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Abstract

In this paper, we show how the original Bootstrap method in-
troduced by Datta & McCormick (1993), namely the regeneration-
based Bootstrap, for approximating the sampling distribution of sam-
ple mean statistics in the atomic Markovian setting may be modified,
so as to be second order correct. We prove that the drawback of the
original construction mainly relies on a wrong estimation of the skew-
ness of the sampling distribution and that it is possible to correct it by
suitable standardization of the regeneration-based bootstrap statistic
and recentering of the bootstrap distribution. An asymptotic result
establishing the second order accuracy of this bootstrap estimate up
to O(n−1 log(n)) (close to the rate obtained in an i.i.d. setting) is also
stated under weak moment assumptions.

Résumé
Dans cet article, nous montrons comment la méthode du bootstrap

regénératif introduite par Datta et McCormick (1993) peut être modi-
fiée pour obtenir des résultats de validité au second ordre dans le cadre
de l’estimation de fonctionnelles linéaires basées sur l’observation d’une
chaine de Markov stationnaire, atomique. Nous montrons que la
méthode originale ne permet pas d’estimer correctement le coefficient
d’assymétrie de la distribution mais qu’il est possible de corriger ce
problème par une standardisation et un recentrage adéquats. Nous
obtenons ainsi la validité au second ordre de cette forme de bootstrap
avec une erreur de l’ordre OP (n−1 log(n)), proche au log(n) près du
cas i.i.d., sous des conditions de moments très faibles.



1 Introduction
Among the numerous methods that have been suggested to adapt Efron’s
Bootstrap to weakly dependent settings, the view underlying the construc-
tion proposed in Datta & McCormick (1993) (see also Athreya & Fuh (1989))
for bootstrapping sample mean statistics in the atomic Markovian framework
is one of the most interesting ones. Curiously, the beautiful ideas introduced
in this paper, based on the renewal properties of Markov chains with an atom,
do not seem to be widely known and used in the statistical and econometric
Bootstrap literature. This may be partly explained by the fact that they
only consider the restrictive case of Markov chains possessing a known atom
under rather strong assumptions regarding to ergodicity properties. More-
over, because of some inappropriate standardization, the method proposed in
Datta & McCormick (1993) is not second order correct and performs poorly
in the applications. The purpose of this paper is to explain why the original
regeneration-based Bootstrap procedure fails to be second order accurate on
the one hand and to show how it is possible to correct it by some specific
standardization and recentering on the other hand. It is noteworthy that the
regeneration-based bootstrap, modified in this way, allows to get an accuracy,
in the case when the chain is stationary, very close to the one obtained in the
i.i.d. setting, which is not the case for other Bootstrap methods introduced
to deal with the dependent case (see Götze & Künsch (1996) for instance).
For the sake of simplicity, we only focus here on the case of the sample
mean statistic renormalized by its true asymptotic variance. In section 2,
the atomic Markovian framework we consider is set out and some notations
are given for later use. In section 3 a preliminary result is established, which
provides an explicit expression for the asymptotic skewness coefficient of the
sample mean statistic in our setting. Our proposal, based on this preliminary
result, for correcting the original regeneration-based bootstrap is described
in section 4. An asymptotic result proving the second order accuracy with a
remainder of order OP (n−1 log(n)) of this bootstrap procedure is also stated.
The proof is given in section 5.

2 Assumptions and notation
Here and throughout, X = (Xn)n∈N is a time-homogeneous positive recurrent
Markov chain valued in a countably generated state space (E, E) with tran-
sition probability Π(x, dy) and stationary probability distribution µ(dy) (see
Revuz (1984) for an exhaustive treaty of the basic concepts of the Markov
chain theory). For any probability distribution ν on (E, E) (respectively, for
any x ∈ E), let Pν (resp., Px) denote the probability on the underlying space
such that X0 ∼ ν (resp., X0 = x) and let Eν(.) (resp., Ex(.)) denote the
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Pν-expectation (resp., the Px-expectation). In what follows, we will suppose
that the underlying probability space is the canonical space of the Markov
chain, that is by no means restrictive regarding to our results. Let us assume
further that the chain possesses a known accessible atom A, i.e. a measur-
able set A ∈ E such that µ(A) > 0 and for all x, y in A, Π(x, .) = Π(y, .).
We will denote by PA (respectively, by EA(.)) the probability measure on the
underlying space such that X0 ∈ A (resp., the PA-expectation). We denote
the consecutive return times to the atom A by

τA = τA(1) = inf {n 1, Xn ∈ A} ,
τA(k + 1) = inf {n > τA(k), Xn ∈ A} , for k 1.

Throughout this paper, I(A) denote the indicator function of the eventA. In
this setting, the stationary distribution µ may be represented as an occupa-
tion’s measure (see Theorem 17.1.7 in Meyn & Tweedie (1996) for instance):
for any B ∈ E ,

µ(B) = EA(τA)
−1EA(

τA

i=1

I{Xi ∈ B}).

Moreover the study of the asymptotic properties of such a Markov chain
is made much easier by applying the so-called regenerative method. This
consists in dividing its trajectories into ”blocks” corresponding to pieces of
the sample path between successive visits to the atom A, Bk = (XτA(k)+1, ...,
XτA(k+1)), k 1, and in exploiting the fact that, by virtue of the strong
Markov property, the Bk’s are i.i.d. random variables valued in the torus
T = ∪∞n=1En. In the sequel, we shall denote by l(Bk) = τA(k+1)− τA(k) the
length of the block Bk, k 1. And for any measurable function f : E → ?,
we will set

SA(f) =

τA

i=1

f(Xi),

f(Bj) =
τA(j+1)

i=1+τA(j)

f(Xi), for j 1.

We point out that the atomic setting includes the whole class of Harris
recurrent Markov chains with a countable state space (for which, any recur-
rent state is an accessible atom), as well as many other specific Markovian
models, widely used for modeling storage and queuing systems for instance
(refer to Asmussen (1987) for an overview).

3 Preliminary result
Let f be a real valued function defined on the state space (E, E) and set
Sn(f) =

n
i=1 f(Xi). Under the assumption that the expectationEA(SA(|f |))
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is finite, the function f is clearly µ-integrable (note that µ(f) = Eµ(f(X1)) =
µ(A)EA(SA(f)) by the representation of µ using the atom A) and with the
additional assumption that the initial probability distribution ν is such that
Pν(τA < ∞) = 1, the regenerative method mentioned above allows to show
straightforwardly that µn(f) = Sn(f)/n is a strongly consistent estimator of
the parameter µ(f) under Pν: Sn(f)/n → µ(f) Pν a.s., as n → ∞. More-
over, under the further assumptions that the expectations EA(τ 2A), Eν(τA),
EA(SA(|f |2)) and Eν(SA(|f |)) are finite, the CLT holds too under Pν:

n1/2(Sn(f)/n− µ(f)) d−→ N (0,σ2f), as n→∞,

with a limiting variance σ2f = µ(A)EA(SA(f − µ(f))2) (see Theorems 17.2.1
and 17.2.2 in Meyn & Tweedie (1996) for instance).
Even if it entails to replace f by f − µ(f), we assume that µ(f) = 0

in the remainder of this section. The following theorem gives two different
forms for the asymptotic skewness of n1/2(Sn(f)/n), which determines the
main term in its Edgeworth expansion (see Datta & McCormick (1993b)).

Theorem 1 If the series i 1{Eµ(f 2(X1)f(Xi+1)) + Eµ(f(X1)f 2(Xi+1))}
and i, j 1Eµ(f(X1)f(Xi+1)f(Xi+j+1)) converge absolutely, then we have:

lim
n→∞

n−1Eµ((Sn(f))3) = Eµ(f(X1)3)

+ 3
∞

i=1

{Eµ(f 2(X1)f(Xi+1)) + Eµ(f(X1)f 2(Xi+1))}

+ 6
∞

i, j=1

Eµ(f(X1)f(Xi+1)f(Xi+j+1)). (1)

Moreover, if the expectations EA(τ 4A) and EA (SA(|f |)4) are finite, σ2f > 0
and lim|t|→∞|EA(exp(itSA(f)))| < 1, then we have also:

lim
n→∞

n−1Eµ((Sn(f))3) = EA(τA)−1{EA(SA(f)3)− 3σ2fEA(τASA(f))}. (2)
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Proof. For all n 1 we have by stationarity

n−1Eµ(Sn(f)3) = Eµ(f(X1)3)

+ 3n−1
n−1

i=1

n

j=i+1

Eµ(f(X1)
2f(Xj−i+1)) + Eµ(f(X1)f(Xj−i+1)2)

+ 6n−1
n−2

i=1

n−1

j=i+1

n

k=j+1

Eµ(f(X1)f(Xj−i+1)f(Xk−j+1))

= Eµ(f(X1)
3)+

3
n− 1
n

n

l=1

Eµ(f(X1)
2f(Xl+1)) + Eµ(f(X1)f(Xl+1)

2)+

6
n− 2
n

n−1

l=1

n

m=1

Eµ(f(X1)f(Xl+1)f(Xm+l+1))

and thus one clearly gets (1) from the convergence of the right hand side as
n→∞. Besides, under the assumption that the ”block” moment conditions

EA(τ
4
A) <∞, EA SA(|f |)4 <∞

are fulfilled, as well as the Cramer condition lim|t|→∞|EA(exp(itSA(f)))| < 1,
(2) straightforwardly results from Theorem 3 in Malinovskii (1987) (see also
Theorem 3 in Malinovskii (1985)). As a matter of fact, according to this
result, for any initial probability ν such that Eν(τ

2
A) <∞ and Eν(SA(|f |)2) <

∞, we have as n→∞
n−1Eν(Sn(f))

3) = α−1{EA(SA(f)3)− 3σ2f (2β(f)− αην(f)}+O(n−1/2),
with α = EA(τA), ην(f) = Eν(SA(f)) + α−1EA(

τA
i=1(τA − i)f(Xi)) and

β(f) = EA(τASA(f)). The assumptions EA(τ 4A) <∞ and EA (SA(|f |)4) <∞
ensure thus that Eµ(τ2A) < ∞ and Eµ(SA(|f |)2) < ∞. As a matter of fact,
by the representation of the stationary probability measure using the atom
A (i.e. µ(B) = α−1EA(

τA
i=1 I{Xi ∈ B}), for all B ∈ E , and Eµ(H(X)) =

µ(dx)Ex(H(X)) for any measurable function H defined on the canonical
space), the following stronger bounds hold. We have

Eµ(τ
3
A) = α−1EA(

τA

i=1

EXi(τA)
3).

Therefore, on the event {i τA}, we have θi ◦ τA = τA − i, denoting by θ
the shift operator on the canonical space. Hence we deduce from the Markov
property that

Eµ(τ
3
A) = α−1EA(

τA

i=1

E((τA − i)3 | FXi )),
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where FX
i denotes the σ-field generated by the Xj’s, for j i. Finally, we

have

Eµ(τ
3
A) < α−1EA(

τA

i=1

(τA − i)3) < α−1EA(τ4A) <∞.

In a similar fashion, we have

Eµ(SA(|f |)3) = α−1EA(
τA

i=1

(

τA

j=i

|f(Xi)|)3) α−1EA(τASA(f)3)

α−1(EA(τ 4A))
1/4EA(SA(f)

4)3/4 <∞
by using Hölder inequality. Moreover, we have αηµ(f) = β(f). By the
representation of the stationary distribution µ using the atom A again, we
have

αEµ(

τA

i=1

f(Xi)) = EA(

τA

i=1

EXi(

τA

k=1

f(Xk))) = EA(
1 i<k τA

f(Xk))

= EA(

τA

k=1

(k − 1)f(Xk)) = EA(
τA

k=1

kf(Xk)),

since we assumed µ(f) = α−1EA(
τA
k=1 f(Xk)) = 0. This allows to deduce

straightforwardly that αηµ = β and so to prove (2) .
We point out that it is possible to take advantage of the identity (2)

for constructing an empirical estimate of the asymptotic skewness based
on the regenerative blocks (refer to Bertail & Clémençon (2003) and the
proof of the main theorem below). Besides, it is noteworthy that the asymp-
totic skewness, namely k3,f = σ−3f limn→∞ n−1Eµ(Sn(f)3), generally differs
from α−1σ−3f EA((SA(f)

3). Under the assumptions of Theorem 1, whereas

k 1{f 2(Xk) − Eµ(f2(Xk))} converges absolutely under Pµ, we have that∞
k=1 f

2(Xk) = ∞ , Pµ a.s. (note that f 2(Xk) is not centered under Pµ).
Thus, this crucial observation shows that exchanging the expectation and
the summation in ∞

i=1Eµ(f(X1)f
2(Xi+1)), as done in Datta & McCormick

(1993a), is not possible. Observe further that such an illicit operation would
allow to derive the false identity claiming that the sum
Eµ(f(X1)

3) + 3 ∞
i=1{Eµ(f 2(X1)f(Xi+1)) + Eµ(f(X1)f2(Xi+1))}+

6 ∞
i, j=1Eµ(f(X1)f(Xi+1)f(Xi+j+1)) equals to the term α−1EA((SA(f)3),

(or equivalently that k3,f equals to α−1σ−3f EA((SA(f)
3)), on which the argu-

ment of Datta & McCormick (1993a), for studying the second order prop-
erties of the regeneration-based bootstrap methodology they introduced, is
based. As will be shown precisely in the next section, this particularly entails
that the regeneration-based bootstrap estimate of the sampling distribution
of the sample mean statistic µn(f) = Sn(f)/n, originally proposed by Datta
& McCormick (1993a) has an Edgeworth expansion, that does not match
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with the expansion of µn(f) (which is due to the skewness term), and conse-
quently is not second order accurate.

4 The stationary regenerative block-bootstrap
The preliminary result of section 3 clearly advocates for the following modi-
fication of the regeneration-based bootstrap procedure introduced by Datta
& McCormick (1993a) to deal with atomic Markov chains, which we call
the stationary regenerative block-bootstrap (SRBB). For estimating the sam-
pling distribution Hµ(x) = Pµ(n1/2σ−1f (µn(f)−µ(f)) x) of the studentized
sample mean statistic (see below the definition of the asymptotic variance
estimator σ2n(f)) computed from observations X1, ..., Xn drawn from a sta-
tionary version of the chain X, it is performed in four steps as follows.

1. Count the number of visits ln =
n
i=1 I{Xi ∈ A} to the atom A up to

time n. And divide the observed sample path X(n) = (X1, ....,Xn) into
ln + 1 blocks, valued in the torus T = ∪∞n=1En, corresponding to the
pieces of the sample path between consecutive visits to the atom A:

B0 = (X1, ..., XτA(1)), B1 = (XτA(1)+1, ..., XτA(2)), ...,

Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)), B(n)ln = (XτA(ln)+1, ..., Xn).

2. Draw an array of ln − 1 bootstrap data blocks (B∗1,n, ..., B∗ln−1,n) inde-
pendently from the empirical distribution Fn = (ln − 1)−1 ln−1

i=1 δBi of
the blocks B1, ..., Bln−1, conditioned on X(n). Practically the bootstrap
blocks are taken with replacement from the primary blocks.

3. From the bootstrap data blocks generated at step 2, reconstruct a
pseudo-trajectory by binding the blocks together, getting the recon-
structed SRBB sample path

X∗(n) = (B∗0,n, B∗1,n, ...,B∗ln−1,n, B∗ln,n).
with

B∗0,n = B0 and B∗ln,n = B(n)ln .
Whereas the number of blocks ln− 1 is fixed (conditionally to the data
sample), the length of the reconstructed segment (B∗1,n, ...,B∗ln−1,n) of
the pseudo-trajectory is random. We denote by n∗ = ln−1

i=1 l(B∗1,n) the
length of this segment.

4. Compute the SRBB statistic, with the usual convention regarding to
empty summation,

S∗n∗(f) =
ln

j=0

f(B∗j,n),
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and the following estimate of σ2f ,

σ2n(f) = (τA(ln)− τA)
−1

ln−1

j=1

(f(Bj)− µn(f)l(Bj))2,

with µn(f) = (τA(ln)− τA)
−1 ln−1

j=1 f(Bj). Then, the recentered distri-
bution of

t∗n = n
∗−1/2S

∗
n∗(f)− Sn(f)

σn(f)
,

conditioned on X(n), is the SRBB distribution

HSRBB(x) = P
∗(t∗n − E∗(t∗n|X(n)) ≤ x | X(n))

where P ∗(. | X(n)) (respectively, E∗(. | X(n))) denotes the conditional
probability (resp., the conditional expectation) given X(n).

• We point out that the bootstrap estimator HSRBB(x) of Hµ(x) differs
from the bootstrap estimator originally proposed by Datta & McCormick
(1993a) in two ways. First, the standardization of the bootstrap statistic de-
pends on the random length n∗ of the reconstructed bootstrap data segment,
whereas the standardization n−1/2(S∗n∗(f)−Sn(f))/σn(f) is used in Datta &
McCormick (1993a). Secondly, the bootstrap distribution is recentered so as
to be unbiased. As will be shown below, this random standardization actu-
ally allows to recover the correct skewness coefficient k3,f at the price of an
additional bias, that may be rectified by recentering suitably the statistic t∗n
of interest (observe that, because of the random standardization by n∗−1/2,
recentering the distribution does not amount to recenter the SRBB statistic
S∗n∗(f)).
• The construction of the estimator σ2n(f) naturally relies on the ex-

pression σ2f = µ(A)EA((SA(f) − µ(f)τA)2) for the asymptotic variance, its
properties are studied in Bertail & Clémençon (2003). Besides, we have not
used the first and last (non regenerative) data blocks B0 and B(n)ln in the
computation of our estimate σ2n(f), because this would make its study much
more tricky, while being all the same from the estimation point of view in
the stationary framework considered here.
• We also emphasize that one may naturally compute a Monte-Carlo

approximation to HSRBB(x) by the following scheme: repeat independently
the procedure above Q times, so as to generate t∗n,1, ..., t

∗
n,Q, and compute

H
(Q)
SRBB(x) = Q

−1
Q

q=1

I{t∗n,q −Q−1
Q

p=1

t∗n,p x}.

The following theorem establish the second order validity of the SRBB
estimator up to order OP (n−1 log(n)), which is close to the rate OP (n−1) that
can be obtained in the i.i.d case.
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Theorem 2 Assume that the chain X fulfills the following conditions.

(i) Conditional Cramer condition:

lim
t→∞

EA|EA(exp(itSA(f))|τA)| < 1.

(ii) Non degenerate asymptotic variance: σ2f > 0.

(iii) ”Block” moment conditions:

EA(τ
4
A) <∞, EA(SA(|f |)6) <∞.

(iv) Non trivial regeneration set: EA(τA) > 1.

Then, the following Edgeworth expansion is valid uniformly over R,

∆n = sup
x∈R

|Hµ (x)− E(2)n (x)| = O(n−1), as n→∞, (3)

with

E(2)n (x) = Φ(x)− n−1/2k3,f
6
(x2 − 1)φ(x),

k3,f = EA(τA)
−1{EA(SA(f)3)− 3σ2fEA(τASA(f))}/σ3f .

And the SRBB estimator is second order accurate in the following sense

∆S
n = sup

x∈R
|HSRBB(x)−Hµ(x)| = OPµ(n−1 log(n)) (4)

uniformly over R, as n→∞.
• The proof essentially relies on the Edgeworth expansion (E.E. in abbre-

viated form) obtained in Malinovskii (1987). And dealing with the Bootstrap
part mainly reduces to study the E.E. of a bootstrapped V -statistic of degree
2 based on i.i.d. r.v.’s (the bootstrap blocks). The validity of E.E. for V -
statistics has been proved in Götze (1979), Bickel, Götze & van Zwet (1986)
for instance. The accuracy of the Bootstrap for U -statistics of degree 2 is
easy to obtain up to oP (n−1/2). But further conditional Cramer conditions
are generally assumed to check the validity up to OP (n−1). Here we use the
results of Lai & Wang (1993), proving the validity of the Bootstrap of U-V
statistics up to OP (n−1), under conditions which reduce to the conditional
Cramer condition (i) in our case. The validity of the SRBB under weaker
Cramer conditions will be investigated elsewhere.
• When f is bounded, (iii) reduces to the condition EA(τ6A) <∞, which

typically holds as soon as the strong mixing coefficients sequence decreases
at a polynomial rate n−ρ for some ρ > 5 (see Bolthausen (1982)).
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5 Proof of the main result
The proof of the E.E. (3) for the non studentized sample mean may be found
in Malinovskii (1987) (see Theorem 1, refer also to Bertail & Clémençon
(2003)). Notice that the conditional Cramer condition implies the usual
Cramer condition lim|t|→∞|EA(exp(itSA(f)))| < 1 and that the bias vanishes
in the stationary case. Consider the recentered variables for j 1,

F (Bj) = f(Bj)− µ(f)l(Bj),
F (B∗j,n) = f(B∗j,n)− µn(f)l(B∗j,n).

Notice that the mean length of the bootstrap data blocks B∗j,n, j 1, for
given X(n) is

lB =
def
E∗(l(B∗j,n) | X(n)) = (ln − 1)−1

ln−1

k=1

l(Bk),

and observe further that E∗(F (B∗j,n) | X(n)) = 0 and

V ∗(F (B∗j,n) | X(n)) =
1

ln − 1
ln−1

k=1

F (Bk)2 = lBσ2n(f) =def σ2F ,

denoting by V ∗(. | X(n)) the conditional variance for given X(n). Note that
the empirical estimator σ2n(f) of the asymptotic variance is essentially a boot-
strap estimator of the variance of the recentered blocks, rescaled by an esti-
mator of EA(τA), namely lB. The following technical results will be useful in
the proof. Lemma 3 is a standard result due to Chibisov (1972).

Lemma 3 Assume that Wn admits an E.E. on the normal distribution up

to O(n−1 log(n)δ), δ > 0, as n → ∞. Assume further that Rn is such that,
for some η > 0, P (n|Rn| > η log(n)δ) = O(n−1 log(n)δ) or O(n−1) as n →
∞, then Wn +Rn has the same E.E. as Wn up to O(n−1 log(n)δ).

Lemma 4 Under the hypotheses of Theorem 2, we have for some constant

η > 0,

Pµ(n
1/2 nl−1n − α η(log(n))1/2) = O n−1 , as n→∞. (5)

Proof. Following the argument given in Clémençon (2001) based on the
Fuk & Nagaev’s inequality for sums of independent unbounded r.v.’s (see also
Theorem 6.1 in Rio (2000) for a proof based on block mixing techniques),
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there exists constants c0 and c1 such that the following probability inequality
holds for all n,

Pµ( ln/n− α−1 x) c0{exp(− nx2

c1 + xy
)+

nPA(τA > y) + PA(τA > n/2) + Pµ(τA > n/2)}.
On the one hand, choosing y = n1/2 and bounding the last three terms at
the right hand side by Chebyshev’s inequality (given that the expectations
EA(τ

2
A) and Eµ(τA) are finite), one gets that, for a constant ζ > 0 large

enough
Pµ( ln/n− α−1 ζ) = O(n−1), as n→∞, (6)

and on the other hand with the choice x = η(logn/n)1/2 and y = (n/ log n)1/2

and using Chebyshev’s inequality again (given that the expectations EA(τ4A)
and Eµ(τA) are finite), one obtains that

Pµ(n
1/2 ln/n− α−1 η(log n)1/2) = O(n−1), as n→∞. (7)

Now, by combining bounds (6) and (7) , the proof is finished by straightfor-
ward calculations.
Notice first that, because of the recentering of S∗n∗(f) by the original

statistic Sn(f), the data of the first and last (non regenerative) blocks B0
and B(n)ln disappear in the numerator. Hence, we may rewrite the bootstrap
version of the studentized sample mean the following way

t∗n =
ln−1
j=1 F (B∗j,n)

( ln−1
j=1 l(B∗j,n))1/2σn(f)

(8)

=

ln−1
j=1 {f(B∗j,n)− µn(f)l(B∗j,n)}
(ln − 1)1/2 (1 + L∗n)1/2 σF

with

L∗n = lB
−1{(ln − 1)−1

ln−1

j=1

l(B∗j,n)− lB}

Using standard bootstrap results in the i.i.d. case (see Singh (1981) for the
lattice case), we have for a constant η > 0 large enough,

P ∗((ln − 1)L∗2n > η log(ln) | X(n)) = O(l−1n ), as n→∞.
It follows from lemma (3) with δ = 1 that up to O(l−1n log(ln)), we can
linearize (8) and the problem reduces to find the E.E. of

t∗n = (ln − 1)−1/2σ−1F
ln−1

j=1

F (B∗j,n){1−
1

2
(ln − 1)−1

ln−1

k=1

(l(B∗k,n)− lB)/lB)}
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This may be seen as a bootstrapped V -statistic of degree 2 based on the
i.i.d. blocks B∗j,n, j 1 or . The main (linear) part of the corresponding
U -statistic is F (B∗j,n)/σ−1F , the (degenerate) quadratic term is given by

βn(B∗j,n,B∗k,n) =
1

2
σ−1F F (B∗j,n)

l(B∗k,n)− lB
lB

) + F (B∗k,n)
l(B∗j,n)− lB

lB
.

The validity of the Bootstrap for general U or V statistics is proved in Lai
& Wang (1993), up to OP (n−1) under assumptions on the second gradient of
the U -statistics, which are easier to check than the usual conditional Cramer
conditions or conditions on the eigenvalues of the second order gradient of
the U -statistic (see also Bickel, Götze & van Zwet (1986)). The conditional
Cramer condition used here implies their Cramer type condition (see p 521 of
their paper, as well as related results in Bai & Rao (1991) for the validity of
E.E. under conditional Cramer type conditions). Using the arguments in Lai
& Wang (1993), one may thus check that, conditionally to X(n), t∗n admits
up to O(l−1n log(ln)) an E.E. of the form (see also Barbe & Bertail (1995) for
the form of the E.E. up to oP (n−1/2)),

P ∗ t∗n ≤ x | X(n) = Φ(x)− Φ(3)(x)

6
√
ln − 1

{ 1

ln − 1
ln−1

j=1

{f(Bj)− µn(f)l(Bj)}
σ3F

3

}

− xΦ(2)(x)

2
√
ln − 1

{ 1

ln − 1
ln−1

j=1

{f(Bj)− µn(f)l(Bj)}( l(Bj)− lB
σF lB

)}

+O(l−1n log(ln)). (9)

Now from lemma 4, we obtain (unconditionally) as n→∞,
1

(ln − 1)1/2 =
EA(τA)

1/2

n1/2
+OPµ(n

−1 log(n)1/2), (10)

and similarly
l−1n log(ln) = OPµ(n

−1 log(n)). (11)

Now under assumption (iii), by the SLLN and the CLT for the i.i.d.
blocks we have as n→∞ (see also Bertail & Clémençon (2003))

1

ln − 1
ln−1

j=1

{f(Bj)− µn(f)l(Bj)}3
σ3F

=
EA(SA(f)

3)

EA(τA)3/2σf 3
+OPµ(n

−1/2) (12)

and

1

ln − 1
ln−1

j=1

(f(Bj)− µn(f)l(Bj))( l(Bj)− lB
σF lB

) = Eτ
−3/2
A σf

−1β +OPµ(n
−1/2),

(13)
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as n → ∞, provided that the denominator is defined, which is the case as
soon as ln > 1. Therefore we have Pµ(ln ≤ 1) = O(n−1) as n → ∞ (see
lemma 4 for instance) and combining the conditional E.E. (9) with the ap-
proximations (10), (11), (12), (13), it follows that the Bootstrap distribution
has in Pµ probability an E.E. of the form

P ∗ t∗n ≤ x | X(n) = Φ(x)− n−1/2k3,f(x2 − 1)φ(x)
+ n−1/2EA(τA)−1σf−1β/2 φ(x) +OPµ(n

−1 log(n)).

Notice the bias n−1/2EA(τA)−1σ(f)−1β/2 which appears because of the ran-
dom standardization. Recentering by the conditional expectation of t∗n given
X(n) immediately leads to the asymptotic result (4) of Theorem 2.
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