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Wishart Quadratic Term Structure Models

Abstract

This paper reveals that the class of affine term structure models introduced
by Duffie and Kan (1996) is much larger than it has been usually considered in
the literature. We study ”fundamental” risk factors, which represent multivari-
ate risk aversion of the consumer or the volatility matrix of the technological
activity returns, and argue that they can be defined as symmetric positive matri-
ces. For such matrices we introduce a dynamic affine process called the Wishart
autoregressive (WAR) process; this process is used to reveal the associated term
structure. In this framework:

i) we derive very simple restrictions on the parameters to ensure positive yields
at all maturities;

ii) we observe that the usual constraint that the volatility matrix of an affine
process be diagonal up to a path independent linear invertible transfor-
mation can be considerably relaxed.

The Wishart Quadratic Term Structure Model is the natural extension of
the one-dimensional Cox-Ingersoll-Ross model and of the quadratic models in-
troduced in the literature.

Keywords: Affine Term Structure, Quadratic Term Structure, CAR Process,
Affine Process, WAR Process.
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1 Introduction

A term structure model requires a coherent specification of both the historical
and risk-neutral properties of interest rates. Indeed, while the risk-neutral dis-
tribution is used to determine the term structure pattern and to compare the
current, prices of interest rate derivatives, the historical distribution is needed
to predict the future term structures, the future derivative prices and for in-
stance to determine the Value at Risk of a portfolio of bonds. Moreover, such
a coherent specification is also needed on estimation. Indeed there are very few
fixed income bonds or interest rate derivatives, which are liquid on a given day;
therefore, much more information is contained in the time series dimension than
in the cross-sectional one. While the number of liquid residual maturities for
T-bonds in a given day is between 10 and 20, there are several hundreds trading
days for which such observations are available. By writing a coherent specifica-
tion, we establish some links between historical and risk-neutral representations,
which allow us to exploit the time series information in order to improve the
cross sectional analysis [Dai and Singleton (2003b)].

The most popular specification proposed in the literature and satisfying these
requirements is the so-called affine term structure model, which defines the yields
as affine functions of underlying state variables, with affine dynamics. The first
general presentation of this class appeared in Duffie and Kan (1996), where the
state variables z; are defined in continuous time and satisfy a (multidimensional)
diffusion equation with linear drift and volatility. This specification includes as
special cases some well known one-factor models such as the Vasicek model
[Vasicek(1977)], the CIR model [Cox, Ingersoll, Ross (1985)b], or multifactor
models such as the two-factor CIR model [Chen, Scott (1992)] or the Longstaff-
Schwartz model [Longstaff, Schwartz (1992)]3. The continuous-time diffusion
affine processes are locally gaussian.

A unified presentation of these basic processes has been developed by [Duffie,
Filipovic, Schachermayer (2003)] and includes jump processes. They considered
continuous-time processes with an exponential affine conditional Laplace trans-
form. This extended class of continuous-time affine processes includes the affine
diffusion processes, but also some jump components with affine intensity.

However, the flexibility of this class of continuous-time affine models has
been questioned in both the applied and theoretical literature. First, several
applied studies have rejected different special cases of continuous-time affine
models.* Second, Duffie et alii (2003) mentioned that this class ”essentially”
include some mixture of Ornstein-Uhlenbeck, CIR and bifurcation processes.
These remarks generate an incentive to extend the basic model. Two directions
have been followed in the literature. The first consists in considering the so-
called quadratic term structure models, where the yields are quadratic functions

3See also Langetieg (1980), Brown and Dybvig (1986), Hull and White (1987), Fong,
Vasicek (1991), Chen and Scott (1992), Chen and Scott (1993), Hull and White (1993), Brown
and Schaefer (1994), Balduzzi, Das, Foresi and Sundaram (1996), Duffie and Singleton (1997),
Balduzzi, Das and Foresi (1998), Duffie and Liu (2001), Collin-Dufresne and Goldstein (2001).
4See e.g. Dai and Singleton (2000), Duffee (2002).



of a (multivariate) Ornstein-Uhlenbeck process °. The second one introduces
affine processes in discrete time (called compound autoregressive processes),

defined by the condition [see Darolles, Gourieroux, Jasiak (2001)]:
Elexpu'ziyi|ve] = exp [a (u) z + b (u)] , Vu. (1)

Since the condition on the Laplace transform is written for the unitary horizon
only, instead of being written for any real positive horizon as in the continuous
time approach, we get an infinitely much larger class of affine processes in the
discrete than in the continuous time [see Gourieroux, Monfort and Polimenis
(2002) for a discussion].

It has been observed recently that the standard QTSM is a special case of an
affine model obtained by stacking the factor values and their squares [Cheng,
Scaillet (2002), Dai, Singleton (2003b)]. Also the QTSM has the following
limitations:

i) while the condition for positivity of the short term yield are easily derived,
the positivity conditions for yields at any maturity are generally not given.

ii) the joint distribution of the yields can be degenerate, which creates some
difficulty both for interpretation and statistical inference [see Appendix 1
for a description of these models and of their properties].

The aim of this paper is to improve the quadratic term structure models
(QTSM) in the framework of the affine class. The limitations of the QTSM
(and of the affine term structure model) are likely due to a lack of structural
interpretation of the factors introduced in the affine models. Indeed the fun-
damental factors have to represent the components of preferences or of the
production activities related to the risk. These components can be measured
by the second-order derivative of a utility function or by the volatility matrix
of the activity return, and are naturally represented by symmetric negative or
positive matrices. This idea is developed in this paper.

In Section 2 we introduce the Wishart autoregressive (WAR) process, which
can be used for specifying the (discrete-time) dynamics of stochastic symmetric
positive matrices. In the simplest case, the WAR process can be seen as the
cross-sectional second-order moment of several multivariate Ornstein-Uhlenbeck
processes. We compute its conditional moment generating function and show
that it is an exponential affine function of the lagged values. Thus the process is
compound autoregressive [see Darolles, Gourieroux, and Jasiak (2001)] and can
be used to derive an affine term structure [Gourieroux, Monfort and Polimenis
(2002)]. This term structure is given in Section 3, with the associated risk-
neutral distribution of the factors. We also provide a simple restriction on the
parameters which ensures the positivity of the yields at all maturities. At a
first sight the results seem to be contradictory with the restrictive form of the

5See Longstaff (1989), Beaglehole and Tenney (1991, 1992), Constantinides (1992), Lu
(1999), Ahn, Dittmar and Gallant (2002), Leippold and Wu (2001, 2002), Cheng and Scaillet
(2002).



volatility matrix of an affine process emphasized in the literature [see Duffie
and Kan (1996) for the determination of the restriction, Dai, Liu, and Singleton
(1997), Dai and Singleton (2000) for a detailed discussion of the restrictions].
The purpose of Section 4 is to reconcile the two results by explaining why these
”standard” constraints can be relaxed. The parallel specification in continuous
time is presented in Section 5 and statistical inference in Section 6. Section 7
concludes. The proofs are gathered in Appendices.

2 The Wishart Autoregressive Process

The Wishart autoregressive (WAR) process is a process for symmetric positive
definite matrices (Yz) of dimension (n,n). Thus it allows us to describe the
dynamics of volatility-covolatility matrices, and also of the multivariate risk
aversion coefficient (related to the Hessian of a utility function). The WAR
process has been initially defined from gaussian VAR(1) processes as follows
[see Gourieroux, Jasiak, and Sufana (2003)]:

Definition 1 The matricial process (Y;) is a WAR process if it can be written

as:
K

Vi= S awly, (2)
k=1

where K > n and the n-dimensional processes (zyt), k =1,..., K, are indepen-

dent such that:
Tht=Mzpr1 +eps, k=1,... K,

with independent gaussian error terms: ery ~ N (0,X). K is the degree of
freedom, M the latent autoregressive coefficient and ¥ the latent variance of the
mnovation.

The distribution of Y;1 conditional on the values 2 -, k=1,..., K, 7 <t,
is easily characterized by means of its conditional Laplace transform (or moment
generating function)®:

‘I’t (F) = Et [exp T’I" (FY}+1)]
n n
= FE; |exp Z Z’W;’Yz‘j,tﬂ )
i—1 j—1

where Tr denotes the trace operator, I' = (v;;) is a (n,n) symmetric matrix
and E; denotes conditional expectation. The conditional Laplace transform is
derived in Appendix 2.

6Note that for symmetric matrices: Tr (T'Yyy1) = Z?:l E;}:l Yi; Yij,t+1. Moreover in
our framework the Laplace transform is defined on a neighbourhood of zero and characterizes
the distribution of Y. This characterization is a consequence of the positivity of the matrix Y,
and the existence of an expansion around I = 0 is a consequence of the existence and rate of
increase of power moments of Y.



Proposition 2 The conditional Laplace transform of the matricial process (Y3)
18:

exp Tr [M’F (Id — 250) ! MYt]
v, () =

3
[det (Id — 251/2051/2)] 7 ¥

In particular:

i) The process (Y:) is a Markov process, since the conditional distribution
depends on the information set through Y; only.

ii) The conditional Laplace transform is an exponential affine function of Yz,
that is the process is compound autoregressive (CAR).

The conditional distribution is an extension of the Wishart distribution
corresponding to the case of no serial dependence (M = 0). It is denoted
W, (K, M,Y).

Finally note, from Definition 1, that the matricial process £~1/2y,2~1/2 =
V; (£71/2), say, is also a WAR process with transition distribution
W, (K, Y2MxY?, Id).

At first sight, the construction of the WAR process looks similar to the
construction of factors in a standard quadratic term structure model [see e.g.
Longstaff (1989), Constantinides (1992), Beaglehole and Tenney (1992), Leip-
pold and Wu (2001, 2002), Ahn, Dittmar and Gallant (2002)]. However it differs
in two respects:

i) First, each underlying variable xj , satisfies a gaussian vector autoregressive
model without intercept. This explains why the transformed process Y;
itself is a Markov process, that is why the values x; have an effect on Y;
through the terms z;z; only.

ii) Second, the Wishart process is obtained by summing several independent
squared gaussian VAR’s. The condition K > n ensures that there is no
deterministic relationship among the elements of the symmetric matrix Y;
and that the extended Wishart distribution is a continuous distribution on
the domain of symmetric positive semidefinite matrices”. This eliminates
the degenerate distribution which arises for the standard quadratic term
structure model, where K = 1 and Rank (Y:) = Rank (z;z}) = 1 [see
Appendix 1 for a discussion].

The Wishart autoregressive process can be extended to allow for a noninteger
degree of freedom K, in the same way as the chi-square distribution can be
extended to the gamma distribution. When K is not an integer, the expression
of the conditional Laplace transform remains identical, but the interpretation
as a sum of squared gaussian VAR is no longer valid.®

7See Bilodeau and Brenner (1999) and references therein for a discussion of degenerate
Wishart distributions.
8Since the term structure is quadratic with respect to ytl/z (in the one dimensional case),

the WAR process appears contradictory with the characterization of quadratic term structure
derived in Leippold, Wu (2002) [see section 4].



3 The Wishart quadratic term structure

As noted in the introduction, it is important to develop a coherent approach
to term structure analysis, which specifies both the historical and risk-neutral
distributions. Following a recent literature, we focus on the law of the state
price density [see Rogers (1997) or Dijkstra, Yao (2001) for a discussion]. The
specification of the term structure model requires the following assumptions.

Assumption Al. The bond prices depend on some underlying factors (Y;), say.

Assumption A2. The factors have fundamental interpretations in terms of
preferences and technologies.

These assumptions are compatible with standard general equilibrium the-
ory, in which the states of the economy are exogeneous and the equilibrium
prices are derived from these states (Assumption A1) [see Cox, Ingersoll,
Ross (1985a,b) for an example of general equilibrium model]. In partic-
ular, they do not admit a priori interpretations in terms of asset prices.
As shown later in the discussion, Assumption A2 is important to build
unconstrained models.

Assumption A3. The historical distribution of the factor process is specified.

Assumption A4. A stochastic discount factor (sdf) My 441, which explains how
to correct for both time and randomness in period (¢,t + 1), is specified
as a function of Yiy.

Then the price of a zero-coupon bond with residual maturity h is:
B (t, h) - Et (Mt,t+1 . Mt+h71,t+h) . (4)

It is important to note that the ”scope for generating interest rate models (in this
way) is immense” [Rogers (1997)]. Indeed for ”fundamental” factors the only
constraint imposed by the no-arbitrage condition is the strict positivity of the
sdf. In some sense the price of risk in the sdf can be chosen arbitrarily, which
implies little relationship between the historical and risk-neutral distributions
of the fundamental factors (see Leippold and Wu (2002) for the discussion of
the choice of the price of risk in quadratic models).

In the remainder of this section we specify the sdf and the historical distri-
bution of the factors to get a special affine term structure (Section 3.1). The
model is based on the Wishart factor process to ensure in a simple way the posi-
tivity of the yields (Section 3.2). Then in Section 3.3 we discuss the risk-neutral
probability and the change of probability.

9More restrictions have to be imposed if some factors correspond to yields, since the pricing
formula (4) has to be satisfied for the associated zero-coupon bonds.



3.1 The term structure

In discrete time, affine term structures can be derived from compound autore-
gressive factor processes [see Gourieroux, Monfort and Polimenis (2002)]. We
consider the following particular forms of Assumptions A3 and A4:

Assumption A3'. We assume Wishart autoregressive factors (Y;), with ¥ = Id.

Indeed the factors are defined up to an invertible linear mapping; therefore,
a WAR factor (Y;) with matrix ¥ can always be replaced by a WAR factor
V; (£71/2), with matrix ¥ = Id.

Assumption A4'. The sdf is selected as an exponential affine function of the
factor:
Mt,t+1 = exp [TT (CY;+1) + d] , (5)

where C is a (n,n) symmetric matrix and d is a scalar.

At first sight it might seem surprising that factors are represented by a
symmetric positive definite matrix, and thus are subject to rather complicated
constraints. However, the choice of the factor becomes clear in the general equi-
librium framework. For instance, let us consider the underlying equilibrium
model introduced by Cox, Ingersoll, Ross (1985a). At equilibrium, the interest
rate is a function of different fundamentals [see Cox, Ingersoll, Ross (1985b),
equation (6)], which include several symmetric positive (resp. negative) defi-
nite matrices such as the volatility matrix of the rate of return of production
activities (resp. the second-order derivatives of the indirect utility functions).
These symmetric matrices represent the fundamental risks and the way they
are perceived by the consumer'®. These fundamental risks justify the positivity
constraint, which is to be satisfied by the yields. More precisely, in a structural
model the impact of risk is generally explicit in the second-order term in the
expansion of an objective function. Loosely speaking, it is related to a term of
the type [see e.g. Karni (1979), equation (3.3)]:

iim-x-imu =Tr Fu xx'
" Oxi0w; Oz dx' '

i=1 j=1

For instance, if the Hessian L“, = (' is fixed and z is random the expected
effect becomes T'r (CE (zz')) = Tr (CY), and has a negative sign. This struc-
tural interpretation explains why it is easy to derive in Section 3.2 the positivity
restrictions on yields for such matricial factors Y;.

Then the price at date ¢ of a zero-coupon bond with residual maturity A is:
B(t,h) = Ei(Mity1-. - Miyn—1,64n) (6)
= E My B(t+1,h=-1)],

by the law of iterated expectations. These prices are easily computed recursively
[see Appendix 3].

10Gee e.g. the definition of multivariate risk aversion in Duncan (1977) and Karni (1979).



Proposition 3 We have:
B(t,h) = exp (Tr [A() Vil + b (1)} ,h=0,1,..., ™)
where the matriz A (h) and the scalar b (h) satisfy the recursive equations:

{ AMy=M'[C+ A(h—1)]{Id=2][C+A(h—1)]}""M,h>0, @®)
b(h)y=d+b(h—1)— Elogdet {Id—2[C+ A(h—1)]},h >0,
with the initial conditions: A (0) =0, b(0) = 0.

Thus the geometric yields r (¢, h) = — log B (t, h) are affine functions of the
factor components (Y;) and we get the expected affine term structure model.
Note that, for integer K, the geometric yields are also quadratic functions of the
latent processes (zr:), I = 1,..., K, which justifies the terminology quadratic
term structure. The recursive equations (8) are easily solved numerically and
allows us to avoid the use of the solution of the Ricatti differential equations
involved in the continuous-time framework [see Section 5]. For instance, the
first two yields correspond to:

A1) = M'C(Id—20)" M, b(l):d—glogdet(ld—QC),
A@Q) = M [C’+M’C’(Id—20)’1M] {Id—2 [C+M'C (Id —2C) " M]}AM,
b(2) = 2d—§1ogdet{(ld—20){ld—2[C+M'C(1d—20)*1M]}}.

3.2 Positivity of the yields

An interesting property of the Wishart quadratic term structure is related to
the positivity of the yields [see Appendix 4]. Tt is a consequence of the following
equivalence: Tr [CY] < 0 for any Y > 0 if and only if C' <« 0.

Proposition 4 Let us assume that symmetric matriz C is negative semidefinite
and that —d + 5 log det (Id — 2C) is nonnegative. Then

i) A (h) is negative semidefinite;

it) Tr [A (h)Y:] is nonpositive;

iti) The sequence A (h) is decreasing;

w) The domain for the yield r(t,h) is [—+b(h),00). The lower bound
—+b(h) is nonnegative and increases with h.

In practice, it seems natural to fix the constant d in the sdf to ensure that
the domain of the short-term yield r (¢,1) is (0, 00). Thus
d = % logdet (Id — 2C) and the sdf becomes:

K
Mt,t+1 = exp Tr (CY;H-I) + 5 lOg det (Id — 20) . (9)



The conditions for positivity of the yields are extremely simple, especially
when they are compared to the conditions usually derived for the standard
Duffie-Kan model [see e.g. Duffie and Kan (1996), Dai and Singleton (2000)
and the discussion in Section 4] or for the standard QTSM.

Moreover, the negativity condition on A (h) [and C|] allows for some inter-
pretation of the components of the yields and of the sdf. Let us first consider
the sdf. We have:

M1 =exp[Tr (CYiq1) +d] < exp(d).

The maximum value corresponds to a flat correction for risk and is reached
when Y, = 0 (absence of risk). Similarly we have:
1 b(h) b(h)
r(t,h) = —=Tr[A(h) Y] - — > ———.
(1) = =3 Tr[A () Y] - 2 > =2

The lower bound is reached when Y; = 0 (absence of risk) and corresponds to a
deterministic, time-independent term structure. When Y; increases (that is the
perceived fundamental risk increases), the state prices (that is the sdf) decrease
and the risk premium on interest rates increases.

3.3 Risk-neutral probability

The sdf can be decomposed as:

M 141 M 141
B(t,1) = o7

B(t1) B P,

M1 =

providing the density at ¢ of the risk-neutral measure with respect to the his-
torical one. We get:

M _ K
7tht+11) =exp |Tr(CYy41) = Tr [M'C(Id—QC) ' MY, +Elogdet (Id_QC)} .
’ (10)

Alternatively, the risk-neutral distribution can be characterized by its condi-
tional Laplace transform. Let us denote by a * the computations under the
risk-neutral distribution. We have:

U () = B [expTr(Tis)]

= E [% expTr (FY£+1)]
= exp [—Tr [M’C’ (1d—20)~" MYt] + glogdet (Id - 20)} U, (C+T)
= exp {Tr [M’ {(C YD) [Id—2(C+D)]" —CId- 20)—1} MYt]

—% log det [Id —2(Id—-20)"" F] }

10



3.4 First and second-order conditional moments of the
yields

In an affine term structure model the first and second-order conditional moments
of the yields are affine functions of the lagged factor values. Appendix 5 proves
that these moments are:

i) under the historical distribution

E [r(t+1,h)]

_%TT[A(h)MYtM’]JrC(h),

Vilr(t+1,h)] = %Tr [A(h)2M)QM’ +d(h),

where ¢ (h) and d (h) are terms independent of Y.
ii) under the risk-neutral distribution

Ef[r(t+1,h)]

= —%Tr [A(n) (1d - 20)™ + 20 (1d = 20) ™" A(n) (1d - 20) " MY; M|
+c* (h),
Ve lr (t+1,h)]

= —%Tr [(Id —20)"" A () (Id - 2C) ™" A (h) (Id — 20)~" MYtM’]
+d* (h).

4 Restrictions on the volatility matrix of an affine
(CAR) process

Since the pioneering paper of Duffie and Kan (1996), it is usually considered in
the literature that the volatility matrix of an affine process y;, say, is essentially
of the type'!:

ar + By 0
Vi (Y1+1) = Q Q'
0 an + Bhy:

Thus, up to a path independent linear transformation Q, the volatility matrix
is diagonal [see Duffie and Kan (1996), Section 4].

This restriction is clearly contradictory with the results presented in Sec-
tions 2 and 3. We see that the factor process Y; and the yield process are CAR

!1Gee e.g. Dai and Singleton (2000), the introduction and Section 2, Piazzesi (2003), Dai
and Singleton (2003a), Section 3, Levendorskiy (2003) for presentation of this condition as
necessary and sufficient in recent surveys on affine term structure models, or e.g. Andersen,
Benzoni, Lund (2003) for its use in applied studies.

11



(affine)'?, but they clearly admit more complicated covariance structures (see
Section 3.4). These results are reconciled after a careful look at the proof in
Duffie and Kan (1996), page 398. Indeed the diagonal condition is necessary and
sufficient if ”the state space is an intersection of non parallel half spaces”. It is
no longer necessary if this assumption is relaxed or, equivalently, the so-called
maximally flexible model introduced in Dai and Singleton (2000) is less than
maximally flexible. The diagonality assumption is the reason for the apparent
lack of generality of the ”standard” affine model. Let us consider for exposi-
tory purpose the dimension n = 2, which corresponds to a three-factor model.
In our framework the factors y11, y12, Y20 satisfy the constraints: yi;; > 0,
Y11Y22 — y25 > 0, which do not correspond to the intersection of half planes.
The same type of remark is valid for the yields r (¢, 1), r (¢,2), r (¢, 3), say. Since
the underlying factors can be written as an affine function of the yields by in-
verting formula (7), they satisfy some constraints of the type: ajr; + 1 > 0,
(ar + Br) (ayre + B2) — (alyry + B3)° > 0, say, which provide a nonlinear state
space.

A similar assumption appears in Duffie, Filipovic, and Schachermayer (2003)
where the state space is assumed D = R X R" in the main part of the text,
which automatically restricts the set of affine processes which are considered.
The question of the choice of the state space is discussed in more details in
Section 12 of Duffie, Filipovic, and Schachermayer (2003), when some examples
of other state spaces are provided. They formulate a ”rather bold conjecture”
on the interesting state spaces. The present paper provides a partial answer to
their conjecture®®.

Loosely speaking, it seems natural to call an affine process a diffusion process
with affine drift and volatility, or to call affine term structure a model in which
the yields are affine functions of the factors. But the term ”affine” model can be
misleading. Indeed, the affine model may include nonlinear features. Typically,
the state space can feature some nonlinearities, as well as a number £ < n of
yields can satisfy a (stochastic) nonlinear relationship. This latter case is well
illustrated by the basic quadratic model [see Appendix 1].

The results of section 3 are also contradictory with the necessary and suffi-
cient conditions for a quadratic term structure model derived by Leippold, Wu
(2002). A careful look at the proof shows a misuse of the so-called ”principle of
matching ” (Appendix A). In the WAR one dimensional framework for instance
we have

r(t,h) = C(h) + b} (R)ys = Cr (h) + bi(h) (y/*)?.

The model is simultaneously affine and quadratic. This explains, why the
WAR process which provides a QTSM and cannot be written as the square of
an Ornstein-Uhlenbeck (when K is not integer) has not been found.

12The yield process is CAR, since it is an affine transformation of a CAR process [Darolles,
Gourieroux, and Jasiak (2001)].
13 A complete answer in the two factor case is given in Gourieroux, Sufana (2004)a.

12



Finally note that the nonlinear restrictions on the factor components due to
structural interpretations can have an effect on the correlations between factors.
Indeed it is known from the copula theory that a nonlinear domain of factors
can imply some restriction on the range of admissible correlations. Thus we
do not have necessarily to look for factors with an arbitrary correlation matrix.
In some sense the concept of correlation is also a linear notion which is not
necessarily appropriate in the framework of the so-called ”affine” models, which
include nonlinear features.

5 Continuous time specification

A similar analysis can be performed in continuous time. It is briefly presented
in this section for comparison with the major part of the literature on term
structure which is written in continuous time. In Section 5.1 we first define
the continuous time Wishart process. The specification of the sdf in continuous
time and the prices of zero-coupon bonds are discussed in Section 5.2. Then
the risk-neutral distribution is derived in Section 5.3. Section 5.4 introduces a
general framework

5.1 The continuous time Wishart process

Under some restrictive conditions on the parameter, a WAR process can be
considered as a time discretized affine process written in continuous time.

Definition 5 A continuous time process of symmetric positive definite matrices
is a continuous time (CT) Wishart process if its drift is given by:

EdY; = (KQ + QY; + ;Q') dt, (11)
and its volatility-covolatility function is:
: , AN VRN
coun (V7 ) = (wipVi +77 (2) + 07 (V) + Vi Q) b, (12)

where Y} is the it" column of matriz Y; and Q is the it" column of matriz
Q. The matriz Q0 is constrained to be symmetric positive definite, the degree of
freedom K is a real number larger than n and Q is a (n,n) matriz of "latent”
autoregressive coefficients.

The drift and volatility functions are affine in the elements of Y;. Thus Y; is
a continuous time affine process [see Duffie and Kan (1996), Duffie, Filipovic,
and Schachermayer (2003)]. The stochastic differential system will involve a
n2-dimensional brownian motion, but since the dY; matrix is symmetric, the
volatility matrix of (the volatility) Y; is singular and only M brownian
motions matter. However, it is more tractable to repeat the elements Y;;; and

Yji+ in the description of the process. When the CTWAR is used as factor

13



process, it is always possible to assume Q = Id for identification purposes. This
simplifies the expression of the volatility-covolatility function.

To understand why the stochastic differential system (11)-(12) provides a
process of symmetric positive definite matrices, it is useful to study the drift
and volatility of a quadratic transformation o'Y;a, where « is a n-dimensional
vector. We get:

E; (¢dY;a) (Ka'Qa + o' QVia + 'Y Q') dt, (13)
Vi (&/dYia) = (4Kod'Qaa'Yia)dt.

Let us consider what is arising when o'Y;a comes close to zero (or equivalently
when Y;a is close to zero). The conditional variance comes also close to zero,
whereas the drift is close to Ka/'Qa dt > 0 (since o'Y;a = 0 implies Y;a = 0 for
a positive definite matrix), which is a reverting effect towards positivity. The
degree of freedom K measures the magnitude of the reflection.

Finally note that any time discretized continuous-time Wishart process is a
WAR process 4, but there exist a lot of WAR processes without continuous-
time counterpart [see Gourieroux, Jasiak, and Sufana (2003) for a discussion],
that is which do not satisfy the so-called embeddability condition. They provide
additional term structure patterns.

Example 1 : When n = 2, we get a three factor model, with factor components
Yi1¢, Y221, Yioe. The factor satisfies the three dimensional diffusion system (for
N=1d):

dYi1¢ [ 2(q11 Y11 + q2Yio) + K
dYs2¢ = 2[(q21Y12¢ + q22Yor:] + K dt
dY1a | 21Y11¢ + q12Yo2¢ + (q11 + q22)Yiae
[ 4Viq, 0 2Y12¢ 12
+ 0 4Y594 2Y79; dWy.
| 2Y12: 2Yia¢ Yiue + Yoo

It is easily checked that the volatility-covolatility matrix is positive definite
since the three principal determinants are :

4Y114, 16Y11: Y204, 16(Yi1g + Yoor) (Yite Yoor — Yi5,),

and are all positive, when Y; is positive definite.

14Since any time discretized Ornstein-Uhlenbeck process is a gaussian VAR(1) process.
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5.2 The prices of zero-coupon bonds

Let us consider a continuous time sdf:

M; = exp {/ [Tr(CYy) +dldu+Tr (C*K)} ) (14)

0

where C' and C* are (n,n) symmetric matrices.
The sdf is exponential affine with respect to future factor values. Equiva-
lently, it can be defined by:

dlog My = Tr (CY; + d) dt + Tr (C*dY}).

Thus, the log sdf satisfies a stochastic differential equation and is predetermined
in the special case C* = 0. Under this assumption, the yields are also affine
functions of the factor [see Appendix 6].

Proposition 6 For a continuous time Wishart factor process and exponential
affine sdf, the prices of zero-coupon bonds are:

B(t,h) =exp{Tr[A(h)Y:]+b(h)},

where the functions A and b satisfy the multivariate Ricatti equation:

dA(R) .. db(h)
dh dh
= Tr(CYy) +d+Tr[(A(h)+C*) (KQ+ QY; + Y:Q")]
+2Tr {[A(h) + C*]Q[A(h) + C*] Y}
= Tr(O¥) +d+ TTr[(A(K) +C*) BdYi] + L Vi [Tr[(A(h) +C*) Y],
with initial conditions A(0) =0, b(0) =0 corresponding to B (t,0) = 1.

Tr

Y: +

Since the relation is valid for any level of risk factors Y;, we can deduce the
differential equations satisfied by A (h) and b (k). We have:

df;]g_h) = CH[AW)+CQ+Q'[A(h) +C]
+2Tr {(A(h) + C*) Q (A(h) + C*)},
C”’d_(h’L) — A+ KTr[(A(h) +C")Q,

with initial conditions A (0) = 0, b(0) = 0. In particular, the instantaneous
interest rate is:

L 1 _ dA (0) db (0)
rt—}llli%—ﬁlogB(t,h)—Tr< i Y: + )

15



By applying the Ricatti equation for h = 0, we deduce:

re = Tr(CYy)+d+Tr[C*(KQ+ QY; + Y,Q"))
12T [C*QC™Y)]
11

1
Tr(CY;) +d+ —=Tr (C*EdY:) + 3

dt

Vi [Tr (CdY3)]
As in the discrete time framework, it can be verified that:

i) the yields are nonnegative if the symmetric matrices C and C* are negative
definite;

ii) the sequence A (h) is a decreasing sequence of negative semidefinite matrices.

5.3 The risk-neutral distribution

The risk-neutral distribution does not depend on the predetermined component
of the sdf. The properties below are proved in Appendix 6.

Proposition 7 Under the risk-neutral probability:
i) the factor process satisfies a stochastic system with a volatility equal to the
historical volatility:
VATr (TdY;) = ViTr (TdY;),

and a modified drift:
E} (dYy) = E; (dYy) + covy [Tr (C*dY3) ,dYy].
ii) The conditional Laplace transform can be written as:

" (t,h) () = E;[expTr (I'Yeqn)]
= exp{Tr[AT,h)Y;]+b(T,h)},

where the coefficients A(T',h), b(L,h) satisfy the same Ricatti equation as in
Proposition 6, with initial conditions: A (T,0) =T, b(T",0) = 0.

The result on the Laplace transform extends the formulas derived for the
prices of zero-coupon bonds, which correspond to the special case I' = 0. It
explains how to price easily any derivative with a payoff, which is an exponen-
tial affine function of the fundamental risk factors. The differential equation
satisfied by the sensitivity coefficients A (T, h) and b (T, h) does not depend on
I" and the computations differ only by the initial conditions, which is a standard
result for affine models [see e.g. Duffie, Filipovic, and Schachermayer (2003) for
continuous time, Gourieroux, Monfort and Polimenis (2002) for discrete time].
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5.4 A unified framework

In fact it is easily seen that the risk neutral (and historical) dynamics of the
factor process can be written under the following more concise form :

Vi = (A + A, + ¥ A) de 4 VIATQ + Qi

where W, is a (n, n) stochastic matrix, whose components are independent brow-
nian motions (see e.g. Gourieroux, Sufana (2004)b). This representation can
be useful for some computations, but it can be misleading since the information
generated by the n(n + 1)/2 elements of Y; is strictly smaller than the infor-
mation generated by the n? elements of W;. This class of processes contains
as special case (when Q=0,4A=0Q = Id) a subclass of Wishart processes
completely studied in Bru (1989), (1991), O’Connel (2003), Donati-Martin et
alii (2003).

6 Statistical inference

The estimation of an affine model is rather easy to perform if the number of
observed yields is equal to the number of underlying factors [that is %
our framework]!®. Indeed due to the affine term structure there is in general a
one-to-one linear relationship between the observed yields and the factors. Since
the Wishart factors follow a nondegenerate continuous distribution!® if K > n,
the distribution of the yields is easily deduced by a standard change of variable.

We focus on the method of moments, since the transition density of the
WAR has no simple analitical form, and sketch the estimation principles. For
M = 3 factors denoted by

in

expository purposes, we assume n = 2 and thus
Yi1¢, Yiot, Yoou.

6.1 Mimicking factors

Let us consider three observed yields with residual maturities hy, h2, hs. We

have:
1

b(h;),7=1,2,3
hj(])a.] 5 Ly Iy

r(t,hy) = —hijTr [4 () V3]

15When the number of factors is smaller than the number of observed yields, the affine model
implies linear affine deterministic relationships between the yields, which are systematically
rejected with probability 1 from the available data.

When the number of factors is strictly larger than the number of observed yields, the
exact method of moments described in this section can be replaced by a simulated method of
moments.

16Note that the quadratic term structure models considered in the literature correspond
to K = 1 and are degenerate. This degeneracy creates a lot of problems for estimation [see
Appendix 1 ].
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or equivalently:

r (ta h])
1 2
= | (hj) e (hyj

Thus, we can write:

re = [r(t, hy),r (¢, he), 7 (t,h3)]l = A"

1

), —5—a22 (h;)

h;

Yiie 1

Yiot _Fb(hj),j =1,2,3.
Yoou J

Yiu

Yior | + 0%, say,

Yooy

and deduce expressions of the factors in terms of yields (called mimicking factors

in the literature):

[ Yiu
Y12t
[ Yoo

-| ) —1 *
= (A7) (= 1),
J

(15)

6.2 Seemingly unrelated regressions (SUR)

The method of moments can be based on the first order conditional moments
of the yields. We have [see Gourieroux, Jasiak, and Sufana (2003)]:

Ey (Yiy1) = MY, M' + KId,

or equivalently:

(16)

Vit Yiie K
E | Yig441 | =M"| Yior |+ 0 |,
Yo2,t41 Yoot K
where
mfl 2m11m12 me
M* = mi1Mme1  Mi12M21 +M11M22  Mi12M22
m%l 2m21m22 m§2
We deduce:
Yii e -|
Ei(rev) = A'Ep ) Yiggpn | +0°
[ Yoo, 141 J
][5
= A*M* Yios + b4+ A* 0 R
[ Voo | | x|
or:

By (regq) = A*M* (A Uy 4+ 0% — A*M* (A*) ' b* 4 A*

18
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This is a seemingly unrelated regression (SUR) model, where the parame-
ters are nonlinear functions of the structural parameters of interest. Thus the
system (17) can be used to estimate the structural parameters (if identifiable)
by nonlinear least squares.

(n+1)

The number of structural parameters is equal to @ +nZ2+2 ("T for

C, n% for M, 1 for d, 1 for K) while the number of reduced-form parameters in

2
the SUR is @ + [@] . Thus we will have a large degree of (first order)

overidentification.
Tablel : Overidentification.

Dimension n 1] 2 3

Number of factors @ 1 6
p)

Reduced parameters @ + [M-I 2|12 | 42

Structural parameters @ +n?+2 419 |17

6.3 The Laplace transform

Other moment conditions can be deduced from the conditional Laplace trans-
form itself. Indeed we have:

expTr [M’F (Id — 251) ™" MYt]
EiexpTr (I'Yiq1) =

[det (Id — 251/2081/2)]%/% 7
and both sides of the equation can be expressed in terms of observed yields. For
instance:

EyexpTr (I'Yq1) = Eyexp [(711,2712,722) (A7 (regr — b*)] -

Thus a GMM estimator can be deduced from these moment conditions ap-
plied to a set of values of arguments I'y, ..., 'y, say. It has also been proposed
in Singleton (2001) the use of complex arguments T, that is to calibrate on the
(multivariate) empirical characteristic function. The calibration on the moment
generating function or on the characteristic function both provide asymptot-
ically efficient estimators when the number of moments increase, since both
functions characterize the joint conditional distribution. But more moments
can be necessary in finite sample with the complex arguments, especially if the
transition density features fat tails. Indeed it is easier to approach the tail by
decreasing exponential functions (real ' arguments) than by sine and cosine
functions (complex I' arguments) [see Darolles, Gourieroux, and Jasiak (2001)].

7 Concluding remarks

For structural reasons it is natural to represent the fundamental factors of a
term structure of interest rates by means of a (stochastic) symmetric positive
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definite matrix. In this paper we consider the factor dynamics corresponding to
a Wishart autoregressive process. Since the WAR, process admits a conditional
Laplace transform which is exponential affine with respect to lagged factor val-
ues, we get an affine term structure, which is easy to implement. Moreover
due to the structural interpretation, a condition for the positivity of yields at
all maturities has been easily derived. Finally the example of the Wishart
quadratic term structure model shows that the restrictions usually introduced
on the volatility matrix of an affine process are very constraining and explain
largely the lack of flexibility of affine models mentioned in the applied literature.
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APPENDIX

Appendix 1 The factors in the standard quadratic term structure
model and degenerate model

A.1.1 Linear and nonlinear factors

The standard quadratic term structure model is such that the yields r (¢, h)
are quadratic functions of a gaussian VAR with constant term. More precisely,
we have:

r(t,h) = p(h) z¢ + A (h) z; + v (h), (18)

where the p-variate process (z;) satisfies:
Tp1 = Mo + Mz + 441,

and (e¢) is a sequence of iid gaussian variables ¢; ~ N (0, X).

It is easily seen that the yield process is a special case of the CAR (affine)
process. Indeed, it is a linear combination of z;, z;x; and it can be shown
that the process obtained by stacking the components of x;, x;x} is also a CAR
(affine), that is admits a conditional Laplace transform which is exponential
affine with respect to the components of z;, x:z} [see e.g. Dai and Singleton
(2003b), Cheng and Scaillet (2002) for this remark. In fact the affine represen-
tation seems to be a consequence of a general result on finite dimensional term
structure models obtained in Filipovic, Teichmann (2002)]. Thus equation (18)
can be considered as either a nonlinear (quadratic) factor representation of the
yields in terms of the p basic factors (z:), or a linear factor representation of

the yields involving the p + @ "linear” factors x;, xia}.

A.1.2 Quadratic factors or jumps

The factor representation does not admit the same interpretation, according
to the linear and nonlinear interpretation of equation (18). It can even become
much more complicated to understand if we consider carefully the effect of the
quadratic term. Let us assume for illustration p = 1. We get:

r(t,h) = p(h)xz; + A(h)x? + v (h),h > 1. (19)
In particular, the short-term interest rate satisfies:
rt,)=pL)z + A1) 2] +v(1). (20)

This equation does not allow to recover the factor value in a unique way. In-
—to(D)+ety/mo(1)>—4A (1) (v(1)+r(t,1))
2A(1) )

deed this equation admits two real solutions:
where ¢, = 1, with only one of them being the true factor value. The so-
lution corresponding to the factor value is obtained for e; = +1, if 2A (1) 24—
to (1) > 0, or for ¢, = —1, otherwise. Replacing z; by its expression in formula
(19), it is seen that the yields = (¢,h) and r (¢,1) satisfy one of two nonlinear
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deterministic relationships:

r(t, h) (21)
€t —4/\ v(l)+r(tl
o )+ e/ 1) - (1) (v (1) + 7 (1,1))
€t —4)\ v(1)+r(t1
o | O e/n ) b wewren)] o

h > 2, where ¢; = +1 is independent of residual maturity h,but depends on the
factor value ;.

In these nonlinear relationships r (¢, h) is a rather complicated function of
r(t,1), and is clearly not quadratic. Note also that r (¢, h) appears as a linear
function of the regime indicator ¢; for curve selection. This explains the affine
relationship between the yields which stems from the affine interpretation of the
quadratic term structure model.

Moreover, the relation (21) shows that the quadratic term structure model
can also be considered as a nonlinear two-factor model where the factors are the
short-term interest rate (a quantitative process) and the regime indicator ¢ (a
binary process), that is as a factor model with regime shifts. It is interesting
to note that this regime indicator can be recovered as a nonlinear function of
two different yields. Thus some endogenous switching regimes reported in the
applied and theoretical term structure literature'” could arise as the consequence
of some omitted (quadratic) nonlinearity. Note that this nonlinear feature arises
while the model is a special affine term structure model.

When the dimension p increases, the results are similar: the number of
regimes increases, and more yields are needed to hedge the higher number of
regime indicators.

A.1.3 Degenerate conditional distribution

As mentioned above, the quadratic term structure model is a special case
of an affine term structure model. Thus in a quadratic term structure model
with p (nonlinear) factors, p + £ (p +h) 4 yields of different maturities satisfy
deterministic linear relatlonshlps and their joint distribution is degenerate.

We could expect that this conditional distribution is no longer degenerate
if we only consider p + 1 yields, due to the additional noise generated by the
quadratic terms. However, this is not true, as can be easily seen in the one factor
case p = 1. As noted above, a yield with given maturity will satisfy one of two
deterministic relationships with the short-term yield. As a consequence, the
joint distribution of [r (¢,1),r (¢, h)] will also be degenerate, which will render
impossible to find a correct fit to the data and use it for statistical inference.

173ee e.g. Ahn and Thompson (1988), Gray (1996), Evans (2000), Ang and Bekaert (2001),
Piazzesi (2001), Das (2002), Bansal and Zhou (2002), Dai, Singleton and Yang (2003).
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Appendix 2 : Proof of Proposition 2
i) Let us first establish a preliminary lemma.

Lemma 8 For any symmetric positive semidefinite matriz ) and any vector
uw € R™, we get:

/ (—2'Qx + p'z) de = o Lra-
exp T\l W) ar (det Q)l/2 exp 4M J78 I
An

Proof.Indeed the integral on the left hand side is equal to:

1 ! 1 1

/exp l— <x - —Qlu> 0 <w — —Qluﬂ exp (—u'91u> dx
2 2 4

R'ﬂ.

n/2 1
_ ™ e !
T (det) 2T (4”9 ”)’

since the gaussian multivariate distribution with mean %Q_l 1 and covariance
matrix 2Q~! admits unit mass. m

ii) We now prove Proposition 2. Let us first consider the case K = 1. Thus,
the stochastic process (Y;) is defined by V; = x4z}, 441 = My + »1/2¢,,, and
&+1 ~ IIN (0,Id). The conditional Laplace transform of the process (Y3) is:

v, () = E [exp (a:£+1fxt+1) |$t]

E [exp <(M:Ut + 21/2£t+1)lf‘ (Ma:t + 21/2&4-1)) |mt}

exp (¢, M'T M) E [exp (2x;M'le/2§t+1 + §;+121/2F21/2§t+1) |g;t] .

Using the pdf of the standard normal,

1 1
f (1) = PRy eXP—§f£+1ft+1,

and Lemma 8, we get:

¥, ()
exp (zi M'T' M)
on/2 [det (L1d — £1/2051/2)]'/?

1 1 !
exp lz (2x;M'r21/2) <§Id - 2}”1“21”) (221/2I‘Ma:t)]

exp (x;M'FMxt + 22, M'T (£~1 —2r) " FM:nt)

[det (Id — 251/2051/2)]"/?
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exp [x;MT (Id —25T) " Ma:t]

[det (7d — 251/2T51/2)]'/?

expTr [M’F (Id — 251) ™" MYt]

[det (Id — 251/20'51/2)]?

since we can commute within the trace operator. This formula is valid whenever
Id — 2XT is a positive definite matrix.

iii) Let us now consider the case of an arbitrary positive integer K, K > 1.

We can always write: Y; = Zle Yit, where the matricial processes (Yi:),
k=1,..., K, are independent WAR processes with K = 1. We deduce that:

n expTr [M’F (Id — 251) ! Mth]
v () =

k=1 [det (Id — 221/2I‘21/2)]1/2

exp T'r [MT (Id —25T) " M)Q]

[det (Id — 251/2T'51/2)]"/*
Appendix A.3 : Recursive computation of the zero-coupon prices
We have:

B(t,h) = E[My1B(t+1,h—1)]
Ei[exp [Tr (CYiq1) + dlexp{Tr[A(h—1)Yia] + b(h —1)}]

Ey[expTr[[C + A (h— 1)] Vi)l exp[d + b (h — 1)

= U, [C+A(h—D]expld+b(h— 1)

— expTr [M' [C+A(h—1)]{Id—2[C+Ah- 1]} MYt]

exp [d+b(h—1)—glogdet{fd—2[C+A(h—1)]}].

Finally, the initial conditions A (0) = 0, b(0) = 0 ensure that B (¢,0) =
Appendix A.4 : Constraints on the yields

i) The proof is by recursion. Let us recall that C < 0. If A(h —1) < 0, we
have also
[C+A(h—1D]{Id-2]C+A(h-1)]}"" <0,

and then A (h) < 0.
ii) If A (h) is symmetric negative semidefinite, it can be written as A (h) =
S, Aim;m/}, where the eigenvalues \; are nonnegative and m; are associated
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eigenvectors. Thus we get:

Tr[A(h) Y]

= Tr (2”: /\imim;Yt>

i=1

= Z NiTr (m;mYy)

i=1

n
= Z NiTr (miYym;)
i=1
= Z/\imgytmi <0,
i=1
where the last two equalities follows since we can commute within the trace
operator and since A\; < 0 and Y; > 0.
iii) Let us denote D (h) = 2(C' + A (h)). It can be seen that A (h) is a de-

creasing sequence if and only if D (h) is a decreasing sequence. By the recursive
formula for A (h) in equation (8), we get:

D(h)=2C+M'D(h—1)[Id—D (h—1)]"" M,
which implies:

D(h)—D(h—-1)
- M'{D(h—l)[ld—D(h—l)rl—D(h_2)[ld—D(h—2)]’1}M

= M’i[D(h—l)”—D(h—%”]M.

The recursion hypothesis D (h —1) < D (h —2) implies that D (h—1)? <«
D (h —2)?, for all p > 1 [see Gourieroux and Monfort (1995), vol. 2, Proposition
A-8.]. The result that D (h) is a decreasing sequence follows since D (1)—D (0) =
2M'C [Id — 20]71 M is negative semidefinite by the negativity assumption on
matrix C' and the fact that M'BM < 0 for any B < 0.

iv) The domain is immediately deduced since the Wishart distribution is
continuous on the set of symmetric semidefinite matrices. Moreover, we have:

—b(h)

K
—d—b(h-1)+ Elogdet{ld—2[0+A(h— DI}
K
> —d-bh-1)+ Elogdet(Id—QC).
Appendix A.5 : Expansion of the log-Laplace transform and condi-

tional moments of the yields
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A.5.1 : Expansion of the log-Laplace transform

The first and second order conditional moments of any linear combination
of the elements of volatility-covolatility matrix are easily deduced from the log-
Laplace transform. Indeed let us assume that we are interested in a linear
combination Tr (AY"), say. The log-Laplace transform of this variable is:

log EexpTr (yAY) = log¥ (vA)
2
~ yB[Tr(AY)]+ TV [Tr(AY)],
in a neighborhood of v = 0.

A.5.2 : Conditional moments of the yields under the historical distri-
bution

We have:
log @, (T') =Tr |M'T (Id — QZJI‘)f1 MYt] — glogdet (Id —2T).
The second-order expansion with respect to I' provides:
log ¥y (T') ~ Tr [M'TMY;] + 2Tr [M'T?MY;] — g log det, (Id — 2T) .

We deduce that:

EtT’I" (FY;+1) = Tr [MIFMY;] +ct
= Tr[TMY;M'] + ct,
ViTr (TY;41) = 4Tr [MIF2MYt] +ct

= ATr [DMY;M'] + ¢,

where the constants are deduced from the expansion of —£ log det (Id — 2T").
Thus, under the historical distribution, the conditional moments of the yields
are such that:

Eilr(t+1,h)] = —%Tr[A(h) MY, M'] + ¢ (h),
Vilr(t+1,0)] = %Tr (4 (n)? MYM'| +d (1),

where ¢ (h) and d (h) are terms independent of Y;.

A.5.3 :Conditional moments of the yields under the risk-neutral dis-
tribution
The risk-neutral log-Laplace transform is:

log¥: () = Tr [M’{(C+1“)[Id—2(0+1“)]*1—C(Id—zo)*l}MYt}

—g log det [Id —2(Id—20)"" I‘] .
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The second-order expansion gives:
log ¥: (T) ~ Tr [M' [2 (Id —20)"'T (Id — 2C)~' I (Id — 20)—1] M}Q]
K _
— 5 log det [Id —2(Id-20)"" r] .
We deduce:
E; [Tr (TYi41)]
= Tr { [r (Id —2C) " +2C (Id — 2C) "' T (Id — 20)*1] M}QM'} +et,
V[T (DY)
= AT { [(Id —20)7' T (Id—20)"" T (Id — 20)—1] MYtM’} +ct.

The two first order conditional moments of the yields under the risk-neutral
distribution follow from the above results.

Appendix A.6 : Computations in continuous time

A.6.1 :The prices of zero-coupon bonds

Let us assume that B (t,h) = exp {Tr[A (h) Y¢] + b(h)}, and determine the
differential system satisfied by the coefficients A (h) and b (h). Since My 44t =
Mt+dt/Mt; we have:

B (t,h + dt)
= Ei[MisyarB(t +dt, h)]
Erexp{Tr (CY: +d)dt + Tr (C*dY;) + Tr[A (h) Yiia] + b (h)}
—  Brexp{Tr (CY; +d)dt + Tr[(A(h) + C*) Yipar] — Tr (C*Y) + b (h)}
exp {(Tr (CY; + d) dt — Tr (C*Y;) + b (h)} Ey exp {Tr [(A () + C*) Vi al])
= exp{Tr(CY; +d)dt —Tr(C*Y;) +b(h)}exp {E{Tr [(A(h)+ C) Yiras]}

+%Vt {Tr[(A(h)+C*) Yt+dt]}} .

12

Thus if A% (h)' denotes the i row of matrix A (h), (C*7)" the it" row of matrix
C*, and Y the i*" column of V;, we get:

B (t,h + dt)

~ exp {Tr(CY; 4+ d)dt — Tr (C*Y;) + b(h)} exp {Z "B (Yiia)

i=1

T3 Z Z A* (h) + €] cony (Yiitdta Y;]—.i-dt) [A7 (h) + C*j]}

7,131
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= exp{Tr(CY; +d)dt — Tr (C*Y;) + b(h)} exp {zn: (A% (h) + C*]' (Y} + midt)

+ ZZ AL (h) + C*) Agje [A7 (h) + C*] dt

= exp{Ir(CY;+d)dt +b(h)}exp{Tr[A(h)Y:]+Tr[(A(h)+ C*) M]dt
+% Z:;Z:; [AZ (h) + C*i]l Aij,t [AJ (h) + C*j] dt

where M; and A;;; are the appropriate drift and volatilities from Definition
5 and m} is the i*" column of M;. Comparing the expression above with the
expression:

B(t,h+dt) =exp{Tr[A(h+dt) Y]+ b(h+dt)},
and taking dt — 0, we deduce the differential equation:

dA(h)..  db(h)
™= "t

= Tr(CY:)+d+Tr[(A(h)+C*) M
+5 ZZ [ (h) + €)' Aij [A7 (h) + C™7].

Replacing M; and A;j; by the expressions in terms of Y; from Definition 5, we
get:

dA(h)..  db(h)
Tr [ o Y+ o }
= Tr(CY) +d+ Tr(A () +C) (KR + Qi+ 1)
+- Z Z [A7 () + ™" (wig¥i + 37 (@) + @7 (V) + Vi) [A7 (B) + C].

It is easy, but cumbersome, to check that the term involving the double
summation is equal to :

9T { A(h) + C*] Q[A(h) + C*] Yy}

Since this condition is valid for any Y;, we deduce the equation in Proposition
6. The same proof can be followed for the conditional Laplace transform with
U* (t,h) (T') instead of B (¢, h).

A.6.2 : Risk-neutral distribution
By considering the local expression of the risk-neutral Laplace transform, we
can derive the stochastic system satisfied by the factor under the risk-neutral
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probability. We get:

E} [exp Tr (T'dY3)]
E;[expTr[(CY; +d) dt + (C* +T') dY3]]
E;lexpTr[(CY; + d) dt + C*dYy]]
By [expTr [(C* +T) dVi]
E;[expTr (C*dY;)]
= exp{ETr[(C*+T)dY:] — ETr (C*dY;)

+%VtTr [(C* +T)dY;] — %V}Tr (C*dYt)}

— exp {Tr [CE; (dY;)] + % Xn: Xn: (1) covy (dY;, dyg') O

i=1 j=1

+% Zn: Zn: (C*7) couy (dv},dvy ) TV + %VtTr (FdYt)}

i=1 j=1

= exp {Tr [CE; (dY:)] + Tr [Leove [Tr (C*dY:) ,dYq]] + %VgTT (FdY;)} )

Thus we observe that the quadratic term with respect to I' is the same as the
quadratic term corresponding to the historical distribution. Thus the volatilities
are the same under the historical and risk-neutral distributions. The drift is
modified and is given by:

By (My14:dYy)

Ey (Miyat)
Eiexp [Tr (C*dY;) dY:]

E;exp [Tr (C*dY}))
E {[1 + Tr (C*dY;)]dY:}

E,[1+Tr(C*dYy)]

~ {E (dY:) + B [Tr (C*dY:) dYi]} {1 — E¢ [Tr (C*dYy)]}
~ B, (dY)) + B [Tr (C*dY;) dYi] — Ey (4Y;) Ey [Tr (C*dY;)
E; (dY:) + covy [Tr (C*dYy) ,dYy].

Ef (dYy) =

1
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