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Abstract

In this paper, we characterize explicitly the first derivative of the Value at Risk and the

Expected Shortfall with respect to portfolio allocation when netting between positions ex-

ists. As a particular case, we examine a simple Gaussian example in order to illustrate the

impact of netting agreements in credit risk management. Collateral issues are also dealt

with. For practical purposes we further provide nonparametric estimators for sensitivities

and derive their asymptotic distributions. An empirical application on a typical banking

portfolio is finally provided.

Résumé

Dans ce papier, nous calculons les dérivées premières de la “Value at Risk” et de

l’“Expected Shortfall”, par rapport à de nouvelles positions lorsque ces dernières peu-

vent faire partie d’un accord de compensation. En particulier, pour illustrer l’impact de

la compensation dans un cadre de la gestion du risque, nous examinons le cas simple

d’un portefeuille dont les variations de valeurs sont gaussiennes. Nous étendons les for-

mules pour traiter le cas de garanties. Nous fournissons également des estimateurs non

paramétriques des sensibilités ainsi que leurs lois asymptotiques. Enfin, une application

empirique sur un portefeuille bancaire typique est détaillée.

Key words: Value at Risk, Expected Shortfall, Sensitivity, Risk Management, Credit Risk,

Netting, Collateral.

JEL Classification: C14, D81, G10, G21, G22.
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1 Introduction

For risk management purposes, the evaluation of marginal impacts of current or new

positions on risk measures and regulatory capital has been recognized as an important

point (Garman (1996), Jorion (1997)). In practice, this evaluation can be made through

explicit estimators of the first order derivatives of some standard risk measures, such as the

Value at Risk (VaR) and the Expected Shortfall (ES), with respect to portfolio allocations

(Gourieroux, Laurent and Scaillet (2000), hereafter GLS, and Scaillet (2000)). Knowledge

of the sensitivity is helpful in reducing the amount of computational time needed to process

large portfolios since it avoids the need to recompute risk measures each time the portfolio

composition is slightly modified (Kurth and Tasche (2002), Martin, Thompson and Brown

(2001), Martin and Wilde (2002)). Besides it allows decomposing global portfolio risk

component by component, and identifying the largest risk contributions (Denault (2001),

Garman (1997), Hallerbach (2003), Tasche (1999)). These derivatives are also of particular

relevance in portfolio selection problem (see Markowitz (1952) for portfolio selection in

a mean-variance framework). They help to characterize and evaluate efficient portfolio

allocations 2 when VaR and ES are substituted for variance as measure of risk (GLS

(2000), Rockafellar and Uryasev (2000)). In fact, numerical constrained optimization

algorithms for computations of optimal allocations usually require consistent estimates of

first order derivatives in order to converge properly.

Unfortunately, the results available up to now have fallen short of takling the problem

of netting. Clearly, this is an important omission since most financial positions with

respect to one or several counterparties are netted in practice.

Generally speaking, when trading partners agree to offset their positions or obligations,

we say that they are netting. By doing so, they reduce a large number of positions or

obligations to a smaller number of positions or obligations, and it is on this netted position

that the two trading partners settle their outstanding obligations.

In the financial community, positions are most of the time netted inside standardised
2A related topic is dynamic trading strategies under risk limits (Basak and Shapiro (2001), Cuoco, He,

and Issaenko (2001), Leippold, Trojani, and Vanini (2002).
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juridical contracts. Streamlining of documentation has taken place as a result of joint

efforts by regulators and financial industry organisations. In 1990, the Bank of Interna-

tional Settlements (BIS) issued minimum standards for the design and operation of netting

schemes 3, while in 1991, the Federal Deposit Insurance Corporation Improvement Act

(FDICIA) provided support for netting contracts among banks and other financial insti-

tutions. In 1992, the International Swaps and Derivatives Dealers (ISDA) issued its first

version of the well-known “ISDA Master Agreement” for over-the-counter (OTC) deriva-

tives markets. Its ammended versions are still in force between most market participants

around the globe today.

To figure out the relative importance of OTC derivative markets, we recall that the

total estimated notional amount of outstanding contracts stood at $141.7 trillion at the

end-of-December 2002 (BIS, 2003), an 11% increase from end-of-June 2002. This compares

with a 15% increase in the first half of 2002. At the same time, gross market values grew

sharply, rising by 43% to $6.4 trillion. OTC business continued to accelerate significantly

relative to that on exchanges 4.

As mentioned previously, the term netting is used to describe the process of offsetting

mutual positions or obligations e.g. to offset an obligation owed by bank A to bank B with

an obligation owed by bank B to bank A. There are three main techniques for netting:

• The payment or settlement netting is the process of settling all deals between two

counterparties on a net cash basis, in the same currency. It can be informal or based

on a formal agreement. The credit risk between counterparties remains unchanged

and they stay legally obligated to settle the gross amounts of their positions. Pay-

ment netting allows for reducing the need for intra-day liquidity or credit in bridging

the timing gaps between gross payments and gross receipts.

• The netting by novation means that a single net amount is contractually substituted
3They are known as the Lamfalussy standards after the chairman of the Committee that wrote the

report.
4Open positions on exchange-traded contracts were stagnant, falling by 1% in the second half of the

year 2002. It should be noted, however, that activity in the two types of markets cannot be directly and

simply compared owing to inherent differences in the characteristics and uses of the products.
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for previous individual gross sums owed between two counterparties, i.e. existing

obligations are discharged by replacing them with a new obligation. Thus, netting

by novation is a formal agreement that aims to reduce liquidity and counterparty

credit risk. This novation process may take place automatically within the trading

day, on the exchange of confirmations between the two banks. The claims need to

be in the same currency. This process can be repeated an infinite number of times

until the cut-off time for a particular settlement date. Although netting by novation

is, in essence, a bilateral mechanism, it can be operated on multilateral basis within

a larger group of banks.

• The close-out netting is an arrangement to settle all contracted but not due liabil-

ities to and claims on an institution by one single payment, immediately after the

occurrence of a default or termination event 5. Since netting by close-out only op-

erates upon the occurrence of a designated event, it cannot have any impact upon

the number of payment messages passing between the counterparties in their nor-

mal trading relationship. Equally, it has no impact on liquidity or credit risk. If a

termination event occurs, each trade is settled individually on due date unless the

counterparties also agree on a supplementary netting by novation.

Payment and close-out nettings are part of the ISDA Master agreement. The use of netting

techniques can bring significant benefits for balance-sheet purposes, capital usage, credit

risk and operational efficiencies 6. Indeed, it reduces the number of payment messages

that have to be exchanged between counterparties. This lowers transaction costs and

communication expenses, as well as the chance of mistakes. Moreover, netting is important

because it reduces credit and liquidity risks, and ultimately systemic risk. Taking an

offsetting position subject to a netting agreement is thus related to credit risk mitigation.

The tendency of the regulator is to allow wider range of credit risk mitigants in order

to avoid the so-called “domino effect” in the financial sector. In the new Basel Capital
5An early termination date is designated as the result of the occurrence of an event of default or a

decline in the credit quality of a party following the occurrence of merger-related events.
6See also Duffie and Singleton (2003) for impact of netting in credit derivatives asset pricing.
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Accord (see the 2001 consultative document), on-balance sheet netting agreements of loans

and deposits of banks to or from a counterparty will be permitted under some conditions.

Note that, in 1995, the 1988 Basel Accord was modified to allow banks to reduce the credit

exposures (“credit equivalent” in the Basel terminology) of their derivative positions by

bilateral netting procedures (see Crouhy et al. (1998)).

The paper is organised as follows. In Sections 2 and 3 our aim is to extend the

sensitivity analysis of VaR and ES to a setting in which netting is allowed, and to propose

suitable estimators of the first order derivatives of VaR and ES in that context. In Section

2, we outline the framework and explain the differences arising from netting agreements in

case of default of a given counterparty. The loss function associated with netted positions is

no more a simple sum of exposures or mark-to-market valuations, but rather involves some

nonlinearities. More precisely, it involves some terms like (Y1+ . . .+YI)+ = max(Y1+ . . .+

YI , 0), when the positions Yi, i = 1, ..., I, belong to the same netting agreement at default.

Section 2 contains the main result of the paper, namely the explicit characterization of

the first order derivatives of VaR and ES for portfolios under netting agreements. The

Gaussian case is briefly discussed. In particular we compare VaR and its sensitivity in the

netted and unnetted cases, and show on a simple stylized example that netting is a valuable

credit risk mitigation device. In Section 3 we outline an extension of the approach, which

allows for the presence of collateral. In Section 4, we derive estimators of sensitivities so

that they can be used in practical risk management and portfolio selection procedures.

These estimators are of a nonparametric nature and easy to implement. In Section 5 we

provide an empirical illustration for a typical portfolio of a large bank. Section 6 contains

some concluding remarks. Technical appendices gather proofs.

2 Main results

Let us consider a portfolio made of three components: a′Y , a′UYU and a′NYN . The first

component a′Y is the part which is not sensitive to default risk on a given counterparty,
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while the two other parts can be affected by its default 7. The second component a′UYU

gathers unnetted positions, i.e. positions which are outside the netting agreement signed

with the counterparty and will not be pooled into a single position in case of counterparty

default. The third component a′NYN is the netted part governed by the master agreement

with the given counterparty. At default, unnetted and netted positions should receive a

different treatment when they exhibit positive value. Indeed recall that only contracts

showing positive value at default need to be included in credit loss computations. The

credit loss on unnetted positions corresponds to the sum on the positive part of each

position, i.e.
∑

j(aj,UYj,U )+, while the credit loss on netted positions corresponds to the

positive part of the sum on each position, i.e. (a′NYN )+.

Let us now consider an additional single position aZZ. This leads to a portfolio value

at the initial date t0 equal to:

V (t0) = a′Y (t0) + a′UYU (t0) + a′NYN (t0) + aZZ(t0).

Hereafter the random variable D indicates default of the given counterparty at date t1,

and takes the value 1 (resp. 0) in case of default (resp. no default). More generally, D

corresponds to a credit event that causes some losses, and is the starter of a netting

agreement.

In the derivation of the portfolio value at date t1 we need to distinguish three cases: i)

the position is not subject to default risk on the counterparty; ii) the position is subject

to default risk and cannot be netted in case of counterparty default; iii) the position is

subject to default risk and falls under the umbrella of the master agreement signed with

the counterparty. Then the values of the global portfolio at t1 are obtained from the

contributions of each component under default and no default after taking into account

potential netting 8.
7Note that the identification of default to a given single counterparty is not a limitation of our analysis.

The setting is sufficiently large to accommodate the practical situation of portfolios subject to multiple

defaults.
8In case of default it may happen that the asset Z urgently needs to be replaced because of hedging

demand. It is then sufficient to substract the replacement value in case of default at date t1, i.e. add the

short position −aZZ(t1)D. Stated results may be easily adapted to handle that case.
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i) No default risk on aZZ

V (t1) = a′Y (t1) + aZZ(t1) +
(
a′UYU (t1) + a′NYN (t1)

)
−

∑
j

(aj,UYj,U (t1))+ + (a′NYN (t1))+
D.

ii) Default risk on unnetted aZZ

V (t1) = a′Y (t1) +
(
a′UYU (t1) + aZZ(t1) + a′NYN (t1)

)
−

∑
j

(aj,UYj,U (t1))+ + (aZZ(t1))+ + (a′NYN (t1))+
D.

iii) Default risk on netted aZZ

V (t1) = a′Y (t1) +
(
a′UYU (t1) + a′NYN (t1) + aZZ(t1)

)
−

∑
j

(aj,UYj,U (t1))+ + (a′NYN (t1) + aZZ(t1))+
D.

In the following, we are interested in risk measures computed on the portfolio value

at date t1, namely VaR and ES (see Szegö (2002) for a discussion about conditions for

proper use of risk measures) defined by:

α = P [V (t1) < −V aR], (1)

ES = −E[V (t1)|V (t1) < −V aR], (2)

where α is a small loss probability level, say 1% 9. The dependence of VaR and ES with

respect to the loss probability level and portfolio allocations will be assumed implicit in the

notations. Equations (1) and (2) may also be expressed in terms of losses using L = −V :

α = P [L(t1) > V aR], (3)

ES = E[L(t1)|L(t1) > V aR]. (4)
9These risk measures may also be computed on portfolio value changes:

α = P [V (t1) − V (t0) < −V aR],

ES = −E[V (t1) − V (t0)|V (t1) − V (t0) < −V aR].

Results obtained for V aR and ES can be immediately translated to V aR and ES using the two changes of

variable V aR = V aR+V (t0) and ES = ES +V (t0). In particular, this will lead to ∂V aR
∂aZ

= ∂V aR
∂aZ

+ ∂V (t0)
∂aZ

and ∂ES
∂aZ

= ∂ES
∂aZ

+ ∂V (t0)
∂aZ

with ∂V (t0)
∂aZ

= Z(t0).

6



Note that our definition of “Expected Shortfall” does not correspond to the most

general definition of this coherent measure of risk (see e.g. Acerbi and Tasche (2002),

Rockafellar and Uryasev (2002)):

ẼS = E[L(t1)|L(t1) > V aR]− (α− P (L(t1) > V aR))
1
α
V aR.

Nonetheless, under our assumptions, the law of the loss functions will be absolutely con-

tinuous with respect to the Lebesgue measure. In this case, we know that ES and ẼS

coincide.

As already mentioned, it is interesting to compute the contribution of each position to

the risk of the whole portfolio and monitor the most risky ones for precautionary reasons.

Since VaR and ES are homogeneous of degree one, we get by Euler Theorem (see Tasche

(1999), for instance) :

a′
∂V aR

∂a′
+ aZ

∂V aR

∂a′Z
+ a′U

∂V aR

∂a′U
+ a′N

∂V aR

∂a′N
= V aR,

and the same expression holds with ES sustituted for V aR. The contribution associated

with aZZ to the global risk measured by V aR (resp. ES) is simply the sensitivity of

V aR (resp. ES) with respect to aZ multiplied by the allocation aZ , i.e. aZ∂V aR/∂aZ ,

resp. aZ∂ES/∂aZ . Such a quantity is known in the literature (see e.g. Garman (1997)) as

incremental or component VaR.

The first order derivative of V aR and ES with respect to aZ can be easily computed

by applying the following proposition.

Proposition 1. Consider the loss functions

L1 = X − εZ,

L2 = X − εZ + (εZ)+D,

L3 = X − εZ + (Y + εZ)+D,

where ε is a positive real number 10, and (X,Y, Z) is a random vector admitting a contin-

uous conditional density with respect to the Lebesgue measure, conditionally to the event
10if ε is negative, the results can be applied by simply changing Z into −Z.
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D = 1 and D = 0. Then

A. First derivative of Value at Risk.

∂εV aR1 = −E[Z|L1 = V aR1], (5)

∂εV aR2 = −E[Z1{Z < 0}|L2 = V aR2, D = 1]× P [D = 1|L2 = V aR2]

−E[Z|L2 = V aR2, D = 0]× P [D = 0|L2 = V aR2], (6)

∂εV aR3 = −E[Z1{Y + εZ < 0}|L3 = V aR3, D = 1]× P [D = 1|L3 = V aR3]

−E[Z|L3 = V aR3, D = 0]× P [D = 0|L3 = V aR3]. (7)

B. First derivative of Expected Shortfall.

∂εES1 = −E[Z|L1 > V aR1], (8)

∂εES2 = −E[Z1{Z < 0}|L2 > V aR2, D = 1]× P [D = 1|L2 > V aR2]

−E[Z|L2 > V aR2, D = 0]× P [D = 0|L2 > V aR2], (9)

∂εES3 = −E[Z1{Y + εZ < 0}|L3 > V aR3, D = 1]× P [D = 1|L3 > V aR3]

−E[Z|L3 > V aR3, D = 0]× P [D = 0|L3 > V aR3]. (10)

Remark 1. Note that we can rewrite simply

∂εV aR2 = −E[Z1{Z < 0, D = 1}|L2 = V aR2]− E[Z1{D = 0}}|L2 = V aR2],

∂εV aR3 = −E[Z1{Y + εZ < 0, D = 1}|L3 = V aR3]− E[Z1{D = 0}}|L3 = V aR3],

and

∂εES2 = −E[Z1{Z < 0, D = 1}|L2 > V aR2]− E[Z1{D = 0}|L2 > V aR2],

∂εES3 = −E[Z1{Y + εZ < 0, D = 1}|L3 > V aR3]− E[Z1{D = 0}|L3 > V aR3].

In the aforementioned loss functions we have implicitly assumed zero recovery rates.

This point of view, not necessarily unrealistic, could appear as too conservative in some

cases. Similar formulas to the ones presented in Proposition 1 may be obtained with

arbitrary fixed or random recovery rates. Unfortunately, these formulas are a lot more

complicated. Indeed, with a non zero recovery rate R, the loss function, say L3, becomes
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X − εZ + (1 − R)(Y + εZ)+. When differentiating with respect to ε, the simplification

between the terms that are coming from the market value X − εZ and those that are

coming from the credit exposure (1−R)(Y + εZ)+ disappears. Fortunately this problem

is avoided when dealing with credit exposures only, as we will see below.

Previous computations have been made in an “integrated” credit and market risk

environment. Indeed, Var and ES computations have included impact of both market

conditions and credit events on the portfolio value. The previous random variables X,Y, Z

are usually functions of some market factors (equity indices, interest rates, exchange rates,

credit spreads, ...). Let us remark that we do not rely on the assumption of independence

between credit events and changes in these underlying market factors when deriving our

results. Actually, some standard credit risk models are based on a dependence between

credit events and the variations of some underlying market factors such as equity prices

(“structural approaches”) or spreads.

For credit analysis purposes, it is common to focus on credit risk solely. Practitioners

and regulators are then concerned with so-called exposures to default. The exposure is

a random variable related to positions with respect to a single counterparty, say i, and

corresponds to a specific amount potentially lost due to the default of that counterparty in

the future. Lost amounts are often calculated by some calibrated pricing models. Formally,

the exposure at t1 to counterparty i can be written as

ExpU,i(t1) =

∑
j

(aj,UYj,U (t1))+ + (aZZ(t1))+ + (a′NYN (t1))+
 , (11)

in the unnetted case, and

ExpN,i(t1) =

∑
j

(aj,UYj,U (t1))+ + (a′NYN (t1) + aZZ(t1))+
 , (12)

in the netted case.

Let us stress that positions are related to the same single counterparty i. In the first

case, Z is outside a netting agreement while, in the second case, it is not. Note further

that exposures have nothing to do with default probabilities of the counterparty. The VaR

associated with a single exposure is commonly called a potential exposure, and is a pure

credit risk measure linked to positions with a single counterparty.
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Moreover, to compute provisions to cover multiple credit losses, it is necessary to aggre-

gate exposures and take into account the probability of default of several counterparties.

Losses can be aggregated, for example, inside some portfolios, sections, or perimeters. The

total credit loss of a portfolio P at t1 is then equal to

L(t1) =
∑
i∈P

Expi(t1)Di,

denoting by Di the default of the i-th counterparty at date t1. To study the marginal

impact of a particular position Z related to a given counterparty i on the VaR and ES

of the portfolio P is approximately equivalent, depending on the status of Z in terms of

netting, to calculate the sensitivity to aZ of the VaR and ES of

LU (t1) = X +

∑
j

(aj,UYj,U (t1))+ + (aZZ(t1))+ + (a′NYN (t1))+
Di,

and

LN (t1) = X +

∑
j

(aj,UYj,U (t1))+ + (a′NYN (t1) + aZZ(t1))+
Di,

for some random variable X.

These sensitivities can be calculated using the following result.

Proposition 2. Consider the loss functions

L4 = X + (εZ)+D,

L5 = X + (Y + εZ)+D,

where ε is a positive real number, and (X,Y, Z) is a random vector admitting a continuous

conditional density with respect to the Lebesgue measure, conditionally to the event D = 1

and D = 0. Then

A. First derivative of Value at Risk.

∂εV aR4 = E[Z1{Z ≥ 0}|L4 = V aR4, D = 1]× P [D = 1|L4 = V aR4], (13)

∂εV aR5 = E[Z1{Y + εZ ≥ 0}|L5 = V aR5, D = 1]× P [D = 1|L5 = V aR5]. (14)
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B. First derivative of Expected Shortfall.

∂εES4 = E[Z1{Z ≥ 0}|L4 > V aR4, D = 1]P [D = 1|L4 > V aR4], (15)

∂εES5 = E[Z1{Y + εZ > 0}|L5 > V aR5, D = 1]P [D = 1|L5 > V aR5]. (16)

Remark 2. Note that we can rewrite

∂εV aR4 = E[Z1{Z ≥ 0, D = 1}|L4 = V aR4],

∂εV aR5 = E[Z1{Y + εZ ≥ 0, D = 1}|L5 = V aR5],

and

∂εES4 = E[Z1{Z > 0, D = 1}|L4 > V aR4],

∂εES5 = E[Z1{Y + εZ > 0, D = 1}|L5 > V aR5].

Clearly sensitivities of potential exposures as defined in Equations (11) and (12) can

be deduced from the previous formulas by forcing D = 1. The above formulas can also be

easily modified to incorporate the presence of a non zero (constant or random) recovery

rate.

All aforementioned expressions are explicit. In principle they can be computed, at least

numerically, if the joint distribution of (X,Y, Z,D) is known. The exposures are clearly

functions of some underlying market factors. Thus, as we have said previously, (X,Y, Z)

may depend on D. Nonetheless, once the distribution of the underlying random variables

(X,Y, Z) is known and independence with respect to the default event is assumed, estima-

tion is much more simple. This will be the case for reduced form credit risk models where

default is not predictable and whose law does not depend on the current or past values of

market factors. Implicitly, we will do this assumption in our numerical illustration.

For instance, assume the joint law of (X,Y, Z) is Gaussian N (m,Ω). Then it possible

to get a closed form expression for ∂εV aRj and ∂εESj , j = 1, . . . , 5. Nevertheless, the

formulas are tedious to obtain since the positive parts in the losses functions Lj require

to evaluate some truncated distributions.

The assumption of normality may seem odd to some readers: the exposures are usually

sums of more or less nonlinear instruments with respect to market factors, and these factors
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themselves often exhibit non Gaussian features (fat tails, volatility clustering). Normality

can be understood under a standard market risk approach, where exposures are sums of

hundreds of net values. Alternatively, when the time horizon is growing, the distributions

of exposures tend to be Gaussian. Thus, we could consider market exposures in the long

run, i.e. for a time horizon of several years, to justify this type of assumption.

In the remaining of this section, we only study a simple portfolio example E1 + εE2

where the vector of exposures E = (E1, E2)′ is Gaussian with mean m = (m1,m2)′ and

covariance matrix

Ω =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .
This stylized example is used to illustrate the impact of netting on VaR and their sensi-

tivities.

Let us consider the credit losses when there is no netting agreement between E1 and

E2:

LU = (E+
1 + (εE2)+)D,

and when all positions are netted:

LN = (E1 + εE2)+D.

The credit VaR themselves do not admit explicit forms (even in this simple case) and need

to be computed numerically. However, once they are known, they can be plugged in the

explicit form of the sensitivities derived in appendix D.

Figure 1 shows the impact of netting as a function of ρ for m1 = 10, m2 = −1, ε = 1

and σ1 = σ2 = 1. This portfolio can be viewed as made of a long aggregated position in

one category of assets and a short position in another one with the same counterparty.

In the first case the two positions cannot be netted while they can in the second case.

VaR are estimated by computing empirical quantiles on 100,000 simulations delivered by

an antithetic variate Monte Carlo procedure. The loss probability level α is equal to 1%

(99% VaR) and the default probability p is equal to 20%.

- Please insert Figure 1 approximately here -
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It can be observed that netting is valuable from a credit risk management point of

view. Indeed, VaR are always lower in the netted case 11. These results show that

netting can be thought as sound credit risk mitigation practice and should be encouraged.

Moreover, the range of VaR sensitivities is larger in the netted case. Hence this example

also shows that the sensitivities can differ substantially between the two situations, and

that netting agreements should be taken into account when computing VaR sensitivities.

In the netted case we may observe that the VaR sensitivity becomes negative for highly

negative correlations. The explanation is simple. If E1 and E2 are strongly negatively

correlated, E2 is usually very negative when E1 is very positive. Hence increasing slightly

the position in E2 has a favourable effect on the VaR of the global netted position. On

the contrary it is not possible to benefit from the offsetting effect in the unnetted case,

and the VaR sensitivity stays positive always.

3 Extension to collateral agreements

Netting agreements are only one part of the credit mitigation techniques. The possibility

to exchange collateral is often used by lots of dealers. It is recognized as a way to reduce

significantly the amount of credit exposures, even if it may entail other risks: liquidity

risk, legal risk, custody risk and operational risk.

The ISDA credit forms - each referred to as a Credit Support Annex (CSA) - that go

with international master agreements are now part of the standard documentation. Most

national master agreements also have a specific collateral annex. The CSA includes a

schedule of elections to be negociated between the counterparties, including a counterparty

threshold, that is the amount of uncollateralized credit exposure the other is willing to

accept. In general, the threshold reflects the counterparty credit rating: the higher the

rating, the larger the threshold.

The collateral reduces the current exposure of the collateral taker to the collateral

giver by the amount of collateral held. Even if the net value of the collateral is varying, we
11Note that if we increase the mean of E2 in absolute terms, the benefits of netting increase since the

probability of taking positive values diminishes.
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will assume for the sake of computational convenience that the collateral process bounds

the net exposure from above by some constant threshold M . Thus, the loss functions

Lj , j = 1, . . . , 5 stay unchanged except for the positivity condition being replaced by the

belonging to the interval [0,M ]. The new sensitivities can be calculated as previously.

With obvious notations we provide the results for the most general loss functions only.

Proposition 3. Consider the loss functions

L′3 = X − εZ + (Y + εZ).1{Y + εZ ∈ [0,M ]}D +M.1{Y + εZ > M}D,

L′5 = X + (Y + εZ).1{Y + εZ ∈ [0,M ]}D +M.1{Y + εZ > M}D,

where ε is a positive real number, and (X,Y, Z) is a random vector admitting a continuous

conditional density with respect to the Lebesgue measure, conditionally to the event D = 1

and D = 0. Then

A. First derivative of Value at Risk.

∂εV aR
′
3 = −E[Z1{Y + εZ 6∈ [0,M ], D = 1}|L′3 = V aR′3]

−E[Z1{D = 0}|L′3 = V aR′3], (17)

∂εV aR
′
5 = E[Z1{Y + εZ ∈ [0,M ], D = 1}|L′5 = V aR′5]. (18)

B. First derivative of Expected Shortfall.

∂εES
′
3 = −E[Z1{Y + εZ 6∈ [0,M ], D = 1}|L′3 > V aR′3]

−E[Z1{D = 0}|L′3 > V aR′3], (19)

∂εES
′
5 = E[Z1{Y + εZ ∈ [0,M ], D = 1}|L′5 > V aR′5]. (20)

Note that the formulas are remarkably similar to previous ones. This was not obvious

from the start, in particular for L′3.

4 Estimation

Since all sensitivities can be evaluated through conditional expectations, they are amenable

to estimation by nonparameric techniques such as the well-known kernel method.
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To be specific, assume the joint distribution of (X,Y, Z,D) is known explicitly, or that

we can get at least n random draws (xi, yi, zi, di)i=1,...,n from the joint distribution of

(X,Y, Z,D). This is the usual situation because most of the risk models are parametric

and/or simulation-based. This setting is large enough to host some dependence between

“the market factors” (X,Y, Z) and the default event 12.

Let us consider a consistent estimator V̂ aR4 of V aR4. For instance, it can be deduced

from computing an empirical quantile on the simulated losses l4,i, i = 1, ..., n. Then, an

estimate of ∂εV aR4 can be defined by the usual nonparametric kernel regression estimator:

̂∂εV aR4 =
∑n

i=1 zi1{zi ≥ 0, di = 1}Kh(l4,i − V̂ aR4)∑n
i=1Kh(l4,i − V̂ aR4)

, (21)

where K : R → R is a kernel (an integrable function whose integral is one), h = h(n) is

a smoothing parameter, called the bandwidth (a sequence of positive real numbers which

tends to 0 when n tends to the infinity) and Kh(u) = K(u/h)/h 13. Similarly,

̂∂εV aR5 =
∑n

i=1 zi1{yi + εzi ≥ 0, di = 1}Kh(l5,i − V̂ aR5)∑n
i=1Kh(l5,i − V̂ aR5)

· (22)

Both estimators are easy to implement since they correspond to ratios of straight averages

of known functions of the observed data points.

Denote the density of Lk by fk, k = 4, 5, and set

µ4(v) = E[Z21{Z > 0, D = 1}|L4 = v]− (∂εV aR4)
2 ,

µ5(v) = E[Z21{Y + εZ > 0, D = 1}|L5 = v]− (∂εV aR5)
2 .

Then we prove the following asymptotic normality result in Appendix D.

Proposition 4. Assume for k = 4, 5,

•
√
n(V̂ aRk − V aRk) = OP (1),

• K is an even kernel function,
∫
|t|3|K|(t) dt < ∞, lim|t|→∞ |t|3K(t) = 0. It is three

times continuously differentiable, K ′ and K ′′ are integrable and K ′′′ is bounded.
12For instance this dependence exists when equity prices and default probabilities are linked.
13Obviously, direct differentiation of V̂ aR4 through computation of finite difference has no meaning here

since the empirical quantile is not differentiable w.r.t. ε.
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• E[|Z|p] <∞ for every integer p,

• t 7→ E[Z4|Lk = t] is bounded in a neighborhood of V aRk,

• nh5 −→ 0 and nh7/2 −→∞,

• fk and the function V aRk 7→ ∂εV aRk are two times continuously differentiable,

• fk and µk are continuous and strictly positive in a neighborhood of V aRk.

Then
√
nh
{

̂∂εV aRk − ∂εV aRk

}
law−→

n→∞
N (0, σ2

k).

σ2
k =

∫
K2 · µk(V aRk)
fk(V aRk)

.

Similar kernel estimators of ∂εV aRj , j = 1, 2, 3 can be easily inferred. They are

asymptotically normal under similar regularity conditions.

As usually these asymptotic normality results can be used to build confidence intervals

around estimates. In particular the number n of simulations can be chosen so that these

intervals are sufficiently narrow to guarantee statistically precise sensitivity estimates. The

previous asymptotic variances σ2
k can be easily estimated. For instance, to get an estimate

of σ2
5, we may replace µ5(V aR5) by

µ̂5 =
∑n

i=1 z
2
i 1{yi + εzi ≥ 0, di = 1}Kh(l5,i − V̂ aR5)∑n

i=1Kh(l5,i − V̂ aR5)
−
(

̂∂εV aR5

)2
,

and f5(V aR5) by

f̂5 =
1
n

n∑
i=1

Kh(l5,i − V̂ aR5).

We can also estimate the sensitivity of the expected shortfall by

∂̂εES4 =
∑n

i=1 zi1{zi ≥ 0, di = 1, l4,i > V̂ aR4}∑n
i=1 1{l4,i > V̂ aR4}

, (23)

and

∂̂εES5 =
∑n

i=1 zi1{yi + εzi ≥ 0, di = 1, l5,i > V̂ aR5}∑n
i=1 1{l5,i > V̂ aR5}

· (24)
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The strong consistency of the two latter estimators can be deduced easily from the

strong uniform consistency of the empirical process (see Van der Vaart (1994)). Further-

more, their asymptotic normality can be established under some regularity conditions.

However the forms of their asymptotic normal distributions depend on the choice of the

estimators V̂ aRk, and are more complicated than in the VaR case.

Clearly, the previous estimation procedures are straighforward to modify to account for

the presence of collateral. We only have to replace the indicator functions 1{yi + εzi > 0}

by 1{yi + εzi ∈ [0,M ]} as before.

5 Empirical application

In this empirical section, we wish to illustrate how the estimators of the previous section

can be used in practice. We study a real life banking example and analyze the sensitivity

w.r.t. an additional short position in a bond (borrowing) with a single AA- counterparty.

The default probability is 2% at one year. We examine a short position to emphasize

importance of netting in credit risk calculations, and aim to quantify what is the impact

of this additional position on credit VaR and credit ES at a 1% loss probability level. 35

other positions are already standing with this counterparty. Each of these 35 positions

corresponds to an aggregated position inside a netting agreement (some of them are in

fact stand alone positions). Positions can be long or short, and include several categories

of assets such as forward contracts, swaps and options in different currencies. Table 1

gives the current value of the 35 aggregated positions in Euros. The current value of the

additional short position is equal to -1,150,000 Euros.

- Please insert Table 1 approximately here -

We compare the situation where the additional position can be incorporated inside one

of the 35 existing netting agreements with the case where it is left outside any netting 14.

The 35 netted cases are numbered from 1 to 35, and the unnetted case is called case 0.
14Let us remark that this illustrative example may look a bit fictitious since one cannot usually choose

the status of an additional position. We do so because this enlarges the number of studied cases.

17



The number of simulations of default times is n = 100, 000, and random future position

values are computed from internal pricing models. The estimation procedure is based on

a Gaussian kernel and a bandwidth selected according to the usual rule of thumb, namely

h = σ̂n−1/5 where σ̂ is the empirical standard deviation of the credit losses. Table 2 gives

the one year credit VaR and one year credit ES together with their sensitivity for each

case.

- Please insert Table 2 approximately here -

As already observed on the Gaussian numerical example, credit VaR and credit ES

may differ substantially between netted and unnetted cases. Credit ES are larger than

credit VaR revealing much of the danger of using the VaR concept in a credit environment

(see Frey and McNeil (2002) for further elaboration). Besides if one enjoys the possibility

to choose the agreement, which will host the additional position, then cases 17, 26, 27, 30,

35, resp. 28, seem to be more suitable from a credit risk management point of view since

they minimize VaR, resp. ES, at one year. It can be further observed that a small VaR

sensitivity can coexist with a larger ES sensitivity (see for instance case 15). This can be

explained by the fact that VaR only concerns a single point in the loss distribution, while

ES is about an average of points.

6 Concluding remarks

Risk measures answer the need of quantifying the risk of potential losses on a portfolio

of assets. This need may arise due to internal concerns (risk-reward tradeoff) or exter-

nal constraints (prudential rules imposed by regulators). In this paper we have proposed

estimation procedures allowing for a sensivity analysis w.r.t. changes in the portfolio al-

location. The setting explicitly takes into account the possibility of netting and collateral

agreements. The estimation procedures are nonparametric, fast and easy to implement.

They have also been shown to be of practical relevance in real life banking situations, and

should help to achieve better credit risk management in the future.
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Table 1: Current aggregated position values

1 2 3 4 5

9,100,000 510 752,076 556,260 -2,140,000

6 7 8 9 10

-2.510 109 -17,100,000 -22,500,000 3,990,000 -1,520,000

11 12 13 14 15

654,270 688,179 6,890,000 893,581 -28,000,000

16 17 18 19 20

-1,190,000 30,100,000 156,448 -1,680,000 0

21 22 23 24 25

0 0 -29,400,000 -2,010,000 3,220,000

26 27 28 29 30

-872,964 24,900,000 3,700,000 388,944 3,850,000

31 32 33 34 35

-346,792 294,316 -77,199 -1,620,000 3,340,000
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Table 2: One year credit Var, one year credit ES and their sensitivity

case V̂ aR ∂̂εV aR ÊS ∂̂εES
0 7.033 107 0 8.380 107 0
1 6.937 107 -0.087 107 8.304 107 -0.093 107

2 7.033 107 0 8.379 107 0
3 6.954 107 -0.062 107 8.318 107 -0.060 107

4 7.007 107 -0.003 107 8.371 107 -0.002 107

5 7.033 107 0 8.380 107 0
6 7.033 107 0 8.380 107 0
7 7.033 107 0 8.380 107 0
8 7.033 107 0 8.380 107 0
9 6.981 107 0 8.329 107 0
10 7.001 107 -0.015 107 8.354 107 -0.023 107

11 7.019 107 0 8.365 107 0
12 7.019 107 -0.005 107 8.346 107 -0.013 107

13 6.941 107 -0.069 107 8.301 107 -0.083 107

14 7.001 107 -0.008 107 8.350 107 -0.018 107

15 7.033 107 -0.004 107 8.359 107 -0.019 107

16 6.975 107 0 8.332 107 0
17 6.928 107 -0.101 107 8.283 107 -0.103 107

18 7.017 107 0 8.364 107 0
19 7.033 107 0 8.380 107 0
20 7.033 107 0 8.380 107 0
21 7.033 107 0 8.380 107 0
22 7.033 107 0 8.380 107 0
23 7.029 107 -0.002 107 8.382 107 -0.003 107

24 6.962 107 -0.033 107 8.328 107 -0.038 107

25 7.033 107 0 8.380 107 0
26 6.928 107 -0.080 107 8.291 107 -0.087 107

27 6.928 107 -0.101 107 8.283 107 -0.103 107

28 6.931 107 -0.095 107 8.278 107 -0.096 107

29 7.007 107 0 8.351 107 0
30 6.928 107 -0.087 107 8.291 107 -0.086 107

31 6.992 107 0 8.338 107 0
32 6.972 107 -0.0001 107 8.328 107 -0.0002 107

33 6.999 107 0 8.346 107 0
34 7.033 107 0 8.379 107 0
35 6.928 107 -0.101 107 8.284 107 -0.102 107
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A Proof of Proposition 1.

A.1 First derivative of Value at Risk.

We only provide derivation of ∂εV aR3. The formula for ∂εV aR2 can be obtained from

∂εV aR3 by simply considering a sequence of random variables (Yn) which tends to zero

almost surely and by applying a limit theorem (such as the theorem of dominated conver-

gence). The expression for ∂εV aR1 is a direct consequence of Property 1 in GLS (2000).

We may rewrite the equation defining V aR3 as:

α = P [L3 > V aR3]

= P [X − εZ > V aR3, D = 0]

+P [X − εZ > V aR3, Y + εZ ≤ 0, D = 1]

+P [X + Y > V aR3, Y + εZ > 0, D = 1]

≡ T1P [D = 0] + T2P [D = 1] + T3P [D = 1],

where

T1 =
∫ [∫ {∫ +∞

V aR3+εz
f(X,Y,Z)|0(x, y, z) dx

}
dy

]
dz,

T2 =
∫ [∫ −εz

−∞

{∫ +∞

V aR3+εz
f(X,Y,Z)|1(x, y, z) dx

}
dy

]
dz,

T3 =
∫ [∫ +∞

−εz

{∫ +∞

V aR3−y
f(X,Y,Z)|1(x, y, z) dx

}
dy

]
dz,

denoting by fU |1, resp. fU |0, the density of any random vector U with respects to the

Lebesgue measure, conditionally toD = 1, resp.D = 0. To ease reading, set p = P [D = 1].

A simple calculation provides

∂T1

∂ε
= −

∫
(∂εV aR3 + z)

{∫
f(X,Y,Z)|0(V aR3 + εz, y, z) dy

}
dz,

∂T2

∂ε
= −

∫
z

{∫ +∞

V aR3+εz
f(X,Y,Z)|1(x,−εz, z) dx

}
dz

−
∫

(∂εV aR3 + z)
{∫ −εz

−∞
f(X,Y,Z)|1(V aR3 + εz, y, z) dy

}
dz,

∂T3

∂ε
=

∫
z

{∫ +∞

V aR3+εz
f(X,Y,Z)|1(x,−εz, z) dx

}
dz

−∂εV aR3

∫ {∫ +∞

−εz
f(X,Y,Z)|1(V aR3 − y, y, z) dy

}
dz.
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This yields

0 = (1− p)
∂T1

∂ε
+ p · ∂T2

∂ε
+ p · ∂T3

∂ε

= −∂εV aR3

×
∫ {

(1− p)
∫
f(X,Y,Z)|0(V aR3 + εz, y, z) dy

+p
∫ −εz

−∞
f(X,Y,Z)|1(V aR3 + εz, y, z) dy

+p
∫ +∞

−εz
f(X,Y,Z)|1(V aR3 − y, y, z) dy

}
dz

+
∫
z

{
−(1− p)

∫
f(X,Y,Z)|0(V aR3 + εz, y, z) dy

−p
∫ −εz

−∞
f(X,Y,Z)|1(V aR3 + εz, y, z) dy

}
dz.

Clearly,

f(L3,Z)|0(l, z) = f(X,Z)|0(l + εz, z), (25)

and

f(L3,Y,Z)|1(l, y, z) = f(X,Y,Z)|1(l+εz, y, z)1{y+εz < 0}+f(X,Y,Z)|1(l−y, y, z)1{y+εz ≥ 0}.

(26)

Thus, we deduce

0 = −∂εV aR3

×
∫ {

(1− p)
∫
f(L3,Y,Z)|0(V aR3, y, z) dy

+p
∫ −εz

−∞
f(L3,Y,Z)|1(V aR3, y, z) dy + p

∫ +∞

−εz
f(L3,Y,Z)|1(V aR3, y, z) dy

}
dz

+
∫
z

{
−(1− p)

∫
f(L3,Y,Z)|0(V aR3, y, z) dy − p

∫ −εz

−∞
f(L3,Y,Z)|1(V aR3, y, z) dy

}
dz

= −∂εV aR3

∫ ∫
f(L3,Y,Z)(V aR3, y, z) dy dz +

∫
z

{
−(1− p)

∫
f(L3,Y,Z)|0(V aR3, y, z) dy

−p
∫ −εz

−∞
f(L3,Y,Z)|1(V aR3, y, z) dy

}
dz

= −∂εV aR3.fL3(V aR3)− (1− p)
∫ ∫

zf(L3,Y,Z)|0,L3=V aR3
(V aR3, y, z) dy dz.fL3|0(V aR3)

−p
∫ ∫ −εz

−∞
zf(L3,Y,Z)|1,L3=V aR3

(V aR3, y, z) dy dzfL3|1(V aR3).
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We get

∂εV aR3 =
(−p)fL3|1(V aR3)

fL3(V aR3)

∫ ∫ −εz

−∞
zf(L3,Y,Z)|1,L3=V aR(V aR3, y, z) dy dz

−
(1− p)fL3|0(V aR3)

fL3(V aR3)

∫ ∫
zf(L3,Y,Z)|0,L3=V aR3

(V aR3, y, z) dy dz, (27)

and Bayes’ rule gives the stated result. 2

A.2 First derivative of Expected Shortfall.

The expression for ∂εES1 obtains directly from Proposition 1 in Scaillet (2000). Hence we

only provide derivation of ∂εES3 since ∂εES2 can be deduced from ∂εES3.

ES3 = E[L3|L3 > V aR3] =
1
α
E[L31{L3 > V aR3)}]

=
(1− p)
α

E[L31{L3 > V aR3}|D = 0] +
p

α
E[L31{L3 > V aR3, Y + εZ ≥ 0}|D = 1]

+
p

α
E[L31{L3 > V aR3, Y + εZ < 0}|D = 1]

≡ (1− p)
α

T̃1 +
p

α
T̃2 +

p

α
T̃3.

By direct differentiation, we get

∂εT̃1 = −
∫
z1{x− εz > V aR3}f(X,Z)|0(x, z) dx dz − V aR3∂εV aR3

∫
f(X,Z)|0(V aR3 + εz, z) dz

−V aR3

∫
zf(X,Z)|0(V aR3 + εz, z) dz

= −
∫
z1{l > V aR3}f(L3,Z)|0(l, z) dl dz − V aR3∂εV aR3

∫
f(L3,Z)|0(V aR3, z) dz

−V aR3

∫
zf(L3,Z)|0(V aR3, z) dz.

Moreover,

∂εT̃2 = −V aR3∂εV aR3

∫
1{y + εz > 0}f(X,Y,Z)|1(V aR3 − y, y, z) dy dz

+
∫

(x− εz)z1{x− εz > V aR3}f(X,Y,Z)|1(x,−εz, z) dx dz,
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and

∂εT̃3 = −
∫
z1{x− εz > V aR3, y + εz < 0}f(X,Y,Z)|1(x, y, z) dx dy dz

−V aR3

∫
(∂εV aR3 + z)1{y + εz < 0}f(X,Y,Z)|1(V aR3 + εz, y, z) dy dz

−
∫

(x− εz)z1{x− εz > V aR3}f(X,Y,Z)|1(x,−εz, z) dx dz.

Note that the last term of ∂εT̃2 is the opposite of the last term of ∂εT̃3. After summing

all terms, we get

α∂εES3 = −(1− p)
∫
z1{l > V aR3}f(L3,Z)|0(l, z) dl dz

−(1− p)V aR3∂εV aR3

∫
f(L3,Z)|0(V aR3, z) dz

−(1− p)V aR3

∫
zf(L3,Z)|0(V aR3, z) dz

−pV aR3∂εV aR3

∫
1{y + εz > 0}f(X,Y,Z)|1(V aR3 − y, y, z) dy dz

−p
∫
z1{x− εz > V aR3, y + εz < 0}f(X,Y,Z)|1(x, y, z) dx dy dz

−pV aR3∂εV aR3

∫
1{y + εz < 0}f(X,Y,Z)|1(V aR3 + εz, y, z) dy dz

−pV aR3

∫
z1{y + εz < 0}f(X,Y,Z)|1(V aR3 + εz, y, z) dy dz

≡ S1 + . . .+ S7.

Note that we get by (26):

S2 + S4 + S6 = −V aR3∂εV aR3fL3(V aR3),

which simplifies with

S3 + S7 = V aR3∂εV aR3fL3(V aR3),
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because of (27). Thus

α∂εES3 = −(1− p)
∫

1{l > V aR3}zf(L3,Z)|0(l, z) dl dz

−p
∫
z1{l > V aR3, y + εz < 0}f(L3,Y,Z)|1(l, y, z) dl dy dz

= −pE[Z1{L3 > V aR3, Y + εZ < 0}|D = 1, L3 > V aR3]P [L3 > V aR3|D = 1]

−(1− p)E[Z|D = 0, L3 > V aR3]P [L3 > V aR3|D = 0]

= −E[Z1{Y + εZ < 0}|D = 1, L3 > V aR3]P [D = 1|L3 > V aR3]α

−E[Z|D = 0, L3 > V aR3]P [D = 0|L3 > V aR3]α,

proving the result. 2

B Proof of Proposition 2.

B.1 First derivative of Value at Risk.

Again we only need to explicit ∂εV aR5. We may rewrite the equation defining V aR5 as:

α = P [L5 > V aR5]

= (1− p)P [X > V aR5|D = 0]

+pP [X > V aR5, Y + εZ < 0|D = 1]

+pP [X + Y + εZ > V aR5, Y + εZ > 0|D = 1]

≡ (1− p)T 1 + pT 2 + pT 3,

where

T 1 =
∫

1{x > V aR5}fX|0(x) dx,

T 2 =
∫

1{x > V aR5, y + εz < 0}f(X,Y,Z)|1(x, y, z) dx dy dz,

T 3 =
∫

1{x+ y + εz > V aR5, y + εz > 0}f(X,Y,Z)|1(x, y, z) dx dy dz.
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A simple computation yields

0 = −(1− p)fX|0(V aR5)∂εV aR5 − p∂εV aR5

∫
1{y + εz < 0}f(X,Y,Z)|1(V aR5, y, z) dy dz

−p
∫
z1{x > V aR5}f(X,Y,Z)|1(x,−εz, z) dx dz

−p
∫

(∂εV aR5 − z)1{y + εz > 0}f(X,Y,Z)|1(V aR5 − y − εz, y, z) dy dz

+p
∫
z1{x > V aR5}f(X,Y,Z)|1(x,−εz, z) dx dz.

Clearly, we have

f(L5,Y,Z)|0(l, y, z) = f(X,Y,Z)|0(l, y, z), (28)

and

f(L5,Y,Z)|1(l, y, z) = 1{y+εz > 0}f(X,Y,Z)|1(l−y−εz, y, z)+1{y+εz < 0}f(X,Y,Z)|1(l, y, z).

(29)

Thus, we can rewrite

0 = −∂εV aR5.fL5(V aR5)

+p
∫
z1{y + εz > 0}f(L5,Y,Z)|1(V aR5, y, z) dy dz. (30)

We deduce

∂εV aR5
fL5(V aR5)
fL5|1(V aR5)

= P [D = 1]E[Z1{Y + εZ > 0}|D = 1, L5 = V aR5],

and finally

∂εV aR5 = P [D = 1|L5 = V aR5]E[Z1{Y + εZ > 0}|D = 1, L5 = V aR5],

by Bayes’ rule. 2
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B.2 First derivative of Expected Shortfall.

We only provide derivation of ∂εES5. As previously,

ES5 = E[L5|L5 > V aR5] =
1
α
E[L51{L5 > V aR5}]

=
1− p

α
E[L51{L5 > V aR5}|D = 0] +

p

α
E[L51{L5 > V aR5, Y + εZ < 0}|D = 1]

+
p

α
E[L51{L5 > V aR5, Y + εZ ≥ 0}|D = 1]

=
1− p

α

∫
x1{x ≥ V aR5}fX|0(x) dx

+
p

α

∫
x1{x ≥ V aR5, y + εz < 0}f(X,Y,Z)|1(x, y, z) dx dy dz

+
p

α

∫
(x+ y + εz)1{(x+ y + εz) ≥ V aR5, y + εz ≥ 0}f(X,Y,Z)|1(x, y, z) dx dy dz

≡ 1− p

α
T̃ 1 +

p

α
T̃ 2 +

p

α
T̃ 3.

Here,

∂εT̃ 1 = −V aR5∂εV aR5fX|0(V aR5),

∂εT̃ 2 = −V aR5∂εV aR5

∫
1{y + εz < 0}f(X,Y,Z)|1(V aR5, y, z) dy dz

−
∫
zx1{x > V aR5}f(X,Y,Z)|1(x,−εz, z) dx dz,

∂εT̃ 3 =
∫
z1{x+ y + εz > V aR5, y + εz ≥ 0}f(X,Y,Z)|1(x, y, z) dx dy dz

−
∫

(∂εV aR5 − z)V aR51{y + εz > 0}f(X,Y,Z)|1(V aR5 − y − εz, y, z) dy dz

+
∫
zx1{x > V aR5}f(X,Y,Z)|1(x,−εz, z) dx dz.

We get by recalling Equation (30):

α∂εES5 = −V aR5∂εV aR5fL5(V aR5)

+p
∫
z1{l > V aR5, y + εz > 0}f(L5,Y,Z)|1(l, y, z) dl dy dz

+pV aR5

∫
z1{y + εz > 0}f(L5,Y,Z)|1(V aR5, y, z) dl dy dz

= p

∫
z1{l > V aR5, y + εz > 0}f(L5,Y,Z)|1(l, y, z) dl dy dz.
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Thus, by applying Bayes’ rule, we get

∂εES5 =
P [D = 1]

P [L5 > V aR5]

∫
z1{l > V aR5, y + εz > 0}f(L5,Y,Z)|1(l, y, z) dl dy dz

= P [D = 1|L5 > V aR5]E[Z1{Y + εZ > 0}|L5 > V aR5, D = 1],

which proves the result. 2

C Proof of Proposition 3.

Since the calculations are very similar to previous ones, we prove the results for L′5 only

and we omit unnecessary details.

C.1 First derivative of Value at Risk.

We may rewrite the equation defining V aR′5 as:

α = P [L′5 > V aR′5] = (1− p)P [X > V aR′5|D = 0] + pP [X > V aR′5, Y + εZ < 0|D = 1]

+pP [X + Y + εZ > V aR′5, Y + εZ ∈ [0,M ]|D = 1]

+pP [X +M > V aR′5, Y + εZ > M |D = 1].

Simple computations and some simplifications yield

0 = −(1− p)fX|0(V aR
′
5)∂εV aR

′
5 − p∂εV aR

′
5

∫
1{y + εz < 0}f(X,Y,Z)|1(V aR

′
5, y, z) dy dz

−p
∫

(∂εV aR
′
5 − z)1{y + εz ∈ [0,M ]}f(X,Y,Z)|1(V aR

′
5 − y − εz, y, z) dy dz

−p∂εV aR
′
5

∫
1{y + εz > M}f(X,Y,Z)|1(V aR

′
5 −M,y, z) dy dz.

Clearly, we have

f(L′
5,Y,Z)|1(l, y, z) = 1{y + εz ∈ [0,M ]}f(X,Y,Z)|1(l − y − εz, y, z)

+1{y + εz < 0}f(X,Y,Z)|1(l, y, z)

+1{y + εz > M}f(X,Y,Z)|1(l −M,y, z).

Thus, we can rewrite

0 = −∂εV aR
′
5.fL′

5
(V aR′5) + p

∫
z1{y + εz ∈ [0,M ]}f(L′

5,Y,Z)|1(V aR
′
5, y, z) dy dz, (31)

so the stated result. 2
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C.2 First derivative of Expected Shortfall.

As previously,

ES′5 =
1− p

α
E[L′51{L′5 > V aR′5}|D = 0] +

p

α
E[L′51{L′5 > V aR′5, Y + εZ < 0}|D = 1]

+
p

α
E[L′51{L′5 > V aR′5, Y + εZ ∈ [0,M ]}|D = 1]

+
p

α
E[L′51{L′5 > V aR′5, Y + εZ > M}|D = 1]

=
1− p

α

∫
x1{x ≥ V aR′5}fX|0(x) dx

+
p

α

∫
x1{x ≥ V aR′5, y + εz < 0}f(X,Y,Z)|1(x, y, z) dx dy dz

+
p

α

∫
(x+ y + εz)1{(x+ y + εz) ≥ V aR′5, y + εz ∈ [0,M ]}f(X,Y,Z)|1(x, y, z) dx dy dz

+
p

α

∫
(x+M)1{(x+M) ≥ V aR′5, y + εz > M}f(X,Y,Z)|1(x, y, z) dx dy dz

≡ 1− p

α
T̃ ′

1 +
p

α
T̃ ′

2 +
p

α
T̃ ′

3 +
p

α
T̃ ′

4.

Here,

∂εT̃ ′
1 = −V aR′5∂εV aR

′
5fX|0(V aR

′
5),

∂εT̃ ′
2 = −V aR′5∂εV aR

′
5

∫
1{y + εz < 0}f(X,Y,Z)|1(V aR

′
5, y, z) dy dz

−
∫
zx1{x > V aR′5}f(X,Y,Z)|1(x,−εz, z) dx dz,

∂εT̃ ′
3 =

∫
z1{x+ y + εz > V aR′5, y + εz ∈ [0,M ]}f(X,Y,Z)|1(x, y, z) dx dy dz

−
∫

(∂εV aR
′
5 − z)V aR′51{y + εz ∈ [0,M ]}f(X,Y,Z)|1(V aR

′
5 − y − εz, y, z) dy dz

+
∫
zx1{x > V aR′5}f(X,Y,Z)|1(x,−εz, z) dx dz

−
∫
z(x+M)1{x+M > V aR′5}f(X,Y,Z)|1(x,M − εz, z) dx dz,

∂εT̃ ′
4 = −V aR′5∂εV aR

′
5

∫
1{y + εz > M}f(X,Y,Z)|1(V aR

′
5 −M,y, z) dy dz

+
∫
z(x+M)1{x+M > V aR′5}f(X,Y,Z)|1(x,M − εz, z) dx dz.
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After some simplifications and invoking Equation (31), we get

α∂εES
′
5 = −V aR′5∂εV aR

′
5fL′

5
(V aR′5)

+p
∫
z1{l > V aR′5, y + εz ∈ [0,M ]}f(L′

5,Y,Z)|1(l, y, z) dl dy dz

+pV aR′5
∫
z1{y + εz ∈ [0,M ]}f(L′

5,Y,Z)|1(V aR
′
5, y, z) dl dy dz

= p

∫
z1{l > V aR′5, y + εz ∈ [0,M ]}f(L′

5,Y,Z)|1(l, y, z) dl dy dz,

and finally the result. 2

D Sensitivity of V aR and ES under the Gaussian assump-

tion.

Let us first recall a useful lemma:

Lemma 5. The law of E1 conditionally to E2 = e is Gaussian with mean

m1|2(e) = m1 +
ρσ1

σ2
(e−m2),

and variance

σ2
1|2 = σ2

1(1− ρ2).

Invoking (13), the sensitivity of LU ’s Value-At-Risk is

∂εV aRU = E[E21{E2 > 0, D = 1}|LU = v],

where v is the VaR level. First, let us calculate the density of LU . Actually, LU equals 0

with the probability

P (LU = 0) = 1− p+ pP (E1 < 0, E2 < 0).

Otherwise, LU has a density with respects to the Lebesgue measure on R+.
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More specifically, consider a measurable real function ψ. Then

E[ψ(LU )] = ψ(0){1− p+ pP (E1 < 0, E2 < 0)}

+p
∫
ψ(e)1{e > 0}P (E2 < 0|E1 = e)fE1(e) de

+p
∫
ψ(εe)1{e > 0}P (E1 < 0|E2 = e)fE2(e) de

+p
∫
ψ(l)1{l > 0, e > 0}f(L,E2)(l, e) de dl,

where we have set L = E1 + εE2. By applying successively Lemma 5, we get

P (E2 < 0|E1 = e) = Φ

(
−
(
m2 +

ρσ2

σ1
(e−m1)

)
· 1
σ2

√
1− ρ2

)
,

P (E1 < 0|E2 = e) = Φ

(
−
(
m1 +

ρσ1

σ2
(e−m2)

)
· 1
σ1

√
1− ρ2

)
.

Moreover, the random vector (L,E2) is Gaussian with mean m = (m1 + εm2,m2)′ and

covariance matrix

Ω =

 τ2 ντσ2

ντσ2 σ2
2,

 .
with

τ2 = σ2
1 + ε2σ2

2 + 2ερσ1σ2,

ντσ2 = ρσ1σ2 + εσ2
2.

Thus, by applying Lemma 5 and the symmetry of the Gaussian distribution, we get

P (E2 > 0|L = l) = Φ
(

1
σ2

√
1− ν2

[m2 +
νσ2

τ
(l −m1 − εm2)]

)
.

The density of LU at l > 0 is then

fLU
(l) = p

P (E2 < 0|E1 = l)
σ1

φ

(
(l −m1)

σ1

)
+ p

P (E1 < 0|E2 = l/ε)
εσ2

φ

(
(l −m2ε)

εσ2

)
+p

P (E2 > 0|L = l)
τ

φ

(
(l −m1 − εm2)

τ

)
. (32)
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Moreover, for every v > 0 such that fLU
(v) > 0,

∂εV aRU = E[E21{E2 > 0, D = 1}|LU = v]

= E[E21{E1 > 0, E2 > 0, D = 1}|LU = v] + E[E21{E1 < 0, E2 > 0, D = 1}|LU = v]

= E[E21{E1 > 0, E2 > 0, D = 1}|LU = v] + E[
LU

ε
1{E1 < 0, LU > 0, D = 1}|LU = v]

=
p

fLU
(v)

[∫
e1{v − εe > 0, e > 0}f(E1,E2)(v − εe, e) de

+
v

ε

∫
1{e < 0}f(E1,E2)(e,

v

ε
) de

]
. (33)

For convenience, denote ẽ = e−m2 and ṽ = v −m1 − εm2. Let us compute∫
e1{v − εe > 0, e > 0}f(E1,E2)(v − εe, e) de

=
∫
e1{v − εe > 0, e > 0} exp

(
−σ

2
2[ṽ − εẽ]2 + σ2

1 ẽ
2 − 2ρσ1σ2[ṽ − εẽ]ẽ

2σ2
1σ

2
2(1− ρ2)

)
de

2πσ1σ2

√
1− ρ2

=
∫
e1{v − εe > 0, e > 0} exp

(
− [τ ẽ− νṽσ2]2 + (1− ν2)σ2

2 ṽ
2

2σ2
1σ

2
2(1− ρ2)

)
de

2πσ1σ2

√
1− ρ2

= φ

(
ṽ
√

1− ν2

σ1

√
1− ρ2

)∫
e1{v − εe > 0, e > 0}φ

(
τ ẽ− νσ2ṽ

σ1σ2

√
1− ρ2

)
de

σ1σ2

√
1− ρ2

=
1
τ2
φ

(
ṽ
√

1− ν2

σ1

√
1− ρ2

)
.

[
σ1σ2

√
1− ρ2

∫ d

c
tφ(t) dt+ (m2τ + νσ2ṽ)

∫ d

c
φ(t)dt

]

=
1
τ2
φ

(
ṽ
√

1− ν2

σ1

√
1− ρ2

)
.

[
σ1σ2

√
1− ρ2 (φ(c)− φ(d)) + (m2τ + νσ2ṽ) (Φ(d)− Φ(c))

]
, (34)

by setting

c = − m2τ

σ1σ2

√
1− ρ2

− νṽ

σ1

√
1− ρ2

, d =
(
v

ε
− νσ2ṽ

τ
−m2

)
· τ

σ1σ2

√
1− ρ2

·

and by denoting φ, resp. Φ, the pdf, resp. cdf of a standard Gaussian random variable.

Moreover,∫
1{e < 0}f(E1,E2)(e,

v

ε
) de

= φ

(
v/ε−m2

σ2

)∫
1{e < 0} exp

(
− [σ2(e−m1)− ρσ1(v/ε−m2)]2

2σ2
1σ

2
2(1− ρ2)

)
de√

2πσ1σ2

√
1− ρ2

=
1
σ2
φ

(
v − εm2

εσ2

)
Φ

(
− m1

σ1

√
1− ρ2

− ρ(v − εm2)
εσ2

√
1− ρ2

)
. (35)
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By taking together equations (33), (32), (34) and (35), we find ∂εV aRU .

Similar calculations provide ∂εV aRN in the netted case. Here, the loss function equals

zero with the probability 1−p+pP (E1+εE2 < 0). This function has a density with respect

to the Lebesgue measure at every positive point v, and, with the previous notations,

fLN
(v) =

p

τ
· φ
(
v −m1 − εm2

τ

)
1{v > 0}. (36)

Moreover,

∂εV aRN = E[E21{D = 1}|LN = v]

=
p

fLN
(v)

∫
ef(L,E2)(v, e) de

=
p

fLN
(v)

∫
e exp

(
− [τ ẽ− νσ2ṽ]2

2σ2
2τ

2(1− ν2)

)
de√

2πσ2τ
√

1− ν2
· φ
(
ṽ

τ

)
=

p

fLN
(v)

∫ (
σ2τ

√
1− ν2u+ νσ2ṽ +m2τ

)
φ(u)

du

τ2
· φ
(
ṽ

τ

)
=

p

τ2fLN
(v)

· φ
(
ṽ

τ

)
[νσ2ṽ + τm2]. (37)

Equations (36) and (37) provide the sensitivity of the VaR for LN . 2

Let us remark that the sensitivities of the expected shortfalls of LN and LU can be

calculated in the same way. Unfortunately the formulas are more complicated. An extra

integration with respect to v is in fact needed, and the sensitivities do not admit simple

closed forms.

E Asymptotic normality of V aR sensitivity estimators

Let us consider an i.i.d. sample (ei, li)i=1,...,n of a random vector (e, l). The density of l is

denoted by f . Let v̂ be a statistic which tends to a constant v and n1/2(v̂ − v) = OP (1).

Set

r̂(v) =
∑n

i=1 eiKh(li − v̂)∑n
i=1Kh(li − v̂)

,

and denote the expectation of ei conditionally to li = v by r(v), and its conditional

variance by

µ(v) = E[e2i |li = v]− r(v)2.
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Lemma 6. Assume

• K is an even kernel function,
∫
|t|3|K|(t) dt < ∞, lim|t|→∞ |t|3K(t) = 0. It is three

times continuously differentiable, K ′ and K ′′ are integrable and K ′′′ is bounded.

• E[|e|p] <∞ for every integer p,

• t 7→ E[e4|l = t] is bounded in a neighborhood of v,

• nh5 −→ 0 and nh7/2 −→∞,

• r and f are two times continuously differentiable,

• f and µ are continuous and strictly positive in a neighborhood of v.

Then
√
nh {r̂(v)− r(v)} law−→

n→∞
N
(

0,
∫
K2 · µ(v)/f(v)

)
.

Obviously the limiting behavior of ̂∂εV aRk, k = 4, 5 is a direct consequence of the

previous lemma. For instance, set ei = zi1{zi > 0, Di = 1} to get the result for ̂∂εV aR4.

Proof of Lemma 6

The estimator r̂(v) can be decomposed into

r̂(v) =
∑n

i=1 eiKh(li − v)∑n
i=1Kh(li − v)

+R1(v) + r̂(v)R2(v), (38)

with

R1(v) =
n−1∑n

i=1 ei {Kh(li − v̂)−Kh(li − v)}
n−1

∑n
i=1Kh(li − v)

,

and

R2(v) =
n−1∑n

i=1 {Kh(li − v)−Kh(li − v̂)}
n−1

∑n
i=1Kh(li − v)

.

By applying Corollary IV.2 in Bosq and Lecoutre (1987), we get

√
nh

{∑n
i=1 eiKh(li − v)∑n
i=1Kh(li − v)

− E[e|l = v]
}

law−→
n→∞

N
(

0,
∫
K2 · µ(v)/f(v)

)
. (39)
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Moreover,

P
(√

nh|R1(v)| > ε
)

≤ P

(√
nh

n
|

n∑
i=1

ei {Kh(li − v̂)−Kh(li − v)} | > εf(v)/2

)

+P

(
|n−1

n∑
i=1

Kh(li − v)− f(v)| > f(v)/2

)
≡ P1 + P2.

The second term on the right hand side tends to zero (convergence in probability of

the usual kernel estimator of the density function). By a three order expansion of Kh, we

get

P1 ≤ P

(√
nh

nh
|

n∑
i=1

ei
{
(K ′)h(li − v).(v̂ − v)

}
| > εf(v)/6

)

+P

(√
nh

nh2
|

n∑
i=1

ei
{
(K ′′)h(li − v).(v̂ − v)2

}
| > εf(v)/3

)

+P

(√
nh

nh3
|

n∑
i=1

ei
{
(K ′′′)h(li − v∗).(v̂ − v)3

}
| > εf(v)

)
≡ P11 + P12 + P13,

where |v∗ − v| < |v̂ − v| a.e. Clearly, P13 is zero for n sufficiently large when nh7/2 →∞.

Moreover, for every constant η > 0, there exists a constant C > 0 such that

P11 ≤ P (n1/2|v̂ − v| > C) + P

(√
h

nh
|

n∑
i=1

ei
{
(K ′)h(li − v)

}
| > εf(v)/(6C)

)

≤ η +
E[|ei(K ′)h(li − v)|]√

Cst.h

≤ η +O(h1/2),

by an integration by parts. Thus, P11 tends to zero when n → ∞. Similar calculations

provide the same result for P12. Thus, we deduce

R1(v) = oP (1). (40)

We can handle R2(v) similarly. Thus, we get the stated result by combining (38), (39)

and (40). 2
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