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Abstract

The problem of building bootstrap confidence intervals for small probabilities
with count data is considered. The true probability distribution generating the in-
dependent observations is supposed to be a mixture of a given family of power series
distributions. The mixing distribution is estimated by nonparametric maximum like-
lihood and the corresponding mixture is used for resampling. We build percentile−t
and Efron percentile bootstrap confidence intervals for the probabilities and we prove
their consistency in probability. The theoretical results are supported by simulation
experiments for Poisson and Geometric mixtures. We compare percentile−t and
Efron percentile bootstrap intervals with other eight bootstrap or asymptotic theory
based intervals. It appears that Efron percentile bootstrap interval outperforms the
competitors in terms of coverage probability and length.

Key words: percentile−t confidence intervals, Efron percentile confidence inter-
vals, mixture models, power series distributions, nonparametric maximum likelihood,
asymptotic normality

MSC 2000: 62G15, 62G09, 62G20

Résumé

Nous voulons construire des intervalles de confiance pour les probabilités d’une
variable aléatoire discrète. La vraie loi marginale des observations iid est un mélange
infini de lois discrètes appartenant à une famille définie par une série de puissances.
La mesure de probabilité mélangeante est estimée par le maximum de vraisemblance
nonparamétrique. Le mélange donné par cet estimateur est utilisé comme distribution
de rééchantillonnage. Nous utilisons les échantillons bootstrap pour construire des
intervalles de confiance par les méthodes t−percentile et percentile d’Efron. Nous
prouvons la validité asymptotique de ces intervalles. Nos résultats sont illustrés par
des simulations.

Mots clefs: Intervalles de confiance, bootstrap, maximum de vraisemblance non-
parametrique, mélanges de lois discrètes.



1 Introduction

In certain circumstances, researchers face the problem of reliably estimating and/or build-
ing confidence intervals for small probabilities using count data. In many cases the available
data are either too few to allow for asymptotic arguments or they need to be smoothed in
order to be practical. For example, when examining the seismicity of an area, reliable data
exist only for the last years. If the interest focuses on seismic events above a certain scale,
only very few observations are available. Volcanic eruptions are also rare events with few
data. In insurance, interest lies in identifying customers with high number of accidents
but usually they represent very few observations. Moreover, insuring rare events like ship
salvages is very difficult due to the small number of previous events.

The empirical proportion as an estimate of the event probability is satisfactory only if
the event is observed sufficiently many times and it completely useless if the event does
not occurred yet. Therefore, in the examples we mentioned above, smoother estimates are
needed in order to produce reliable results. Such estimates can be obtained from mixture
models for count data. Here, we consider a broad class of mixtures of discrete distributions
which allows a flexible modelling of the count distribution. (See, e.g., Lindsay (1995) for a
list of applications of mixture models to count data.)

In this paper we focus on confidence intervals for small probabilities in count data.
Such intervals can be derived from the asymptotic behavior of the estimates. When the
asymptotic approximation of the law of the statistics used for building confidence intervals
is poor, the bootstrap represents a remedy. If the model is trustful, bootstrap procedures
that take into account the model considered represent appealing alternatives to the usual
nonparametric bootstrap based on the empirical distribution [see Efron (1987)]. Such
model based bootstrap, usually called parametric bootstrap, is even more valuable if the
underlying model impose only mild restrictions on the distribution of the observations.
Here, we propose resampling from the estimated count distribution in a nonparametric
mixture model.

Let us introduce the problem in a more strict mathematical formulation. Consider
that the observations are independent copies of a discrete random variable X distributed
according to πQ0 =

∫
Θ

πθ Q0(dθ), a mixture of a given family {πθ; θ ∈ Θ} of power series
distributions (also called linear exponential distributions) with unknown mixing distribu-
tion Q0. We are interested in building confidence intervals for the probabilities

πQ0,J =
∑

k∈J

πQ0,k = P [X ∈ J ],

where J is any finite subset of the support of the observations and πQ0,k = P (X = k). In
particular, we are interested in intervals with good performances for quantities involving
small probabilities πQ0,J or 1− πQ0,J .

As mentioned above, the individual probabilities P (X = k) or tail probabilities like
P (X ≥ k) appear in many statistical applications in seismology, biology, insurance, mar-
keting, etc. Sometimes, the interest focuses on certain transformations of the individual
probabilities. For instance, in non-life insurance the bonus malus rating involves the quan-
tity P (X = k)/P (X = k + 1), where X is the number of claims of a policy holder [see
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Walhin and Paris (1999)]. In engineering, one may be interested to estimate the hazard
function λ(k) = P (X = k)/P (X ≥ k) for an equipment that operates on demand, where
X is the number of demands successfully completed.

For estimating Q0 we consider the nonparametric maximum likelihood approach which
is appropriate for situations where only little information about the true mixing distribution
is available. Moreover, this adds flexibility in the resulting mixture model. For example,
Poisson mixtures are very popular models to capture heterogeneity with respect to the
simplistic Poisson model. Using the nonparametric estimate of the mixing distribution
we allow for a rich family of count distributions instead of restricting our attention to
particular families (such as the negative binomial distribution, perhaps the most famous
member of the family of Poisson mixtures).

Let Q̂ and π̂ = πQ̂ denote the nonparametric maximum likelihood estimator (NPMLE)
of Q0 and the corresponding mixture, respectively. Lambert and Tierney (1984) and Patilea
(2002) showed that for power series distribution mixture models,

√
n

π̂J − πQ0,J√
π̂J(1− π̂J)

=
√

n
pn,J − πQ0,J√
pn,J(1− pn,J)

+ oP (1), (1.1)

where n is the sample size, pn,J denotes the empirical proportion of observations in J and
π̂J is the estimate of πQ0,J yielded by the NPMLE of Q0. From this result and a classical
central limit theorem one can derive a confidence interval for πQ0,J .

As an alternative to the confidence interval based on the asymptotic behavior of π̂J

we consider bootstrap confidence intervals. The following resampling scheme has been
used several times in the literature: given the observed data, draw samples of the same
size from the mixture π̂ estimated by NPMLE and use these samples for inference [e.g.,
Laird and Louis (1987), Böhning (1999) and Mao and Lindsay (2002)]. Herein, we compute
bootstrap estimates π̂ ∗

J and we use them to obtain an approximation for the law of
√

n(π̂J−
πQ0,J)/σ (π̂J) with σ2 (π̂J) = π̂J(1− π̂J). Next, we deduce percentile−t confidence intervals
for πQ0,J . This approach is equivalent to a type of Empirical Bayes confidence intervals
proposed by Laird and Louis (1987) [for a refinement see also Carlin and Gelfand (1991)].
A second idea we analyze is to build bootstrap percentile confidence intervals defined as
[ζ̂α/2, ζ̂1−α/2], where ζ̂α is the α−quantile of π̂ ∗

J [Efron (1982)]. Let us call these intervals
Efron percentile confidence intervals.

In this paper we prove the consistency in probability of such infinite-dimensional para-
metric bootstrap confidence intervals in power series distributions mixture models. When
the parameter of the model is of infinite dimension, as it is the case for our models where
Q0 is estimated nonparametrically, proving consistency for the parametric bootstrap inter-
vals become a delicate task. (See, e.g., Putter and van Zwet (1996), Beran (1997) for some
consistency results.) Our strategy is to obtain an identity similar to (1.1) in the bootstrap
world.

Here, we focus on mixtures of distributions with infinite support. When the observations
have a finite support (e.g., binomial mixture models) the identity (1.1) holds for any subset
J only if the true mixture is in the interior of the set of all mixtures [see Patilea (2002)]. In
this case, almost surely, the NPMLE based mixture π̂ is equal to the empirical distribution
provided that the sample size is sufficiently large. Therefore, results on consistency of the
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nonparametric bootstrap of the mean can be directly applied.
Definitions and results for mixtures of power series distributions are recalled in section

2. Moreover, we prove the almost sure convergence of the NPMLE in the case of triangu-
lar arrays. The consistency of the percentile−t and Efron percentile bootstrap confidence
intervals is obtained in section 3. In section 4 we present empirical results on the per-
formances (expressed in terms of coverage probability and length) of percentile−t, Efron
percentile and other eight types of intervals in Poisson and Geometric mixtures. In view
of simulation output we recommend the Efron percentile method. The empirical results
indicate that, at least for some probabilities P (X ∈ J), consistency of bootstrap intervals
holds also for discrete mixing distributions, a case that is not covered by the theoretical
results. Finally, we build confidence intervals for probabilities and tail probabilities using
earthquakes data. Concluding remarks can be found in section 5.

2 Mixtures of power series distributions

Consider ak ≥ 0, k = 0, 1, ..., and define the power series a(θ) =
∑

k≥0 akθ
k. Denote by

R the radius of convergence of the series and set Θ = [0, R). Moreover, define the set
K = {k ≥ 0; ak > 0}. Let {πθ,k}k∈K, θ ∈ Θ, with

πθ,k = akθ
ka(θ)−1,

be a family of power series distributions (PSD) with support K. Here, we consider the case
where the support K is an infinite set of nonnegative integers. Some common examples
of PSD with infinite support are Poisson [a(θ) = exp(θ), R = ∞], zero-truncated Poisson
[a(θ) = exp(θ) − 1, R = ∞], logarithmic series [a(θ) = − log(1 − θ), R = 1], negative
binomial [a(θ) = (1 − θ)−v with v > 0 fixed, R = 1] and geometric [a(θ) = θ(1 − θ)−1,
R = 1]. See Johnson et al. (1992) for many other examples.

A mixture of a given family {πθ; θ ∈ Θ} of PSD is a probability measure πQ = {πQ,k}k∈K
with the individual probabilities defined as

πQ,k =

∫

Θ

πθ,kQ(dθ) =

∫

Θ

akθ
k

a(θ)
Q(dθ), k ∈ K,

where Q is the mixing distribution, that is a probability measure on Θ endowed with the
Borel σ−field. Consider the independent observations distributed according to a mixture
q0 = πQ0 with individual probabilities q0,k, k ∈ K. The true mixing distribution Q0 is
unknown but its support is included in a known compact interval [0,M ] ⊂ Θ.

By definition, Q0 is identifiable if πQ0 = πQ implies Q0 = Q. The following result proved
by Patilea (2002) [see also Milhaud and Mounime (1995)] states the identifiability of Q0

in PSD mixture models under a mild additional condition on K. For other identifiability
results see, e.g., Sapatinas (1995).

Proposition 2.1 Assume that the support of the true mixing distribution Q0 is contained
in a compact interval [0,M ] ⊂ Θ. If

∑
k∈K, k>0 k−1 = ∞, then Q0 is identifiable among all

the mixing distributions with the support in Θ.
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The mixing distribution Q0 is estimated by nonparametric maximum likelihood. Let
X1, ..., Xn ∈ K be an i.i.d. sample with distribution q0. The log-likelihood function is

ln(Q) = n
∑

K
pn,k log πQ,k,

where pn = {pn,k}k∈K is the vector of observed proportions. Let Q̂ be the NPMLE of Q0,
that is

ln(Q̂) = sup
Q

ln(Q),

where the maximum is taken over all probability measures on [0,M ]. The mixture π̂ = πQ̂

is the NPMLE of q0. Existence, support size, uniqueness and other finite sample properties
of Q̂ can be deduced using the same arguments as Simar (1976) and Lindsay (1995, ch. 5).

Concerning the consistency of the NPMLE, it was proved that, almost surely, π̂k → q0,k,

k ∈ K (e.g., van de Geer (2000), section 4.2). If Q0 is identifiable it follows that Q̂ → Q0

weakly, almost surely. To obtain bootstrap theoretical results we need to extend the
consistency result to triangular arrays. Recall that if π, π′ are two probability distributions
with support K, the Hellinger distance between π and π′ is

h(π, π′) =

(
1

2

∑

k∈K

(√
πk −

√
π′k

)2
)1/2

.

Clearly, h(πn, π) → 0 implies πn,k → πk, for all k ∈ K. Consider a family of PSD and fix
0 < M < R. Let PM be the set of all mixtures πQ with Q([0, M ]) = 1. The proof of the
following lemma is given in the appendix.

Lemma 2.2 Consider {πn} a sequence of mixtures in PM . Let π̂n denote the NPMLE ob-
tained from an i.i.d. sample of size n distributed according to πn, n ≥ 1. Then, h(π̂n, πn) →
0 almost surely. In particular, if {πn} is such that h(πn, π) → 0 for some π ∈ PM , then
h(π̂n, π) → 0 almost surely.

For the asymptotic law of π̂ let us recall the χ2-type norms considered by Lambert
and Tierney (1984). If x ∈ RK and π is a probability measure with support K, define
‖x‖π = (

∑
K x2

k/πk)
1/2. Moreover, the inner product between x and y is defined by 〈x, y〉π =∑

K xkyk/πk if ‖x‖π, ‖y‖π < ∞.
In the case of Poisson mixtures Lambert and Tierney (1984) proved that if q0 ∈ PM for

some given M > 0, then

√
n〈π̂, x〉q0 =

√
n〈pn, x〉q0 + Rn(q0, x), (2.1)

with Rn(q0, x) = oP (1), provided that the vector x satisfies certain conditions. (See also
Patilea (2002) for an extension of this result to more general PSD families as defined above.)
In view of this identity, the asymptotic normality

√
n〈π̂ − q0, x〉q0 Ã N(0, σ2(x)) with σ2(x) = ‖x‖2

q0
− 〈q0, x〉2q0

, (2.2)

4



is a simple consequence of a classical central limit theorem; Ã denotes weak convergence.
Lambert and Tierney (1984), for the case of Poisson mixtures, and Patilea (2002), for

the case of more general PSD mixtures as considered herein, indicated a class C1 of vectors
x for which identity (2.1) holds. This class is defined as the set of x ∈ RK such that there
exists a sequence {gj} of real-valued measurable bounded functions defined on Θ with i)
supΘ |gj(θ)| ≤ Cj ξ for some C, ξ > 0; and ii) ‖x− x(gj)‖q0

= O
(
j−β

)
for some β > 0,

xk(gj) =

∫

Θ

ak θk

a(θ)
gj (θ) Q0(dθ) =

∫

Θ

πθ, k gj (θ) Q0(dθ).

Under certain conditions on the behavior of Q0 near the origin, the unit vectors ei =
{ei,k}k∈K where ei,k = 1 if k = i and 0 otherwise, belong to C1 and thus satisfy (2.1) and
(2.2). The same property follows for any linear combination of q0 and the unit vectors.
The next lemma was proved by Lambert and Tierney (1984) and Patilea (2002).

Lemma 2.3 Assume that there exist positive constants d, γ, ε such that

Q0((θ, θ + τ ]) ≥ dτ γ, for all θ, τ ∈ (0, ε). (2.3)

Then, for any i ∈ K the unit vector ei belongs to C1.

3 Bootstrap confidence intervals

Consider a PSD mixture model as above and define a bootstrap procedure where the
bootstrap samples X ∗

1 , ..., X ∗
n are generated according to π̂ = π Q̂. This is a parametric

bootstrap procedure where the unknown parameter is the mixing distribution and the
parameter space is of infinite dimension. The unknown parameter is estimated by non-
parametric maximum likelihood.

Let p ∗n = {p ∗n,k}k∈K and π̂ ∗ = {π̂ ∗
k }k∈K be the empirical proportions and the NPMLE

mixture, respectively, obtained from a bootstrap sample. Like for computing π̂, the
NPMLE π̂ ∗ is obtained from nonparametric maximum likelihood over the mixing dis-
tributions with the support in [0,M ].

For α ∈ (0, 1), let κ̂α (resp. ζ̂α) denote the smallest value z that satisfies the inequality

P

(√
n

π̂ ∗
J − π̂J

σ(π̂ ∗
J )

≤ z | π̂
)
≥ α (resp. P (π̂ ∗

J ≤ z | π̂) ≥ α). (3.1)

The notation P (· | π̂) indicates that the distribution of π̂ ∗
J must be evaluated assuming that

the bootstrap observations are sampled according to π̂ given the original data X1, ..., Xn

(in particular, π̂J is considered nonrandom). The percentile−t (resp. Efron percentile)
confidence interval for q0,J is defined as

[
π̂J −

κ̂1−α/2√
n

σ(π̂J) , π̂J −
κ̂α/2√

n
σ(π̂J)

]
(resp. [ ζ̂α/2, ζ̂1−α/2]). (3.2)
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The asymptotic normality of
√

n(π̂J − q0,J)/σ(π̂J) is a consequence of (2.2). Therefore,
to prove the asymptotic consistency of the percentile−t confidence intervals it suffices to
prove that, for every z

P

(√
n

π̂ ∗
J − π̂J

σ(π̂ ∗
J )

≤ z | π̂
)
→ Φ(z), (3.3)

in probability, where π̂ ∗
J =

∑
k∈J π̂ ∗

k , σ2(π̂ ∗
J ) = π̂ ∗

J (1− π̂ ∗
J ) and Φ(·) denotes the standard

normal distribution function [e.g., van der Vaart (1998), page 329].
The asymptotic consistency of the Efron percentile confidence intervals will be obtained

from the asymptotic normality of
√

n(π̂J − q0,J) and the fact that, for any z

P
(√

n (π̂ ∗
J − π̂J) ≤ z | π̂) → F (z), (3.4)

in probability, where F denotes the normal N(0, q0,J(1− q0,J)) distribution function.
To prove the asymptotic consistency of the two bootstrap confidence intervals above

we have to distinguish two cases depending on whether the radius of convergence R of the
PSD family is finite or not. First, we consider the case R = ∞ which includes, for instance,
the mixtures of Poisson distributions. Conditions (3.3) and (3.4) are then consequences of
the following proposition showing that, in some sense, the difference between the empirical
distribution p ∗n and the NPMLE mixture π̂ ∗ is negligible in the bootstrap world. This
extends the result of Lambert and Tierney (1984) on the asymptotic equivalence between
the NPMLE mixture π̂ and the observed proportion pn [see also equation (2.1) above].

Proposition 3.1 Assume that the support of Q0 is contained in some known [0,M ]. More-
over, Q0 is identifiable. Then, for any x ∈ C1,

√
n〈π̂ ∗, x〉π̂ =

√
n〈p ∗n , x〉π̂ + R ∗

n(π̂, q0, x), (3.5)

where, for any δ > 0, we have P (|R ∗
n(π̂, q0, x)| > δ | π̂) → 0 in probability.

The proof is given in the appendix. As a consequence of this result we have the
consistency of the two bootstrap confidence intervals considered above.

Proposition 3.2 Consider {πθ; θ ∈ [0,∞)} a family of PSD with infinite radius of con-
vergence. Assume that the i.i.d. observation are distributed according to a mixture with
mixing distribution Q0 having the support contained in some known [0,M ]. Moreover, Q0

is identifiable and satisfies condition (2.3). Let J be a finite subset of the support of the
observations. Then the percentile−t and Efron percentile confidence intervals defined in
(3.2) are asymptotically consistent at level 1− α.

Proof. It remains to prove (3.3) and (3.4) [see, e.g., van der Vaart (1998), Lemma
23.3]. For (3.3), use Proposition 3.1 for x = ei, i ∈ J and write

√
n

π̂ ∗
J − π̂J

σ(π̂ ∗
J )

=
σ (π̂J)

σ (π̂ ∗
J )

√
n

p ∗n,J − π̂J

σ (π̂J)
+

1

σ (π̂ ∗
J )

∑
i∈J

π̂iR
∗
n(π̂, q0, ei).
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Moreover, in view of Lemma 2.2, for any δ > 0, P (|σ (π̂J) /σ (π̂ ∗
J )− 1| > δ | π̂) → 0, in

probability. Finally, for every z,

P

(√
n

p ∗n,J − π̂J

σ (π̂J)
≤ z | π̂

)
→ Φ(z),

in probability. This last convergence can be obtained from a central limit theorem for a
triangular array [e.g., Van der Vaart (1998), pages 20, 330-1; recall that

√
n (π̂J − pn,J) → 0,

in probability, where pn denotes the empirical proportions of the original sample]. Deduce
that (3.3) holds. Similar arguments apply for (3.4).

Let us complete this theoretical section with some remarks. Lambert and Tierney
(1984) proved the asymptotic equivalence between the NPMLE mixture π̂ and the observed
proportion pn when Q0 satisfies condition (2.3) which is a kind of continuity assumption in
the neighborhood of the origin. In particular, this condition implies that the support of Q0

is an infinite set. Moreover, Lambert and Tierney showed that, in general, the asymptotic
equivalence between the NPMLE and the empirical proportions no longer holds when the
true mixing distribution Q0 is discrete. In our bootstrap procedure the samples are drawn
from π̂ = πQ̂ which is a mixture with a discrete mixing distribution Q̂. This may raise
questions about the asymptotic validity of our bootstrap. In view of Propositions 3.1 and
3.2, the fact that Q̂ converges to Q0 with Q0 satisfying the continuity condition (2.3) suffices
to prove a kind of asymptotic equivalence between NPMLE and the empirical proportions
in the bootstrap world and to derive the asymptotic consistency of our bootstrap intervals.

The assumption that the support of the true mixing distribution of contained in some
known compact interval [0,M ] is a convenient technical condition. It can be relaxed at the
expense of more complicated arguments. In practice, this assumption has no real impact
because M can be fixed arbitrarily large and thus the probability that the largest point in
the support of the unrestricted NPMLE lies outside [0,M ] is practically null.

The steps followed for proving Propositions 3.1 and 3.2 can be also used when R < ∞.
However, when R is finite knowing M such that Q0([0,M ]) = 1 is no longer enough for
the proofs, except when M is the smallest value having this property, that is if M is the
upper limit of the support of Q0. (In fact, Lemma 6.1 in the Appendix is no longer valid
for any interval [0, M ] including the support of Q0 and for any a ≥ 1. This failure becomes
clear, for instance, in view of equation (6.4).) Consequently, for proving the asymptotic
consistency of the bootstrap intervals in the case R < ∞, one may either suppose that
the upper limit of the support of Q0 is known, or estimate this upper limit in a suitable
way. Milhaud and Mounime (1995) proposed an almost surely convergent estimator of

the upper limit of the support of Q0. Given such an estimator, say M̂ , the case R finite
can be treated exactly as the case R = ∞ provided that everywhere M is replaced by M̂ .
The construction of the estimator M̂ allows the probability that M̂ = R up to very large
sample sizes to be arbitrarily close to one. In other words, in applications the unrestricted
NPMLE can be used.

The delta method states that if the bootstrap is consistent for estimating the distribu-
tion of

√
n(π̂J − q0,J), then it also consistent for estimating the distribution of

√
n(ϕ(π̂J)−

ϕ(q0,J)) if ϕ is differentiable at q0,J (e.g., van der Vaart (1998), ch. 23). This allows us to
extend Proposition 3.2 in two ways. First, we can derive the asymptotic consistency of the
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bootstrap confidence intervals for certain transformations of the individual probabilities
q0,k, k ∈ K. For instance, the asymptotic validity of percentile−t and Efron percentile in-
tervals for the hazard function λ(k) = P (X = k)/P (X ≥ k) can be obtained. On the other
hand, the delta method allows to prove the asymptotic consistency of percentile−t intervals
based on monotone transformations. (Efron percentile interval is invariant under mono-
tone transformations.) In particular, this ensures the asymptotic validity of percentile−t
intervals for q0,J based on the logit transform or the variance-stabilizing arcsine transform.
These intervals are analyzed in the simulation study reported in section 4.

4 Empirical evidence

4.1 Simulation experiments

We conduct a simulation experiment in order to assess the performances of various con-
fidence intervals (CI) for q0,J = P (X ∈ J) with J = {k0} and J = {k ∈ K; k ≥ k1} for
some k0 and k1. Two kind of PSD families are considered: Poisson (R = ∞) and geometric
(R = 1). Let zα denote the α−quantile of the standard normal distribution.

Three types of intervals are considered: a) intervals based on the empirical proportions
pn,J ; b) intervals based on the asymptotic behavior of π̂J and some transformations of π̂J ;
c) bootstrap intervals. The intervals we study are the following.

1) Agresti-Coull CI (abbreviated AC) based on the sample proportions pn,J :

[ p̃n,J ±
zα/2√

n + z2
α/2

√
p̃n,J(1− p̃n,J) ],

where p̃n,J = (npn,J + z2
α/2/2)(n + z2

α/2)
−1;

2) Wilson CI based on the sample proportions pn,J :

[ p̃n,J ±
zα/2

√
n

n + z2
α/2

√
pn,J (1− pn,J) + z2

α/2/4n ];

3) Wald CI: [π̂J ± zα/2

√
π̂J(1− π̂J)/n] based on unrestricted NPMLE;

4) Arcsine transformation based CI: [sin2 Â, sin2 B̂], where

Â = arcsin
√

π̂J − z1−α/2
1

2
√

n
and B̂ = arcsin

√
π̂J − zα/2

1

2
√

n

5) Logit transformation based CI: [exp(Ĉ)/(1 + exp Ĉ ), exp(D̂)/(1 + exp D̂ )] where

Ĉ = ln
π̂J

1− π̂J

− z1−α/2√
n
√

π̂J(1− π̂J)
and D̂ = ln

π̂J

1− π̂J

− zα/2√
n
√

π̂J(1− π̂J)
.

6) Percentile−t CI (abbreviated Per-t) defined in equation (3.2).
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7) Percentile−t CI based on the arcsine transformation: [sin2 Ã, sin2 B̃], where

Ã = arcsin
√

π̂J − ẑarcsine
1−α/2

1

2
√

n
, B̃ = arcsin

√
π̂J − ẑarcsine

α/2

1

2
√

n

and ẑarcsine
α denotes the α−quantile of 2

√
n(arcsin

√
π̂ ∗

J − arcsin
√

π̂J).

8) Percentile−t CI based on the logit transformation: [ exp C̃

1+exp C̃
, exp D̃

1+exp D̃
], where

C̃ = ln
π̂J

1− π̂J

−
ẑlogit
1−α/2√

n
√

π̂J(1− π̂J)
, D̃ = ln

π̂J

1− π̂J

−
ẑlogit

α/2√
n
√

π̂J(1− π̂J)

and ẑlogit
α is the α−quantile of

√
n
√

π̂ ∗
J (1− π̂ ∗

J ) {ln [π̂ ∗
J / (1− π̂ ∗

J )]− ln [π̂J/ (1− π̂J)]} .
9) Efron (or bootstrap) percentile CI defined in equation (3.2).
10) The bootstrap bias-corrected percentile interval (BC): [F −1

Boot(p1), F −1
Boot(p2)], where

p1 = Φ(zα/2 + 2b0) and p2 = Φ(z1−α/2 + 2b0) with Φ(·) the standard normal distribution
function, F −1

Boot(p) is the p−quantile of the distribution of π̂ ∗
J and b0 = Φ−1[FBoot(π̂J)].

Brown et al. (2001, 2002) recommend Wilson and Agresti-Coull intervals for binomial
proportions. Wald CI is justified by the asymptotic normality of π̂J [see Patilea (2002)].
Arcsine and logit transformations based intervals are obtained by inverting a Wald type
interval for the arcsin

√
q0,J and ln[q0,J/(1 − q0,J)], respectively (see Brown et al. (2001)

for a presentation of this type of intervals). Note that arcsine is a variance stabilizing
transformation for π̂J . The confidence intervals 7) and 8) are the percentile−t versions of
the arcsine and logit transformations based intervals. The BC interval was proposed by
Efron (1982) as an improvement of the bootstrap percentile CI.

As an alternative, let us mention the bootstrap accelerated bias-corrected percentile
(BCa) interval introduced by Efron (1987). The BCa interval involves the so-called accel-
eration constant. How to determine or estimate this extra parameter in the case of the
NPMLE π̂J remains an open question. Finally, one may use iterative bootstrap methods to
build intervals. However, iterating the bootstrap principle with the NPMLE is very com-
putationally demanding and therefore this approach is not considered herein. (See Shao
and Tu (1995, ch. 4) for a review of BCa and iterative bootstrap method based intervals.)

Several algorithms for computing NPMLE has been proposed [see Böhning (1999) for a
recent review]. The algorithm we used for all computations is a variant of the EM algorithm
adjusted for jumping between different number of components. Namely, the algorithm
starts with maximum possible components [e.g., Lindsay (1995)]. We keep iterating the
algorithm until either the convergence criterion (measured by a change of the relative
likelihood) is satisfied, or redundant support points (components) are found. A support
point is declared redundant if either it is closer than 10−6 to another support point, or
its mixing proportion is smaller than 10−6. In the former case, the close components are
merged if this improves the likelihood. Otherwise, we continue with the same number of
components. If a mixing proportion is too small, we remove the support point and rescale
the other mixing proportions to sum to one. Note that since we are not interested in
reporting the number of support points, redundant support points do not cause problems

9



for the quantities we study herein. The interest when looking for redundant points is to
improve the speed of the algorithm.

First, we study mixtures of Poisson distributions. Two mixing distributions Q0 are
considered: a continuous uniform U [0, 3] and a discrete distribution 0.5δ1 + 0.5δ3, where
δa denotes a degenerate at a distribution. We build confidence intervals for P (X = 0) and
P (X ≥ 6). If Q0 is the uniform distribution (resp. the discrete distribution), the true
values are P (X = 0) = 0.317 (resp. 0.208) and P (X ≥ 6) = 0.017 (resp. 0.042).

Given the mixture q0 = πQ0 , we generated D = 1000 samples of size n with n = 25,
50 and 200, respectively. For each sample we computed π̂ and we generated B = 1000
bootstrap samples of the same size from π̂. For J = {0} and J = {6, 7, ...}, we computed
π̂ ∗

J in each bootstrap sample and we used these values to approximate the quantiles κ̂α,

ζ̂α, ẑarcsine
α and ẑlogit

α and to estimate b0. All NPMLEs were computed without restriction
on the support. This because, on one hand, in Poisson mixtures the largest point in the
support of an unrestricted NPMLE cannot exceed the largest observation [e.g., Lindsay
(1995), Proposition 25]. On the other hand, in our theoretical results the interval [0,M ]
could be fixed arbitrarily large.

In order to compare the performances of the intervals considered we report the distri-
bution of their lengths and the estimated levels. The true level (coverage probability) of
an interval was estimated by the proportion of times among the D = 1000 replications
when the true value belonged to the interval. In Figure 1 we provide the box-plots for the
length of the CIs obtained from 1000 replications for each of ten types of intervals in the
case of uniform mixing distribution. In cases where the lower limit of the derived CI had a
negative value we set the lower limit to zero. This results in shortening the length of some
of the computed AC, Wilson, Wald and percentile−t intervals.

Insert Figure 1 here

The length distributions are quite similar for the five simple (no bootstrap) intervals.
For most of the D generated samples, the five bootstrap CI have slightly smaller lengths
than those of the simple CI. We also remark more variability in the lengths of the bootstrap
CI. This may be explained by the error induced when approximating the quantiles κ̂α, ζ̂α,
ẑarcsine

α and ẑlogit
α and the constant b0. The estimated levels of the three percentile−t type

intervals are quite poor (see Table 1). All the estimated levels of the simple CI are greater
than 0.95.

As expected, the differences between the performances of the competing intervals be-
come significant in the case of the tail probability P (X ≥ 6). With one exception (the logit
transformation based CI) the lengths of the two intervals based on the empirical proportions
pn,J are much larger than the lengths of the intervals based on the mixture model. More-
over, the five bootstrap CI are often shorter then Wald and arcsine transformation based
CI. Table 1 reveals a severe failure of the three percentile−t intervals in terms of coverage.
Notice also the poor level of the arcsine CI when n = 25. (This behavior of the arcsine CI is
also noticed by Brown et al. (2001) in the case of binomial proportions.) Efron percentile CI
appears as the best in terms of length and coverage. The BC intervals fails to improve the
Efron percentile. Recall that BC interval relies upon the existence of a transformation φn

such that, given π̂, P (φn(π̂J)−φn(q0,J)+b0 ≤ z) = Φ(z) = P (φn(π̂ ∗
J )−φn(π̂J)+b0 ≤ z | π̂).

10



It seems that such a transformation does not exists in our framework. This may be ex-
plained by the discrete nature of the NPMLE Q̂.

Table 1. Estimated level for the CIs: Poisson -Uniform

Simple CI Bootstrap CI
n Wald AC Wilson Arcsin Logit Per-t Per-t Per-t Efron BC

(arcsin) (logit)
25 P (X = 0) 0.950 0.969 0.967 0.965 0.970 0.911 0.902 0.889 0.945 0.929

P (X ≥ 6) 0.963 0.996 0.964 0.879 0.976 0.868 0.791 0.702 0.980 0.921
50 P (X = 0) 0.957 0.970 0.968 0.966 0.970 0.923 0.918 0.911 0.956 0.938

P (X ≥ 6) 0.977 0.995 0.984 0.998 0.987 0.852 0.818 0.768 0.983 0.913
200 P (X = 0) 0.954 0.965 0.960 0.957 0.960 0.942 0.934 0.931 0.958 0.942

P (X ≥ 6) 0.986 0.993 0.981 0.997 0.986 0.892 0.880 0.861 0.972 0.929

The box-plots for the lengths in the case of discrete mixing distribution are depicted in
Figure 2, while Table 2 contains the corresponding estimated levels. The case of a discrete
mixing distribution is not covered by our theoretical results. However, the simulations
indicate that consistency of the bootstrap intervals may also hold in this case. The perfor-
mances of the competing CIs are quite similar to those in the previous experiment. The
simulations indicate the Efron percentile CI as the best of the ten intervals considered.

Insert Figure 2 here

Table 2. Estimated level for the CIs: Poisson -Discrete

Simple CI Bootstrap CI
n Wald AC Wilson Arcsin Logit Per-t Per-t Per-t Efron BC

(arcsin) (logit)
25 P (X = 0) 0.967 0.971 0.970 0.969 0.971 0.914 0.887 0.875 0.953 0.932

P (X ≥ 6) 0.957 0.995 0.984 0.997 0.985 0.874 0.835 0.773 0.962 0.903
50 P (X = 0) 0.973 0.974 0.965 0.976 0.974 0.910 0.887 0.858 0.960 0.928

P (X ≥ 6) 0.967 0.983 0.979 0.981 0.981 0.901 0.889 0.867 0.961 0.921
200 P (X = 0) 0.961 0.964 0.961 0.967 0.962 0.928 0.921 0.918 0.943 0.932

P (X ≥ 6) 0.960 0.966 0.963 0.968 0.965 0.918 0.914 0.910 0.942 0.929

In our last experiment we studied mixtures of geometric laws. If πθ is a geometric law
of parameter θ ∈ [0, 1), then πθ,k = θk−1(1 − θ), k = 1, 2, ... The true mixing distribution
is taken to be an uniform U [0, 0.5]. Note that the mixture of a geometric with a Uniform
has slowly decreasing tail probabilities.

Insert Figure 3 here

Table 3. Estimated level for the CIs: Geometric -Uniform

Simple CI Bootstrap CI
n Wald AC Wilson Arcsin Logit Per-t Per-t Per-t Efron BC

(arcsin) (logit)
25 P (X ≥ 5) 0.925 0.995 0.980 0.600 0.984 0.896 0.726 0.603 0.952 0.916
50 P (X ≥ 5) 0.949 0.995 0.977 0.984 0.983 0.861 0.792 0.704 0.965 0.896
200 P (X ≥ 5) 0.963 0.991 0.985 0.991 0.986 0.867 0.850 0.827 0.946 0.892
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We restrict our interest in a tail probability, namely the quantity of interest is P (X ≥ 5)
and its true value is 0.0125. The sample sizes we consider are n = 25, 50 and 200. We
proceed as in the first experiment with the same values for D and B. Moreover, unrestricted
NPMLE is considered. In Figure 3 we provide box-plots for the lengths of the competing
CIs while in Table 3 we report estimated levels. Again, the performances of percentile−t
type intervals are poor. Meanwhile, Efron percentile interval appears to be the best CI in
terms of length and coverage.

In view of the simulation results, one may remark the good performances of the Wald
CI which may be considered the second best interval in terms of length and coverage.
The estimated level of Wald CI is quite close to that of Efron percentile CI. Since Wald
CI requires a single computation of the NPMLE, in Figure 4 we present the box-plots of
the ratio between the lengths of the Wald and Efron percentile intervals for the Poisson
mixtures considered above. We notice significantly shorter lengths for Efron percentile CI.

Insert Figure 4 here

4.2 Application to real data

We end this empirical section with an application with real data. The data used were
downloaded from the Northern California Earthquake Data Center and they refer to
the catalog of earthquakes in North Carolina contributed by Northern California Seis-
mic Network. Only earthquakes with magnitude larger than 6.0 in Richter’s scale were
considered for the period from 1976 till 1995. The counts are the number of earth-
quakes of the required magnitude for each year of this period, that is there are 20 ob-
servations. The total number of events were 32 and thus the mean per year was 1.6
events while the variance much higher, that is 3.30. This implies a great overdisper-
sion making mixtures of Poisson plausible models. The actual observed proportions were
(p20,0, . . . , p20,6) = (0.35, 0.30, 0.05, 0.15, 0.05, 0.05, 0.05). We used this data set to construct
CIs for several quantities, including simple probabilities and tail probabilities (see Figure
5). The sample size is quite small and, thus, bootstrap confidence intervals as considered
above can be quite helpful, especially for small probabilities.

Insert Figure 5 here

Let us point out that according to the standard Agresti-Coull and Wilson methods and
due to the same observed frequency, both P (X = 2) and P (X = 6) have the same CIs. The
confidence intervals that use the properties of the mixture model compensate for the small
sample size that led to the same frequencies. Similarly, since there is no observation larger
than 6, estimation of the tail probability P (X ≥ 7) would be useless with standard CIs for
binomial proportions, while the model based CIs (bootstrap or no bootstrap) overcome this
problem. The intervals depicted in Figure 5 have not been adjusted for negative values.
For the case P (X = 0) where the probability is quite large all the CIs are quite similar.
This is not the case for small probabilities like P (X = 2), P (X = 6) or P (X ≥ 7) where
the intervals are very different.
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5 Conclusion

We have studied the properties of bootstrap confidence intervals for probabilities P (X ∈ J)
when the law of X is a mixture of power series distributions and J is a finite set. The
bootstrap samples are drawn from π̂, the nonparametric maximum likelihood estimate of
the true mixture. We considered percentile−t and Efron percentile confidence intervals for
which we proved consistency in probability. For empirical comparisons, we also considered
two types of intervals for binomial proportions, Wald confidence intervals based on the
asymptotics of π̂ and some transformations of π̂ and several alternative percentile−t type
confidence intervals. Simulation results recommend Efron percentile interval, especially for
small probabilities P (X ∈ J). The Efron percentile method performs stably and leads to
short intervals with good coverage.

Our theoretical results do not cover the case where the true law of the observations is
a discrete mixture. This limitation is due to our approach based on the fact that, in some
sense and under certain conditions, π̂ and the empirical distribution are asymptotically
equivalent. This asymptotic equivalence no longer holds when the true mixture is discrete.
In fact, in this case there exist finite sets J such that {√n(π̂k − π0,k)}k∈J cannot have a
nondegenerate normal limit [see Patilea (2002)]. However, we conjecture that for certain
finite sets J of which the singletons J = {k}, k ∈ K, the consistency of the two bootstrap
intervals for P (X ∈ J) holds also when the true law is a discrete mixture.

Finally, it should be possible to extend the results in the paper to mixtures of an
exponential family of continuous distributions following the guidelines of Lambert and
Tierney (1984, page 1398). However, quantities for which identities like (2.1) and (3.5)
could be easily derived do not have much practical interest.

6 Appendix

Proof of Lemma 2.2. Let R be the space of all probability distributions on [0,M ] en-
dowed with the topology of weak convergence. Herein pn denotes the empirical distribution
corresponding to an i.i.d. sample of size n drawn from πn, n ≥ 1. Recall that

h2(π̂n, πn) ≤
∑

k∈K

2π̂n,k

π̂n,k + πn,k

(pn,k − πn,k) (6.1)

[e.g., Lemma 4.5 of van de Geer (2000)]. In view of this inequality it suffices to show that
the family G = {gψ; ψ = (Q′, Q′′) ∈ R×R} with

gψ,k = πQ′,k/(πQ′,k + πQ′′,k), k ∈ K,

is Glivenko-Cantelli uniformly in π ∈ PM [see van der Vaart and Wellner (1996), page 167].
Consider R×R with a suitable metric τ inducing the product topology. Then, (R×R, τ)
is a compact metric space. For any k ∈ K, the map ψ → gψ,k is continuous and that G is
uniformly bounded. Define the vector ω (ψ, ρ) by pointwise supremum:

ω (ψ, ρ) = sup
τ(ψ,ψ̃)<ρ

∣∣∣gψ − gψ̃

∣∣∣ ∈ RK, ψ ∈ R×R, ρ > 0,
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[see also van de Geer (1993), Lemma 5.1]. By dominated convergence

lim
ρ→0

∑

k∈K
ωk (ψ, ρ) akM

k = 0.

Fix δ > 0 arbitrary and take ρψ such that

∑

k∈K
ωk (ψ, ρψ) akM

k ≤ δ, ψ ∈ R×R.

Define Bψ =
{

ψ̃ ∈ R×R; τ(ψ, ψ̃) < ρψ

}
and let Bψ1 , ..., Bψr be a finite cover of R×R.

Consider the pairs of functions

gL
i = gψi

− ω (ψi, ρψi
) , gU

i = gψi
+ ω (ψi, ρψi

) , i = 1, ..., r,

and remark that for any π ∈ PM ,
∑

k∈K

(
gU

i,k − gL
i,k

)
πk ≤ C

∑

k∈K
ωk (ψi, ρψi

) akM
k ≤ Cδ, i = 1, ..., r,

for some constant C > 0. From the definition of these functions we have that for any
gψ ∈ G, there exists 1 ≤ i ≤ r such that gL

i ≤ gψ ≤ gU
i . Then, for any n ≥ 1,

∑

k∈K
gψ,k (pn,k − πn,k) ≤

∑

k∈K
gU

i,k (pn,k − πn,k) +
∑

k∈K

(
gU

i,k − gψ,k

)
πn,k

≤
∑

k∈K
gU

i,k (pn,k − πn,k) + Cδ.

Similarly,
∑

k∈K
gψ,k (pn,k − πn,k) ≥

∑

k∈K
gL

i,k (pn,k − πn,k)−
∑

k∈K

(
gψ,k − gL

i,k

)
πn,k

≥
∑

k∈K
gL

i,k (pn,k − πn,k)− Cδ.

Using a strong law of large numbers that holds uniformly in the underlying distribution
[e.g., van der Vaart and Wellner (1996), page 456] deduce that almost surely

max
1≤i≤r

∣∣∣∣∣
∑

k∈K
gU

i,k (pn,k − πn,k)

∣∣∣∣∣ ≤ δ, max
1≤i≤r

∣∣∣∣∣
∑

k∈K
gL

i,k (pn,k − πn,k)

∣∣∣∣∣ ≤ δ,

for n sufficiently large. So eventually,
∣∣∣∣∣
∑

k∈K

2π̂n,k

π̂n,k + πn,k

(pn,k − πn,k)

∣∣∣∣∣ ≤ (C + 1)δ,

almost surely. This proves that h(π̂n, πn) → 0, almost surely. For the last part of the
statement use the triangle inequality. ¥
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For the proof of our Proposition 3.1 we use the following lemma extending Proposition
3.1 of Lambert and Tierney (1984) to a triangular array. Below, pn and π̂n denote the
empirical proportions and the NPMLE mixture, respectively, corresponding to an i.i.d.
sample of size n generated according to πn, n ≥ 1. The proof of our lemma is a simple
adaptation of the arguments of Lambert and Tierney. We provide this proof for the sake
of completeness.

Lemma 6.1 Let {πn} ⊂ PM such that Qn → Q0 weakly. For any a ≥ 1 and ε > 0,

i)
∑

k

(pn,k − πn,k)
2

πn,k

ak, ii)
∑

k

(pn,k − πn,k)
2

π̂n,k

ak,

iii)
∑

k

(π̂n,k − πn,k)
2

π̂n,k

ak and iv)
∑

k

(π̂n,k − πn,k)
2

πn,k

ak,

are of order oP

(
n−(1−ε)

)
.

Proof. There exists 0 < m < M and C1, C2 > 0 such that C1akm
k ≤ πn,k ≤ C2akM

k,
k ∈ K if n is sufficiently large. Moreover, from the last part of Lemma 2.2 we have
Q̂n → Q0 weakly, almost surely, with Q̂n the mixing distributions of π̂n. Deduce that
eventually, πn,k/π̂n,k, π̂n,k/πn,k ≤ C2C

−1
1 (M/m)k, k ∈ K, almost surely.

Fix ε > 0 and choose γ ∈ (1 − ε, 1). Take a > 1. For the first quantity use Holder’s
inequality and bound it as follows:

n1−ε
∑

k

(pn,k − πn,k)
2 π−1

n,ka
k = n1−ε

∑

k

(pn,k − πn,k)
2 π−1

n,ka
−k/2a3k/2

≤ n1−ε

[∑

k

(pn,k − πn,k)
2 π−1

n,ka
−k/2γ

]γ

×
[∑

k

(pn,k − πn,k)
2 π−1

n,ka
3k/2(1−γ)

]1−γ

=: n1−εAγ
nB

1−γ
n .

Moreover, nE
[∑

(pn,k − πn,k)
2 π−1

n,ka
−k/2γ

] ≤ ∑
a−k/2γ < ∞ and thus, for any C > 0,

P (nAn > C) ≤ C−1
∑

a−k/2γ. It remains to prove that Bn is bounded in probability. Since
(u− v)2 ≤ u2 + v2 if u, v > 0, deduce that

Bn ≤
∑

k

p2
n,kπ

−1
n,ka

3k/2(1−γ) +
∑

k

πn,ka
3k/2(1−γ) =: B1n + B2n.

Fix b > 0 and define the event En = {pn,k > bπn,ka
3k/2(1−γ) for some k}. By Markov’s

inequality

P (En) ≤
∑

k

P
[
pn,k > bπn,ka

3k/2(1−γ)
]

≤ b−1
∑

k

E(pn,k)π
−1
n,ka

−3k/2(1−γ) = b−1
∑

k

a−3k/2(1−γ).
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Thus, P (En) is bounded by a quantity independent of πn which can be made arbitrarily
small by choosing b sufficiently large. On the complement of En, we have

B1n ≤ b2
∑

k

πn,ka
9k/2(1−γ) ≤ b2C2

∑

k

ak

[
Ma9/2(1−γ)

]k
< ∞, (6.2)

for some C2 > 0. Finally,

B2n ≤ C2

∑

k

ak

[
Ma3/2(1−γ)

]k
< ∞. (6.3)

Conclude that, for any sequence {πn} ⊂ PM with Qn → Q0 weakly, the first quantity tend
to zero in probability faster then n−(1/2−ε).

For the second quantity, almost surely

n1−ε
∑

k

(pn,k − πn,k)
2 π̂−1

n,ka
k = n1−ε

∑

k

(pn,k − πn,k)
2 π−1

n,k (πn,k/π̂n,k) ak

≤ n1−εC2C
−1
1

∑

k

(pn,k − πn,k)
2 π−1

n,k (aM/m)k ,

if n is sufficiently large. This proves the rate oP (n−(1/2−ε)) for the second quantity.
For the order of the third quantity note first that by the gradient characterization of

the NPMLE of the mixing distribution we have ‖π̂n − πn‖π̂n ≤ ‖pn − πn‖π̂n, n ≥ 1 [see,
e.g., inequality (2.2) in Lambert and Tierney (1984)]. Next, by Holder’s inequality

n1−ε
∑

k

(π̂n,k − πn,k)
2 π̂−1

n,ka
k ≤ n1−ε‖π̂n − πn‖γ

π̂n

[∑

k

(π̂n,k − πn,k)
2 π̂−1

n,ka
k/(1−γ)

]1−γ

.

Almost surely and for n sufficiently large, the term in the square brackets is bounded by

2C2
2C

−1
1

∑

k

akM
k
[
a1/(1−γ)M/m

]k
< ∞, (6.4)

and thus the order of the third quantity is proved.
Finally, for the order of the fourth quantity we have eventually,

n1−ε
∑

k

(π̂n,k − πn,k)
2 π−1

n,ka
k = n1−ε

∑

k

(π̂n,k − πn,k)
2 π̂−1

n,k (π̂n,k/πn,k) ak

≤ n1−εC2C
−1
1

∑

k

(π̂n,k − πn,k)
2 π̂−1

n,k (aM/m)k ,

almost surely. The arguments used for the third quantity ensure that the fourth one is also
of order oP (n−(1/2−ε)).

Proof of Proposition 3.1. Take a sequence j(n) ∼ n(1/2−ε)/ξ, ε ∈ (0, 1/2). Decompose√
n〈π̂ ∗ − p ∗n , x〉π̂ = An + Bn where

An =
√

n〈π̂ ∗ − p ∗n , x− x
(
gj(n)

)〉π̂, Bn =
√

n〈π̂ ∗ − p ∗n , x
(
gj(n)

)〉π̂.
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We have

|An| ≤ √
n

∑

k

∣∣π̂ ∗
k − p ∗n,k

∣∣
π̂k/

√
q0,k

∣∣xk − xk

(
gj(n)

)∣∣
√

q0,k

≤ √
n

[∑

k

(
π̂ ∗

k − p ∗n,k

)2

π̂k

q0,k

π̂k

]1/2 ∥∥x− x
(
gj(n)

)∥∥
q0

≤ √
n

∥∥x− x
(
gj(n)

)∥∥
q0





[∑

k

(π̂ ∗
k − π̂k)

2

π̂k

q0,k

π̂k

]1/2

+

[∑

k

(
p ∗n,k − π̂k

)2

π̂k

q0,k

π̂k

]1/2


.

From the convergence of π̂, there exists 0 < m < M and C > 0 such that, almost
surely, q0,k/π̂k ≤ C(M/m)k, k ∈ K if n is sufficiently large. Use Lemma 6.1 i) , iv)
to deduce that conditionally on X1, X2, ..., for almost every sequence X1, X2, ..., we have
|An| → 0, in probability. That is, for almost every sequence X1, X2, ..., if δ > 0, then
P (|An| > δ | X1, ..., Xn) → 0.

Next, write B1n =
√

n〈π̂ ∗ − p ∗n , x
(
gj(n)

)〉π̂ ∗ and B2n = Bn −B1n. For some C > 0,

|B2n| ≤ √
n

∑

k

∣∣π̂ ∗
k − p ∗n,k

∣∣ |π̂ ∗
k − π̂k|

π̂ ∗
k π̂k

∣∣xk

(
gj(n)

)∣∣

≤ C
√

n j(n)ξ
∑

k

∣∣π̂ ∗
k − p ∗n,k

∣∣ |π̂ ∗
k − π̂k|

π̂ ∗
k

q0,k

π̂k

≤ Cn1−ε





[∑

k

(π̂ ∗
k − π̂k)

2

π̂ ∗
k

q0,k

π̂k

]1/2

+

[∑

k

(
p ∗n,k − π̂k

)2

π̂ ∗
k

q0,k

π̂k

]1/2




×
[∑

k

(π̂ ∗
k − π̂k)

2

π̂ ∗
k

q0,k

π̂k

]1/2

.

Again, using a bound for q0/π̂ and Lemma 6.1 ii), iii) deduce that conditionally on
X1, X2, ..., for almost every sequence X1, X2, ..., we have |B2n| → 0, in probability.

Finally, we have

|B1n| ≤
√

n

∫

[0,M ]

∣∣∣∣∣
∑

k

π̂ ∗
k − p ∗n,k

π̂ ∗
k

πθ,k

∣∣∣∣∣
∣∣gj(n)(θ)

∣∣Q0(dθ) ≤ C
√

n j(n)ξ
∑

k

π̂ ∗
k − p ∗n,k

π̂ ∗
k

q0,k,

where for the last inequality we used the gradient characterization of the NPMLE, that is
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∑
k

(
π̂ ∗

k − p ∗n,k

)
π̂ ∗−1

k πθ,k ≥ 0, θ ∈ [0,M ]. We can further write

|B1n| ≤ C
√

n j(n)ξ
∑

k

(
π̂ ∗

k − p ∗n,k

)
(q0,k − π̂ ∗

k )

π̂ ∗
k

≤ C
√

n j(n)ξ

[∑

k

|π̂ ∗
k − π̂k| |π̂k − q0,k|

π̂ ∗
k

+
∑

k

|π̂ ∗
k − π̂k|2

π̂ ∗
k

+
∑

k

∣∣p ∗n,k − π̂k

∣∣ |π̂k − q0,k|
π̂ ∗

k

+
∑

k

∣∣p ∗n,k − π̂k

∣∣ |π̂k − π̂ ∗
k |

π̂ ∗
k

]

≤ C
√

n j(n)ξ [T1n + T2n + T3n + T4n] ,

where

T1n = ‖π̂ ∗ − π̂‖π̂ ∗

(∑

k

(π̂k − q0,k)
2

π̂k

π̂k

π̂ ∗
k

)1/2

, T2n = ‖π̂ ∗ − π̂‖2
π̂ ∗ ,

T3n = ‖p ∗n − π̂‖π̂ ∗

(∑

k

(π̂k − q0,k)
2

π̂k

π̂k

π̂ ∗
k

)1/2

, T4n = ‖p ∗n − π̂‖π̂ ∗ ‖π̂ ∗ − π̂‖π̂ ∗ .

Use the orders obtained in Lemma 6.1 ii), iii) to prove that, conditionally on X1, X2, ...,
for almost every sequence X1, X2, ..., we have

√
n j(n)ξTin → 0 in probability, i = 2 and

4. The more difficult terms to be examined are T1n and T3n in which appear q0, π̂ and
π̂ ∗. Let 0 < m < M and C > 0 such that, for almost every fixed sequence X1, X2, ..., we
have eventually π̂k/π̂

∗
k ≤ C(M/m)k, k ∈ K, almost surely [see also the arguments at the

beginning of the proof of Lemma 6.1]. In particular, m and C are such that if we define
the event En = {π̂k/π̂

∗
k > C(M/m)k for some k}, then P (En | X1, ..., Xn) → 0, for almost

every sequence X1, X2, ... We study only T1n but the same arguments apply for T3n. For
any δ > 0, we can write

P
(
n1−εT1n > δ | X1, ..., Xn

)
= P

({
n1−εT1n > δ

} ∩ En | X1, ..., Xn

)

+P
({

n1−εT1n > δ
} ∩ Ec

n | X1, ..., Xn

)
,

and therefore we only have to study T̃1n = an ‖π̂ ∗ − π̂‖π̂ ∗ , where

a2
n =

∑

k

(π̂k − q0,k)
2

π̂k

(M/m)k .

Let δ, ρ and c > 0 be arbitrary and write

P
[
P

(
n1−ε T̃1n > δ | X1, ..., Xn

)
> ρ

]

≤ P
[
P

(
n1−ε T̃1n > δ | X1, ..., Xn

)
1

{
n1/2−ε/2 an ≤ c

}
> ρ/2

]

+P
[
P

(
n1−ε T̃1n > δ | X1, ..., Xn

)
1

{
n1/2−ε/2 an > c

}
> ρ/2

]

≤ P
[
P

(
n1/2−ε/2 ‖π̂ ∗ − π̂‖π̂ ∗ > δ/c | X1, ..., Xn

)
> ρ/2

]

+P
[
n1/2−ε/2 an > c

]
,
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where 1A denotes the indicator function of the set A. Use Lemma 6.1 and deduce that
P

(
n1/2−ε/2 ‖π̂ ∗ − π̂‖π̂ ∗ > δ/c | X1, ..., Xn

) → 0, for almost every sequence X1, X2, ... More-

over, P
[
n1/2−ε/2an > c

] → 0. In conclusion, if δ > 0, P (n1−ε Tin > δ | X1, ..., Xn) → 0, in
probability, i = 1 and 3, and thus P (|B1n| > δ | X1, ..., Xn) → 0, in probability. The proof
is now complete. ¥
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Figure 1: Box-plots for interval lengths: Poisson mixed with a Uniform on [0, 3]. The target probabilities
are P (X = 0) = 0.317 and P (X ≥ 6) = 0.017.
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Figure 2: Box-plots for interval lengths: 0.5Poisson(1) + 0.5Poisson(3). The target probabilities are
P (X = 0) = 0.208 and P (X ≥ 6) = 0.042.
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Figure 3: Box-plots for interval lengths: Geometric mixed with a Uniform on [0, 0.5]. The target
probability is P (X ≥ 5) = 0.0125.
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Figure 4: Box-plots of the ratio (length of Wald interval/length of Efron percentile interval).
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Figure 5: Confidence intervals with Earthquake Data (20 observations). The count variable X represents
the number of earthquakes with magnitude larger than 6 in Richter’s scale recorded in a year. The solid
vertical lines indicate the observed proportions. The vertical dotted line corresponds to the NPMLE of
the probabilities.
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