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Abstract

Decomposing returns into market and stock speci�c components is common
practice and forms the basis of popular asset pricing models. But what about
volume ? Can volume be decomposed in the same way as returns ? Lo and
Wang (2000), in a recent paper, suggest such a decomposition. Our paper
is in this line of work and, despite the similarity of the statistical approach,
our contribution is twofold. First, we provide a theoretical model to explain
the decomposition of volume. Our model is the �rst, to our knowledge,
to justify the strategies of new generation of traders, that we call liquidity
arbitrageurs. Second, we propose a new e¢ cient screening tool that allows
practitioners to extract speci�c information from volume time series. We
provide an empirical illustration of the relevance and the possible uses of
our approach on daily data from the FTSE index from 2000 to 2002.

Keywords: Volume, Market portfolio, Arbitrage, Liquidity.

Résumé

La décomposition des rentabilités en une composante de marché et une
composante spéci�que est une pratique courante et constitue la base de
modèles très populaires d�évaluation en �nance. Mais cette décomposition
peut-elle s�appliquer aux volumes ? Lo et Wang (2000), dans un article ré-
cent, suggèrent une telle décomposition. Notre papier est dans la lignée de
ce travail. Si notre approche statistique est similaire, notre contribution est
double. Tout d�abord, nous proposons un modèle théorique pour expliquer
la décomposition du volume. Notre modèle est le premier, à notre connais-
sance, à justi�er les interventions d�une nouvelle génération d�investisseurs,
que nous appelons les arbitrageurs de liquidité. Nous proposons également
une nouvelle méthode de �ltrage e¢ cace qui permet aux praticiens d�extraire
de l�information spéci�que à partir des séries de volume. Nous présentons
une application empirique à partir de données journalières de l�indice du
FTSE en 2000-2002 qui illustre l�intérêt de notre approche.

Mots-Clés: Volume, Portefeuille de Marché, Arbitrage, Liquidité.

JEL Classi�cation: G11, G14, C21.



1 Introduction

If volumes like prices are unquestionably central in all equity strategies,
�nancial theory traditionally focuses on prices, volatility and price formation
analysis. Recently however, volume has received a considerable attention
and forms now a dynamic and rapidly growing �eld of the literature. Volume
has to be taken into account because it conveys information, and because it
is an important measure of market feelings concerning one particular stock,
one sector or one stock exchange.

For example, a large stock index rise in low or large volumes is not
interpreted similarly by the market. A rise in low volumes is usually consid-
ered as fragile or temporary ; on the contrary a rise in large volumes seems
strong and durable. If this use of volume, and hence, these interpretations
are intuitive in the case of market or sector index, it is not as clear when the
analysis concerns individual stocks. To see this, consider an individual stock
included in a market index. Large traded volumes on this stock can either
be due to investors interest for the market or for that particular stock. To
understand why the volume of a particular stock is suddenly raised we must
understand who trades stocks and why they do it ?

Llorente, Michaely, Sean and Wang (2002), following Wang (1994), in
an equilibrium model framework, propose such an analysis of volume for
individual stocks. They say that investors trade either to rebalance their
portfolio for risk sharing (hedgers), or to speculate on their private informa-
tion (speculators). The price and volume behaviours on the following days
depend on the trading reason. As a consequence, the observation of price
behaviour allows to discriminate between the two di¤erent trading purposes.
In particular, small price variations in low volumes re�ect hedging strategies,
whereas large price variations in large volumes re�ect speculative trading.

Our main goal is also to analyse volume and to discriminate between
traders strategies, but our focus is on arbitrageurs vs hedgers and not
on speculators vs hedgers. By arbitrageurs, we mean imperfection based
traders. This trading motive has never been modelled, to our knowledge,
even if it is an important reason to trade, probably even more important
than speculation for example. In fact, few investors have private information
and their trades are not only infrequent and small, compared to the overall
traded volume, but also they are pinpoint events. On the contrary, some
large investors, like hedge funds, permanently track market imperfections
to enter the market. These opportunistic traders, observe a price variation
due to market imperfections and trade to correct them. For example, in the
case of a liquidity problem, the arbitrageurs enter the market to provide the
missing liquidity, which reverses prices and allows them to cash a liquidity
premium.

Understanding and decomposing volume can give some insight concern-
ing the role and impact of market imperfection arbitrageurs�strategies on
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market characteristics. Moreover, it can provide valuable information to
market participants concerning the state of the market, i.e. the level of im-
perfection. As a by product, we propose a more accurate measure of volume
to empirically test volume-return and volume-volatility relations.

In this paper, we propose a simple equilibrium model to derive the
traded volume dynamics generated by hedgers and liquidity arbitrageurs.
Our model justi�es the strategies of a new generation of traders and illus-
trates that such strategies can be identi�ed through the analysis of volume.
We show that hedging trades are common across assets whereas liquidity
trades are asset speci�c. Price variation or price volatility signals to oppor-
tunistic traders when entering the market. As a consequence, they react
to market volatility rather than being responsible for it. The volume they
trade adds to the volume that would be traded if there were no imperfection,
the �normal volume�, and is proportional to the price volatility. It is also
worth noting that, in our framework, the volatility/co-volatility of volume
is directly linked to the existence of a liquidity/co-liquidity risk.

This theoretical result forms the basis of our empirical approach. We
apply our methodology to individual stocks traded on the London Stock
Exchange. We conduct a principal component analysis (PCA) to decompose
volume into common and speci�c components. We examine the statistical
properties of the two volume components and focus on the asset-speci�c
component. More particularly, we test for illiquidity clustering through the
dynamic analysis of the speci�c component of volume.

Note that the use of a volume decomposition is not new. Technical
analysis proposes an increasing/decreasing volume decomposition and some
theoretical papers decompose volume into a normal component - usually
an historical average - and an abnormal or unexpected component [see e.g.
Easley and O�Hara (1987), Andersen (1996)]. However, Easley - O�Hara
(1987) study the informational contents of volume. They show that volume,
like price, contains useful information concerning future price. In our work,
volume does not contain information about future price, but instead valuable
information about market liquidity.

More recently, decompositions of volume, into common and speci�c com-
ponents, have emerged and appear to be a growing interest of the literature
[see e.g. Hasbrouck and Seppi (2001), Lo andWang (2001), Cremers and Mei
(2001)]. If our statistical approaches show some similarity, our contribution
lies in the modelling of investor�s behaviour which justify the decomposition.
Moreover, Hasbrouck and Seppi (2001), as well as He, Velu and Chen (2003),
conduct a principal component analysis (PCA) to both volume and volatil-
ity to focus on the volume and volatility factors. Our interest is di¤erent as
we focus on the speci�c component, i.e. the asset-speci�c part of volume.
The reason for this comes from the non-stationarity property of volume. As
a consequence, the PCA should be able to capture volume non-stationarity
in the �rst factor and the analysis of the evolution of the idiosyncratic part
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of the volume should be informative. Our results show that this is really
the case. In this sense, our method gives the way to �lter the stock speci�c
component of volume.

The stock speci�c component of volume developped here is a signed mea-
sure. It is positive if the stock is over-traded, compared to the market, and
negative if the stock is under-traded, compared to the market. Therefore, it
represents the relative market interest for a stock.

Our paper is organized as follow. In Section 2, we �rst discuss the
volume measure that we consider, namely the individual turnover. We then
propose un new theoretical model for volumes that justify the decomposition
of turnovers and introduce explicitly the link between traded volumes and
investing strategies. Section 3 presents the empirical methodology. Section
4 provides the empirical results using daily data for eight stocks from the
FTSE index from 2000 to 2002. Finally, section 5 concludes the paper.

2 Turnover and market portfolio

After a short review of the di¤erent notions and measures of volume proposed
in the literature, we develop some basic notations. We then formally de�ne
the volume measure we retain.

2.1 Analysis and measures of volume

In active markets �high volume markets, and hence liquid markets, the in-
formation �ow is rapidly incorporated into prices through trading and trad-
ing volume. Volume has essentially been considered from this perspective in
the �nancial literature with three main research directions. In the �rst two
approaches, volume conveys information into prices and as such, has been
considered through the analysis of volume-price relationship [see Easley and
O�Hara (1987), Foster and Wisvanathan (1990), Boyer and Le Fol (1999)]
or volume-volatility relationship [see e.g. Tauchen and Pitts (1983), Karpo¤
(1987), Foster and Wisvanathan (1993), Andersen (1996)]. In the latter, vol-
ume stands for a measure of liquidity or market quality [see Gallant, Rossi
and Tauchen (1992), Domowitz and Wang (1994), Gouriéroux and Le Fol
(1998) among others].

In this large body of literature, the �rst studies take the number of
transactions as a proxy for volume, mainly for data availability reasons [Ying
(1966), Epps and Epps (1976), Gallant, Rossi and Tauchen (1992), Heimstra
and Jones (1994)]. Since then, numerous �aggregated as well as individuals -
measures of volume have been proposed [see Lo andWang (2000) for a review
of the literature]. Turnover as a measure of volume was �rst introduced to
account for the dependency between the traded volume and the total number
of shares outstanding. As such, the turnover ratio, that is the traded volume
corrected by the number of shares outstanding, seems to be appropriate
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when studying the market volume [Smidt (1990), LeBaron (1992), Campbell,
Grossman and Wang (1993)] or when comparing individual asset volumes
[Morse (1980), Bamber (1986), Bamber (1987), Lakonishok et Smidt (1986),
Richardson, Sefcik and Thompson (1986), Stickel and Verrechia (1994)].

Following Lo and Wang (2000), we also retain the turnover ratio replac-
ing however, the number of shares outstanding by the �oat1. First from
a numerical point of view, as said above, turnover ratios, by pulling back
assets volumes on a common scale, allow for comparison between assets.
Second, from a �nancial point of view, under the regular hypotheses re-
quired for the CAPM to be valid, turnover measures must all be identical
[see Lo and Wang (2000)]. This implication leads to a simple empirical test
of the model. Moreover, the intuition of this �rst result is simple. All the
agents hold the market portfolio and any transaction is linked to a buy or
a sell of part of this portfolio ; as a consequence, all turnover ratios have to
be identical as shown in section 3.1.

2.2 Volume and benchmarked volume

Let Vit be the number of shares traded for asset i on day t and Nit the �oat
for asset i, i = 1; :::; N . We assume that the �oat for each asset is constant
over time, i.e. Nit = Ni for all t. The individual stock turnover for asset i
on day t is given by:

xit =
Vit
Ni
. (1)

For a given asset, the individual turnover can equivalently be calculated
in number of shares or in value, i.e. in euro volume. In the latter, one just
have to multiply numerator and denominator, in the previous de�nition, by
the stock price. More precisely, for daily turnover, the stock price to use is
the daily volume weigthed average price,

Pit =

P
n
Pitn � VitnP
n
Vitn

;

where n is the index of the number of transactions . For a portfolio, however
these de�nitions lead to di¤erent aggregation properties.

From the de�nition of the portfolio average turnover, or market index,
we introduce the notion of benchmarked volume. To do so, we must take
into account the individual asset price, and de�ne the average turnover as
the index euro volume �or the index traded value �divided by the index
value:

xIt =

P
i PitVitP
k PktNk

=

P
i PitNi

Vit
NiP

k PktNk
=
X
i

witxit, (2)

1The �oat is the number of shares that are freely bought and sold buy the public.
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where

wit = PitNi

,X
k

PktNk

is the weight of asset i in the market index.

3 The model

Let us consider an economy with N risky assets and a riskfree asset where
two classes of investors trade. All investors have homogenous and rational
expectations concerning the future value of risky assets. The �rst class of
investors are J classical investors. They behave as portfolio managers and
their trading desks. This means that they decide how much to trade at some
decision dates (portfolio managers), and eventually trade sequentially this
amount at some trading dates (trading desks). The second class of investors
are opportunistic investors who enter the market only when there is a riskfree
liquidity premium to cash. We consider a one period model, where classical
investors decide to adjust their holdings in date 1 and to trade in date 2
and/or in between dates 1 and 2. The riskfree asset price is normalized to
one in date 1, and its return is denoted by rf . The risky asset i price and
return in date t are pi;t and ri;t, respectively, with i = 1; :::; N and t = 1; 2:
Moreover, we impose that returns are Gaussian, between two decision dates,
and independent of the price level. Conditional on the information available
at date t, we have :

Et(rt+1) = �;

V art(rt+1) = 
;

where � = (�1; :::�N )
0 and 
 is an N�N positive de�nite matrix of variance-

covariance of returns. In our framework, there is no incoming information
and the �oats are constant for all stocks.

3.1 Preferences and Investment strategies

The classical investors have negative exponential preferences and are en-
dowed by wj1; j = 1; :::; J . In the �rst date, they hold an optimal portfolio
in the Markowitz sense, that is, they hold aj1;0; a

j
1 which maximize their

expected utility over their next period wealth of the following form :

E1

�
�e��

j
1w

j
2

�
;

where �j1 is investor j�s risk aversion coe¢ cient in period 1. This program
simpli�es to : 8><>:

Max
aj0;a

j
1

E1

�
wj2

�
� �j1

2 V1

�
wj2

�
s:t: wj1 = a

j
1;0 +

�
aj1

�0
p1
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where the riskfree asset price is 1, and p1 = (p1;1; :::; pN;1)0 are the prices of
the risky assets. The value of her portfolio in period 2 becomes :

wj2 = a
j
0(1 + rf ) +

�
aj1

�0
diag p1(1 + rt);

where ri;t =
pi;t�pi;t�1
pi;t�1

; i = 1; :::; N; is the rate of return of the asset i in
period t. diag p1 is a diagonal matrix with pi;1 prices on the diagonal. The
maximisation of the program above gives the risky asset demand :

aj1 =
1

�
j

1

(diag p1)
�1
�1 [�+ (1 + rf )e] ; (3)

where e is a unitary vector of size N . This is a classical result where the
demand in risky assets is a function of the information and the risk aversion
coe¢ cient. In the context of no incoming information, the only parameter
of interest if the risk aversion coe¢ cient.

3.2 Equilibrium and turnover equality

If we suppose an exogenous constant aM supply of shares, in equilibrium we
have aM = a1 =

P
j a

j
1; and we get the following relation :

aM =
1

�1
(diag p1)

�1
�1 [�+ (1 + rf )e] ; (4)

where �1 =

 P
j

1

�
j
1

!�1
is the harmonic mean of the individual risk aversion

coe¢ cients.
However, still in date 1, classical investors want to modify their posi-

tions due to an exogenous change in their risk aversion from
�
�11; :::; �

J
1

�0
to
�
�12; :::; �

J
2

�0
. Since the overall numbers of shares remains constant, the

supply is unchanged and in equilibrium, we have :

aM =
1

�2
(diag p2)

�1
�1 [�+ (1 + rf )e] : (5)

From equations 4 and 5, we get the equilibrium prices relation :

p2 =
�1
�2
p1:

For simpli�cation purposes, we suppose that the overall risk aversion - across
agents - remains constant2: �1 = �2 = �: As a consequence, we also have

2Note that this simpli�cation does not imply that individual �jt are constant.
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p2 = p1 = p�. The relative price variation is zero. The allocation, aji;1, at

date 1, and the demand, aji;2, set at date 1 to be hold at date 2, are :

aji;1 =
�

�
j

1

aMi ; aji;2 =
�

�
j

2

aMi : (6)

The classical investors trade aji;2 � a
j
i;1 at date 2. Note that, they do not

trade at date 1, as date 1 is only a decision date. In fact, they do not
trade until date 2. The asset i turnover ratio xi; being half the sum of all
the volume bought or sold in stock i compare to the �oat of stock i on the
market :

xi =
1

2

X
j

�����a
j
i;2 � a

j
i;1

aMi

����� :
From equation 6 and the de�nition of the turnover, we get the following
proposition.

Proposition 1 : Asset i observed turnover is equal to :

xi =
�

2

X
j

����� 1�j2 � 1

�
j

1

����� ; (7)

is independent of i:

The proposition shows that the turnover ratio is a measure of the ac-
tivity due to a modi�cation of the risk aversion heterogeneity among in-
vestors. Moreover, it shows that moving from one equilibrium to another,
the turnovers remains all equal across stocks. This result is consistent with
the Lo and Wang (2000) one factor model, even if they do not explain why
investors trade. Here, classical investors are trading because their risk aver-
sion changes over time and independently from other traders. In Llorente,
Michaely, Sean and Wang (2002), this equality does not hold anymore due
to some heterogeneity stemed from di¤erent beliefs of investors. We show
in the following section, that even when investors have homogenous beliefs,
turnovers can vary from one stock to another.

3.3 Liquidity problem and excess in turnover

In this section, we introduce liquidity problems in our modelling by relaxing
the assumption that all the trades are contemporaneous. We allow traders
to trade sequentially.
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3.3.1 Classical investors behaviour

Suppose that, if the classical investors are still deciding their portfolio com-
position, as previously at date 1, they can now trade sequentially. As a
consequence, instead of trading all at once at date 2, they can trade be-
tween dates 1 and 2 in addition.

Again, this assumption is supported by market practices. In fact, port-
folio managers decide to adjust their porfolio at some decision dates, but
do not trade at these dates. Then, they send the number of shares to buy
or sold to their trading desk, who realizes it in one or several trades if she
wants to minimize the market impact generated by individuals portfolio ad-
justments. In fact, if the trading desk chooses to trade all at once, we are
back in the previous set up. On the contrary, if she splits her trade to real-
ize an average price over the period, she has to set a maximum quantity to
trade per trading date. In such a case, only part of the trading is done at
the �nal trading date. In fact, the trading desks reveal preferences for the
present by anticipating the realization of part of the trading of the period.

To go further in our modelling, we need the following assumptions on
the classical investors behaviour.

A1 : Trade can only occur at the intermediate and �nal dates, but still
not at the decision date.

A2 : The maximal trading quantity at the intermediate date is drawn
by a purely random mechanism.

A3 : The �nal clearing of residual demands is done at the �nal date 2,
at the previously de�ned equilibrium price p�.

Assumption A1, states that classical traders can only split their orders

between two dates. Following A2, let Xj =
�
Xj
1 ; :::; X

j
N

�0
be a vector of

independent uniform variables on [0; 1]; she trades, at this date, at most,

d
j
= diag

�
Xj
� �
aj2 � a

j
1

�
:

This mecanism allows to capture the splitting behavior of the classical in-
vestors. Summing up over the J classical investors, we get :

d =
X
j

diag
�
Xj
� �
aj2 � a

j
1

�
:

This vector is a measure of illiquidity due to the classical investors�splitting
scheme. Note that if Xj

i = 0 8i; j, we are in the particular case where
investors trade all at once in date 2 - presented in the previous section - and
there is no liquidity problem. When Xj

i = 1 8i; j, investors trade all at once
but at the intermediate date and again, there is no liquidity problem in the
market.
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At the intermediate date, a new trading price ep is set, and classical
investors trade

�
aj(ep)� aj1�, such that :8<:

P
j

h
aj(ep)� aj1i = 0

s:t:
���aj(ep)� aj1��� � ���dj��� (8)

where the demand aj(ep) is of the same form as in equation (3) :

aj(ep) = 1

�
j

2

(diag ep)�1
�1 [�+ (1 + rf )e] :
Finally, we get :

aM =
X
j

eaj(p); (9)

where eaj(p) =

(
aj(p); if the quantity constraint is binding,

d
j
+ aj1; otherwise.

(10)

In this situation, ep is not exactly the set of prices that o¤set demand and
supply since we have quantity constraints. As a consequence, the interme-
diate date can be interpreted as a disequilibrium date. In this framework,
liquidity problems arise because of investors�heterogeneity splitting scheme
behaviour, through the variableXj . Moreover, because of this heterogeneity,
their behaviour cannot be captured by the one of a representative agent.

Finally, the consequences of liquidity problems are not surprising. First,
agents trade less than they want. Moreover, they pay an extra cost for
immediacy since part of their trades (the anticipated trades) are concluded
at a price ep 6= p�. There are no strategic behaviour; some of them win p�� ep
that others loose.

3.3.2 Opportunistic investors behaviour

We introduce a new class of investors whose aim is to gain from market
imperfections, of the kind previously described. The opportunistic investors
all have the same behaviour as a representative agent. We consider a stock
(signed) demand, at the intermediate date, say al(:); coming from a represen-
tative investor willing to cash the liquidity premium (liquidity arbitrageur).
The liquidity arbitrageur strategically acts on liquidity undergone by classi-
cal investors. Her demand function satis�es the following assumptions :

A4 : a
l(p�) = 0:

A5 : a
l(:) is a monotonous increasing function of the di¤erence of p� eep:

A6 : a
l
�eep� < d; for all eep:
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Assumption A5 ensures that the opportunistic investor will not trade if
there is no liquidity problem. Assumption A6 de�nes the strategical behav-
iour of the liquidity arbitrageur. She buyes when the market is selling, and
sells otherwise.

Here again, the price mechanism is the same as in the previous section.
Classical investors decide in date 1 the amount to trade and e¤ectively trade
at two posterior dates, under some quantity constraints. The new trading
price, when the liquidity arbitrageur trades, satis�es :8><>:

P
j

h
aj
�eep�� aj1i+ al �eep� = 0;

s:t: aj
�eep�� aj1 � dj : (11)

On the market level, the system (11) can be written as :

aM � al
�eep� =X

j

eaj �eep� ; (12)

where eaj (:) is the function de�ned in 10.The additional demand al �eep�
partly mitigates the e¤ect of the splitting behaviour, by partly relaxing the
quantity constraints. The traded volume increases, the impatient traders
are less constraint and the impact of illiquidity on price is lower. We have :

p� � eep � p� � ep:
Note that, if the liquidity arbitrageur provides all the missing liquidity

trading, al
�eep� = d, the quantity constraint disappears, the equilibrium

price is p�, and the arbitrageur gain is zero.

The volume of asset i, traded by the opportunistic trader, is 2� al
�eep�;

one half at the illiquid intermediary date and the same amount at date 2.

Proposition 2 : Summing up the classical investors� trades, given in 7,
and the liquidity arbitrageur�s ones, we get the following turnover ratio be-
tween dates 1 and 2 :

x�i =
�

2

X
j

����� 1�j2 � 1

�
j

1

�����+
������
ali

�eep�
aMi

������ ; (13)

for all stocks i. The turnover ratio has both a common and a speci�c com-
ponents.

During market illiquid periods, new investors enter the market to provide
liquidity where missing. The total volume traded between the two equilibria
is raised by their trades and the turnover ratios are no longer the same as
shown in equation 13 and in Figure 1.

10



Figure 1: Trading scheme and turnover ratios.

3.4 Model discussion and testable empirical implications

Our model is much simpler than Wang (1994) and Llorente, Michaely, Sean
and Wang (2002) models since we do not have to suppose heterogenous
beliefs to explain variability in the turnover across stocks. Our investors
are trading for hedging and liquidity arbitrage purposes. Besides, in their
scheme each investor holds one stock and a nontraded asset. Since the
returns of the two assets are correlated, any shock on the nontraded asset
will force investors to adjust their stock holdings to maintain an optimal
risk pro�le even when their risk aversion coe¢ cient remains constant. This
is qualitatively equivalent to a change in the risk aversion coe¢ cient that
we choose in our framework.

The price variation is usually the signal for opportunistic investors to
enter the market in the intermediate period. The response to this signal
depends on the risk behaviour of the opportunitics investors. If the signal
can be misleading - saying that it may also be due to a change in the ex-
pectations of the future value - then they will only partially compensate the
disequilibrium and potentially only cash out part of the liquidity premium.
Taking several arbitrage positions, across signals, allow to diversify their
risk. At one point, the risk can even be two high to get enough opportunis-
tic traders entering the market. However, because we suppose no incoming
information, opportunistic investors su¤er no risk. Moreover, the signal and
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the opportunistic trader�s intervention are simultaneous in our model.
The empirical analysis of turnover ratios of multiple assets traded on a

single market leads to the rejection of the turnover equality property. This
stylised fact brings Lo and Wang (2000) to reject the one factor model in
favour of a two-factor model suggested by a principal component analysis.
They show the existing conformity between the risk factors of pricing models
and the factorial structure of volume series. Lo and Wang (2001) suppose
the existence of only two types of risk : a market risk and a risk of market
conditions modi�cation. As a consequence at equilibrium, investors hold
and trade only the market portfolio and a hedging portfolio providing the
interpretation of their two factors linear model. Our model shows that liq-
uidity problems can explain the rejection of the turnovers equality property
without implying the failure of one-factor models.

The two-steps trading scheme of classical investors is very simple, and of
course, a¤ects the results on turnovers. More precisely, the independence of
the probabilities to trade each asset implies that the only co-movement in
turnovers are coming from hedging demands (common component). If the
hypothesis is not supported by the data, the cross correlation of the speci�c
component of turnovers should not be zero.

Finally, the liquidity arbitrage activity comes from the splitting scheme
of the classical investors whereas the common component in the turnover
comes from adjustments in the risk coe¢ cients �jt ; j = 1; :::; J . Therefore,
repeating our trading sequence independently would imply stationnarity of
the speci�c component. On the contrary, the dynamics properties of the
�rst component can hardly be described since �t is exogenous.

3.5 Numerical illustration

As an illustration of volume decomposition of any portfolio into its two
components, we give a simple numerical example.

Here again, agents are deciding the amount of the market portfolio to
trade at the �rst date and realize their trades eventually at two trading
dates. Consider an economy with three stocks - 1, 2 and 3 - and four agents
- A, B, C and D, where D is an arbitrageur. The characteristics of the
stocks are summarized in the following table :

Stock Float Price Index weight
1 40 1 0.50
2 20 1 0.25
3 20 1 0.25

Let agents A, B, C and D hold the following combinations of the three
stocks :

A :
�
10 5 5

�
; B :

�
10 5 5

�
; C :

�
20 10 10

�
; D :

�
0 0 0

�
;
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saying that A and B hold 10 shares of stock 1 and 5 of stock 2 and 3 and
agent C holds 20 shares of stock 1 and 10 of stocks 2 and 3, so that their
investment in stocks 1, 2 and 3 in relative proportion is :�

0:5 0:25 0:25
�
:

Hence, A, B and C hold pure benchmarked portfolios while agent D holds
nothing.

Now suppose that due to some (exogenous) changes in their risk aversion
coe¢ cient, A; B and C decide to change their position. A wants to close her
position, B wants to triple her risk exposure and C to lower hers by 50%.
If they post their orders simultaneously to the market, B buys 20 shares of
stock 1 (10 to A and 10 to C), 10 shares of stock 2 and 3 (5 to A and 5 to
C). Their �nal positions are :

A :
�
0 0 0

�
; B :

�
30 15 15

�
; C :

�
10 5 5

�
:

In this situation, there is no tension in the market and the prices remain
unchanged. Agents A; B and C�s trades can be summarized as :

A :
�
10 5 5

�
; B :

�
20 10 10

�
; C :

�
10 5 5

�
:

and there is no arbitrage since we observe
�
20 10 10

�
trades.

Consider now a situation where all the agents want to end up with the
same positions as above, but if agent A still sell all her shares at once, agent
B and C split their trades. Suppose that agent B trades �rst on stock 1
and 2 and postpones her trades on stock 3, while agent C trades on stock 2
and 3 and postpones her trades on stock 1.

A sells
�
10 5 5

�
, B is willing to buy

�
20 10 0

�
and C is willing

to sell
�
0 5 5

�
: If the matching is instantaneous on stock 2, there is

a lack of liquidity on the sell side for stock 1 (there are 20 shares to buy
for only 10 to sell) and on the buy side for stock 3 (there are 10 shares to
sell for not even one share to buy). These unbalances cause price pressures
which will rise the price of stock 1 and lower the price of stock 3. These
price movements incline agent D to enter the market to provide liquidity.
Buying and selling the remaining quantities, she brings back the prices to
their previous level until the equilibrium recovery. Doing so, she plays the
role of a liquidity purveyor or a market maker.

Their positions between the intermediate trading date are :

A :
�
0 0 0

�
; B :

�
30 15 5

�
; C :

�
20 5 5

�
; D :

�
�10 0 10

�
:

Agents A; B; C andD trades between the decision date and the intermediary
trading date can be summarized as :

A :
�
10 5 5

�
; B :

�
20 10 0

�
; C :

�
0 5 5

�
; D :

�
10 0 10

�
:
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Once back to equilibrium, the arbitrageur will sell back the shares of
stock 3 to agent B and buy the shares of stock 1 to agent C. The trading
motives of agent C are to cash the liquidity premium, while agent B and
C are adjusting their portfolio to end up with a pure market portfolio as in
the case where there is no tension in the market. Hence, the agents trade�
20 10 10

�
to move from the initial position to the intermediate posi-

tion, and
�
10 0 10

�
once back at the equilibrium. The observed traded

volume is
�
30 10 20

�
which represents

�
20 10 10

�
benchmark trades

and
�
10 0 10

�
arbitrage trades. Note that the arbitrage represents in

our example 10+0+10
30+10+20 = 33% of the activity observed in the volume. This

example clearly shows that the reason for turnovers to be di¤erent comes
from arbitrage.

Note that in this example, because prices are constant and because the
liquidity purveyor provides all the missing liquidity, her pro�t is zero.

4 Empirical methodology

Our model explains positive deviation from the common component of turnovers,
i.e. the market index turnover. In practice, the identi�cation of arbitrage is
straightforward. The idea is to isolate the lowest turnover among all stocks.
The arbitrage is the excess in turnovers observed on the other stocks and
the sum of all these extra turnovers is a measure of the overall illiquidity of
the market. However, empirically this approach is not satisfying. In fact,
it depends on only one observation (the lowest turnover) and thus cannot
be robust. We prefer to base the empirical approach on an average instead
of an extreme observation. Doing so, we implicitly assume that the overall
illiquidity can be spread out over all stocks. The deviations from the average
turnover can now be either positive or negative which �ts better what we
usually observed on markets and will be justi�ed in this section.

4.1 Link with market practices

Our approach comes from asset management practices, in which any port-
folio can be decomposed into a market portfolio and an arbitrage portfolio.
Applied to volume, we get a market component and an arbitrage component
of the trading volume. The �rst factor in our volume factorial analysis can
be identi�ed as the market component whereas the remaining part will rep-
resent the arbitrage component. In our one-factor approach, stock turnovers
inequality comes from the existence of arbitrage behaviours.

Consider a market where I assets, indexed by i = 1; : : : ; I, are traded,
by J market participants. The �oat for all asset is �xed and denoted by
Ni. Knowing the prices of all the asset at date t, we get the market value,
say

P
k PktNk. The relative weight of asset i compared to the market value

is wit = PitNi /
P
k PktNk , where Pit is the price of asset i at date t. This
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weight also stands for its weight in the market portfolio. Consider that
agent j portfolio di¤ers from the market portfolio at date t. This portfolio
depends on the weights �ijt, i = 1; : : : ; I, of all assets. These weights can
be decomposed in the following way:

�ijt = Iijt +Aijt, (14)

i.e. a market component (or index component) Iijt plus an arbitrage com-
ponent Aijt. The arbitrage component can either be positive if asset i is
over weighted in agent j portfolio, or negative in the reverse case.

The same reasoning appliesto trading volume for a particular asset.
When an investor adjusts her portfolio, she buys or sells a risky portfo-
lio fairly close to the market portfolio. If her behaviour is the one of an
agent in equilibrium, she trades exactly the market portfolio. If her goal is
to trade on her private information � concerning one asset or more � she
will trade a quite di¤erent portfolio from the market portfolio. The extreme
situation being agent j buying or selling one only asset. Therefore, the vol-
ume Vijt traded by agent j on asset i at date t is the result of adjustments of
both her index portfolio and her arbitrage portfolio. In terms of individual
turnover, we can write:

xijt = x
I
ijt + x

A
ijt, (15)

where xIijt stands for the index � or market � turnover and x
A
ijt for the

arbitrage turnover. Summing over all agents j, we get an aggregate measure
of the activity derived from risky positions adjustments on asset i, say:

xIit =
1

2

X
j

xIijt, (16)

and an aggregate measure of the activity derived from arbitrage strategies:

xAit =
1

2

X
j

xAijt. (17)

Note that the coe¢ cient 12 corrects for the double counting when summing
the shares over all investors.

Finally, at an aggregate level, we get for any asset, the following turnover
decomposition:

xit =
1

2

X
j

xijt = x
I
it + x

A
it. (18)

The practical interest of such a decomposition is obvious and will be
detailed in the following. On a theoretical point of view, the question is
to identify the two components of the turnover from the observation of the
sum.
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Without any constraint, this identi�cation cannot be done. For any
agent i, the problem can be set up as the resolution of a one-dimensional
linear system with two variables, where the variables are the market portfolio
and the arbitrage portfolio weights. This system has an in�nite number of
solutions and uniqueness can only be reached by imposing a constraint to
the arbitrage portfolio.

4.2 Components identi�cation

At an individual level, say for any agent j, the solution is straightforward
and comes from portfolio management practices. A fund manager willing to
invest in a pure arbitrage portfolio must have an identical risk exposure both
on her long �the stock she buys - and short positions �the stocks she sells.
The risk exposure notion is not obvious but, to make it simple, we assume
that it can be captured by the invested value. Under this assumption, an
arbitrage portfolio is thus said dollar neutral3 as opposed to beta-neutral
portfolios where the fund manager adjusts the betas of the long and short
positions.

The constraint to impose in order to obtain a unique arbitrage portfolio
is then obvious: any arbitrage portfolio must be dollar-neutral, and hence
for all date t and agent j, it must satisfy:X

i

PitNix
A
ijt = 0. (19)

From this constraint, we recover identi�cation: if the portfolio is risk-
neutral, then agent j uses the total value she trades at date t to adjust her
market component. Knowing the market portfolio weights, and from the
total number of shares traded by agent j, one can easily get her traded mar-
ket portfolio. The deviations from this virtual portfolio gives the arbitrage
portfolio of agent j in traded volume. We get the decomposition in terms of
turnover dividing the volumes by the number of �oat shares.

At an aggregate level �when we only observe the total number of traded
share, and without imposing any additional constraint, identi�cation is not
either possible. Here again we will follow the same reasoning. We suppose
that the arbitrage activity satis�es a dollar neutral constraint saying that
the value invested to buy is equal to the one received from selling. In all
date t, the constraint is: X

i

PitNix
A
it = 0, (20)

and we get back the identi�cation of the two components of the traded
volume for stock i.

3The term dollar neutral refer to a zero-cost portfolio, i.e. a portfolio composed of an
equal dollar amounts of long and short investments.
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The decomposition between the benchmark portfolio and the arbitrage
activity is as simple as in the individual case. The identi�cation constraint
imposes to the total traded value �or dollar volume �to be equal to the value
traded on the market component in all date t. From the stocks weights in the
market portfolio, we derive the number of shares traded for the benchmarked
activity. The di¤erence between this number of shares and the observed
number of shares traded gives the level of the arbitrage activity.

4.3 Principal component analysis and �rst factor identi�ca-
tion

In this section, we propose some empirical tests to discriminate between
Lo and Wang (2000) interpretation of observed di¤erences across stocks-
turnover and ours. This can be done by studying the dynamic characteristics
of the factors which summarize the joint evolution of stock turnovers.

This data reduction can be done by conducting a principal component
analysis on the stock turnovers. Then the factors are analysed and we carry
on a simple empirical test to identify the �rst component to the market aver-
age turnover. Hence, any stock turnover, at any date, depends on an average
term and a deviation term. The average part corresponds to trading volume
coming from market portfolio adjustments. Our interpretation is that the
deviation part is due to the opening and closure of arbitrage positions.

A second test consists in analysing the dynamic properties of factors
of order greater than one to discriminate between Lo and Wang (2000)
interpretation and ours.

Let xit, i = 1; : : : ; I, t = 1; : : : ; T denote the turnover series, i.e. the
number of traded shares divided by the number of �oat shares. Since the
aim of principal component analysis is to explain the variance-covariance
structure of the data through a few linear combinations of the original data,
the �rst step is to calculate the I�I dimension variance-covariance matrix of
the data. The spectral decomposition of this matrix leads to I orthogonal
vectors, Ckt = x0ituk, with dimension T , where uk is the k

th eigenvector.
Each eigenvector is associated with a positive eigenvalue �k such that:

Cov(Ckt ; C
l
t) = �k�kl, (21)

where �kl stands for Kroneker symbol. The standardized turnover times
series can be decomposed as:

xit � xi
�i

=
X
k

uikC
k
t :
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Since corr(xit; Ckt ) =
p
�ku

i
k, the previous equation can be rewritten as:

xit � xi = �i
X
k

corr(xit; C
k
t )p

�k
Ckt

= �i
X
k

corr(xit; C
k
t )q

var
�
Ckt
� Ckt

=
X
k

Cov(xit; C
k
t )

var
�
Ckt
� Ckt

Finally, we get the centered turnovers :

xit � xi =
X
k

Cov(xit; C
k
t )

var
�
Ckt
� Ckt (22)

=
X
k

1

�k
Cov(xit; C

k
t )C

k
t , (23)

Isolating the �rst factor, we get:

xit � xi =
1

�1
Cov(xit; C

1
t )C

1
t +

X
k>1

1

�k
Cov(xit; C

k
t )C

k
t . (24)

To see if the market turnover, as de�ned in Section 2.2, is a good can-
didate for the �rst factor, we compare the �rst component of the sum in
Equation (24) to the market turnover. This comparison can only be done
after correcting for the mean and the variance, thus we compare the follow-
ing times series:

xi + �i
1

�1
C1t , (25)

to the market turnover.

4.4 Dynamic properties of stock speci�c component

The empirical analysis of the dynamic properties of the factors, derived from
the aforementioned approach, leads to a di¤erent interpretation from the one
by Lo and Wang (2000). In fact, any observed non stationarity in the joint
analysis of volume is due to the existence of nonstationary common factors.
If the number of such factors is greater than one, the Lo and Wang type
of analysis is the most accurate. On the contrary, if there is exactly one
nonstationary factors, deviations from the �rst factor must be interpreted
di¤erently.

Whenever the �rst factor has been identi�ed as the index �or bench-
mark �component of volume, we can focus on the analysis of the second
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component of the sum in Equation (24):X
k>1

1

�k
Cov(xit; C

k
t )C

k
t . (26)

Once again, di¤erent interpretations are possible. Lo and Wang (2000)
see this term as an hedging strategy against a risk associated with market
conditions modi�cations. In this view, the �rst factor and the others are
associated with investment decisions of the same kind. This implies that
they should both present the same dynamic characteristics.

On the contrary, we suppose that the second component is due �or linked
�to some short term arbitrage activity. Then the two components of the de-
composition should feature very di¤erent dynamic behaviours. In particular,
the �rst component should capture all the trend observed in the turnover
series whereas the second should be stationary. A standard stationarity test
can then be a validation test of either one of the two approaches.

5 Empirical results

In this section, we apply the approach presented above to daily data from
the eight most important stocks from the FTSE index, namely AstraZeneca
(AZN), Barclays Bank (BARC), GlaxoSmithKline (GSK), HSBC Holdings
(HSBA), Lloyds TSB Group (LLOY), Royal Bank of Scotland Group (RBS),
Shell Transport and trading co (SHELL) and Vodaphone Group (VOD) from
May 17, 2000 to December 5, 2002 (648 trading days). Note that, if intra-
day data seems to be a more appropriate choice when working on investment
practices, the high intraday seasonality of volume and the associated intra-
day seasonal adjustment problems encourage us to work on daily data.

5.1 Data description

Table 1 gives some summary statistics about the eight aforementioned stocks
from May 17, 2000 to December 5, 2002. Over this period and for all the
stocks we have 648 trading days, i.e. 648 daily observations. Table 1 displays
the mean, the standard deviation, the minimum and the maximum of the
traded volume and the number of �oat shares in millions of shares.

19



Variables Traded volume Number of float shares
Stat

Stocks Mean Std Min/Max Mean Std Min/Max

AZN 5.1 3.0 0.27/28.6 1755.1 14.5 1730.1/1770
BARC 24.1 12.1 2.23/94.1 6508.1 264.7 5912/6628
GSK 14.2 10.4 1.15/193.2 5570.9 1077.3 3646/6218

HSBA 25.8 18.5 1.19/267.9 9268.5 221.5 8530/9431.1
LLOY 19.8 10.7 1.13/83.0 5528.1 31.3 5497/5561.2
RBS 9.2 7.3 0.55/141.4 2778.1 99.2 2586/2887.5

SHELL 33.4 19.2 3.19/133.9 9856.9 81.7 9733.2/9942
VOD 314.7 171.5 18.6/1458.8 65949.4 2695.9 61443/67895.1

Table 1 : Descriptive statistics, daily data from Mai 17, 2000 to December 5, 2002.

Over this period, volumes and outstanding number of shares are very dif-
ferent among stocks. In addition, stock ranking is roughly the same when
considering daily averages of volume or number of shares outstanding. These
observations justify the choice of turnovers instead of traded volumes.
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Figure 2: Daily traded volume evolution from May 17, 2000 and December
5, 2002.

A visual inspection of Figure 2, which gives the evolution of volumes in
daily number of traded shares, shows that some rises in volumes appear in all
stocks, like at the end of September 2002 for example, whereas some other
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ones seem to be stock speci�c. These large jumps can even hide common
rises of volume. This is the case for GSK, on November 30, 2001, where
the daily traded volume reaches 193 200 000 shares compared to an average
of 33 400 000 traded shares per day over the period.

This �rst analysis shows that the analysis of the traded volume must
account for the total number of shares outstanding. Moreover, there seems
to be two components in volume : a common component and a speci�c
component.

From these observations, we �rst propose a measure of volume corrected
from the outstanding number of shares as previously described, that is the
daily turnover in percentage. This measure is 100 times the daily traded
volume divided by the �oat. Figure 3 displays the evolution of the observed
daily stock turnover ratio in percentage for the eight stocks from May 17,
2000 to December 20, 2002.
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Figure 3: Turnover evolutions, from Mai 17, 2000 to December 6, 2002.

Because of this preliminary treatment, the volume series become com-
parable. The analysis of their dynamics shows the existence of a trend,
whatever the stock. This trend appears also in the one-year daily average
of stock turnover evolutions as shown in Table 2.
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Year
Stocks 2000 2001 2002
AZN 0.226 0.260 0.368
BARC 0.364 0.327 0.422
GSK 0.208 0.233 0.302
HSBA 0.234 0.232 0.356
LLOY 0.288 0.321 0.440
RBS 0.288 0.312 0.383
SHELL 0.229 0.317 0.449
VOD 0.303 0.480 0.595

Table 2 : One-year Daily turnover average evolutions from year 2000 to year 2003.

In fact, volume is rising at rates of about 16% to 96%. As this trend is
observed on every stock, it should be captured by the common component
of our decomposition. As a consequence, we will focus on the speci�c com-
ponent of the decomposition and there is no need to correct from the initial
series trend. Our decomposition is a natural answer to this problem.

We report summary statistics for the daily stock turnover ratio in per-
centage in Table 3.

Mean Std. Dev Skweness Kurtosis
AZN 0.29462 0.17424 2.91100 13.67123
BARC 0.37516 0.18373 1.80527 5.87145
GSK 0.25350 0.16400 9.08276 144.52370
HSBA 0.28050 0.20084 5.64628 55.75478
LLOY 0.35950 0.18862 1.82406 5.27974
RBS 0.33506 0.26048 9.74110 152.69574
SHELL 0.34444 0.19172 2.04292 6.15997
VOD 0.48319 0.24852 1.70851 5.58066

Table 3 : Descriptive statistics of stocks turnover.

The average turnover is quite di¤erent from one stock to another ; the
largest turnover being almost twice the lowest. However, this di¤erence is
mitigated by the use of turnover instead of traded volume series. In fact,
the average traded volume for VOD (314 700 000 shares) was greater than
60 times the AZN average traded volume (5 100 000 shares). We can also
note that the distributions of AZN, GSK, HSBA and RBS are the ones with
the larger skewness and kurtosis and hence the most asymmetric with the
largest tails.

5.2 Principal component analysis

As seen before, the approach allows us to summarize the behaviour of stock
volume series over the entire period 2000-2002. The �rst factor explains
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40.6% of the variability-covariability of the stocks turnover. In this sec-
tion and the following one, the principal component analysis approach is
conducted using daily data for the aforementioned stocks. However for pre-
sentation purposes, we report only the �gures for three stocks : GSK, AZN
and RBS.

Figure 4 reports the evolution of monthly averages of the �rst factor as
well as the market turnover. We can see that the activity is quite stable

Figure 4: Turnover (Market average turnover) and Index component (FI),
month-by-month average evolution, May 2000-December 2002.

during the year 2001. In October 2001, this activity sharply falls before
recovering and starting to sharply increase during the rest of the period.
A visual inspection of the �t between the market turnover and the �rst
factor con�rms the identi�cation of this factor to the benchmark - or index
- component of volume.

We give in table 4, the correlation analysis between AZN, GSK and RBS.

AZN/RBS AZN/GSK RBS/GSK
Turnover 0.25* 0.307* 0.158*

Speci�c component -0.057 -0.0766 -0.136*
Table 4 : Cross correlations of turnovers and of the speci�c component of turnovers.

Most of the turnover co-movements have been captured by the one-factor
model. However, some correlations remain signi�cant4 in the speci�c com-
ponent of the RBS and GSK�s turnovers. As mentioned before, non-zero
correlations imply that the theoretical model with independent trading prob-
abilities is rejected. There seems to be some clustering in the preferred group
of stocks investors trade �rst.

4The * symbol means that the correlation is signi�cative di¤erent from zero at 5% or
lower.
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Figure 5 illustrates the nature of the second component which shows an
erratic behaviour around zero but no trend. The stock speci�c component
appears to be stationnary unlike the common component.

To con�rm these results, we calculate and report in Figures 6, 7 and 8
the autocorrelation and the partial autocorrelation functions of the common
and the speci�c components for GSK, AZN and RBS, respectively.

If the index component is non stationary and features long memory or
changes in regime, the second component presents only short term memory.
Moreover, the individual analysis of the seven factors sum, i.e. the second
component, shows that none of them is nonstationary. Hence, the nonsta-
tionarity is completely absorbed by the common component. This result
�ts the �nancial interpretation presented in Section 4. Moreover, the �rst
component features the same seasonality as the turnover series. At an ag-
gregate level, this also con�rms that the two components can not re�ect the
same type of portfolio management. The �rst component re�ects long term
management strategies whereas the second component re�ects short term
management strategies. We conclude that the variability of stocks trad-
ing volume is well approximated by a two components model (a one factor
model) : an index component and an arbitrage component.

5.3 Uses and limits of the methodology

In this section, the principal component analysis is applied to each stock
separately and each turnover - each volume measure - is decomposed in a
common and a speci�c components. The idea is to discriminate between
investors interest for the market and a speci�c activity on the stock itself
from the volume analysis. Over the entire period, and for all stocks, the
activity is mostly driven by its index component.

The �rst example concerns the stock GSK. We give in Figure 9, the
evolutions of the turnover components over a two month period at the very
end of the year 2001. We clearly see the common component driving the
evolution of the turnover almost all the time except during few days at the
turn of the month. This phenomenon is a direct consequence of large fund
management companies intervention. In fact, these companies are some-
times modifying their holding in some groups in order to clear their position
before the end of the year. These large transfers are usually done using
applications5 at the end of the year. These trades which do not correspond
to any underlying market activity are part of the traded volume. Figure 9
illustrates such practices. Here, illiquidity is not the source of trade, and
there is no arbitrage. In such a case however, our measure still helps. In
fact, one should replace the traded volume of these few days by the index
component to correct from this portfolio rebalancing clearing practice. This

5An application - block trade - is a buy and sell agreement concluded outside the
electronic market and reintroduced into the system with a delay.
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Figure 5: Evolution of the the speci�c components of volume, from May 17,
2000 to December 6, 2002.
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Figure 6: Autocorrelation and partial autocorrelation functions of the two
components, GSK Stock.
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Figure 7: Autocorrelation and partial autocorrelation functions of the two
components, AZN Stock.

26



0 10 20 30 40 50 60
Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

Turnover

0 10 20 30 40 50 60
Lag

0.
0

0.
1

0.
2

P
ar

tia
l A

C
F

 Turnover

0 10 20 30 40 50 60
Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

 Common

0 10 20 30 40 50 60
Lag

0.
0

0.
2

0.
4

0.
6

P
ar

tia
l A

C
F

Common

0 10 20 30 40 50 60
Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

Specific

0 10 20 30 40 50 60
Lag

-0
.0

5
0.

00
0.

05
0.

10
0.

15

P
ar

tia
l A

C
F

Specific
______________________________ RBS Stock __________________________

Figure 8: Autocorrelation and partial autocorrelation functions of the two
components, RBS Stock.
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27



example is a practical application of our approach. Using our data error cor-
rection method on the volume series can eliminate noise due to particular
�nancial practices.

The next �gure shows the capacity of our statistical method to accurately
extract seasonalities as previously mentioned in Figures 6, 7 and 8. Figure 10
shows the classical end of the year drop in volumes. This e¤ect is completely
captured in the common component and explains the RBS volume evolution
between December 24, 2001 and the very beginning of the year 2002.
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Figure 10: Turnover and turnover components, RBS Stock.

The methodology presented in this paper, is accurate for �ltering pur-
poses and in periods when no information hits the market as we will see in
the following example of the AZN stock. The daily evolution of the AZN
turnover and its component, given in Figure 11, is mostly driven by bench-
marked strategies.

However, the two series are not that close in July due to the growing
global arbitrage activity, i.e. liquidity arbitrage activity but also informa-
tional arbitrage activity, at that time. As we can see, the arbitrage activity
on AZN stock is growing from the very beginning of July and displays a
peak on the July 17, 2002. This period corresponds to a pessimistic period
concerning future pro�tability of AstraZeneca. AstraZeneca is a pharma-
ceutical company whose earnings come mostly from the production of one
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Figure 11: Turnover and turnover components, AZN stock.

particular drug6. During that period, generics were promised access the
market very soon as the patent was expiring. The impending competition
with their leading product was inducing a potential loss in AstraZeneca
future earnings. Uncertainty was in favour of arbitrage strategies which
increased greatly. This example is obviously not only a problem of liquid-
ity, but rather a problem of information and uncertainty which creates in
turn liquidity problems. It shows the need to incorporate information in the
analysis when studying liquidity as information is an important source of
liquidity variation.

6 Conclusion

In this paper, we propose a simple in which investors trade for hedging
motives. Because they do not rebalance their portfolio at once, a liquidity
problem arise creating a temporary disequilibrium and therefore a change in
stock prices. This price variation is a signal to a new class of traders, called
liquidity arbitrageurs, to enter the market to provide the missing liquidity.
We show, that the volume they trade adds to the volume that would be

6Their leading product represents 50 % of their earnings in 2001.
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traded if there were no imperfection - the �normal volume�. Moreover, this
volume appears to be proportional to the price volatility.

Our model justify the strategies of a new generation of traders and illus-
trates that they can be identi�ed through the analysis of volume. We show
that hedging trades are common across assets whereas liquidity trades are
asset speci�c.

We propose a one factor empirical model based on the theoretical model.
We decompose the trading volume using a principal component analysis.
The speci�c component of volume is a measure of stock trading volume
corrected from trend, seasonalities and data errors. As such, it represents a
valuable tool for investors. It can be seen as a preprocessing tool that allows
market practitioners to extract information from trading volume time series.
Moreover, we can now work on intraday data without fearing the strong
intraday seasonalities.

One objection of PCA is that it does not exploit the dynamic of the
data. However, since the theoretical model is static, PCA accurately works
in implementing and testing it. Natural extensions from static to dynamics
exist and include methods such as dynamic factor analysis [Harvey (1989)]
or Min/Max Autocorrelation Factorial Analysis (MAFA) [see Box and Tiao
(1977), Pena and Box (1987), Solow (1994)]. But the use of such exten-
sions imposes the complete speci�cation of the components dynamics. As
discussed in section 3.4, in our memoryless world, the stock speci�c compo-
nents are stationnary while the common component dynamics is exogenous.
Hence, any choice of dynamics could lead to speci�cation error.

Besides, the use of such measure of volume should lead to a more ac-
curate analysis of the volume-volatility relation. In fact, if there is a rela-
tion between volume and volatility on one stock, the volume and volatility
measures to consider must only re�ect stock-speci�c volume and volatility
components. This is a challenging task that we will undertake in the future.
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