

When the number of instruments is equal to the number of variables, the assumption

that E(z0x) is full rank (R.ii) implies that equation (2) has one and only one solution in

¯ for any function u(x; z) Because equation (2) is linear in ¯, the set B is convex. Also

it is non-empty, since it necessarily contains the pseudo-true value ¯¤ associated with the

moment condition, E(z0(x¯¤ ¡ ey)) = 0 when u(x; z) = 0:

The set B can be described as a neighborhood of ¯¤ which size depends on the distances

(vk ¡ vk¡1) between the di¤erent elements of the support of v. Speci…cally, ¯¤ can be

interpreted as the speci…c value that ¯ would take if these distances were negligible. First,

Theorem 2 makes possible to obtain very simple upper bounds for the potential bias that

a¤ects the result of the IV regression of ey on x. Denoting the half-length of the largest
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interval as

¢M = max
k2f1;:;Kg

(vk ¡ vk¡1) =2;

we have:

Corollary 3 The identi…cation set B is non empty and convex. It contains the pseudo-true

value ¯¤ de…ned as:

¯¤ = E(z0x)¡1E(z0~y)

and any ¯ 2 B satis…es,

(¯ ¡ ¯¤)0W (¯ ¡ ¯¤) · E(¢2(x;z)) · ¢2
M;

where W = E(x0z)(E(z0z))¡1E(z0x).

Proof. See Appendix A.

Corollary 3 shows that B lies within an ellipsoïd whose size is bounded by ¢M . Notice

that in the speci…c case where the di¤erent vk are equidistant (i.e., 8k = 3; :;K, vk¡ vk¡1 =
v2 ¡ v1), ¢M = v2¡v1

2 and the half-length between two successive points provides an upper

bound for the size of the ellipsoïd.

Returning to the general case, the maximum-length index, ¢M , can be taken as a measure

of distance to continuity of the distribution function of v (or of its support v). For a latent

model (¯; F"(: j x; z)), corollary 3 proves that, for a sequence of support v indexed by ¢M ;

we have:

lim
¢M 7!0

B = f¯¤g;

and exact identi…cation is restored.

Identi…cation set B can be projected onto its elementary dimensions to better characterize

the speci…c sets within which lie the di¤erent individual parameters. It can be done using

the usual rules of projection. Let

Bp =
©
¯p 2 R j 9(¯1; :::; ¯p¡1) 2 Rp¡1; (¯1; :::; ¯p¡1; ¯p) 2 B

ª

represents the projected set corresponding to the last coe¢cient (say). All scalar parame-

ters belonging to this set, are observationally equivalent to the pth component of the true

parameter.
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Corollary 4 Bp is an interval centered at ¯¤p; the p-th component of ¯¤p. Speci…cally, we

have,

Bp =
¸
¯¤p ¡ E(jexpj¢(x; z))

E( exp2)
;¯¤p +

E(jexpj¢(x; z))
E( exp2)

¸

where exp is the residual of the IV regression of xp onto the other components of x using

instruments z.

Proof. See Appendix A.

Generally speaking, the estimation of Bp requires the estimation ofE(jexpj¢(x; z)):Given

this fact, it is worth emphasizing that ¢(x; z) can be rewritten E(~y¢ j x; z) where ~y¢ =
¹k:y
pk(x; z)

+
vK ¡ vK¡1

2
; with ¹k =

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))
2

for k = 2; :;K ¡ 1 and ¹1 =

¹K = 0 (as shown at the end of the proof of corollary 5): Hence, E(j expj¢(x; z)) can be

rewritten E(j expj ~y¢) which means that the estimation of the upper and lower bounds of Bp

only requires [1] the construction of the transform ~y¢, [2] an estimation of the residual exp
and [3] the linear regression of ~y¢ on jexpj :

A potentially interesting development of this framework is when the number of instru-

ments is larger than the number of variables (q > p). In such a case, B is not necessarily

non-empty since condition (2) in Theorem 2 may have no solutions at all (i.e., some overi-

denti…cation restrictions may be not true).

Consider zA, a random vector which dimension is the same as random vector x; de…ned

by:

zA = Az

and such that E(z0Ax) is full rank. De…ne the set, A, of such matrices A of dimension p, q.

The previous analysis can then be repeated for any A in such a set. The identi…cation set

B(A) is now indexed by A. Under the maintained assumption (L:3), the true parameter (or

parameters) belongs to the intersection of all such sets when matrix A varies:

B =
\

A2A
B(A)

As previously, this set is convex because it is the intersection of convex sets. What changes

is that it can be empty which refutes the maintained assumption (L:3). This argument

would form the basis for optimizing the choice of A or for constructing test procedures of
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overidentifying restrictions in such a partial identi…cation framework. The question is open

whether the usual results hold. Finally, we can always project this set onto its elementary

dimensions. The intersection of the projections is the projection of the intersections.

For the sake of simplicity, we shall proceed in the rest of the paper using the assumption

that p = q which is worthwhile investigating …rst.

3.4 Priors on The Range of Variation

Theorem 2 and its corollaries characterize the set of parameters (denoted B) that are ob-

servationally equivalent to the true parameter under the assumption that the conditional

probability Pr(y = 1 j v; x; z) increases from 0 to 1 when v varies over its support. This con-

dition represents a potentially important limitation in empirical applications. A more careful

look at Theorem 2 shows that it is possible to relax this assumption and to characterize the

identi…cation set in a substantially more general framework.

Because of (NP:2), one key aspect of Theorem 2 is that there is no variation in the

dependent variable y at the top and bottom values of v (i.e., v1 and vK). It is either always

equal to 0 or always equal to 1. Knowing Pr(v = v1 j x; z) or P r(v = vK j x; z) does

not provide any additional information on the parameters of interest. In fact, the previous

argument about identi…cation is untouched and B can be identi…ed even in the extreme case

where Pr(v = v1 j x; z) = Pr(v = vK j x; z) = 0;when v1 and vK are outside the true support

of v. In other words, it is not necessary to actually observe Pr(y = 1 j v; x; z) varying from

zero to one to identify the set B, it is only necessary to impose this condition as a prior on

the data generating process of y at values of v that are not observed in the available data.

Some economic examples are given below.

To be more speci…c, consider the following reformulation of (L:2);

(L:2bis) There exist two …nite real numbers v0 and vK+1; with v0 < v1 and vK+1 > vK;

such that the support of ¡x¯ ¡ " is included in [v0; vK+1[.

Condition (L:2bis) clearly relaxes condition (L:2): Under (L:2bis), Pr(y = 1 j v; x; z)
does not necessarily vary from zero to one when v varies over its support v = fv1;:::; vKg,

so that Pr(y = 1 j v; x; z) does not necessarily satisfy condition (NP:2) anymore. Condition
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(L:2bis) imposes (NP:2) as a prior on Pr(y = 1 j v; x; z) for values of v , v0 and vK+1; that

are actually not observed in the data.

It is straightforward to check that B can be identi…ed under (L:2bis) following exactly

the same route as under (L:2): The only change is to replace v1 by v0 and vK by vK+1:

Corollary 5 Consider a conditional probability distribution, Pr(y = 1 j v = vk; x; z); de-

noted Gk(x; z), which satis…es the monotonicity condition (NP:1): The two following state-

ments are equivalent,

(i) there exists a vector of parameters ¯ and there exists a latent random variable " such

that the latent model (¯; F"(: j x; z)) satis…es conditions (L:1 ¡ L:2bis¡ L:3) and such that

fGk(x; z)gk=1;:;K is its image through the transformation (LV );

(ii) there exists a vector of parameters ¯ and there exists a measurable function u(x; z)

from Sx;z to R which takes its values in the interval (a.e.Fx;z)

I(x; z) =] ¡¢(x; z);¢(x; z)];

where

¢(x; z) =
1
2

K+1X

k=1

[(vk ¡ vk¡1)(Gk(x; z) ¡Gk¡1(x; z))] ;

and such that,

E(z0(x¯ ¡ ey) = E(z0u(x; z)): (3)

This corollary states that identi…cation remains possible even when the support of the

special regressor is not large and when the probability of observing y = 1 does not vary from

zero to one. The cost is that the identi…cation set depends on priors (i.e, v0 and vK+1 )

which location might be debatable.

An example of potential application is the analysis of the probability of buying an object

(a bottle of water, say) as a function of an experimentally-set price v. Speci…cally, each

individual is faced with a price which is under experimental control and can take only two

values v1 and v2. Though we only observe two prices, we can plausibly assume that for a

su¢ciently small (large) v0 (v3) the probability of buying the object is 1 (0) whatever the

characteristics of the individuals. Hence, the problem can be rede…ned with the support of v

being fv0; v1; v2; v3g and with the additional assumption that P r(y = 1 j v; x; z) varies from

zero to one when v varies over its support.
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Other (non-experimental) examples include the analysis of the probability of entry (or

exit) into such basic institutions as the labor market or the school system. Consider for

instance the school-leaving probability in a typical developed country, with v representing

individuals’ age at the end of the year. We can plausibly speculate that (NP:2) is satis…ed

when (say) v0 = 15 years and vK+1 = 30 years. Using these priors and assuming that

the school-leaving latent propensity may be written (x¯ + v + "), we can provide valuable

inference on ¯ even if our sample of observations consists in individuals aged from 20 to 25

years and such that the observed probability of school leaving of the 20 (25) years’ old is

strictly greater (lower) than 0 (1)9.

4 Interval Data

In this section, we consider the case where v is coninuous, but observed by intervals only. We

show that the set of parameters observationally equivalent to the true structural parameter

has a similar structure as in the discrete case. It is a convex set and, when there are no

overidentifying restrictions (p = q), it is not empty. It contains the pseudo-true value corre-

sponding to an IV regression of a transformation of y on x given instruments z. When some

information is available on the conditional distribution function of the special regressor v

within-intervals, the identi…cation set can be shrinked. Its size diminishes as the distribution

function of the special regressor within intervals becomes closer to uniformity. When v is

conditionally uniformly distributed within intervals, the identi…cation set is a singleton and

the parameter of interest ¯ is exactly identi…ed.

4.1 Identi…cation Set: the General Case

Data is now characterized by a random variable (y; v; v¤; x; z) where v¤ is the result of

censoring v by interval. Only realizations of (y; v¤; x; z) are observed and those of v are not.

Variable v¤ is discrete and de…nes the interval in which v lies. More speci…cally, assumption

D is replaced by:

Assumption ID:
9Under slightly di¤erent structural assumptions, this example can also be used in the section dealing with

interval data when age is treated as a censored continuous variable.
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(i) (Interval Data) The support of v¤ conditional on (x; z) is f1; :::;K ¡ 1g almost every-

where Fx;z. The distribution function of v¤ conditional on (x; z) is denoted pv¤(x; z): It is

de…ned almost everywhere Fx;z.

(ii) (Continuous Regressor) The support of v conditional on (x; z; v¤ = k) is [vk; vk+1[

(almost everywhere Fx;z). The overall support is [v1; vK[. The distribution function of v

conditional on x; z; v¤ is denoted Fv(: j v¤; x; z) and is assumed to be absolutely continuous.

Its density function denoted fv(: j v¤; x; z) is strictly positive and bounded.

Within this framework, we consider latent models which satisfy the large support condi-

tion (L:2) (i.e., the support of ¡x¯¡² is included in the support of v), the moment condition

(L:3) (i.e., E(z0²) = 0) and the following extension of the partial independence hypothesis,

F"(: j v; v¤; x; z) = F"(: j x; z) (L.1¤)

The conditional probability distributions Pr(y = 1 j v¤; x; z) generated through (LV ) by such

latent models clearly satisfy condition (NP:1). It can be shown using the same argument as

in Lemma 1. In contrast, condition (NP:2) is not anymore a consequence of (L:2). When the

special regressor is censored by intervals, the binary outcomes that can be analyzed through

our latent models do not necessarily satisfy condition (NP:2). We will drop this restriction

from the de…nition of the class of binary reduced forms under consideration.

As previously, we consider a conditional probability function P r(y = 1 j v¤; x; z) which

satis…es (NP:1) and we search for a latent model generating this reduced form through trans-

formation (LV ): In analogy with the discrete case, we begin by constructing a transformation

of the dependent variable. If ±(v¤) = vv¤+1 ¡ vv¤ denotes the length of the v¤th interval, the

transformation adapted to interval data is :

¹y =
±(v¤)
pv¤ (x; z)

y ¡ vK (4)

It is slightly di¤erent from the transformation (1) in terms of weights ±(v¤); but the depen-

dence on the random variable y=pv¤ (x; z) remains the same.

With these notations, the following theorem analyses the degree of underidenti…cation of

the structural parameter ¯.
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Theorem 6 Consider Pr(y = 1 j v¤; x; z) (denoted Gv¤(x; z)) a conditional distribution

function satisfying the monotonicity condition (NP:1). The two following statements are

equivalent,

(i) there exists a vector of parameters ¯ and there exist a latent conditional distribution

function of v, Fv(: j x; z; v¤); and a latent random variable " de…ned by its conditional

distribution function F"(: j x; z) such that:

a. (¯; F"(: j x; z)) satis…es (L:1¤; L:2; L:3)

b. Gv¤(x; z) is the image of (¯; F"(: j x; z)) through the transformation (LV );

(ii) there exists a vector of parameters ¯ and there exists a function u¤(x; z) taking its

values in I¤(x; z) =]¢¤(x; z);¢¤(x; z)] where (by convention, G0(x; z) = 0, GK(x; z) = 1),

¢¤(x; z) =
X

k=1;:::K¡1
(Gk+1(x; z) ¡Gk(x; z))(vk+1 ¡ vk);

¢¤(x; z) = ¡
X

k=1;:::K¡1
(Gk(x; z)¡Gk¡1(x; z))(vk+1 ¡ vk);

and such that,

E(z0(x¯ ¡ ¹y) = E(z0u¤(x; z))): (5)

Proof. See Appendix B

The identi…cation set has the same general structure in the interval-data case as in the

discrete case. It is a non-empty convex set which contains the pseudo-true value correspond-

ing to the moment condition E(z0(x¯ ¡ ¹y) = 0:

4.2 Inference Using Additional Information on the Distribution
Function of the Special Regressor

We now study how additional information helps to shrink the identi…cation set. There are

many instances where there exists additional information on the conditional distribution

function of v within intervals. It may correspond to the case where v is observed at the

initial stage of a survey or a census, but then dropped from the …les that are made available

to researchers for con…dentiality reasons. Only interval-data information and information

(estimates for instance) about the conditional distribution function of v remains available.

This framework may also correspond to the case where the conditional distribution function
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of v is available in one database that does not contains information on y while the information

on y is available in an another database10 which contains only interval information on v.

To analyse these situations, we complete the statistical model by assuming that we have

full information on the conditional distribution of v :

(NP:3) : The conditional distribution function of v is known and denoted ©(v j x; z; v¤).

The …rst question is whether this additional information reduces the identi…cation set.

The second question is whether there exists an optimal way of censoring v and chosing the

intervals for de…ning v¤:Knowing how identi…cation is related to the conditional distribution

©(v j x; z; v¤) may provide interesting guidelines to control censorship.

The …rst unsurprising result is that additional knowledge on ©(v j x; z; v¤) actually

helps to shrink the identi…cation set. The second - more surprising - result is that point-

identi…cation is restored provided that the conditional distribution function of the censored

variable v is piece-wise uniform.

To state these two results, we are going to use indexes measuring the distance of a

distribution function to uniformity. The construction of these indexes is in three steps. To

begin with, for any v 2]vk; vk+1[, note that,

©(v j v¤ = k; x; z)¡ 1 < ©(v j v¤ = k; x; z)¡ v ¡ vk
vk+1 ¡ vk

< ©(v j v¤ = k; x; z)

As © is absolutely continuous and its density is positive everywhere (ID(ii)), we can divide

the previous expression by ©(v j v¤ = k; x; z) or 1 ¡ ©(v j v¤ = k; x; z), to obtain the two

inequalities:

1¡
v ¡ vk
vk+1 ¡ vk

©(v j v¤ = k; x; z) < 1

¡1 < ¡1¡

v ¡ vk+1
vk+1 ¡ vk

1¡ ©(v j v¤ = k; x; z)
Given these inequalities, we are in position to de…ne the two following indices:

10Angrist and Krueger (1992) or Arellano and Meghir (1992) among others developped two-sample IV
techniques for such data design in the linear case.
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»Uk (x; z) = sup
v2]vk;vk+1[

2
641¡

v¡ vk
vk+1 ¡ vk

©(v j v¤ = k; x; z)

3
75 < 1

»Lk (x; z) = inf
v2]vk;vk+1[

2
64¡1 ¡

v ¡ vk+1
vk+1 ¡ vk

1¡ ©(v j v¤ = k; x; z)

3
75 > ¡1

where the strict inequalities stem from assumption ID(ii); i.e., the density function associ-

ated to © is positive and bounded. Using these notations, we have the following theorem:

Theorem 7 Consider ¯ a vector of parameters, P r(y = 1 j v¤; x; z) (denoted Gv¤(x; z))

a conditional distribution function satisfying the monotonicity condition (NP:1) and ©(v j
v¤; x; z) a conditional distribution function. The two following statements are equivalent,

(i) there exists a latent random variable " de…ned by its conditional distribution function

F"(: j x; z) such that:

a. (¯; F"(: j x; z)) satis…es (L:1¤; L:2; L:3)

b. Gv¤(x; z) is the image of (¯; F"(: j x; z)) through the transformation (LV );

(ii) there exists a function u¤(x; z) taking its values in [¢¤
©(x; z);¢

¤
©(x; z)] where:

¢¤
©(x; z) =

X

k=1;:::K¡1
(vk+1 ¡ vk)min(»Lk (x; z); 0)(Gk(x; z) ¡Gk¡1(x; z))

¢¤
©(x; z) =

X

k=1;:::K¡1
(vk+1 ¡ vk)max(»Uk (x;z); 0)(Gk+1(x; z) ¡Gk(x; z))

and such that,

E(z0(x¯ ¡ ¹y) = E(z0u¤(x; z))):

Proof. See Appendix B

Given that min(»Lk (x; z); 0) 2] ¡ 1; 0] and max(»Uk (x; z); 0) 2 [0; 1[, the identi…cation set

characterized by Theorem 7 is clearly smaller than the identi…cation set characterized by

Theorem 6 when no information is available on v. Also, Theorem 7 makes clear that the

size of identi…cation set diminishes with respect to the distance between the conditional

distribution of v and the uniform distribution, as measured by »Lk (x; z) and »Uk (x; z): When

this distance is abolished and v is piece-wise uniform, the identi…cation set clearly boils down

to a singleton.
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Corollary 8 The identi…cation set is a singleton if and only if the conditional distribution,

©(v j x; z; v¤); for all v¤ = k, and a.e. Fx;z , is uniform, i.e.:

©(v j v¤ = k; x; z) = v ¡ vk
vk+1 ¡ vk

Proof. See Appendix B

One intuition of such a result is the following. When the identi…cation set is a singleton,

the moment condition that de…nes parameter ¯ is the same as the moment condition that

would de…ne ¯ if v was replaced by a piece-wise uniform measurement v0 11 In general, the

replacement of v by such a piece-wise measurement produces an auxiliary model which does

not satisfy the partial independence assumption12 . What Corollary 8shows is that partial

independence holds when v itself is piece-wise uniform. This interpretation is developed in

the appendix at the end of the proof of Corollary 8:

Corollary 8 corresponds to the “best” case. Assuming that the distribution of v is not

piece-wise uniform, the question remains whether it is possible to rank the potential distrib-

utions of v according to the corresponding degree of underidenti…cation of ¯: The answer is

positive. Speci…cally, the closer to uniformity the conditional distribution of v is, the smaller

the identi…cation set is.

To state this result, we …rst need to rank distributions according to the magnitude of

their deviations from the uniform distribution.

De…nition 9 ©2(v j x; z; v¤) is closer to uniformity than ©1(v j x; z; v¤); when a.e. Fx;z and

for any k 2 f1; :::;K ¡ 1g:

min(»Lk;1(x; z); 0) · min(»Lk;2(x; z); 0)

max(»Uk;1(x; z); 0) ¸ max(»Uk;2(x; z); 0):

The corresponding preorder is denoted ©1 º ©2.
11Such a measurement v0 is drawn conditionally on v¤ in a uniform distribution in [vk ;vk+1[.
12The auxiliary model is: y = 1fv0 + x¯ + "0 > 0g;
where by construction: "0 = " + v ¡ v0:The “special regressor” v0 is now continuous and the transforma-

tion of Lewbel can be constructed. The new residual "0 does not necessarily satis…es partial independent
however. The conditions under which the standard Lewbel procedure leads to consistent estimates need to
be investigated.
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Using this de…nition:

Corollary 10 Let ©(v j v¤ = k; x; z) any conditional distribution. Let B the associated

region of identi…cation for ¯. Then:

©1 º ©2 =) B©2 µ B©1

Proof. Straightforward using Theorem 7.

Assuming that we have some control on the construction on v¤ (i.e., on the data on v that

are made available to researchers), this result show that, in order to minimize the length of

the interval, it has simply to be constructed in a way that minimizes the distance between

the uniform distribution and the distribution of v conditional on v¤ (and other regressors).

Consider for instance the case of date of birth. This variable plausibly varies from one

season to another, or even from one month to another, especially in countries where there

exist strong seasonal variations in economic activity. At the same time, it is likely that this

variable does not vary signi…cantly within months, meaning it is likely that it is uniformly

distributed within months in most countries. In such a case, our results show that we only

have to made available the month of birth of respondents (and not necessarily their exact

date-of-birth) to achieve exact identi…cation of structural parameters of binary models which

are monotone with respect to date-of-birth.

4.3 Projections of the Identi…cation Set

The results about how to project the identi…cation set in the discrete case can be easily

extended to the case of interval data. Speci…cally, B can be projected onto its elementary

dimensions using the same usual rules of projection as in Corollary 4. As in the discrete case

though, we focus on the leading case of no overidentifying restrictions (p = q).

Let:

Bp =
©
¯p 2 R j 9(¯1; :::; ¯p¡1) 2 Rp¡1; (¯1; :::; ¯p¡1; ¯p) 2 B

ª

represent the projected set corresponding to the last (say) coe¢cient. All scalar parame-

ters belonging to this set, are observationally equivalent to the pth component of the true

parameter. We denote ¯¤ the solution of equation (5) when function u¤(x; z) = 0:

¯¤ = E(z0x)¡1E(z0¹y)
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To begin with, we consider the case where no information is available on the distribution of

v and state the corollary to Theorem 6.

Corollary 11 Bp is an interval which center is ¯¤p; where ¯¤p represents the p-th component

of ¯¤: Speci…cally, we have,

Bp =]¯¤p + &L;p;¯
¤
p + &U;p]

where :

&L;p =
£
E( exp2)

¤¡1E( exp(1f exp > 0g¢¤(x; z) + 1f exp · 0g¢¤(x; z))

&U;p =
£
E( exp2)

¤¡1E( exp(1f exp · 0g¢¤(x; z) + 1f exp > 0g¢¤(x; z))

with exp is the residual of the projection of xp onto the other components of x.

Proof. See Appendix B.

The corresponding corollary to Theorem 7 has exactly the same structure as Corollary

11, with ¢¤
© and ¢¤

© replacing ¢¤ and ¢¤:

Generally speaking, the estimation of Bp requires the estimation of &L;p and &U;p: At

the end of the proof of corrolary 11, we show that these scalars can be estimated through

simple regresssions. Speci…cally, let us denote ¹yL =
µL;v¤ :y
pk(x; z)

+ vK ¡ vK¡1; where µL;k =

(vk+2 ¡ vk+1 ¡ (vk+1 ¡ vk))
2

for k = 2; :;K¡1 and where vK+1 = vK by convention. Similarly,

de…ne ¹yU =
µU;v¤ :y
pk(x; z)

+ vK ¡ vK¡1; where µU;k =
(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))

2
for k = 2; :;K ¡ 1

and where v0 = v1.

Using these notations, &L;p is the regression coe¢cient of (1f exp > 0g¹yL;p+1f exp · 0g¹yU;p)
on exp and &U;p is the regression coe¢cient of (1f exp · 0g¹yL;p + 1f exp > 0g¹yU;p)) on exp: Most

interestingly, when all intervals have the same length, ¹yL and ¹yU are equal and constant and

the length of the one-dimensional identi…cation region is then proportional to this constant.

5 Monte Carlo Experiments

In this section, we present simple Monte Carlo experiments in order to analyze how our (set)

estimators perform in medium-sized samples (i.e., 100 to 1000 observations). The simulated

model is y = 1f1+ v+ x2+ " > 0g: For the sake of clarity, the set-up is chosen to be as close
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as possible to the set-up originally used by Lewbel (2000). We adapt this original setting

to cases where the special regressor v is discrete or interval-valued.

Speci…cally, the construction of the special regressor v, the covariate x2, the instrument z

and the random shock " proceeds in two steps. To begin with, consider four random variables

such as: e1 is uniform on [0; 1], e2 and e3 are zero mean unit variance normal variates and

e4 is a mixture of a normal variate N (¡:3; :91) using a weight of :75 and a normal variate

N(:9; :19) using a weight of :25. Using these notations, we de…ne:

´ = 2e2 + ®e4; x2 = e1 + e4

" = ½(e1 ¡ :5) + e3; z = e4:

where ® is a parameter that makes the random shock a non-normal variate and ½ is a

parameter that renders x2 endogenous. The case where ® = ½ = 0 (resp. ® = ½ = 1) roughly

corresponds to what Lewbel calls the simple (resp. messy) design.

In the discrete case, we choose v1 and vK = ¡v1 at the 2:5 and 97:5 percentiles of the

distribution of ´. The other points of the support of v are denoted v2; :; vK¡1: With these

notations, v is de…ned as (where vK+1 = 1):

v = vk if ´ 2 [vk; vk+1[ and k = 2; :;K

v = v1 if ´ < v2

To comply with assumption L:2, we then truncate x2 + " by a method of acceptation and

rejection in order that 1 + x2 + " + v1 > 0 and 1 + x2+ " + vK < 0.

In the interval case, v is de…ned by truncating ´ to the 95% symmetric interval around

0, denoted [v1; vK]. We do that by a method of acceptation and rejection. To comply with

assumption L:2, we then truncate x2 + " by the same method of acceptation and rejection

than before so that 1 + x2 + " + v1 > 0 and 1 + x2 + " + vK < 0. We then construct the

censored K ¡ 1 intervals in the obvious way:

v¤ = k if v 2 [vk; vk+1[

5.1 Presentation of results

Tables 1 to 8 report various Monte Carlo experiments in cases where the data are discrete or

are interval-valued. In all tables, we make the sample size vary using 100, 200, 500 or 1000
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observations. The number of Monte Carlo replications is equal to 1000 in all experiments.

Additional replications do not a¤ect any estimates (resp. standard errors) by more than a

1% margin of error (resp. 3%). We report results in two panels. In the top panel, we report

estimates of the lower and upper bounds of both coe¢cients (intercept and variable) by

recentering them at zero instead of their true values which are equal to one. In the bottom

panel, we compute the average of the estimates of the lower and upper bounds, E(µ̂b+ µ̂u)=2;

the adjusted length of the interval, E(µ̂u¡ µ̂b)=2
p
3, and the average sampling error de…ned

as:

(¾̂2u+ ¾̂
2
b + ¾̂u¾̂u)=3

where ¾̂u and ¾̂b are estimated standard errors of the estimated lower and upper bounds.

These three statistics provide an interesting decomposition of the mean square error uni-

formly integrated over the interval [µ̂b; µ̂u]:

MSEI = E
Z µ̂u

µ̂b
(µ¡ µ0)2

dµ
µ̂u¡ µ̂b

=
1
3
E

"
(µ̂u¡ µ0)3 ¡ (µ̂b ¡ µ0)3

µ̂u ¡ µ̂b

#

=
1
3
E

h
(µ̂u ¡ µ0)2 + (µ̂b ¡ µ0)2 + (µ̂b ¡ µ0)(µ̂u¡ µ0)

i

Let ¹µi = E(µ̂i), i = u; b, the expected values of the estimates, and ¹µm = (¹µu + ¹µb)=2 the

average center of the interval. We then have:

MSEI = (¹µm¡ µ0)2 +
1
3
E

h
(µ̂u ¡ ¹µm)2 + (µ̂b ¡ ¹µm)2 + (µ̂b ¡ ¹µm)(µ̂u ¡ ¹µm)

i

= (¹µm¡ µ0)2 +
1
3

¡
(¹µu ¡ ¹µb)=2

¢2

1
3
E

h
(µ̂u ¡ ¹µu)2 + (µ̂b ¡ ¹µb)2 + (µ̂b ¡ ¹µb)(µ̂u ¡ ¹µu)

i

The …rst term is the square of a “decentering” term which can be interpreted as a bias term.

The second term is the square of the “adjusted” length, which can be interpreted as the

“uncertainty” due to partial identi…cation instead of point identi…cation. The third term is

an average of standard errors and can then be interpreted as sample variability. These three

terms are reported in the bottom panel for both coe¢cients as well as root mean square

error, MSEI1=2.
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5.2 Discrete Data

In experiments reported in Tables 1 to 4, the data are discrete. We make some parameters

vary in these tables: The bandwidth in Table 1, the degree of non normality in Table 2,

the degree of endogeneity in Table 3 and the number of points in the support of the special

regressor in Table 4. In all cases, the true value of the parameter belongs to the interval

built up around the estimates of the lower and upper bounds. Horowitz and Manski (2000)

and Imbens and Manski (2003) for an alternative, rigorously de…ne con…dence intervals when

identi…cation is partial. We here report con…dence intervals for bounds only. In cases where

the number of points is …xed (Tables 1 to 3), the stability of the estimated length of the

interval across experiments is a noticeable result. It almost never vary by more than a

relative factor of 10%.

In Table 1, we experimented with di¤erent bandwidths. As said, interval lengths are

stable, though intervals can be severely decentered for the intercept term. Increasing the

sample size or the bandwidth recenters the interval around the true value. Increasing the

bandwidth decenters interval estimates for the coe¢cient of the variable towards the negative

numbers though at a much lesser degree. Finally, the mean square error (MSEI) for the

intercept decreases with the bandwidth while it has a U-shape form for the coe¢cient of the

variable. We have tried to look for a data-driven choice of the bandwidth by minimizing this

quantity but it was unconclusive. A larger bandwidth seems to be always preferred. Some

further research is clearly needed on this issue.

In Table 2, we experimented with di¤erent degrees of non-normality, by making parameter

® vary. If this parameter increases, interval length is very weakly a¤ected. There is some

recentering of intervals either towards negative numbers for the intercept or towards positive

values for the coe¢cient of the variable. Note that average standard errors and mean square

errors also tend to increase with parameter ®.

In Table 3, we experimented with di¤erent degrees of correlation between covariates and

errors and therefore the amount of endogeneity. It is the only case where interval length

slightly di¤ers across experiments. It increases with the amount of endogeneity. There is

also some large decentering of the intervals for small sample sizes (100) but decentering

either completely disappears when the sample size is equal to 1000 or is not much a¤ected
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by varying the degree of endogeneity. As well, standard errors are slightly a¤ected only when

the sample size is less than 200.

In Table 4, we experimented with varying the number of points of the discrete support.

Theory predicts that interval length should decrease with the number of points of support.

In our experiments, it is always true and this decrease is not much a¤ected by sample sizes.

We obtain that result by estimating the conditional probability function of v using nearest

neighbors (w.r.t. v) and using kernels for the other covariates. A preliminary less careful

estimation of this probability function led to humps and bumps in the estimates. There can

be some strong decentering problems though and there is evidence of a trade-o¤ between

the length of the interval and the average standard errors. The latter tend to increase when

the number of points in the support increases. No doubt that it is partly due to the way we

built up the probability estimates.

5.3 Interval Data

In experiments reported in Tables 5 to 8, the data are interval-valued. Similarly to the

discrete case, we make the same parameters vary in these tables: The bandwidth in Table 5,

the degree of non normality in Table 6, the degree of endogeneity in Table 7 and the number

of points in the support of the special regressor in Table 8.

Although the experiments cannot be strictly compared, results are in most cases very

similar to the discrete case. The true values of the parameters belong to the con…dence

interval built up around the estimates of the lower and upper bounds. In cases where the

number of points is …xed (Tables 5 to 7), the stability of the length of the interval is again a

noticeable result. It almost never vary by more than a relative factor of 10%. The average

length seems however to be larger in the interval case than in the discrete case.

In Table 1, results remain very close to those obtained in the discrete case. The interval

for the intercept is severely decentered in small samples while the interval for the variable

coe¢cient is decentered in large samples with a slightly larger magnitude than in the discrete

case. Similarly, the mean square error is decreasing with the bandwidth or, less frequently

has a U-shape form. Again, …nding a data-driven bandwidth through minimization of this

mean square error is not an easy task. Table 6 has a di¤erent ‡avour. Decentering can be
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quite severe above all for the coe¢cient of the variable when the degree of non-normality

is large. It is also true at a lesser degree for the intercept. In Table 7 also, results are less

systematic than in the discrete case. Interval length either decrease or increase when the

degree of endogeneity increases while decentering can be quite severe, much more than in

the discrete case. Nevertheless, results are very similar to the discrete case when the number

of intervals is varied (Table 8). Interval lengths regularly shrink towards 0 while mean square

error increases, yielding evidence on the trade-o¤ between those characteristics.

6 Conclusion

In this paper, we explored partial identi…cation of coe¢cients of binary variable models

in the case where the special regressor is discrete or interval-valued. We derived bounds

for the coe¢cients and show that they can be written as moments of the data generating

process. We also show that in the case of interval data, additional information can shrink

the identi…cation set. When the unknown variable is distributed uniformly within intervals,

these sets are reduced to one point.

Some additional points seem to be worthwhile considering. First, even if we do not

provide proofs of consistency and asymptotic properties of the estimates of the bounds of

the intervals, those would follow very similar lines to the ones Lewbel (2000) presents. The

asymptotic variance-covariance matrix of the bounds can also be derived along similar lines.

Finally, one can show that under some conditions (see the companion paper, Magnac and

Maurin, 2003), these estimates are e¢cient in a semi-parametric sense.
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A Proofs in Section 3

A.1 Proof of Lemma 1
Write:

P r(yi = 1 j v; x; z) =
Z

x¯+v+²>0;"2"(x;z)
dF (² j x; z)

As dF (² j x; z) ¸ 0, monotonicity in v follows.
Secondly, by assumption L:2, the support of ¡x¯ ¡ " is a subset of 0

v = [v1; vK[:

v1 · ¡(x¯ + ") < vK

and therefore for all " 2 "(x; z):

v1 + x¯ + "· 0 vK + x¯ + " > 0

The second conclusion follows.

A.2 Proof of Theorem 2
Let fGk(x; z)gk=1;:;K satisfy (NP:1) and (NP:2). It is an ordered set of functions such that
G1 = 0 and GK = 1. Fix ¯. We …rst prove that (i) implies (ii).

(Necessity) Assume that there exists a latent random variable " such that (¯; F"(: j x; z))
satis…es (L:1¡L:3) and such that fGk(x; z)gk=1;:;K is its image through transformation (LV ):
By (L:2), the conditional support of " given (x; z), is included in ]¡ (vK + x¯);¡(v1 + x¯)]
and we can write,

8k;Gk(x; z) =
Z ¡(v1+x¯)

¡(vk+x¯)
f"(" j x; z)d" = 1¡ F"(¡(vk + x¯) j x; z): (A.1)

Put di¤erently, we necessarily have F"(¡(vk + x¯) j x; z) = 1 ¡ Gk(x; z); for each k in
f1; :::;Kg.

Denote sk = (vk+vk¡1)=2 and ±k =
vk+1 ¡ vk¡1

2
= sk+1¡sk for all k = 2; :;K¡1. Setting

±1 = ±K = 0; the transformed variable ~y is (
±ky
pk(x; z)

¡ sK) where y = 1fv > ¡(x¯ + ²)g.

Integrate ey with respect to v and ":

E(ey j x; z) =
Z

(²jx;z)

[
KX

k=1

±k1fvk > ¡(x¯ + ²)g]f(² j x; z)d²¡ sK

=
Z

(²jx;z)

[
K¡1X

k=2

(sk+1 ¡ sk)1fvk > ¡(x¯ + ²)g]f(² j x; z)d²¡ sK

As the support of (x¯ + ") is bounded, we can also de…ne for any value of w = ¡x¯ ¡ ";
an integer function j(w) in f1; :;K ¡ 1g, such that vj(w) · w < vj(w)+1: By construction,
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vk > w, k > j(w) and
PK¡1
k=2 (sk+1 ¡ sk)1fvk > wg = (sK ¡ s

j(¡(x¯+"))+1): Hence, we have :

E(ey j x; z) =
Z

(²jx;z)

(sK ¡ sj(¡(x¯+"))+1)f (² j x; z)d²¡ sK = ¡E[sj(¡x¯¡²)+1 j x; z]

= x¯ +E(² j x; z) ¡ E[sj(¡x¯¡²)+1 + x¯ + ² j x; z]
= x¯ +E(² j x; z) ¡ u(x; z) (A.2)

where:
u(x; z) = E(sj(w)+1 ¡ w j x; z):

Bounds on u(x; z) can be obtained using the de…nition of j(w). First, given that vj(w) ·
w < vj(w)+1; we have

¡vj(w)+1 ¡ vj(w)
2

<
vj(w)+1 + vj(w)

2
¡ w · vj(w)+1 ¡ vj(w)

2

which yields:
¡vj(w)+1 ¡ vj(w)

2
< sj(w)+1 ¡ w · vj(w)+1 ¡ vj(w)

2
Hence, we can write,

E(sj(w)+1 ¡ w j x; z) =
KX

k=2

Z ¡(vk¡1+x¯)

¡(vk+x¯)
(sj(¡x¯¡²)+1 + x¯ + ²)f(² j x; z)d²

=
KX

k=2

Z ¡(vk¡1+x¯)

¡(vk+x¯)
(sk + x¯ + ²)f(² j x; z)d²

·
KX

k=2

·
vk ¡ vk¡1

2
(Gk(x; z) ¡Gk¡1(x; z))

¸
= ¢(x; z)

using equation (A.1). By analogy,

¡¢(x; z) < u(x; z) · ¢(x; z):

Since GK(x; z) = 1 and G1(x; z) = 0; we have ¢(x; z) ¸ min
k

( vk¡vk¡1
2 ); meaning ¢(x; z) > 0

and I(x; z) non-empty. It …nishes the proof that statement (i) implies statement (ii) since
equation (A.2) implies (2).

(Su¢ciency) Conversely, let us prove that statement (ii) implies statement (i). We
assume that there exists u(x; z) in I(x; z) =]¡¢(x; z);¢(x; z)] such that equation (2) holds
true and we construct a distribution function F"(: j x; z) satisfying (L:1¡L:3) such that the
image of (¯; F"(: j x; z)) through (LV ) is fGk(x; z)gk=1;:;K.

First, let ¸ a random variable which support is ]0; 1]; which conditional density given
(v; x; z) is independent of v (a.e. Fx;z) and which is such that:

E(¸ j x; z) = (u(x; z) + ¢(x; z))=(2¢(x; z)) (A.3)
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Second, let · a discrete random variable which support is f2; :;Kg and which conditional
distribution given (v; x; z) is independent of v and is given by:

P r(· = k j x; z) = Gk(x; z) ¡Gk¡1(x; z): (A.4)

For any k 2 f2; :;Kg, consider K ¡ 1 random variables, say ²(¸; k) which are constructed
from ¸ by:

²(¸; k) = ¡x¯ ¡ ¸vk¡1 ¡ (1¡ ¸)vk
Given that ¸ > 0; the support of ²(¸; k) is ] ¡ x¯ ¡ vk;¡x¯ ¡ vk¡1]. Finally, consider the
random variable:

" = ²(¸; ·) (A.5)

which support is ] ¡x¯ ¡ vK;¡x¯ ¡ v1]; which is absolutely continuous (because ¸ is), and
which is independent of v (because both ¸ and · are). It therefore satis…es (L:1) and (L:2).
Furthermore, because of (A.4), the image of (¯; F"(: j x; z)) through (LV ) is fGk(x; z)gk=1;:;K

because they satisfy equation (A.1). The last condition to prove is (L:3). Consider, for almost
any (x; z), Z

("jx;z)

(sj(¡x¯¡")+1 + x¯ + ")f (" j x; z)d" =

KX

k=2

µZ ¡x¯¡vk¡1

¡x¯¡vk
(vk + vk¡1

2
+ x¯ + ")f (" j x; z; · = k)d"

¶

=
KX

k=2

E(
vk + vk¡1

2
¡ ¸vk¡1 ¡ (1¡ ¸)vk j x; z)(G(vk;x; z) ¡G(vk¡1; x; z))

=
KX

k=2

E(¸¡ 1=2 j x; z):(vk ¡ vk¡1):(Gk(x; z) ¡Gk¡1(x; z))

= (u(x; z)=(2¢(x; z)))(2¢(x; z)) = u(x; z):

Therefore:
E(z0ey) = E(z0x)¯ +E(z0") ¡ E(z0u(x; z)):

Equation (2) implies E(z0") = 0; that is (L:3); which …nishes the proof of Theorem 2.¥
Remark: It is worth emphasizing that this proof also provides a characterization of the

domain of observationally equivalent distribution functions F", i.e. the set of random vari-
ables " such that there exists ¯ with (¯; F") satisfying conditions (L:1¡L:3) and generating
fGk(x; z)gk=1;:;K.

To begin with, any such " can clearly be decomposed into a mixture of two independent
variables as in (A.5):

· =
X

k=2;:::;K

k:1f" 2] ¡ x¯ ¡ vk;¡x¯ ¡ vk¡1]g

¸ = (v· +
(" + x¯

(v·¡ v·¡1)
) 2 ]0; 1]
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By construction, · necessarily satis…es equation (A.4) and ¯ correspond to the IV regression
coe¢cient of ey¡ ¢(x; z)(2¸ ¡ 1) on x.

Reciprocally, any mixture "(¸;·) = ¡x¯ ¡ ¸v·¡1 ¡ (1 ¡ ¸)v· where ¸ 2 ]0; 1] and
· 2 f2; :::;K ¡ 1g are two independent variables satisfying equation (A.4). Parameter ¯
de…ned as the IV regression coe¢cient of ey¡¢(x; z)(2¸¡1) on x is such that(¯; F") satis…es
conditions (L:1¡ L:3) and generates fGk(x; z)gk=1;:;K.

Concluding for any "; the two following statements are equivalent,
(i) there exists a vector of parameter ¯ such that the latent model (¯; F"(: j x; z)) veri…es

conditions (L:1¡L:3) and such that fGk(x; z)gk=1;:;K is its image through the transformation
(LV );

(ii) there exist two independent random variables (¸; ·), conditional on (x; z), such that
the support of ¸ is ]0; 1], the support of · is f2; :;Kg; equation (A.4) holds and such that:

" = ¡x¯¸ ¡ ¸v·¡1 ¡ (1 ¡ ¸)v·

where:

¯¸ =
£
E(x0z)(E(z0z))¡1E(z0x)

¤¡1

:E(x0z)(E(z0z))¡1E(z0(ey ¡ ¢(x; z)(2¸ ¡ 1)))

A.3 Proof of Corollary 3
First, B contains ¯¤ because u(x; z) = 0 takes its values in the admissible set, I(x; z).
Second, B is convex because I (x; z) is convex and equation (2) is linear. Furthermore,
assume that (¯; F"(: j x; z)) satis…es conditions (L:1¡ L:3) and generates G(v; x; z) through
the transformation (LV ): Using Theorem 2, there exists u(x; z) 2 I (x; z) such that,

E(z0x)(¯ ¡ ¯¤) = E(z0u(x; z))

and thus using the de…nition of W:

(¯ ¡ ¯¤)0W (¯ ¡ ¯¤) = E(u0(x; z)z)E(z0z)¡1E(z0u(x; z)):

Using the generalized Cauchy-Schwarz inequality, we have,

E(u0 (x; z)z)E(z0z)¡1E(z0u(x; z)) · E(u2(x; z)):

and by Theorem 2, E(u2(x; z)) · E(¢2(x; z)): By de…nition, E(¢2(x; z)) · ¢2
M which

completes the proof.

A.4 Proof of Corollary 4
For the sake of clarity, we start with the exogeneous case where z = x. Denote xp the last
variable in x , x¡p all the other variables (i.e., x = (x¡p; xp)). Consider any ¯ 2 B and
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¯¤ = (E(x0x))¡1E(x0ey). There exists a function u(x) in ]¡¢(x);¢(x)] such that ¯ ¡ ¯¤ =
(E(x0x))¡1E(x0u(x)) which is also the result of the regression of u(x) on x.

Denote the residual of the projection of xp onto the other components x¡p as exp :

exp = xp ¡ x¡p
¡
E(x0¡px¡p)

¢¡1E(x0¡pxp)

Applying the principle of Frish-Waugh, we have

¯p ¡ ¯¤p =
¡
E(~x0p~xp)

¢¡1E(ex0pu(x))

As ~xp is a scalar, the maximum (minimum) of E(expu(x)) when u(x; z) varies in ]¡¢(x);¢(x)]
is obtained by setting u(x) = ¢(x)1f~xp > 0g¡¢(x)1f~xp · 0g (u(x) = ¡¢(x)1f~xp > 0g
+¢(x)1f~xp · 0g): Hence E(ex0pu(x)) lies between ¡E(j expj¢(x)) and E(jexpj¢(x)) and the
di¤erence ¯p ¡ ¯¤p varies in:

¸
¡E(jexpj ¢(x))

E( exp2)
;
E(j expj¢(x))
E( exp2)

¸
:

To show the reciprocal, consider any ¯p in
¸
¯¤p ¡ E(jexpj¢(x))

E( exp2)
;¯¤p +

E(jexpj¢(x))
E( exp2)

¸
:

Denote

¸ = E( exp2)
E(j expj¢(x))

(¯p ¡ ¯¤p) 2 ]¡1; 1] :

Consider u(x) = ¸¢(x) when exp > 0 and u(x) = ¡¸¢(x) otherwise which means that

E(expu(x))
E( exp2)

= (¯p ¡ ¯¤p):

This function takes its values in ]¡¢(x);¢(x)[ and therefore satis…es point (ii) of Theorem
2. Thus, there exists ¯ 2 B such that its last component is ¯p.

The adaptation to the general IV case uses the generalized transformation:

exp = z(E(z0z))¡1E(z0xp) ¡
z(E(z0z))¡1E(z0x¡p)

£
E(x0¡pz)(E(z0z))¡1E(z0x¡p)

¤¡1E(x0¡pz)(E(z0z))¡1E(z0xp)

Generally speaking, the estimation of Bp requires the estimation ofE(jexpj¢(x; z)):Given
this fact, it is worth emphasizing that ¢(x; z) can be rewritten E(~y¢ j x; z) where

~y¢ =
¹k:y
pk(x; z)

+
vK ¡ vK¡1

2
;

with
¹k =

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))
2

for k = 2; :;K ¡ 1
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and ¹1 = ¹K = 0: Speci…cally,

¢(x; z) =
1
2

KX

k=2

[(vk ¡ vk¡1)(Gk(x;z) ¡Gk¡1(x; z))]

=
1
2
[(v2 ¡ v1)G2(x; z) + (v3 ¡ v2)(G3(x; z) ¡G2(x; z)) + :::

::+ (vK¡1 ¡ vK¡2)(GK¡1(x; z)¡GK¡2(x; z)) + (vK ¡ vK¡1)(1 ¡GK¡1(x; z))]

= 1
2

K¡1X

k=2

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))Gk(x; z) +
vK ¡ vK¡1

2

=
1
2

K¡1X

k=2

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))E(y j v = vk; x; z) +
vK ¡ vK¡1

2

= E(
¹k:y
pk(x; z)

j x; z) + vK ¡ vK¡1
2

= E(~y¢ j x; z)

Hence, E(jexpj¢(x; z)) can be rewritten E(jexpj ~y¢) which means that the estimation of
the upper and lower bounds of Bp only requires [1] the construction of the transform ~y¢, [2]
an estimation of the residual exp and [3] the linear regression of ~y¢ on j expj :

B Proofs in Section 4

B.1 Proof of Theorem 6

Consider a vector of parameters ¯ and a conditional probability distribution Pr(y = 1 j
v¤; x; z) (denoted Gv¤(x; z)) satisfying monotonicity conditions (NP:1).

(Necessity) We prove that (i) implies (ii). Denote, Fv(: j x; z; v¤); and F"(: j x; z); two
conditional distribution functions satisfying (i). By Assumption R(vi), Fv(: j x; z; v¤) is
absolutely continuous and its density function is denoted fv. By assumption (i), (¯; F"(: j
x; z)) satis…es condition (L1¤); (L2) and (L3) and fGk(x; z)gk=1;:;K¡1 is its image through
transformation (LV ):

For the sake of clarity, set w = ¡(x¯ + ") so that y = 1fv > wg and the support of w
is [v1; vK[ by (L:2). The variable w is conditionally (on (x; z)) independent of v and v¤ and
the corresponding conditional distribution is:

Fw(w j x; z) = 1 ¡ F"(¡(x¯ + w) j x; z)

The conditional probability of occurrence of y = 1 in the k-th interval (v¤ = k in f1; :::;K ¡ 1g)
is,

Gk(x; z) =
Z vk+1

vk
E(1fv > w j v; v¤ = k; x; z)fv(v j k; x; z)dv

which yields the convolution equation:

Gk(x; z) =
Z vk+1

vk
Fw(v j x; z)fv(v j k; x; z)dv: (B.1)
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Note that this condition implies:

Fw(vk j x; z) · Gk(x; z) < Fw(vk+1 j x; z): (B.2)

The second inequality is strict because Fv is absolutely continuous and Fw is continuous on
the right (CADLAG).

To prove (5), write E(¹y j x; z) as

X

v¤=1;::;K¡1

Z

(v jv¤;x;z)

Z

(wjv¤;v;x;z)

[¹y:pv¤ (x; z):fv(v j v¤; x; z)dvdFw(w j v¤; v; x; z)]:

Using the de…nition of ¹y; the term pv¤(x; z) cancels out and using condition (L:1¤); the
integral over dw on the one hand, and the sum and other integral on the other hand, can be
permuted:

Z

(wjx;z)

2
4 X

±(v¤)
v¤2f1;:;K¡1g

Z

(vjv¤;x;z )

1(v > w))fv(v j v¤; x; z)dv

3
5 dFw(w j x; z)¡ vK: (B.3)

Evaluate …rst the inner integral with respect to v: As the support of w is included in [v1; vK[,
we can de…ne for any value of w in its support, an integer function j(w) in f1; :::;K ¡ 1g,
such that vj(w) · w < vj(w)+1: Distinguish three cases. First, when v¤ < j(w); the whole
conditional support of v lies below w and,

Z

(v jv¤;x;z)

1(v > w)fv(v j v¤; x; z)dv = 0:

while when v¤ > j(w), the whole conditional support of v lies strictly above w and thus:
Z

(v jv¤;x;z)

1(v > w)fv(v j v¤; x; z)dv = 1:

Last when v¤ = j(w);
Z

(vjv¤;x;z)

1(v > w)fv(v j v¤; x; z)dv = 1¡ Fv(w j v¤; x; z):

Summing over values of v¤,

X

v¤2fv1;:::vK¡1g
±(v¤)

Z

(v jv¤;x;z)

1(v > w)fv(v j v¤; x; z)dv

= ¡Fv(w j vj(w); x; z)(vj(w)+1 ¡ vj(w)) + vK ¡ vj(w):

Replacing in (B.3) and integrating w.r.t. w, implies that:

E(¹y j x; z) = ¡E(w j x; z) ¡ u¤(x; z) = x¯ + E(² j x; z) ¡ u¤(x; z): (B.4)
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where

u¤(x; z) =
Z

(wjx;z)

(Fv(w j vj(w); x; z)(vj(w)+1 ¡ vj(w)) + vj(w) ¡ w)dFw(w j x; z):

Integrating (B.4) with respect to x; z and using condition (L:3) yields condition (5).
To …nish the proof, upper and lower bounds for u¤(x; z) are now provided. Let write,

u¤(x; z) =
K¡1X

k=1

(vk+1 ¡ vk)Ák(x; z) (B.5)

where:
Ák(x; z) =

Z vk+1

vk
(Fv(w j k; x; z) + vk ¡ w

vk+1 ¡ vk
)dFw(w j x; z): (B.6)

By integration by parts, the …rst term is:

Ák(x; z) =
Z vk+1

vk
(

1
vk+1 ¡ vk

¡ fv(w j k; x; z))Fw(w j x; z)dw

Therefore, using the convolution equation (B.1),

Ák(x; z) = ¡Gk(x; z) +
Z vk+1

vk

Fw(w j x; z)
vk+1 ¡ vk

dw:

Using (B.2) and the fact that Fw(w j x; z) is continuous on the right, it implies

Gk¡1(x; z) ¡Gk(x; z) < Ák(x; z) < Gk+1(x; z) ¡Gk(x; z):
Therefore

¢¤(x; z) < u¤(x; z) <¢¤(x; z):

where the de…nitions of ¢¤(x; z) and ¢¤(x; z) correspond to those given in the body of the
Theorem.

(Su¢ciency) We now prove that (ii) implies (i). Denote u¤(x; z) in ]¢¤(x; z);¢¤(x; z)[
such that

E(z0(x¯ ¡ ¹y)) = E(z0u¤(x; z))

We are going to prove that there exists a distribution function of w = ¡(x¯ + ") and a
distribution function of v such that (¯; F"(: j x; z)) satis…es (L:1¤; L:2;L:3) and Gv¤(x; z) is
the image of (¯; F"(: j x; z)) through the transformation (LV ):

To begin with, we are going to construct w: We proceed in three steps.
First, we choose a sequence of functions Hk(x; z) such that H1 = 0, HK = 1; and such

that:
Hk(x; z) · Gk(x; z) < Hk+1(x; z), for k 2 f1; :;K ¡ 1g (B.7)

and:
K¡1X

k=1

(vk+1 ¡ vk)(Hk(x; z) ¡Gk(x; z)) < u¤(x; z) <
K¡1X

k=1

(vk+1 ¡ vk)(Hk+1(x; z) ¡Gk(x; z))
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Consider for instance
µ(x; z) = max(

u¤(x; z)
¢¤(x; z)

;1¡ u
¤(x; z)

¢¤(x; z)
):

By construction µ(x; z) 2]0; 1] and one checks that

Hk(x; z) = µ(x; z)Gk¡1(x; z) + (1¡ µ(x; z))Gk(x; z)

satis…es the two previous conditions.
Generally speaking, the closer u¤(x; z) is from the lower bound ¢¤(x; z), the closer is Hk

to Gk¡1, and the closer u¤(x; z) is from the upper bound ¢¤(x; z), the closer is Hk to Gk.
Secondly, we consider · a discrete random variable which support is f1; :;K ¡ 1g; which

is independent of v¤ (a.e. Fx;z) and which conditional on (x; z) distribution is:

Pr(· = k j x; z) =Hk+1(x; z)¡Hk(x; z): (B.8)

Thirdly, we consider ¸ a random variable which support is ]0; 1[; which is independent of v¤

(a.e. Fx;z) and which conditional (on (x; z)) expectation is:

E(¸ j x; z) =
PK¡1
k=1 (vk+1 ¡ vk)(Hk+1(x; z)¡Gk(x; z)) ¡ u¤(x; z)PK¡1

k=1 (vk+1 ¡ vk)(Hk+1(x; z)¡Hk(x; z))
(B.9)

For instance, ¸ can be chosen discrete with a mass point on

¸0(x; z) =
PK¡1
k=1 (vk+1 ¡ vk)(Hk+1(x; z) ¡Gk(x; z))¡ u¤(x; z)PK¡1

k=1 (vk+1 ¡ vk)(Hk+1(x; z) ¡Hk(x; z))
:

Given the constraints on the Hk(x; z) and given that u¤(x; z) is in in ]¢¤(x; z);¢¤(x; z)[,
¸0(x; z) belongs to ]0; 1[.

Within this framework, we can de…ne w as:

w = (1¡ ¸)v· + ¸v·+1

By construction, the support of w is [v1; vK[ and w is independent of v¤ conditionally on
(x; z) because both ¸ and · are. Hence, " = ¡(x¯ + w) satis…es (L:1) and (L:2):

To construct v, we …rst introduce a random variable ´ which support is [0; 1[, which is
absolutely continuous, which is de…ned conditionally on (k; x; z); which is independent of ¸
and such that:

Z 1

0
F¸(´ j x; z):f´(´ j k; x; z)d´ = Gk(x; z) ¡Hk(x; z)

Hk+1(x; z)¡Hk(x; z)
2 [0; 1[

where F¸(: j x; z) denotes the distribution of ¸ conditional on (x; z):
For instance, when ¸ is chosen discrete with a mass point on ¸0(x; z), we simply have to

chose ´ such that

F´(¸0(x; z) j x; z) = Hk+1(x; z)¡Gk(x; z)
Hk+1(x; z) ¡Hk(x; z)

:
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Within this framework, we de…ne v by the following expression:

v = vk + (vk+1 ¡ vk)´

Having de…ned w and v, we are now going to prove that the image of (¯; Fw(: j x; z))
through (LV ) is Gv¤ (x; z) because it satis…es equation (B.1):

Z vk+1

vk
Fw(v j x; z):fv(v j k; x; z)dv =Hk(x; z)+

+(Hk+1(x; z) ¡Hk(x; z))
Z vk+1

vk
Pr(w = (1¡ ¸)vk + ¸vk+1 · v j x; z):fv(v j k; x; z)dv =

Hk(x; z) + (Hk+1(x; z)¡Hk(x; z))
Z 1

0
Pr(¸ · ´ j x; z):f´(´ j k; x; z)d´ = Gk(x; z)

The last condition to prove is (L:3). Rewrite equation (B.6), for almost any (x; z),

Ák(x; z) = ¡Gk(x; z) +
Z vk+1

vk

Fw(w j x; z)
vk+1 ¡ vk

dw

= ¡Gk(x; z) +Hk+1(x; z)¡ (Hk+1(x; z) ¡Hk(x; z))E(¸ j x; z):

Therefore,

K¡1X

k=1

(vk+1 ¡ vk)Ák(x; z) =
K¡1X

k=1

(vk+1 ¡ vk)(Hk+1(x; z)¡Gk(x; z))

¡
K¡1X

k=1

(vk+1 ¡ vk)(Hk+1(x; z) ¡Hk(x; z))E(¸ j x; z) = u¤(x; z):

using equation (B.9). Plugging (5) in (B.4) yields E(z0") = 0 that is (L:3).

B.2 Proof of Theorem 7

We use large parts of the proof of Theorem 6:
(Necessity) Same as the proof of Theorem 6 until equation (B.6) that we rewrite as:

Ák(x; z) =
Z vk+1

vk
(©(v j k; x; z)¡ v ¡ vk

vk+1 ¡ vk
)dFw(v j x; z):

We then have …rst:

Ák(x; z) =
Z vk+1

vk
(1¡

v¡vk
vk+1¡vk

©(v j k; x; z) )©(v j k; x; z)dFw(v j x; z)

· sup
v2]vk;vk+1 [

(1¡
v¡vk
vk+1¡vk

©(v j k; x; z) )
Z vk+1

vk
©(v j k; x; z)dFw(v j x; z)

= »Uk (x; z)
Z vk+1

vk
©(v j k; x; z)dFw(v j x; z)
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But, using equation (B.1), we have
Z vk+1

vk
©(v j k; x; z)dFw(v j x; z):

=
Z vk+1

vk
d[©(v j k; x; z)Fw(v j x; z)] ¡

Z vk+1

vk
Fw(v j x; z)d©(v j k; x; z)

=
Z vk+1

vk
d[©(v j k; x; z)Fw(v j x; z)] ¡Gk(x; z):

Hence, using Fw(vk+1 j x; z) ·Gk+1(x; z), we have,

Ák(x; z) · max(»Uk (x; z); 0):(Gk+1(x; z)¡Gk(x; z)):

The derivation of the lower bound follows the same logic:

Ák(x; z) ¸ inf
v2]vk;vk+1[

(¡1¡
v¡vk+1
vk+1¡vk

1¡ ©(v j k; x;z) )
Z vk+1

vk
(1 ¡ ©(v j k; x; z))dFw(v j x; z)

¸ min(»Lk (x; z); 0))[
Z vk+1

vk
d[(1 ¡ ©(v j k; x; z))Fw(v j x; z)] + Gk(x; z)]

Hence, using Fw(vk j x; z) ¸ Gk(x; z), we have

Ák(x; z) ¸ min(»Lk (x; z); 0)(Gk(x; z)¡Gk¡1(x; z)):

Therefore, using the de…nition of u¤(x; z) (B.5), we have:

¢¤
©(x; z) · u¤(x; z) · ¢¤

©(x; z) (B.10)

where ¢¤
©(x; z) and ¢¤

©(x; z) are de…ned in the text.
(Su¢ciency) We now prove that (ii) implies (i). Denote u¤(x; z) in [¢¤

©(x; z);¢
¤
©(x; z)]

such that
E(z0(x¯ ¡ ¹y)) = E(z0u¤(x; z))

We shall prove that there exists a distribution function of the random term " which agree
with parameter ¯ de…ned by such a moment condition when the distribution function of the
special regressor v is ©(v j k; x; z). As in the proof of Theorem 6, we proceed by construction
in three steps.

First, choose a sequence of functions Hk(x; z) such that H1 = 0, HK = 1; and for any k
in f1; :;K ¡ 1g such as:

Hk(x; z) · Gk(x; z) < Hk+1(x; z): (B.11)

and such as:
K¡1X

k=1

(vk+1 ¡ vk)»Lk (x; z)(Gk(x; z)¡Hk(x; z)) · u¤(x; z)

·
K¡1X

k=1

(vk+1 ¡ vk)»Uk (x; z)(Hk+1(x; z) ¡Gk(x; z))
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If »Lk (x; z) < 0 and »Uk (x; z) > 0, the closer u¤(x; z) is from the lower bound ¢¤
©(x; z), the

closer is Hk to Gk¡1, and the closer u¤(x; z) is from the upper bound ¢¤
©(x; z), the closer is

Hk to Gk.
Decompose now u¤(x; z) into Á¤k(x; z) such that:

u¤(x; z) =
K¡1X

k=1

(vk+1 ¡ vk)Á¤k(x; z)

and such that the bounbds on u¤ can be translated into:

»Lk (x; z)(Gk(x; z) ¡Hk(x; z)) · Á¤k(x; z) · »Uk (x; z)(Hk+1(x; z) ¡Gk(x; z)) (B.12)

There are many decompositions of this type. Choose one.
Second, consider · a discrete random variable which support is f1; :;K ¡ 1g; which is

independent of v¤ (a.e. Fx;z) and which conditional on (x; z) distribution is:

Pr(· = k j x; z) =Hk+1(x; z)¡Hk(x; z): (B.13)

Consider also K¡ 1 random variable ¸k which support is ]0; 1[; which are independent of v¤

(a.e. Fx;z) and which conditional (on (x; z)) expectation is:

E(¸k j x; z) = Hk+1(x; z) ¡Gk(x; z)¡ Á¤k(x; z)
Hk+1(x; z)¡Hk(x; z)

(B.14)

and such that:
Z 1

0
(©v(¸vk + (1¡ ¸)vk+1 j k; x; z) ¡ v¡ vk

vk+1 ¡ vk
)dF

ķ
(¸ j x; z) = Á¤k(x; z)

Hk+1(x; z) ¡Hk(x; z)

Given constraints (B.11) and (B.12), it is always possible to construct such a random variable.
Finally, de…ne the random variable:

w = (1¡ ¸)v· + ¸v·+1

By construction, the support of w is [v1; vK[ and w is independent of v¤ conditionally on
(x; z) because all ¸ks and · are. Hence, " = ¡(x¯ + w) satis…es (L:1) and (L:2):

Finish the proof as in Theorem 6.

B.3 Proof of Corollary 8
(Necessity) Let the conditional distribution of v , ©0, be piece-wise uniform by intervals,
v¤ = k. Then, for any k = 1; :;K ¡ 1, »Uk (x; z) = »

L
k (x; z) = 0. Using Theorem 7 yields that

¢¤
©(x; z) = ¢¤

©(x; z) = 0 and therefore u¤(x; z) = 0. Identi…cation of ¯ is exact and its value
is given by the moment condition (5).

(Su¢ciency) By contraposition; Assume that there exists k 2 f1; :;K¡ 1g; a measurable
set A included in [vk; vk+1[ with positive Lebesgue measure and a measurable setS of elements
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(x; z) with positive probability Fx;z(S) > 0 such that ©(v j k; x; z) is di¤erent from a uniform
distribution function on A for any (x; z) in S . Because © is absolutely continuous (ID(ii)),
and for the sake of simplicity assume that:

8v 2 A;8(x; z) 2 S ; ©(v j k; x; z) ¡ v¡ vk
vk+1 ¡ vk

> 0

Because »Uk (x; z) > 0; we can always construct a function u¤1(x; z) which is stricly positive on
S satisfying the conditions of Theorem 7. Thus E(z0u¤1(x; z)) 6= 0 and the moment condition
(5) can be used to construct parameter ¯1: It implies that the identi…cation set B contains
at least two di¤erent parameters ¯; i.e. the one corresponding to u¤(x; z) = 0 and the one
corresponding to u¤1(x; z) (and in fact the whole real line between them as B is convex).

Interpretation:
Consider a observable variable v0 drawn conditionally on v¤ in a uniform distribution in

[vk; vk+1[. Write an auxiliary model as:

y = 1fv0 + x¯ + "0 > 0g

where by construction:
"0 = " + v¡ v0:

Note …rst that v and v0 are independent conditional on (v¤; x; z). Second, that the auxiliary
model now is a binary model with a continuous special regressor. Third, that the discrete-
type transformation ¹y of the data is equal up to a constant term to the continuous-type
transformation of the data i.e.:

¹y =
vk+1 ¡ vk
pv¤ (x; z)

y ¡ vK =
y

fv0(v0; v¤; x; z)
¡ vK = ~y + cst

since by construction:

fv0(v0; v¤; x; z) =
pv¤ (x; z)
vk+1 ¡ vk

The method of Lewbel (2000) can be applied to the auxiliarymodel and data (y; v0; v¤; x; z)
to get consistent estimates of parameter ¯ if several conditions hold. We shall only check
the …rst of these conditions which is partial independence. What should hold is:

F ("0 j v0; v¤; x; z) = F ("0 j v¤; x; z)

For convenience, omit the conditioning on (v¤; x; z): Thus:

F ("0 j v0) = Pr(" + v¡ v0 · "0 j v0)
=

Z
f"(" j v0)fv("0 ¡ ("¡ v0) j v0)d"

As v0 is a random draw f"(" j v0) = f"(") and fv(v j v0) = fv(v), we have:

F ("0 j v0) =
Z
f"(")fv("0 ¡ ("¡ v0))d"
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The only dependence on v0 occurs through the density function of v and it is in the case of
a uniform distribution only that partial independence holds:

F ("0 j v0) = F ("0):
The other conditions should be checked and this is the large support one which “creates”
the bias in the intercept term.

B.4 Proof of Corollary 11

Same as Corollary 3 except that the maximisation of E(~xpu¤(x; z)) is obtained when:

u¤(x; z) = 1f exp · 0g¢¤(x; z) + 1f exp > 0g¢¤(x; z)

and the minimization of such an expression is obtained when:

u¤(x; z) = 1f exp > 0g¢¤(x; z) + 1f exp · 0g¢¤(x; z)

Furthermore, we have:

¹¢¤(x; z) =
K¡1X

k=1

[(vk+1 ¡ vk)(Gk+1(x; z) ¡Gk(x; z))]

= [(v2 ¡ v1)(G2(x; z) ¡G1(x; z) + (v3 ¡ v2)(G3(x; z)¡G2(x; z)) + :::
::+ (vK¡1 ¡ vK¡2)(GK¡1(x; z) ¡GK¡2(x; z)) + (vK ¡ vK¡1)(1¡GK¡1(x;z))]

= ¡(v2 ¡ v1)G1(x; z) +
K¡1X

k=2

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))Gk(x; z) + vK ¡ vK¡1

=
K¡1X

k=1

(vk ¡ vk¡1 ¡ (vk+1 ¡ vk))E(y j v = vk; x; z) + vK ¡ vK¡1

= E(
µU;k:y
pk(x; z)

j x; z) + vK ¡ vK¡1 = E(¹yU j x; z)

where by convention v0 = v1. Similarly:

¢¤(x; z) =
K¡1X

k=1

[(vk+1 ¡ vk)(Gk¡1(x; z) ¡Gk(x; z))]

= [¡(v2 ¡ v1)G1(x; z) + (v3 ¡ v2)(G1(x; z)¡G2(x; z)) + :::
::+ (vK¡1 ¡ vK¡2) :(GK¡3(x; z) ¡GK¡2(x; z)) + (vK ¡ vK¡1)(GK¡2(x; z) ¡GK¡1(x; z))]

=
K¡2X

k=1

(vk+2 ¡ vk+1 ¡ (vk+1 ¡ vk))Gk(x; z) ¡ (vK ¡ vK¡1)GK¡1(x; z)

=
K¡1X

k=1

(vk+2 ¡ vk+1 ¡ (vk+1 ¡ vk))E(y j v = vk; x; z)

= E(
µL;k:y
pk(x; z)

j x; z) = E(¹yL j x; z)

if the convention vK+1 = vK is adopted.
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Figure 1: A graphical argument for set-identi…cation
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Table 1: Simple experiment: Sensitivity to Bandwidth

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Bwidth LB SE UB SE LB SE UB SE
100 1.0 0.40 0.53 1.26 0.54 -0.42 0.58 0.37 0.59
100 1.5 0.21 0.42 1.07 0.43 -0.39 0.49 0.38 0.50
100 3.0 0.02 0.33 0.88 0.33 -0.39 0.40 0.34 0.41
100 5.0 -0.02 0.35 0.84 0.35 -0.40 0.41 0.32 0.41
200 1.0 0.11 0.25 0.97 0.25 -0.28 0.33 0.46 0.34
200 1.5 -0.06 0.22 0.79 0.22 -0.32 0.27 0.41 0.27
200 3.0 -0.23 0.18 0.63 0.18 -0.36 0.24 0.35 0.24
200 5.0 -0.26 0.19 0.60 0.19 -0.38 0.26 0.32 0.26
500 1.0 -0.22 0.12 0.63 0.12 -0.31 0.16 0.40 0.16
500 1.5 -0.31 0.12 0.54 0.12 -0.35 0.14 0.36 0.14
500 3.0 -0.38 0.11 0.47 0.11 -0.39 0.14 0.31 0.14
500 5.0 -0.40 0.11 0.45 0.11 -0.40 0.15 0.30 0.15
1000 1.0 -0.34 0.08 0.51 0.08 -0.35 0.10 0.36 0.10
1000 1.5 -0.39 0.08 0.46 0.08 -0.37 0.09 0.33 0.09
1000 3.0 -0.43 0.07 0.43 0.07 -0.41 0.10 0.29 0.10
1000 5.0 -0.44 0.07 0.42 0.07 -0.41 0.11 0.29 0.11

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Bwidth Dec AL ASE RMSEI Dec AL ASE RMSEI
100 1.0 0.83 0.25 0.53 1.02 -0.02 0.23 0.59 0.63
100 1.5 0.64 0.25 0.43 0.81 -0.01 0.22 0.50 0.54
100 3.0 0.45 0.25 0.33 0.61 -0.03 0.21 0.41 0.46
100 5.0 0.41 0.25 0.35 0.59 -0.04 0.21 0.41 0.46
200 1.0 0.54 0.25 0.25 0.65 0.09 0.22 0.34 0.41
200 1.5 0.36 0.25 0.22 0.49 0.04 0.21 0.27 0.34
200 3.0 0.20 0.25 0.18 0.37 -0.01 0.20 0.24 0.31
200 5.0 0.17 0.25 0.19 0.35 -0.03 0.20 0.26 0.33
500 1.0 0.20 0.25 0.12 0.34 0.04 0.21 0.16 0.26
500 1.5 0.12 0.25 0.12 0.30 0.01 0.20 0.14 0.25
500 3.0 0.04 0.25 0.11 0.27 -0.04 0.20 0.14 0.25
500 5.0 0.03 0.25 0.11 0.27 -0.05 0.20 0.15 0.26
1000 1.0 0.08 0.25 0.08 0.27 0.00 0.20 0.09 0.23
1000 1.5 0.04 0.25 0.08 0.26 -0.02 0.20 0.09 0.22
1000 3.0 -0.00 0.25 0.07 0.26 -0.06 0.20 0.10 0.23
1000 5.0 -0.01 0.25 0.07 0.26 -0.06 0.20 0.11 0.24

Notes: The number of discrete values is equal to 10. The simple experiment refers to the case where ® = ½ = 0.
All details are reported in the text. Experimental results are based on 1000 replications. LB and UB refer to the
estimated lower and upper bounds of intervals with their standard errors (SE). Bwidth refers to the constant
bandwidth that is used. Dec stands for decentering of the mid-point of the interval that is, (UB+LB)/2. AL is
the adjusted length of the interval, (UB-LB)/2

p
3. ASE is the sampling variability of bounds as de…ned in the

text. The identity Dec2 +AL2 +ASE2 = RMSEI2; is shown in the text. RMSEI is the root mean square.error
integrated over the identi…cation set.
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Table 2: Sensitivity to Normality

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Alpha LB SE UB SE LB SE UB SE
100 0.00 0.02 0.33 0.88 0.33 -0.39 0.40 0.34 0.41
100 0.33 -0.06 0.35 0.81 0.35 -0.29 0.41 0.44 0.42
100 0.67 -0.17 0.35 0.72 0.35 -0.24 0.44 0.52 0.44
100 1.00 -0.34 0.36 0.60 0.36 -0.19 0.44 0.60 0.45
200 0.00 -0.23 0.18 0.63 0.18 -0.36 0.24 0.35 0.24
200 0.33 -0.31 0.20 0.56 0.20 -0.31 0.24 0.41 0.25
200 0.67 -0.42 0.20 0.47 0.20 -0.27 0.24 0.46 0.25
200 1.00 -0.59 0.20 0.36 0.20 -0.25 0.25 0.52 0.25
500 0.00 -0.38 0.11 0.47 0.11 -0.39 0.14 0.31 0.14
500 0.33 -0.45 0.11 0.41 0.11 -0.33 0.14 0.38 0.14
500 0.67 -0.57 0.11 0.33 0.11 -0.29 0.14 0.44 0.15
500 1.00 -0.73 0.11 0.21 0.11 -0.28 0.15 0.49 0.15
1000 0.00 -0.43 0.07 0.43 0.07 -0.41 0.10 0.29 0.10
1000 0.33 -0.50 0.07 0.37 0.07 -0.35 0.09 0.36 0.10
1000 0.67 -0.61 0.08 0.28 0.08 -0.32 0.10 0.41 0.10
1000 1.00 -0.77 0.08 0.17 0.08 -0.29 0.10 0.47 0.11

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Alpha Dec AL ASE RMSEI Dec AL ASE RMSEI
100 0.00 0.45 0.25 0.33 0.61 -0.03 0.21 0.41 0.46
100 0.33 0.37 0.25 0.35 0.57 0.07 0.21 0.41 0.47
100 0.67 0.27 0.26 0.35 0.51 0.14 0.22 0.44 0.51
100 1.00 0.13 0.27 0.36 0.47 0.20 0.23 0.44 0.54
200 0.00 0.20 0.25 0.18 0.37 -0.01 0.20 0.24 0.31
200 0.33 0.12 0.25 0.20 0.34 0.05 0.21 0.25 0.32
200 0.67 0.02 0.26 0.20 0.33 0.10 0.21 0.25 0.34
200 1.00 -0.12 0.27 0.20 0.35 0.14 0.22 0.25 0.36
500 0.00 0.04 0.25 0.11 0.27 -0.04 0.20 0.14 0.25
500 0.33 -0.02 0.25 0.11 0.27 0.02 0.20 0.14 0.25
500 0.67 -0.12 0.26 0.11 0.31 0.07 0.21 0.14 0.26
500 1.00 -0.26 0.27 0.11 0.39 0.11 0.22 0.15 0.29
1000 0.00 -0.00 0.25 0.07 0.26 -0.06 0.20 0.10 0.23
1000 0.33 -0.07 0.25 0.07 0.27 0.00 0.20 0.10 0.23
1000 0.67 -0.17 0.26 0.08 0.32 0.05 0.21 0.10 0.24
1000 1.00 -0.30 0.27 0.08 0.41 0.09 0.22 0.11 0.26

Notes: See Table 1 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Alpha column refers
to the increasing amount of non-normaliity.
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Table 3: Sensitivity to Endogeneity

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Rho LB SE UB SE LB SE UB SE
100 0.00 0.02 0.33 0.88 0.33 -0.39 0.40 0.34 0.41
100 0.33 -0.31 0.55 0.54 0.55 -0.63 0.57 0.34 0.59
100 0.67 -0.32 0.55 0.53 0.55 -0.65 0.57 0.33 0.59
100 1.00 -0.34 0.54 0.52 0.54 -0.67 0.56 0.31 0.57
200 0.00 -0.23 0.18 0.63 0.18 -0.36 0.24 0.35 0.24
200 0.33 -0.12 0.24 0.73 0.24 -0.49 0.30 0.33 0.30
200 0.67 -0.13 0.24 0.72 0.24 -0.50 0.30 0.33 0.30
200 1.00 -0.14 0.24 0.71 0.24 -0.51 0.30 0.32 0.30
500 0.00 -0.38 0.11 0.47 0.11 -0.39 0.14 0.31 0.14
500 0.33 -0.35 0.11 0.50 0.11 -0.42 0.14 0.33 0.14
500 0.67 -0.36 0.11 0.50 0.11 -0.43 0.14 0.33 0.14
500 1.00 -0.37 0.11 0.49 0.11 -0.44 0.14 0.33 0.14
1000 0.00 -0.43 0.07 0.43 0.07 -0.41 0.10 0.29 0.10
1000 0.33 -0.43 0.07 0.43 0.07 -0.43 0.09 0.31 0.09
1000 0.67 -0.43 0.07 0.42 0.07 -0.44 0.09 0.31 0.09
1000 1.00 -0.44 0.08 0.42 0.08 -0.44 0.10 0.30 0.10

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Rho Dec AL ASE RMSEI Dec AL ASE RMSEI
100 0.00 0.45 0.25 0.33 0.61 -0.03 0.21 0.41 0.46
100 0.33 0.12 0.25 0.55 0.61 -0.15 0.28 0.58 0.66
100 0.67 0.10 0.25 0.55 0.61 -0.16 0.28 0.58 0.66
100 1.00 0.09 0.25 0.54 0.60 -0.18 0.28 0.57 0.66
200 0.00 0.20 0.25 0.18 0.37 -0.01 0.20 0.24 0.31
200 0.33 0.30 0.25 0.24 0.46 -0.08 0.24 0.30 0.39
200 0.67 0.30 0.25 0.24 0.45 -0.09 0.24 0.30 0.39
200 1.00 0.29 0.25 0.24 0.45 -0.10 0.24 0.30 0.40
500 0.00 0.04 0.25 0.11 0.27 -0.04 0.20 0.14 0.25
500 0.33 0.07 0.25 0.11 0.28 -0.05 0.22 0.14 0.26
500 0.67 0.07 0.25 0.11 0.28 -0.05 0.22 0.14 0.26
500 1.00 0.06 0.25 0.11 0.28 -0.06 0.22 0.14 0.27
1000 0.00 -0.00 0.25 0.07 0.26 -0.06 0.20 0.10 0.23
1000 0.33 0.00 0.25 0.07 0.26 -0.06 0.21 0.09 0.24
1000 0.67 -0.00 0.25 0.07 0.26 -0.07 0.22 0.09 0.24
1000 1.00 -0.01 0.25 0.08 0.26 -0.07 0.22 0.10 0.25

Notes: See Table 1 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Rho column refers to
the increasing amount of endogeneity.
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Table 4: Sensitivity to the Number of Discrete Points

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Points LB SE UB SE LB SE UB SE
100 5 -0.87 0.31 1.05 0.31 -0.83 0.36 0.77 0.36
100 10 0.02 0.33 0.88 0.33 -0.39 0.40 0.34 0.41
100 20 -0.05 0.56 0.36 0.55 -0.25 0.48 0.13 0.49
100 40 -1.23 0.59 -0.97 0.55 -0.40 0.51 -0.13 0.53
200 5 -0.94 0.19 0.98 0.19 -0.83 0.23 0.76 0.23
200 10 -0.23 0.18 0.63 0.18 -0.36 0.24 0.35 0.24
200 20 0.16 0.32 0.57 0.32 -0.19 0.32 0.15 0.33
200 40 -0.20 0.40 0.00 0.40 -0.18 0.35 0.01 0.35
500 5 -0.98 0.11 0.94 0.11 -0.85 0.13 0.72 0.13
500 10 -0.38 0.11 0.47 0.11 -0.39 0.14 0.31 0.14
500 20 0.00 0.12 0.41 0.12 -0.18 0.17 0.15 0.17
500 40 0.22 0.20 0.41 0.20 -0.09 0.22 0.08 0.22
1000 5 -1.00 0.08 0.92 0.08 -0.87 0.09 0.71 0.09
1000 10 -0.43 0.07 0.43 0.07 -0.41 0.10 0.29 0.10
1000 20 -0.13 0.07 0.28 0.07 -0.20 0.10 0.13 0.11
1000 40 0.13 0.09 0.33 0.09 -0.10 0.13 0.07 0.13

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Points Dec AL ASE RMSEI Dec AL ASE RMSEI
100 5 0.09 0.55 0.31 0.64 -0.03 0.46 0.36 0.59
100 10 0.45 0.25 0.33 0.61 -0.03 0.21 0.41 0.46
100 20 0.16 0.12 0.55 0.59 -0.06 0.11 0.48 0.50
100 40 -1.10 0.08 0.55 1.23 -0.27 0.08 0.50 0.58
200 5 0.02 0.55 0.19 0.59 -0.03 0.46 0.23 0.51
200 10 0.20 0.25 0.18 0.37 -0.01 0.20 0.24 0.31
200 20 0.36 0.12 0.32 0.50 -0.02 0.10 0.32 0.34
200 40 -0.10 0.06 0.40 0.42 -0.09 0.05 0.35 0.36
500 5 -0.02 0.55 0.11 0.57 -0.06 0.46 0.13 0.48
500 10 0.04 0.25 0.11 0.27 -0.04 0.20 0.14 0.25
500 20 0.20 0.12 0.12 0.26 -0.01 0.10 0.17 0.19
500 40 0.32 0.06 0.20 0.38 -0.01 0.05 0.22 0.22
1000 5 -0.04 0.55 0.08 0.56 -0.08 0.45 0.09 0.47
1000 10 -0.00 0.25 0.07 0.26 -0.06 0.20 0.10 0.23
1000 20 0.07 0.12 0.07 0.16 -0.04 0.10 0.10 0.15
1000 40 0.23 0.06 0.09 0.25 -0.02 0.05 0.13 0.14

Notes: See Table 1 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Discrete column
refers to the number of points in the support of v.
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Table 5: Simple experiment, Interval Data: Sensitivity to Bandwidth

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Bwidth LB SE UB SE LB SE UB SE
100 1.000 -0.133 0.384 1.240 0.449 -0.652 0.516 0.571 0 .507

1.500 -0.290 0.314 1.110 0.369 -0.677 0.433 0.541 0 .430
3.000 -0.447 0.248 0.941 0.316 -0.663 0.356 0.505 0 .340
5.000 -0.480 0.245 0.845 0.361 -0.646 0.355 0.466 0 .343

200 1.000 -0.383 0.194 1.099 0.233 -0.643 0.283 0.657 0 .280
1.500 -0.512 0.169 0.948 0.187 -0.674 0.243 0.596 0 .234
3.000 -0.634 0.147 0.793 0.150 -0.708 0.212 0.506 0 .200
5.000 -0.663 0.145 0.756 0.140 -0.726 0.220 0.475 0 .208

500 1.000 -0.616 0.095 0.809 0.099 -0.672 0.131 0.566 0 .126
1.500 -0.678 0.088 0.728 0.087 -0.692 0.118 0.516 0 .108
3.000 -0.731 0.084 0.656 0.081 -0.719 0.118 0.460 0 .107
5.000 -0.742 0.084 0.641 0.080 -0.725 0.124 0.448 0 .117

1000 1.000 -0.702 0.061 0.691 0.059 -0.690 0.078 0.503 0.076
1.500 -0.735 0.059 0.647 0.056 -0.706 0.072 0.468 0.070
3.000 -0.762 0.058 0.610 0.055 -0.725 0.079 0.433 0.075
5.000 -0.767 0.058 0.604 0.054 -0.729 0.084 0.426 0.082

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Bwidth Dec AL ASE RMSEI Dec AL ASE RMSEI
100 1.000 0.554 0.396 0.398 0.789 -0.041 0.353 0.491 0. 606

1.500 0.410 0.404 0.325 0.661 -0.068 0.352 0.411 0. 545
3.000 0.247 0.401 0.266 0.541 -0.079 0.337 0.327 0. 476
5.000 0.182 0.383 0.281 0.508 -0.090 0.321 0.322 0. 464

200 1.000 0.358 0.428 0.204 0.594 0.007 0.375 0.267 0.4 61
1.500 0.218 0.422 0.172 0.505 -0.039 0.367 0.225 0. 432
3.000 0.079 0.412 0.144 0.444 -0.101 0.350 0.191 0. 412
5.000 0.046 0.410 0.140 0.435 -0.126 0.347 0.202 0. 420

500 1.000 0.096 0.411 0.094 0.433 -0.053 0.357 0.122 0. 381
1.500 0.025 0.406 0.085 0.415 -0.088 0.349 0.106 0. 375
3.000 -0.038 0.400 0.080 0.410 -0.129 0.340 0.104 0 .378
5.000 -0.050 0.399 0.080 0.410 -0.138 0.338 0.113 0 .383

1000 1.000 -0.006 0.402 0.059 0.406 -0.094 0.345 0.073 0.364
1.500 -0.044 0.399 0.056 0.405 -0.119 0.339 0.067 0.365
3.000 -0.076 0.396 0.055 0.407 -0.146 0.334 0.071 0.372
5.000 -0.082 0.396 0.055 0.408 -0.151 0.334 0.078 0.374

Notes: The number of interval values is equal to 10. The simple experiment refers to the case where ® = ½ = 0.
All details are reported in the text. Experimental results are based on 1000 replications. LB and UB refer to the
estimated lower and upper bounds of intervals with their standard errors (SE). Bwidth refers to the constant
bandwidth that is used. Dec stands for decentering of the mid-point of the interval that is, (UB+LB)/2. AL is the
adjusted length of the interval, (UB-LB)/2

p
3. ASE is the sampling variability of bounds as de…ned in the text.

The identity Dec2 + AL2 + ASE2 = RMSEI2 is shown in the text. is shown in the text. RMSEI is the root mean
square.error integrated over the identi…cation set.
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Table 6: Sensitivity to Normality, Interval Data

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Alpha LB SE UB SE LB SE UB SE
100 0.000 -0.641 0.244 0.916 0.203 -0.820 0.502 0.605 0 .314
100 0.333 -0.674 0.232 0.602 0.306 -0.697 0.285 0.351 0 .238
100 0.667 -0.659 0.165 0.563 0.352 -0.403 0.351 0.569 0 .337
100 1.000 -0.673 0.238 0.758 0.306 -0.136 0.483 1.077 0 .332
200 0.000 -0.666 0.120 0.805 0.084 -0.695 0.162 0.582 0 .152
200 0.333 -0.720 0.087 0.799 0.104 -0.639 0.199 0.664 0 .131
200 0.667 -0.688 0.184 0.800 0.212 -0.502 0.194 0.730 0 .153
200 1.000 -0.797 0.183 0.776 0.264 -0.160 0.165 1.106 0 .161
500 0.000 -0.714 0.032 0.660 0.098 -0.728 0.133 0.460 0 .139
500 0.333 -0.819 0.084 0.618 0.083 -0.650 0.134 0.614 0 .087
500 0.667 -0.864 0.094 0.634 0.106 -0.552 0.066 0.747 0 .096
500 1.000 -0.891 0.097 0.663 0.093 -0.486 0.165 0.889 0 .162
1000 0.000 -0.790 0.039 0.598 0.032 -0.742 0.087 0.460 0.070
1000 0.333 -0.816 0.033 0.602 0.047 -0.635 0.088 0.590 0.056
1000 0.667 -0.844 0.064 0.606 0.049 -0.484 0.086 0.771 0.071
1000 1.000 -0.937 0.042 0.597 0.039 -0.430 0.102 0.941 0.097

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Alpha Dec AL ASE RMSEI Dec AL ASE RMSEI
100 0 0.137 0.449 0.220 0.519 -0.107 0.411 0.401 0. 584
100 0.33 -0.036 0.368 0.243 0.443 -0.173 0.302 0.246 0 .427
100 0.66 -0.048 0.353 0.219 0.418 0.083 0.281 0.328 0. 440
100 1 0.043 0.413 0.238 0.479 0.470 0.350 0.404 0.7 12
200 0 0.069 0.424 0.100 0.442 -0.057 0.369 0.130 0. 395
200 0.33 0.039 0.438 0.094 0.450 0.013 0.376 0.164 0.4 11
200 0.66 0.056 0.429 0.196 0.475 0.114 0.356 0.160 0.4 07
200 1 -0.011 0.454 0.223 0.506 0.473 0.365 0.161 0. 619
500 0 -0.027 0.397 0.067 0.403 -0.134 0.343 0.130 0 .391
500 0.33 -0.100 0.415 0.083 0.435 -0.018 0.365 0.110 0 .381
500 0.66 -0.115 0.433 0.100 0.459 0.098 0.375 0.081 0. 396
500 1 -0.114 0.448 0.094 0.472 0.202 0.397 0.163 0. 474
1000 0 -0.096 0.401 0.036 0.414 -0.141 0.347 0.077 0.383
1000 0.33 -0.107 0.409 0.040 0.425 -0.022 0.354 0.071 0.361
1000 0.66 -0.119 0.419 0.056 0.439 0.144 0.362 0.078 0 .398
1000 1 -0.170 0.443 0.039 0.476 0.255 0.396 0.098 0 .481

Notes: See Table 5 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Alpha column refers
to the increasing amount of non-normality.
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Table 7: Sensitivity to Endogeneity, Interval Data

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Rho LB SE UB SE L B SE UB SE
100 0.000 -0.447 0.248 0.941 0.316 -0.663 0.356 0.505 0 .340
100 0.333 -0.589 0.441 0.245 0.484 -0.600 0.516 0.362 0 .522
100 0.667 -0.602 0.434 0.235 0.479 -0.626 0.515 0.343 0 .522
100 1.000 -0.625 0.429 0.214 0.475 -0.659 0.513 0.315 0 .515
200 0.000 -0.634 0.147 0.793 0.150 -0.708 0.212 0.506 0 .200
200 0.333 -0.583 0.168 0.649 0.254 -0.684 0.274 0.461 0 .265
200 0.667 -0.592 0.168 0.640 0.250 -0.697 0.279 0.453 0 .268
200 1.000 -0.604 0.168 0.630 0.248 -0.714 0.281 0.442 0 .268
500 0.000 -0.731 0.084 0.656 0.081 -0.719 0.118 0.460 0 .107
500 0.333 -0.726 0.085 0.657 0.085 -0.757 0.125 0.501 0 .120
500 0.667 -0.734 0.086 0.648 0.085 -0.768 0.125 0.494 0 .118
500 1.000 -0.744 0.086 0.635 0.086 -0.782 0.127 0.482 0 .118
1000 0.000 -0.762 0.058 0.610 0.055 -0.725 0.079 0.433 0.075
1000 0.333 -0.762 0.058 0.610 0.055 -0.764 0.081 0.467 0.077
1000 0.667 -0.769 0.059 0.601 0.056 -0.774 0.082 0.461 0.078
1000 1.000 -0.781 0.059 0.589 0.056 -0.790 0.083 0.451 0.078

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Rho Dec AL ASE RMSEI Dec AL ASE RMSEI
100 0.000 0.247 0.401 0.266 0.541 -0.079 0.337 0.327 0. 476
100 0.333 -0.172 0.241 0.448 0.537 -0.119 0.278 0.501 0 .585
100 0.667 -0.183 0.242 0.442 0.536 -0.141 0.280 0.500 0 .590
100 1.000 -0.205 0.242 0.437 0.540 -0.172 0.281 0.495 0 .594
200 0.000 0.079 0.412 0.144 0.444 -0.101 0.350 0.191 0. 412
200 0.333 0.033 0.356 0.193 0.406 -0.112 0.331 0.249 0. 429
200 0.667 0.024 0.355 0.190 0.404 -0.122 0.332 0.253 0. 435
200 1.000 0.013 0.356 0.190 0.404 -0.136 0.334 0.254 0. 441
500 0.000 -0.038 0.400 0.080 0.410 -0.129 0.340 0.104 0 .378
500 0.333 -0.034 0.399 0.083 0.409 -0.128 0.363 0.113 0 .401
500 0.667 -0.043 0.399 0.083 0.410 -0.137 0.364 0.113 0 .405
500 1.000 -0.055 0.398 0.083 0.410 -0.150 0.365 0.113 0 .410
1000 0.000 -0.076 0.396 0.055 0.407 -0.146 0.334 0.071 0.372
1000 0.333 -0.076 0.396 0.055 0.407 -0.148 0.356 0.073 0.392
1000 0.667 -0.084 0.395 0.056 0.408 -0.157 0.356 0.074 0.396
1000 1.000 -0.096 0.396 0.056 0.411 -0.170 0.358 0.075 0.403

Notes: See Table 5 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Rho column refers to
the increasing amount of endogeneity.
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Table 8: Sensitivity to the Number of Intervals, Interval Data

Lower and upper estimated bounds with standard errors
Intercept Variable

Nobs Intervals LB SE UB SE LB SE UB SE
100 5 -1.104 0.195 0.998 0.177 -1.150 0.274 0.710 0 .242
100 20 -0.166 0.508 0.299 0.527 -0.278 0.456 0.133 0.449
100 40 -1.090 0.542 -0.843 0.518 -0.360 0.486 -0.114 0.502
100 80 -2.153 0.551 -2.020 0.525 -0.533 0.533 -0.379 0.565
200 5 -1.173 0.129 0.901 0.114 -1.140 0.178 0.676 0 .155
200 20 0.025 0.252 0.640 0.305 -0.290 0.307 0.209 0 .311
200 40 -0.148 0.378 0.074 0.371 -0.147 0.332 0.054 0.329
200 80 -1.198 0.387 -1.078 0.384 -0.300 0.331 -0.177 0.335
500 5 -1.206 0.078 0.847 0.065 -1.138 0.109 0.643 0 .089
500 20 -0.203 0.100 0.530 0.110 -0.351 0.150 0.258 0.149
500 40 0.157 0.164 0.484 0.191 -0.142 0.210 0.117 0 .206
500 80 0.003 0.246 0.124 0.248 -0.066 0.213 0.036 0 .215
1000 5 -1.215 0.054 0.831 0.045 -1.139 0.076 0.629 0.064
1000 20 -0.315 0.062 0.401 0.064 -0.370 0.095 0.225 0.091
1000 40 0.013 0.077 0.398 0.084 -0.187 0.124 0.125 0.122
1000 80 0.225 0.133 0.385 0.142 -0.074 0.151 0.052 0.151

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Discrete Dec AL ASE RMSEI Dec AL ASE RMSEI
100 5.000 -0.053 0.607 0.174 0.633 -0.220 0.537 0.225 0 .622
100 20.000 0.066 0.134 0.506 0.528 -0.073 0.119 0.443 0 .464
100 40.000 -0.967 0.071 0.511 1.096 -0.237 0.071 0.475 0.536
100 80.000 -2.087 0.038 0.499 2.146 -0.456 0.044 0.504 0.681
200 5.000 -0.136 0.599 0.115 0.625 -0.232 0.524 0.146 0 .592
200 20.000 0.333 0.177 0.269 0.463 -0.041 0.144 0.301 0 .336
200 40.000 -0.037 0.064 0.368 0.375 -0.047 0.058 0.325 0.333
200 80.000 -1.138 0.035 0.373 1.198 -0.239 0.035 0.320 0.401
500 5.000 -0.179 0.593 0.068 0.623 -0.247 0.514 0.087 0 .577
500 20.000 0.164 0.212 0.103 0.286 -0.047 0.176 0.143 0 .231
500 40.000 0.320 0.095 0.174 0.376 -0.012 0.075 0.205 0 .219
500 80.000 0.063 0.035 0.245 0.255 -0.015 0.029 0.212 0 .215
1000 5.000 -0.192 0.591 0.047 0.623 -0.255 0.511 0.061 0.574
1000 20.000 0.043 0.207 0.062 0.220 -0.073 0.172 0.090 0.207
1000 40.000 0.205 0.111 0.079 0.247 -0.031 0.090 0.121 0.154
1000 80.000 0.305 0.046 0.136 0.337 -0.011 0.036 0.150 0.155

Notes: See Table 5 for main comments. Speci…cs are: The bandwidth is equal to 3.0. The Intervals column
refers to the number of intervals.of v.
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