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Abstract 
 
 
A model for competing (resp. complementary) risks survival data where the failure time can be 

left (resp. right) censored is proposed. Product-limit estimators for the survival functions of the 

individual risks are derived. We deduce the strong convergence of our estimators on the whole 

real half-line without any additional assumption and their asymptotic normality under 

conditions concerning only the observed distribution. When the observations are generated 

according to the double censoring model introduced by Turnbull (1974), the product-limit 

estimators represent upper and lower bounds for Turnbull's estimator. 

 
Key words : twice censoring, competing and complementary risks, hazard functions, product-

limit estimator, strong convergence, weak convergence, delta-method. 
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Résumé 
 
 

Nous proposons un modèle pour les risques concurrents (resp. complémentaires) dans lequel la 

durée de survie peut être censurée à gauche (resp. à droite). Nous obtenons des estimateurs de 

type Kaplan-Meier pour les fonctions de survie. La convergence presque sure sur la droite 

réelle et la normalité asymptotique de nos estimateurs sont démontrées sous des conditions 

faibles. Nos estimateurs, de type Kaplan-Meier, peuvent être considérés comme une borne 

supérieure et une borne inférieure pour l'estimateur de Turnbull (1974). 

 
Mots clefs  : double censure, risques concurrents, risques complémentaires, fonctions de 

risque, estimateur de Kaplan-Meier, convergence presque sure, normalité asymptotique, 

méthode delta. 

 



1 Introduction.

Consider the problem of nonparametric inference with competing risks survival data. The

novelty we propose is that the failure time can be left-censored, for instance at the time

the study starts. For simplicity, we consider two distinct competing risks of failure, the

extension to more than two competing risks being straight. Let T and V1 denote the latent

independent lifetimes for each cause of failure. The failure time is min(T, V1) and it can be

censored from the left by a censoring time U1. The observations are independent copies of

a lifetime Y , a finite nonnegative random variable, and a discrete random variable A with

values in {0, 1, 2}, where 2 indicates a left-censored failure time while 0 and 1 correspond to

an observation equal to T and V1, respectively. If T is the lifetime of interest, we say that

Y is a twice censored observation of T . Associated with the problem of competing risks is

the dual problem of complementary risks where the observed failure time is the maximum

of the lifetimes for each cause of failure (e.g., Basu and Ghosh (1980)). The extension we

consider here is that the failure time can be right-censored, for instance at the time the

experience ends.

By the plug-in (or substitution) principle applied for the empirical distribution, the

nonparametric estimation of the distribution of a latent lifetime of interest is straightforward

as soon as this distribution can be expressed as an explicit function of the distribution of

the observed variables. The two models we propose in this paper are shown to allow for

explicit inversion formulae, that is the latent distributions of interest are explicit functionals

of the distribution of the observations.

In section 2 we introduce our latent models while in section 3 we provide the inversion

formulae. In section 4 we compare our model with the doubly censored data latent model

proposed by Turnbull (1974). We show that the inversion formulae provide lower and upper

bounds for the distribution of interest identified by Turnbull’s model. Applying the inversion

formulae to the empirical distribution, we deduce in section 5 the product-limit estimators.

Moreover, we analyze the sample selection bias induced when discarding from the sample

observations corresponding to censored failure times. In sections 6 and 7 we deduce the

almost sure uniform convergence and the asymptotic normality for our functionals.
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2 Latent variables models.

The random variables we consider take values in R+
= [0,∞] endowed with B+

the Borel

σ−field. If X is such a variable, FX denotes its distribution.

For the first latent model considered (call it Model 1), let T and V1 be two lifetimes and

let U1 be a left-censoring time. Assume that T , V1 and U1 are independent. Suppose that

Y and A are observed, where Y = max[min(T, V1), U1] and

A =





0 if U1 < T ≤ V1;

1 if U1 < V1 < T ;

2 if min(T, V1) ≤ U1.

Define the observed subdistributions of Y as

Hk(B) = P [Y ∈ B, A = k], k = 0, 1, 2,

where B is a Borel set in [0,∞]; the distribution of Y is H = H0 +H1 +H2. In Model 1, the

subdistributions of Y can be expressed in terms of the distributions of the latent variables

as follows:

H0(dt) = FU1([0, t)) FV1([t,∞]) FT (dt)

H1(dt) = FU1([0, t)) FT ((t,∞]) FV1(dt) (2.1)

H2(dt) = {1− FT ((t,∞]) FV1((t,∞])} FU1(dt)

[necessarily H0({0}) = H1({0}) = 0]. If S1 = min(T, V1) and H01 = H0 + H1, the three

equations imply

H01(dt) = FU1([0, t)) FS1(dt), H2(dt) = FS1([0, t]) FU1(dt). (2.2)

This indicates that the problem of inverting the model, i.e., expressing the distributions of

the latent variables in terms of the subdistributions of Y , can be solved in two steps. First,

determine the distributions of U1 and S1 like in an independent left-censoring model. Next,

use these distributions to recover the distribution of T .

As an application of Model 1, consider a reliability system which consists of three

components U1, T and V1, with T and V1 in series and U1 in parallel with this series system

(see, e.g., Meeker and Escobar (1998), chapter 15). The lifetimes of U1, T and V1 are
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independent and when the system fails we are able to determine which component failed at

the same time as the system. Morales et al. (1991) propose the application of this model

to study a certain cause death for the trees in a farm.

For our second latent model (call it Model 2), let U2 and T be two lifetimes and let

V2 be a right-censoring time. Assume that T , U2 and V2 are independent. The observed

variables are Y and A, where Y = min[max(T, U2), V2] and

A =





0 if U2 < T ≤ V2

1 if V2 < max(U2, T )

2 if T ≤ U2 ≤ V2.

In Model 2, the relationship between the subdistributions of Y and the distributions of the

latent variables is described by the equations

H0(dt) = FU2([0, t)) FV2([t,∞]) FT (dt)

H1(dt) = {1− FT ([0, t]) FU2([0, t])} FV2(dt) (2.3)

H2(dt) = FT ([0, t]) FV2([t,∞]) FU2(dt)

[necessarily H0({0}) = 0]. If S2 = max(U2, T ) and H02 = H0 + H2, we obtain

H02(dt) = FV2([t,∞]) FS2(dt), H1(dt) = FS2((t,∞]) FV2(dt). (2.4)

These relations show that Model 2 can be inverted in two steps. First, as in an independent

right-censoring model, recover the distributions of V2 and S2 from H02 and H1. Second,

determine the distribution of T .

Model 2 can be interpreted as follows: consider a system consisting of three components

U2, T and V2 with independent lifetimes. Put T and U2 in parallel and V2 in series with

this parallel system (see also Doss et al. (1989), page 767). Again, assume that we are able

to determine which component failed at the same time as the system.

3 Inversion formulae.

Hereafter, if µ is a nonnegative measure on (R+
,B+

), µ(t) is a short notation for µ({t}).
Recall that if F is a probability distribution on (R+

,B+
), the associated hazard measure

is L([0, t]) = − ln F ((t,∞]). Two more hazard measures can be defined

L−(dt) =
F (dt)

F ([t,∞])
and L+(dt) =

F (dt)

F ((t,∞])
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that we call the predictable and the unpredictable hazard measure, respectively. The three

hazard measures have the same continuous parts. Moreover, their point masses are in

bijection: L(t) = − ln[1 − L−(t)] = ln[1 + L+(t)]. The probability distribution F can be

expressed as

F ((t,∞]) = exp{−L([0, t])} =

[0,t]

(1− L−(ds)) = [

[0,t]

(1 + L+(ds)) ]−1,

where is the product-integral [e.g., Gill and Johansen (1990)]. The mass of L at infinity

is irrelevant for F and F (∞) = exp{−L([0,∞))}.
Similarly, by reversing time, the reverse hazard measure associated to F is M((t,∞]) =

− ln F ([0, t]). Moreover, the predictable and unpredictable reverse hazard measures are

defined as

M−(dt) =
F (dt)

F ([0, t])
and M+(dt) =

F (dt)

F ([0, t))
,

respectively. The three reverse hazard measures have the same continuous parts and their

point masses satisfy M(t) = − ln[1−M−(t)] = ln[1 + M+(t)]. We have

F ([0, t]) = exp{−M((t,∞])} =

(t,∞]

(1−M−(ds)) = [

(t,∞]

(1 + M+(ds)) ]−1.

The mass of M at zero is irrelevant for F . Moreover, F (0) = exp{−M((0,∞])}.
Given a nonnegative measure on (R+

,B+
), we can always define a probability distribu-

tion on the same space by considering this measure as being one of L, L− or L+ (resp. M ,

M− or M+) and using the relations above. For instance, in the independent right-censoring

model one defines L−(dt) = H0(dt)/H([t,∞]), with H0 the subdistribution of the uncen-

sored data. Then, by the equations of the model, the distribution corresponding to this L−

is nothing else than the distribution of the lifetime of interest. The reverse hazard measures

M , M− and M+ are the counterparts of L, L− and L+ to be used in left-censoring models.

We can invert our models using the hazard measures above. Since, apart mild conditions

at the origin, the inversion formulae below apply to any subdistributions (H0, H1, H2), we

deduce them without any reference to the latent variables.

For inverting Model 1 assume H0(0) = H1(0) = 0. In view of (2.2), proceed as for

inverting a left-censoring model and define the predictable reverse hazard measures

M−
2 (dt) =

H2(dt)

H([0, t])
, M−

01(dt) =
H01(dt)

H([0, t)) + H01(t)
(3.1)
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and let F 1
2 and F 1

01 be the corresponding distributions. By this definition we have H([0, t]) =

F 1
2 ([0, t])F 1

01([0, t]). In the second step of the inversion, note that the first equation in (2.1)

and the definition of S1 imply H0(dt)/FU1([0, t))FS1([t,∞]) = FT (dt)/FT ([t,∞]). This

suggests to define the predictable hazard measure

L1−
T (dt) =

H0(dt)

F 1
2 ([0, t)) F 1

01([t,∞])
. (3.2)

Let F 1
T be its associated distribution.

For Model 2 assume H0(0) = 0. Look at the relation (2.4) and, exactly as in a right-

censoring model, define the predictable hazard measures

L−02(dt) =
H02(dt)

H([t,∞])
, L−1 (dt) =

H1(dt)

H((t,∞]) + H1(t)
.

Let F 2
02 and F 2

1 denote the corresponding distributions. Clearly, we have H((t,∞]) =

F 2
1 ((t,∞]) F 2

02((t,∞]). In the second step of the inversion, use the first equation in (2.3) and

the definition of S2 to deduce H0(dt)/{FV2([t,∞])FS2([0, t)) + H0(t)} = FT (dt)/FT ([0, t]).

Consequently, define the predictable reverse hazard measure

M2−
T (dt) =

H0(dt)

F 2
1 ([t,∞]) F 2

02([0, t)) + H0(t)
(3.3)

and let F 2
T be its associated distribution.

Now, let us consider the identification problem, that is if Model i is correct, we look for

conditions ensuring that F i
T = FT on R+

. Define the support of µ a nonnegative measure

on [0,∞] as supp(µ) = {t : µ([0, t]) µ([t,∞]) > 0}. The support of a variable X is the

support of FX . Let Bi = {t : FUi
([0, t)) FVi

([t,∞]) > 0}, i = 1, 2. Deduce from (3.2)

[resp. (3.3)] that the support of L1−
T [resp. M2−

T ] is equal to the support of H0. Since

supp(H0) = Bi ∩ supp(FT ), deduce that

F i
T = FT on R+ ⇔ supp(FT ) ⊂ Bi, i = 1, 2.

4 Comparisons with the doubly censored data model.

The models we propose are closely related to the model for doubly (left and right) censored

observations introduced by Turnbull (1974). In Turnbull’s model the lifetime T is indepen-

dent of the censoring variables (L,R) and L ≤ R. The observations are independent copies
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of Y and A where

Y = max[min(T, R), L] = min[max(T, L), R],

A =





0 if L < T ≤ R

1 if ( L ≤ ) R < T

2 if T ≤ L (≤ R )

(no censoring)

(right censoring)

(left censoring) .

If Hk(dt) = P (Y ∈ dt, A = k), k = 0, 1, 2, the equations of the model are

H0(dt) = {FL([0, t))− FR([0, t))} FT (dt)

H1(dt) = FT ((t,∞]) FR(dt) (4.1)

H2(dt) = FT ([0, t]) FL(dt).

Note that the assumptions of the model imply

H([0, t]) = FL([0, t])FT ([0, t]) + FR([0, t])FT ((t,∞]). (4.2)

In Turnbull’s model T is censored from the left by L and from the right by R and the

observation Y is always the variable in the middle. This is different from the censoring

mechanisms we consider: in Model 1 the variable min(T, V1) is left-censored, while in Model

2 the variable max(U2, T ) is right-censored.

Turnbull (1974) proposed a nonparametric maximum likelihood estimator that can be

obtained as the implicit solution of the equations (4.1). The implicit definition of Turn-

bull’s estimator makes its asymptotic properties quite difficult [see Gu and Zhang (1993)].

Moreover, a numerical algorithm is needed for the applications.

We are interested in the relationship between our F 1
T , F 2

T and FT identified by Turnbull’s

model. In fact, for any subdistributions H0, H1 and H2 with H0(0) = H1(0) = 0,

F 1
T ([0, t]) ≤ FT ([0, t]) ≤ F 2

T ([0, t]), ∀t ≥ 0,

where FT is the distribution of T identified by Turnbull’s model. Indeed, in Model 1, use

definition (3.2) and H([0, t]) = F 1
2 ([0, t])F 1

01([0, t]) to write

L1−
T (dt) =

H0(dt)

F 1
2 ([0, t))−H([0, t))

.

In Turnbull’s model [relations (4.1) and (4.2)] we have

L−T (dt) =
H0(dt)

FL([0, t))−H([0, t))
.
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Next, the definition of M−
2 , the last equation in (4.1) and equation (4.2) imply

M−
2 (dt) =

FL([0, t]) FT ([0, t])

FL([0, t]) FT ([0, t]) + FR([0, t]) FT ((t,∞])
M−

L (dt).

Deduce that the measure M−
2 is smaller than the measure M−

L . Therefore, F 1
2 ([0, t)) ≥

FL([0, t)), ∀t ≥ 0. Hence, the measure L1−
T is smaller than the measure L−T which implies

F 1
T ([0, t]) ≤ FT ([0, t]), ∀t ≥ 0.

On the other hand, for Model 2, use the general relationship between M+ and M−, the

definition (3.3) and H((t,∞]) = F 2
1 ((t,∞]) F 2

02((t,∞]) and write

M2+
T (dt) =

H0(dt)

F 2
1 ([t,∞])−H([t,∞])

.

Meanwhile, in Turnbull’s model [relations (4.1) and (4.2)]

M+
T (dt) =

H0(dt)

FR([t,∞])−H([t,∞])
.

Next, use the definition of L−1 , the general relationship between L+ and L−, the second

equation in (2.3) and the equality H((t,∞]) = FL((t,∞]) FT ([0, t]) + FR((t,∞]) FT ((t,∞])

[this is a consequence of (4.2)] to deduce

L+
1 (dt) =

FR((t,∞]) FT ((t,∞])

FL((t,∞]) FT ([0, t]) + FR((t,∞]) FT ((t,∞])
L+

R(dt).

Clearly, the measure L+
1 is smaller than the measure L+

R and thus F 2
1 ([t,∞]) ≥ FR([t,∞]),

∀t ≥ 0. Hence, the measure M2+
T is smaller than the measure M+

T and this implies

F 2
T ([0, t]) ≥ FT ([0, t]), ∀t ≥ 0.

5 Product-limit estimators.

If we replace in the expressions of F 1
T and F 2

T the subdistributions H0, H1 and H2 by their

empirical counterparts we obtain the product-limit estimators F 1
nT and F 2

nT , respectively.

For this denote by {Zj : 1 ≤ j ≤ M} the distinct values in increasing order of Yi in a set

of independent identically distributed (iid) observations {(Yi, Ai) : 1 ≤ i ≤ n}. Define

Dkj =
∑

1≤i≤n

1I{Yi=Zj ,Ai=k}, Nj =
∑

1≤i≤n

1I{Yi≤Zj}, N j =
∑

1≤i≤n

1I{Yi≥Zj},

k = 0, 1, 2. This means in particular, that D0j (resp. D1j) (resp. D2j) are the number of

uncensored (resp. right censored) (resp. left censored) observations at time Zj. With these
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definitions, the product-limit estimator of FT in Model 1 is

F 1
nT ((Zj,∞]) =

∏

1≤k≤j

{1− D0k

Uk−1 −Nk−1

},

where

Uj−1 = n
∏

j≤k≤M

{1− D2k

Nk

}.

The product-limit estimator of FT in Model 2 is given by

F 2
nT ([0, Zj]) =

∏

j<k≤M

{1− D0k

Vk −Nk + D0k

},

where

Vj = n
∏

1≤k≤j

{1− D1k

Nk+1 + D1k

}.

When the doubly censored data model is considered, our product-limit estimators represent

lower and upper bounds for Turnbull’s estimator. These bounds may serve to improve the

numerical algorithms used to compute Turnbull’s estimator.

Let us investigate what happens when, given Model 1 (resp. Model 2) structure data,

we eliminate left (resp. right) censored failure times from the data set in order to apply the

classical Kaplan-Meier estimator for right (resp. left) censored observations. For brevity,

we only analyze Model 1 where we eliminate the observations with A = 2. The limit

of the Kaplan-Meier estimator applied to the remaining observations is the probability

distribution F̃ with predictable hazard measure L̃−(dt) = H0(dt)/H01([t,∞]). Since

F 1
2 ([0, t))−H([0, t)) = H01([t,∞]) + H2([t,∞])− F 1

2 ([t,∞]) ≤ H01([t,∞]),

the measure L̃− is smaller than the measure L1−
T . Therefore, F 1

T ((t,∞]) ≤ F̃ ((t,∞]),

∀t ≥ 0. We evaluated the difference between F̃ and F 1
T by simulating a large sample

from Model 1 with FU1 , F 1
T and FV1 exponential distributions (the parameter of F 1

T is

equal to 1). Four different values for the parameter of FU1 are used and the probabilities

P (A = 2) obtained are 0.05, 0.1, 0.2 and 0.4. In Figure 1 we present the curves {F̃ ((t,∞])−
F 1

T ((t,∞])}/F 1
T ((t,∞]) corresponding to the four cases that are ordered from the smallest

probability P (A = 2) (bottom curve) to the largest one (top curve). We learn from this

experiment that the sample selection bias induced when discarding the left censored failure

times increases when P (A = 2) increases and it may be significative when P (A = 2) is not

practically negligible.
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Figure 1:

6 Strong convergence.

We study the uniform strong (almost sure) convergence of F 1
nT and F 2

nT . Since, in fact,

the estimators F 1
nT and F 2

nT are built as explicit functionals of the empirical distribution,

we deduce their asymptotic behavior, in particular the strong convergence, whatever the

properties of the underlying censoring mechanism are. Hereafter, we use the following rule:

the subscript n indicates the empirical version of the quantities we consider. Moreover, if µ

is a nonnegative measure on (R+
,B+

) and f is a measurable function, µ(f) =
∫

f(t) µ(dt).

For the strong convergence we recall a result of Rolin (2001), an extension of the strong

law under right-censorship proved by Stute and Wang (1993). Let H =
∑

1≤r≤g Hr be a

probability distribution decomposed into g subdistributions. If I ⊂ K = {r : 1 ≤ r ≤ g},
let HI =

∑
r∈I Hr. For Jk ⊂ Ik ⊂ K, k = 1, 2, define

L−k (dt) =
HJk

(dt)

H((t,∞]) + HIk
(t)

and consider the measure G(dt) = exp{−L2([0, t))}L−1 (dt).

Theorem 6.1 If G(f) < ∞, then Gn(f) → G(f) a.s. and in the mean.

The same result holds if we define the predictable reverse hazard measures

M−
k (dt) =

HJk
(dt)

H([0, t)) + HIk
(t)

, k = 1, 2,

and consider the measure G(dt) = exp{−M2((t,∞])}M−
1 (dt).
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Let us extend the number of hazard measures associated to Model 1 by defining

M−
0 (dt) =

H0(dt)

H([0, t)) + H01(t)
, M−

1 (dt) =
H1(dt)

H([0, t)) + H1(t)
.

Consider F 1
0 , F 1

1 the corresponding distributions. Deduce that M01 = M0 + M1, where

M0,M1 and M01 are the reverse hazard measures associated to M−
0 ,M−

1 and M−
01 [see

(3.1)], respectively. In view of equations (2.2) deduce H([0, t)) = F 1
2 ([0, t))F 1

01([0, t)) and

H01(t) = F 1
2 ([0, t))F 1

01(t). Therefore, we can write

H0(dt) = F 1
2 ([0, t))F 1

01([0, t])M
−
0 (dt).

Consequently, in the expression of the predictable hazard measure defining F 1
T [see (3.2)],

we get rid of F 1
2 and obtain

L1−
T (dt) =

F 1
01([0, t])

F 1
01([t,∞])

M−
0 (dt).

Theorem 6.2 If f is a nonnegative Borel measurable function on (R+
,B+

) such that

L1−
T (f) < ∞, then, almost surely as n →∞, L1−

nT (f) → L1−
T (f).

Theorem 6.2 is a direct consequence of the following lemma.

Lemma 6.1 i) If L1−
T (f 1I [0,t]) < ∞ and F 1

01([t,∞]) > 0, then, almost surely

L1−
nT (f 1I [0,t]) → L1−

T (f 1I [0,t]), n →∞.

ii) If L1−
T (f 1I [t,∞]) < ∞ and F 1

2 ([0, t)) > 0, then, almost surely as n →∞,

L1−
nT (f 1I [t,∞]) → L1−

T (f 1I [t,∞]).

Proof. Proof i) First, Theorem 6.1 implies that any empirical distribution function defined

by the empirical reverse hazard measures of Model 1 converges uniformly on [0,∞]. Now,

| L1−
nT (f 1I [0,t])−

∫

(0,t]

f(s)

F 1
01([s,∞])

F 1
n01([0, s])M

−
n0(ds) |

≤ || F 1
n01 − F 1

01 ||
F 1

n01([t,∞])

∫

(0,t]

f(s)

F 1
01([s,∞])

F 1
n01([0, s])M

−
n0(ds).

The second member of the inequality tends to zero almost surely because F 1
n01([t,∞]) →

F 1
01([t,∞]) > 0 a.s. and, by Theorem 6.1 applied for G(ds) = exp{−M01((s,∞])}M−

0 (ds),

∫

(0,t]

f(s)

F 1
01([s,∞])

F 1
n01([0, s])M

−
n0(ds) → L1−

T (f 1I [0,t]), a.s.
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ii) First, looking at the definition of M−
01, a simple computation shows that

H01([s,∞]) ≤ F 1
01([s,∞]) ≤ H01([s,∞])

H01([0,∞])
.

Using definition (3.2) for the predictable hazard measure defining F 1
T , we have

| L1−
nT (f 1I[t,∞]) −

∫

[t,∞]

f(s)

F 1
2 ([0, s))

Hn0(ds)

F 1
n01([s,∞])

|

≤ ‖F 1
n2 − F 1

2 ‖
F 1

n2([0, t))

∫

[t,∞]

f(s)

F 1
2 ([0, s))

Hn0(ds)

F 1
n01([s,∞])

≤ ‖F 1
n2 − F 1

2 ‖
F 1

n2([0, t))

∫

[t,∞]

f(s)

F 1
2 ([0, s))

Hn0(ds)

Hn01([s,∞])
.

Now, almost surely F 1
n2([0, t)) → F 1

2 ([0, t)) which is strictly positive. Since

∫

[t,∞]

f(s)

F 1
2 ([0, s))

H0(ds)

H01([s,∞])
≤ H01([0,∞])−1L1−

T (f 1I[t,∞]) < ∞,

a new application of Theorem 6.1 provides the result. ¤
Denote by t0k the left endpoint and by t1k the right endpoint of the support of Hk,

k = 0, 1, 2. We have the following corollary of Theorem 6.2. Note that the strong uni-

form convergence of F 1
nT is obtained without any additional assumption, apart that of iid

observations and condition H0(0) = H1(0) = 0.

Corollary 6.3 a) If L1−
T ([0, t10)) < ∞, then, almost surely,

sup
0≤t<t10

| L1
nT ([0, t])− L1

T ([0, t]) |→ 0

and L1
nT (t10) → L1

T (t10). If L1−
T ([0, t10)) = ∞, then, almost surely,

sup
0≤s≤t

| L1
nT ([0, s])− L1

T ([0, s]) |→ 0

for all t < t10 and L1
nT ([0, t10)) →∞.

b) Almost surely, ‖F 1
nT − F 1

T‖ = sup 0≤t≤∞ | F 1
nT ([0, t])− F 1

T ([0, t]) |→ 0.

Proof. Proof The Glivenko-Cantelli theorem provides the result in a) with L1
T and L1

nT

replaced by L1−
T and L1−

nT , respectively. The similar result for the hazard measure L1
nT

is obtained by taking care of the fact that L1
T (t10) = ∞ if L1−

T ( t10) = 1. This happens

if t10 ≥ t11, H0(t10) > 0 and H1(t10) = 0. The convergence of F 1
nT is implied by the

convergence of the associated hazard measure L1
nT . ¤
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The strong uniform convergence of F 2
nT can be obtained in a similar way. Define

L−0 (dt) =
H0 (dt)

H([t,∞])
, L−2 (dt) =

H2(dt)

H((t,∞]) + H1(t) + H2(t)

and consider F 2
0 , F 2

2 the corresponding distribution. After some manipulations, we can get

rid of F 2
1 in the definition (3.3):

M2−
T (dt) =

F 2
2 ([t,∞]F 2

0 ([t,∞])

1− F 2
2 ([t,∞])F 2

0 ((t,∞])
L−0 (dt).

Next, apply Theorem 6.1 [see Patilea and Rolin (2001) for the details].

7 Asymptotic normality.

Let (D[a, b], ‖·‖) be the space of càdlàg functions defined on [a, b] ⊂ [0,∞], endowed with

the supremum norm. BVC [a, b] ⊂ D[a, b] is the set of càdlàg functions with total variation

bounded by C. The integrals with respect to functions which are not of bounded variation

have to be understood via partial integration. Finally, weak convergence is denoted by Ã
and is in the sense considered by Pollard (1984), that is D[a, b] is endowed with the ball

σ−field.

Given the explicit form of F i
nT , i = 1, 2, a convenient approach for proving weak con-

vergence is the delta method [e.g., Gill (1989), van der Vaart and Wellner (1996), section

3.9]. For proving Hadamard differentiability, the denominators appearing in the maps used

to define F 1
T and F 2

T should stay away from zero. Therefore, we have to complete the delta

method with a tool for treating the endpoints of the intervals on which weak convergence

is finally proved.

Lemma 7.2 (Pollard (1984), page 70) Let X, X1, X2... be random elements of (D[a, b], ‖·‖)
with the distribution of X concentrated on a separable set. Suppose, for each ε > 0 and

δ > 0, there exists approximating random elements AX, AX1, AX2... such that AXn Ã AX,

P (‖X − AX‖ > δ) < ε and

lim sup
n→∞

P (‖Xn − AXn‖ > δ) < ε. (7.1)

Then Xn Ã X.
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For brevity we only consider the asymptotic normality of F 1
nT ; similar arguments apply

for F 2
nT [see Patilea and Rolin (2001) for the details].

Note that the empirical central limit theorem yields

√
n (Hn −H, H0n −H0, H2n −H2) Ã (G, G0, G2) in D3([0,∞]).

Now, we prove that
√

n(M−
n2−M−

2 ) and
√

n(F 1
n2−F 1

2 ) converge weakly to Gaussian limits.

The computation of the covariance structures for the limit processes in this section is

elementary, albeit tedious [see Patilea and Rolin (2001) for some formulae].

Lemma 7.3 Let M−
2t = M−

2 ((t,∞]) and M−
n2t be the corresponding estimator. Assume that

∫

(t00,∞]

M−
2 (du)

H([0, u])
=

∫

(t00,∞]

H2(du)

H([0, u])2
< ∞, (7.2)

where t00 = inf{t : H0([0, t]) > 0}. Then,

√
n

(
Hn −H, Hn0 −H0, M−

n2 −M−
2

)
Ã (G, G0, GM) in D3[t00,∞], (7.3)

where (G, G0, GM) is a zero-mean Gaussian process with

GMt =

∫

(t,∞]

dG2u

H ([0, u])
−

∫

(t,∞]

Gu

H ([0, u])2H2(du). (7.4)

Moreover, if F 1
2t = F 1

2 ([0, t]), then

√
n

(
Hn −H, Hn0 −H0, F 1

n2 − F 1
2

)
Ã (G, G0, G3) in D3[t00,∞],

where (G, G0, G3) is a zero-mean Gaussian process with

G3t = −F 1
2 ([0, t])

∫

(t,∞]

dGMu

1−M−
2 (u)

. (7.5)

Proof. Proof The map (A,B) → ∫
(·,∞]

(1/A)dB is Hadamard-differentiable on a domain

of the type {(A,B) : A ∈ D[a, b], B ∈ BVC [a, b], A ≥ ε}, C, ε > 0, at every point such

that 1/A is of bounded variation. The derivative map is given by (α, β) → ∫
(·,∞]

(1/A)dβ −
∫

(·,∞]
(α/A2)dB. Therefore, the delta-method for the map (H, H0, H2) → (H, H0,M

−
2 )

yields the weak convergence of
√

n(Hn −H, Hn0 −H0, M−
n2 −M−

2 ) in D3[σ,∞], provided

that H([0, σ]) > 0.

For the weak convergence in D3[t00,∞], consider the pathwise limit of GMσ as σ ↓ t00,

which exists in view of (7.2). It remains to verify (7.1) when H ([0, t00]) = 0. It suffices to

prove: a) for any ε, δ > 0, there exists σ = σ(ε, δ) > t00 such that

limn→∞ P ( sup
U≤ t≤σ

√
n

∣∣M−
n2([t, σ))−M−

2 ([t, σ))
∣∣ > δ) < ε; (7.6)
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and b)
√

nM−
2 ((t00, U)) → 0, in probability, where U = mini Yi. To ensure a), reverse

the time and apply the arguments usually used to check the “tightness at τH = sup{t :

H([0, t]) < 1}” when proving weak convergence for Nelson-Aalen and Kaplan-Meier esti-

mators [see Fleming and Harrington (1991), Theorem 6.2.1, Gill (1983)]. For b), first note

that (7.2) ensures M−
2 ((t00,∞]) finite. This implies F 1

2 ([0, t00]) > 0 [use, for instance, ar-

guments as in Lemma 6 of Gill and Johansen (1990)]. Since in general M− is smaller than

M , deduce

M−
2 ((t00, U)) ≤ M2((t00, U)) = ln

F 1
2 ([0, U))

F 1
2 ([0, t00])

≤ F 1
2 ((t00, U))

F 1
2 ([0, t00])

.

Let uλ
n = sup{s :

√
nF 1

2 ((t00, s)) ≤ λ} [see also Ying (1989)]. We have

P (
√

n F 1
2 ((t00, U)) > λ) ≤ P (U > uλ

n) = H((uλ
n,∞])n

≤ {
1− F 1

2 ((t00, u
λ
n])F 1

01([0, u
λ
n])

}n ≤
(

1− λ2

n

F 1
01([0, u

λ
n])

F 1
2 ((t00, uλ

n])

)n

→ 0.

The convergence to zero is true because, in view of (7.2),

F 1
2 ((t00, u

λ
n])

F 1
01([0, u

λ
n])

≤
∫

(t00,uλ
n]

F 1
2 (ds)

F 1
01([0, s])

=

∫

(t00,uλ
n]

M−
2 (ds)

H([0, s])
→ 0, n →∞.

Now, b) is clear. For the last part of the lemma, apply the delta-method for the map

A → (·,∞](1− A(ds)) defined on BVC [t00,∞], for some C > 0. ¤

Remark. In view of the variance of the process G3, it seems possible to relax condition

(7.2) when F 1
2 ([0, t00]) = 0 [see also Gill (1983)]. However, in the following, due to the lack

of an obvious martingale structure for L1−
nT −L1−

T it is convenient to keep the denominator

appearing in the definition of L1−
T away from zero when t ↓ t00. For this we have to impose

F 1
2 ([0, t00]) > 0 and in this case (7.2) is needed to bound the variance of G3t when t decreases

to t00.

Now, we state the asymptotic normality for L1−
nT and F 1

nT . The notation A− means that

we consider the left-limits of the process A.

Theorem 7.1 Suppose condition (7.2). Let t00 < τ such that H01([0, τ)) < 1. If L1−
Tt =

L1−
T ([0, t]), then

√
n(L1−

nT − L1−
T ) Ã V in D[0, τ ], where

Vt =

∫

(0,t]

dG0u

(F 1
2 −H) ([0, u))

−
∫

(0,t]

G3u− −Gu−
(F 1

2 −H)
2
([0, u))

H0(du), t ∈ [0, τ ],
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is a zero-mean Gaussian process. Moreover, if F 1
Tt = F 1

T ([0, t]), then we have
√

n(F 1
nT −

F 1
T ) Ã W in D[0, τ ], with W a zero-mean Gaussian process given by

Wt = F 1
T ((t,∞])

∫

(0,t]

dVu

1− L1−
T (u)

.

Proof. Proof Since F 1
01([τ,∞]) > 0 and, by (7.2), F 1

2 ([0, t00]) > 0, we have inf(t00,τ ](F
1
2 −

H)([0, s)) > ε, for some ε > 0. Thus, if H0(t00) = 0, the weak convergence of
√

n(L1−
nT −L1−

T )

is obtained by the delta-method for the map (A,B) → ∫
(t00,·](1/A− )dB [see van der Vaart

and Wellner (1996), pages 382-4].

When H0(t00) > 0 (hence, necessarily t00 > 0), in the definition of L1−
T we also have to

take into account F 1
2 ([0, t00)). For this extend the weak convergence in (7.3) on D3[0,∞]

by considering a modified predictable reverse hazard function

M−
2t = M−

2 ((t,∞]) =

∫

(t,∞]

H2(du)

H ([0, u ∨ t00])
, t ∈ [0,∞].

Let M−
n2 be the empirical counterpart. Since the denominator in the last display stays away

from zero, the weak convergence of
√

n(Hn −H, Hn0 −H0, F 1
n2 − F 1

2 ) in D3[0,∞] is easily

obtained by the delta-method, where now F 1
2 , F 1

n2 correspond to the modified M−
2 , M−

n2,

respectively. Note that now F 1
2 ([0, t00)) > 0. The processes GM and G3 are still defined

according to (7.4) and (7.5), respectively. Since the modification of M−
2t and M−

n2 do not

change the definitions of L1−
T and L1−

nT , the delta-method yields the weak convergence of
√

n
(
L1−

nT − L1−
T

)
. The last part of the theorem is obtained by the delta-method for the

product-integration map. ¤
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