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Résumé :

Nous nous intéressons à des durées de vie soumises à deux risques concur-
rents, notés A et B. La durée de vie d'un individu qui serait uniquement soumis
à la cause A (resp. B) est notée X (resp. Y ). Dans notre situation, on observe
donc uniquement la durée de vieT = inf(X, Y ), qui est supposée n'être due qu'à
une seule cause, et également l'indicateur δ qui spéci�e la cause ayant entraîné
le décès ou la défaillance. On suppose de plus que les observations que l'on fait
de ces durées de vie sous risques concurrents sont soumises à biais de longueur.
C'est à dire que l'on constitue l'échantillon des durées de vies observées en ne
suivant que les individus en vie à une date t0 donnée. En�n, on autorise la
présence d'une censure aléatoire droite.

L'objet de cet article est de proposer un estimateur de la fonction de survie de
la cause A, i.e. la fonction dé�nie, pour tout t > 0, par ḠX(t) = P (X > t), dans
le cas où les durées de vie X et Y sont à fonctions de risque proportionnelles.
Nous établissons ensuite des résultats de convergence faible pour le processus
associé.

Mots clés : Risques concurrents, risques proportionnels, échantillonnage
biaisé en longueur, censure à droite, convergence faible des processus, topologie
de Skorohod.

Abstract :

Consider a population of individuals who experience two causes of death.
We observe the ones alive at time t0 and follow them until death or possible
censoring time. Given this length biased sample, we introduce an estimator of
the survival function of "initial survival times" (i.e. for the entire population)
under the assumption of proportional hazards for the two causes of death. The
large sample behavior of our estimator is also studied.

Key words : Competing risks, Length-bias, Right-censored data, Propor-
tional hazards, weak convergence of stochastic processes, Skorohod space.
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1. INTRODUCTION
The central problem in the analysis of duration data is the e�cient esti-

mation of the distribution of the time Z between two speci�ed events under
di�erent sampling scenarios. The two events whose gap time is of interest will
be called the initiating and terminating events. The two events may be HIV
infection and death, successive hospitalizations due to a disease or entry and
exit from the workforce. Frequently, the distribution ofZ must be estimated
from a cross-sectional sample at time t0 consisting of subjects who experienced
the initiating event, but not the terminating event, prior to t0. In the context
of epidemiology and survival analysis, cross-sectional sample studies prevalent
rather than incident cases. As it is well-known, such data su�er from length-
bias in the sense that Zb, the time gap between initiating and terminating
events for a cross-sectionally selected subject, is stochastically larger thanZ
with dP (Zb < t) proportional to tdP (Z < t). This phenomenon, to be referred
to as length-biased sampling (LBS), was noted by McFadden (1962) for lengths
of intervals in a stationary point process, by Blumenthal (1967) in industrial
life testing and by Cox (1969) for estimating the distribution of �ber lengths
in a fabric. Feinlieb and Zelen (1969) recognized LBS in screening for chronic
diseases and Simon(1980) noted its relevance in etiologic studies. The source of
LBS is the simple fact that, when drawing observations from a set of subjects in
a particular state, the probability of being included in the sample is proportional
to the sojourn time in that state ; thus leading to disproportionate representa-
tion of longer durations. Vardi (1982) was the �rst to consider nonparametric
estimation in the presence of LBS. He derived and studied the unconditional
nonparametric maximum likelihood estimate (NPMLE) of the distribution func-
tion of Z on the basis of two independent samples, one a sample fromZ and the
other a sample from its length-biased versionZb. We refer to Vardi (1982, 1985,
1989), Gill et. al. (1988) and Vardi and Zhang (1992) for further theoretical de-
velopments. More recently, Asgharian et. al (2002) obtained the unconditional
NPMLE of the survivor function of Z and its asymptotic properties when the
data are purely length-biased with random right censoring.

Length-biased data can be considered as a special case of left-truncation
if the occurrence time of the initiating event is uniformly distributed. Here,
truncation refers to the fact that a subject can not be observed at t0 if it
experienced the terminating event before t0. There is an extensive literature on
nonparametric estimation under left truncation. We refer to Turnbull (1976),
Woodroofe (1985), Wang et al. (1986), Tsai et al. (1987), Wang (1991) and
Wang et al. (1993).

The motivation for the present paper comes from the conjunction of LBS and
competing risks (CR). Suppose that the terminating event can occur in either
of two competing ways A and B, e.g. A may be death due to a speci�c disease,
say cancer, and B death from a natural cause. Then the time gap between
initiating and terminating events is of length Z = X ∧ Y where X (Y ) is the
latent (potential) survival time associated with riskA (B). However, under LBS,
Z is not observable. To be precise, we shall consider the following situation. The
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observed sample consists ofn independent individuals, cross-sectionally selected
at t0, who were exposed to risk A at known time points σi ≤ t0, i = 1, ..., n.
These individuals are followed up to a certain timeτ and each has the following
four possibilities : (i) dies of cause A, (ii) dies of cause B (a natural cause or
all causes other than A), (iii) withdraws from the study, and (iv) is alive and
still under study at time τ . The possibilities (iii) and (iv) will be referred to as
censoring and Ci will denote the potential censoring time for the ith member of
the length-biased sample. Similarly,Xb

i (Y b
i ) will denote the potential survival

time of the ith subject when facing riskA (B). The sample data thus consists of
the n pairs (Ti, δ

b
i ) where Ti = Zb

i ∧Ci and δb
i indicates the mode of termination

(death due to A, death due to B, censoring).
The main objective of the present paper is estimation of the survivor function

ḠX(t) = P(X > t) in the LBS-CR set up described above. This problem has not
been considered in the literature so far. Huang and Wang (1995) did consider
the LBS-CR set up but they were concerned with estimation of crude hazard
functions and occurrence probabilities rather than estimation ofḠX . We study
the estimation of ḠX when X and Y are independent but have proportional
hazards.

The outline of this paper is as follows. Assuming that the initiating events
follow a mixed Poisson process, the distribution of the time to the terminating
event in a LBS-CR setup is derived in Section 2. An estimator ˆ̄GX for the
survivor function ḠX(t) = P(X > t), the survivor function of primary interest,
is developed in Section 3 on the basis of the observed length-biased sample under
right censoring when the two independent risks A and B have proportional
hazards. The main result of this paper is the weak convergence of the process√

n( ˆ̄GX − ḠX) in the Skorohod spaceD[0,∞]. This result (Theorem 2) is based
on another weak convergence result given in Lemma 1. The proof of Lemma
1, which may be of independent interest, is given in the appendix. In Section
4, we apply our technics to the dataset introduced by Bienen& van de Walle
(1991). Eventually, to facilitate a visual comparison of ˆ̄GX with ḠX , we present
con�dence intervals in Section 5 for exponential and Weibull cases.

2. FRAMEWORK AND NOTATIONS
The objective of this section is to develop a framework for study of length-

biased sampling (LBS) in the setup of competing risks (CR). For convenience,
the initiating and terminating events of interest will be called birth and death,
respectively. We shall consider a population (i ∈ I) of individuals who are
subject to two competing causes, A and B, of death. The CR model will be
described in terms of latent survival timesX and Y where X (Y ) is a positive
random variable representing the age at death in the hypothetical situation in
which A (B) is the only possible cause of death. Frequently, there is a primary
cause of interest. For example, the target interest of study may be death due
to breast cancer. In such cases, we shall takeA as the primary risk of interest
and all other causes will be lumped together asB. In any case, Zi = Xi ∧ Yi,
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i ∈ I, will denote the lifetime of individual i. The calendar time of birth of the
ith individual will be denoted by σi. A convenient graphical representation of
the lifespan of an individual born at calendar time σi and experiencing death
at age zi is given by the well-known Lexis diagram (see Figure1). This diagram
consists of line segments in a rectangular coordinate system with calendar time
as abscissa and the age as ordinate such that the ith life is represented by the
line segment joining the points (σi, 0) and (σi, σi + zi). The Lexis diagram and
associated point processes described in Brillinger (1986), Keiding (1990), and
Lund (2000) provide useful settings for analyzing lifetimes. The Lexis diagram
is particularly important in describing sampling patterns for selection of indivi-
duals in a study. It also helps in visualizing follow-up patterns and truncation
of lifetimes.

For correct analysis of survival times, it is important to note that a random
sample cross-sectional selected at calendar timet0 is not really a random sample
from I but, in fact, from the set J = {i ∈ I : (σi, xi, yi) ∈ E} where E =
{(σ, x, y) : σ ≤ t0, σ + x ≥ t0, σ + y ≥ t0} and Xi, Yi are the latent survival
times (corresponding to risks A, B, respectively) for individual i. Individuals
with lifetime Zi = Xi∧Yi shorter than t0−σi are excluded from the population
J . That is, the survival time Zi is left truncated by the time t0 − σi. Thus,
the observable random variable is not Zi but Zb

i as a random variable whose
probability distribution is the same as the conditional distribution ofZi = Xi∧Yi

given (σi, Xi, Yi) ∈ E. We shall refer to Zb
i as the length-biased version of Zi.

The goal of this paper is to estimate the survivor functionḠX(t) = P(X > t)
on the basis of a random sample of n from the aforementioned set J when
A and B are two independent competing risks with β proportional hazards :
ḠY (t) = P(Y > t) = (ḠX(t))β for all t ≥ 0 and for some β > 0. We will
allow the possibility of random right censoring in a manner to be de�ned later.
The available data will include the cause of death for uncensored lifetimes. The
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following proposition provides a key fact : it gives the probability distribution of
Zb de�ned as a random variable whose distribution is the same as the conditional
distribution of Z = X ∧ Y given (σ,X, Y ) ∈ E. Here, σ is the calendar time of
birth of a life having latent survival timesX, Y . It will be seen that, under the
assumptions made, the distribution of Zb will be independent of σ. Thus, the
survival times Zb

1, ...,Zb
n of the n individuals in the sample selected at t0 will be

independent copies of Zb.

Theorem 1 Suppose that :
(i) the latent survival time X and Y are independent with respective probability
density functions gX(t) = −dḠX(t)/dt and gY (t) = −dḠY (t)/dt,
(ii) E|X| < ∞ and E|Y | < ∞, and
(iii) the birth process η =

∑
i∈I εσi

, where εσi
denotes the random measure

concentrated on σi, is a mixed Poisson process.
Then, Zb has probability density function

fZb(z) =
z

E(Z)
(gX(z)Ḡy(z) + gY (z)ḠX(z)),

for z > 0.

Proof of Theorem 1.
Although the above result is merely the competing risks statements of the well-
known length-biased density (see, e.g., Lund (2000) and van Es et al.(2000)),
we o�er the following derivation. First note thatη is a point process on R such
that, for each Borel set B in R, η(B) is the random variable giving the number
of births encountered inB. We assume that a.s. η(B) < ∞. For each individual
i, the birth time σi is �marked� by the pair of latent survival times (Xi, Yi). We
now de�ne the Lexis point process

µ =
∑

i∈I

ε(σi,Xi,Yi)

on (R×R2
+,BR⊗BR2

+
), where BR denotes the Borel σ-algebra on R. This has the

advantage of showing that µ|ϕ, the process µ conditional on the intensity ϕ of
the mixed Poisson process, is Poisson with intensityλ|ϕ(σ, x, y) = ϕgX(x)gY (y)
and with mean-measure Λ|ϕ(B) =

∫
B

λ|ϕ(σ, x, y)dσdxdy for each Borel set B
on R × R2

+. We refer to Kingman (1993) for the marking theorem exploited
here. Further, let µ|ϕ(. ∩ E) be the restriction of the Poisson process µ|ϕ to
the measurable set E = {(σ, x, y) : σ ≤ t0, σ + x ≥ t0, σ + y ≥ t0}. Then, by
the well-known restriction theorem for Poisson processes (see, e.g., Kingman -
1993), µ|ϕ(.∩E) is a Poisson process onR×R2

+ with mean-measureΛE|ϕ(B) =
Λ|ϕ(B ∩ E) =

∫
B∩E

λ|ϕ(σ, x, y)dσdxdy for each Borel set B in R× R2
+.

Our mode of sampling is equivalent to selecting a random subsetE∗ ⊂ E
such that µ|ϕ(E∗ ∩ E) = n is the sample size. By the order statistics property
of Poisson processes, see e.g. Kingman (1993), given µ|ϕ(E) = N , the points
of the Poisson process µ|ϕ(· ∩ E) look exactly like µ|ϕ(E) independent random



5

variables, with common probability measure

PE|ϕ(·) =
Λ|ϕ(· ∩ E)

Λ|ϕ(E)

on Borel subsets of R × R2
+. Hayakawa (2000) showed that the order statistics

property is a characterisation of mixed Poisson processes within the general class
of point processes, this indicates that assumption (iii) can not be weakened.

Let Xb, Y b denote the latent survival times (corresponding to risksA and
B respectively) for an individual in J where, as de�ned earlier, J = {i ∈ I :
(σi, Xi, Yi) ∈ E}. Taking B = {(σ, x, y) : x ≤ x0, y ≤ y0} ; x0, y0 > 0 ; it follows
from the above discussion that, conditional onµ|ϕ(E) :

P|ϕ(Xb ≤ x0, Y
b ≤ y0)

=
Λ|ϕ(B ∩ E)

Λ|ϕ(E)

=

∫
B∩E

ϕgX,Y (x, y)dσdxdy∫
E

ϕgX,Y (x, y)dσdxdy

=

∫ y0

0

∫ x0

0

∫ t0
t0−inf(x,y)

gX,Y (x, y)dσdxdy
∫ t0
−∞ ḠX(t0 − σ)ḠY (t0 − σ)dσ

=

∫ x0

0

∫ y0

0
inf(x, y)gX,Y (x, y)dxdy

E(Z)

where Z = X ∧ Y and ḠX and ḠY are the survival functions of X and Y ,
respectively. Since the last expression does not involve ϕ, integrating w.r. its
distribution, we get

P(Xb ≤ x0, Y
b ≤ y0) =

∫ x0

0

∫ y0

0
inf(x, y)gX,Y (x, y)dxdy

E(Z)
.

The p.d.f. of the vector (Xb, Y b) is then

fXb,Y b(x, y) =
1
EZ

(x ∧ y)gX(x)gY (y). (1)

Hence Zb = Xb ∧ Y b has survival function

F̄Zb(z) =
1

E(Z)

∫ ∞

z

∫ ∞

z

(x ∧ y)gX(x)gY (y)dxdy

=
1

E(Z)
[
∫ ∞

z

∫ ∞

z

xI(x≤y)gX(x)gY (y)dxdy

+
∫ ∞

z

∫ ∞

z

yI(y≤x)gX(x)gY (y)dxdy]

=
1
EZ

[
∫ ∞

z

xgX(x)ḠY (x)dx +
∫ ∞

z

ygY (y)ḠX(y)dy].
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The proposition follows on taking the derivative.2
In the present paper, we are concerned with the important special case in

which the risks A and B have proportional hazards. Thus, it will be assumed
that these exits β > 0 such that for all t > 0 :

ΛY (x) = βΛX(x)

where ΛX = − ln(ḠX) and ΛY = − ln(ḠY ) are the cumulative hazard functions
of X and Y , respectively. Equivalently,

ḠY (x) = (ḠX(x))β

for all t > 0. Under this assumption, the p.d.f. ofZb reduces to

fZb(z) =
1
EZ

(1 + β)zgX(z)(ḠX(z))β , z > 0. (2)

The constant β gives the odds on death due to causeB. That is,
P(Y b ≤ Xb)
P(Xb ≤ Y b)

= β.

Furthermore, it can be shown the the random variables I({Xb ≤ Y b}) and
Zb = Xb ∧ Y b are independent. It may be noted here that, as it is evident
from (1), the random variables Xb and Y b are not independent. The initial
independence of X and Y has been lost under the selection process.

3. ESTIMATION OF SURVIVAL FUNCTIONS
The survivor function of primary interest is ḠX(t) = P(X > t). We now

construct an estimator of ḠX on the basis of a length-biased sample described
earlier. Adhering to the notations of the previous section and ignoring, for the
moment, the possibility of right censoring, the observable random variable isZb

rather than Z = X ∧ Y . The probability distribution of Zb is the conditional
distribution of Z given that (σ, x, y) ∈ E. Under the assumption that X and Y
are independent with proportional hazards, the unconditional distribution ofZ
had p.d.f.

gZ(z) = (1 + β)gX(z)(ḠX(z))β , z > 0.

Therefore, by Theorem 1,

fZb(z) =
1

E(Z)
zgZ(z), z > 0.

That is, the density ofZb is the length-biased version of the density ofZ. Conse-
quently, by the well-known inversion formula of Cox (1969), the distribution
function GZ(t) = P(Z ≤ t) is expressible as

GZ(t) =

∫ t

0
1
z dF̄Zb(z)∫∞

0
1
z dF̄Zb(z)
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where F̄Zb(·) is the survivor function of Zb. On the other hand,

ḠX(t) =
(
ḠZ(t)

)α

where α = 1/(1 + β). Hence, a natural estimator of ḠX is the plug-in estimator

ˆ̄GX(t) =
(
1− ĜZ(t)

)α̂

, t > 0 (3)

where

ĜZ(t) =

∫ t

0
1
z d ˆ̄FZb(z)

∫∞
0

1
z , d ˆ̄FZb(z)

, t > 0 (4)

ˆ̄FZb(·) and α̂ are developed below.
To obtain an estimator ˆ̄FZb , we now admit the possibility of right-censoring.

However, the censoring to be considered will be of the type "end of study" or
"loss of follow-up". Each individual in the sample, selected in the manner of
section 2, is followed until death or censoring. The observed data then consists
of n independent pairs (Ti, δ

b
i ) where Ti = Zb

i ∧ Ci and

δb
i =

{ 0 if Ci < Zb
i

1 if Ti = Zb
i = Xb

i

2 if Ti = Zb
i = Y b

i

Here, C1, ...Cn are independent copies of a random variable C which is inde-
pendent ofZb and has survivor functionH̄C . For later use, letS(t) = F̄Zb(t)H̄C(t)
denote the survivor function of T = Zb ∧ C. Further, let

Nj(t) =
n∑

i=1

I({T ≤ t, δb
i = j}) for j = 1, 2

be the counting process associated with the jth cause of death and let

Y (t) =
n∑

i=1

I({T ≥ t})

be the at-risk process. Let the process J be de�ned by J(t) = I({Y (t) > 0}).
De�ning

N(t) =
∑

i∈{1,...,n}
I({Ti ≤ t, δb

i 6= 0}) = N1(t) + N2(t),

the survivor function F̄Zb will be estimated by the Kaplan-Meier estimator
(Andersen et al. (1992))

ˆ̄FZb(t) =
∏

s≤t

(
1− J(s)∆N(s)

Y (s)
)
.
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As for the survivor functions of Xb and Y b, they can not be estimated here
because of the lack of independence betweenXb and Y b. However, the corres-
ponding sub-survivor functions

F1(t) = P(Xb ≤ t,Xb ≤ Y b) (5)
= P(Zb ≤ t,Xb ≤ Y b)
and

F2(t) = P(Zb ≤ t, Y b ≤ Xb)

can be estimated from the available censored sample. Indeed, they can be esti-
mated by the Aalen-Johansen estimators

F̂1(t) =
∫ t

0

ˆ̄F (x−)
dN1(x)
Y (x)

(6)

and

F̂2(t) =
∫ t

0

ˆ̄F (x−)
dN2(x)
Y (x)

.

To estimate α = 1/(1 + β), we �rst note that

α = E
(
I({Xb ≤ Y b}))

so that α may be estimated by

α̂ = F̂1(∞) (7)

The proposed estimator of ḠX is then given by (3) with plug-ins coming from
(4), (5), (7) and (5).

Our main result consists of the weak convergence of the process√n(ĜX −
GX) on the whole line. Let us de�ne AssumptionA as

∫ ∞

0

dFZb(x)
H̄C(x)

< ∞.

Theorem 2 If assumption A is ful�lled, the following weak convergence holds
in the Skorohod space D[0,∞] :

√
n(ĜX −GX) D→ ξ = αḠZL + ḠZ ln(ḠZ)U

as n goes to ∞, where L is de�ned by

L(·) =

∫ ·
0

1
xdZ∫∞

0
1
xdF̄Zb(x)

−G(·)
∫∞
0

1
xdZ∫∞

0
1
xdF̄Zb(x)

,

Z is a gaussian process de�ned on [0,∞] with covariance function given by

< Z(s), Z(t) >= F̄Zb(s)F̄Zb(t)
∫ s∧t

0

dFZb(x)
F̄Zb(x)S(x)
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and U is a mean-zero normally distributed r.v. with variance given by

V(U) =
∫ ∞

0

(F1(∞)− F1(x))2
dF̄Zb(x)

F̄Zb(x)S(x)
+

∫ ∞

0

F̄Zb(x)2
dF̄Zb(x)

F̄1(x)S(x)

− 2
∫ ∞

0

(F1(∞)− F1(x))F̄Zb(x)
dF̄Zb(x)

F̄1(x)S(x)
.

The proof of the above theorem requires the following key result proved in
appendix.

Lemma 1 Under Assumption A, as n goes to ∞, the following weak conver-
gence holds in D[0,∞]× R

(√
n

(
ĜZ −GZ)

)
√

n(α̂− α)

)
Ã

(
L
U

)
. (8)

Proof of Theorem 2.
In view of equation (3), we have

√
n

(
ˆ̄GX(t)− ḠX(t)

)
=

√
n

(
Ψt(ĜZ , α̂)−Ψt(GZ , α)

)
.

where Ψt is a map fromD[0,∞]×R to [0,∞) de�ned by Φt(f, r) = f(t)r. A two-
terms Taylor expansion of the map h(x, y) = xy assures that Ψt is Hadarmard-
di�erentiable with di�erentialDΨt de�ned at (h, u) in D[0,∞]× R by

DΨt(f, r).(h, u) = rf(t)r−1h(t) + f(t)rlnf(t)u.2

4. DATASET ANALYSIS
The statistical analysis of the proportional hazards competing risks model

developed here under the length-biased sampling scheme is of wide ranging
interest. Its applicability extends well beyond the epidemiologic studies involving
follow up of prevalent cases identi�ed through a cross-sectional study. Here, we
present an application to a well-known problem in political science. In those
parts of the world where democratic institutions and constitutional practices
are �rmly entrenched, change of government frequently occurs through non-
constitutional means (such as coups). In such situations, it is of interest to
be able to estimate and predict the duration for which political and executive
leaders hold power. The question is of more than academic interest as the length
of a leader's stay in power may a�ect economic and human right issues. Bienen
and van de Walle (1991) is a pioneering study of the time of power for primary
leaders of countries world-wide. They provide, analyze, and interpret data on
duration (in years) in power for 2,256 leaders from 167 countries for a 100
years period terminating in 1987. However, we are interested only in a subset of
the original data, con�ned to countries outside of Europe, North America, and
Australia ; and restricted to leaders who were in power in 1972. There were 99
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Fig. 2 � Loglog estimated survival functions with the initial sample

such leaders facing two competing risks : exit by constitutional means (risk A)
and non constitutional means (risk B). We treat exit by death due to natural
causes as a mode of independent random censoring. Continued stay in power
until the end of study (the end of 1987) the other mode of this censoring. Bienen
and van de Walle's data is rich in covariates. Allison (1995) gives an analysis
of covariates e�ects via Cox models for a subset consisting of 472 spells of time
in power beginning in 1960 or later. Although our analysis is not concerned
with covariates and, unlike Allison (1995), we are estimating in the length-
biased set up ; we note from Allison (1995) that the two risks - constitutional
and non constitutional exits - have proportional hazards. This proportionality
is indicated by Figure 2 which provides the plots of log-log survivor functions
for the two risks against time. The log-log survivor functions of Figure 2 have
been estimated from the initial sample. Figure 3 shows the survivor function
associated to risk B and estimated from respectively the initial and length-
biased samples

5. SIMULATIONS
In order to evaluate the performance of our estimator, we did the following

two simulation studies.

5.1. Exponential distribution
The birth process is generated from a uniform distribution due to the pro-

perty of a mixed Poisson process. The r.v. X has an exponential distribution
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Fig. 3 � Estimated survival function for the second cause of death : initial and
length-biased samples

with mean 1 and Y is such that :

ḠY (x) = (ḠX(x))β . (9)

Hence Y has also an exponential distribution with mean1/β. We also generated
a censoring r.v. C from an exponential distribution with mean1/λ. Our results
are presented in Figure 4.

In our example, the complete population is of sizen = 5000. For β = 0.60,
λ = 0.5 and an uniform distribution on [−10, 10], the length-biased sample is
of size 172. In this biased sample, 44.19 percent of the individuals are censored.
Since the variance function of our estimator is hard to compute, we estimated
it by bootstrap.

5.2. Weibull distribution
In this case, X is assumed to have a Weibull distribution with parameters1

and 1.5. Hence Y is also Weibull with parameters β and 1.5. The censoring r.v.
has an exponential distribution with mean 1

λ . In the example presented below,
β = 0.60 and λ = 0.55. The complete observation sample's size is n = 5000
and the length-biased one's is 155. 31.6 percent of the sample's observations are
censored. The variance of our estimator is again estimated by bootstrap. The
results are shown in Figure 5.
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Fig. 4 � Estimator (solid), boostraped IC (Dashed) and true function(Dotted)
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7. PROOF OF THE LEMMA
Lemma 1 Under assumptionA, as n goes to∞, the following weak convergence
holds in D[0,∞]× R

(√
n

(
ĜZ −GZ

)
√

n(α̂− α)

)
Ã

(
L
U

)
.

Proof of Lemma 1. From Theorem 3 of Dauxois and Guilloux (2004), we have,
under Assumption A,

√
n

(
ˆ̄FZb − F̄Zb

F̂1 − F1

)
Ã Z =

(
Z
Z1

)

in D2[0,∞], where Z1 is a gaussian process de�ned on [0,∞] with covariance
function given by

< Z1(s), Z1(t) > =
∫ s∧t

0

(Fj(t)− Fj(u))2
dFZb(u)

F̄Zb(u)S(u)
+

∫ s∧t

0

F̄ 2
Zb(u)

dFZb(u)
F̄1(u)S(u)

−
∫ s∧t

0

(Fj(t)− Fj(u))F̄Zb(u)
dFZb(u)

F̄1(u)S(u)
.

It is easily seen that

√
n

(
ĜZ −GZ

α̂− α

)
=
√

n

(
Φt( ˆ̄FZb)− Φ1

t (F̄Zb)
F̂1(∞)− F1(∞)

)
.

where Φt is a map from D[0,∞] to D[0,∞] de�ned by

Φt(f) =

∫ t

0
1
z df(z)∫∞

0
1
z df(z)

The map Φt is Hadamard-di�erentiable with derivative DΦt(F̄Zb) · h at F̄Zb

applied to h in D[0,∞] de�ned by

DΦt(F̄Zb) · h =

∫ t

0
1
z dh(z)∫∞

0
1
z dF̄Zb(z)

−GZb(t)

∫∞
0

1
z dh(z)∫∞

0
1
z dF̄Zb(z)

.

The functional delta method in its version of Theorem 3.9.4. of Van der Vaart
& Wellner (1996) applies.2
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