INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES
Série des Documents de Travail du CREST
(Centre de Recherche en Economie et Statistique)

n°® 2003-13

Evaluation of Food Risk Exposure
based on Extreme Value Theory.
Application to Heavy Metals
from Sea Products

P. BERTAIL: A. CREPET>=
M. FEINBERG?: J. TRESSOU+

Les documents de travail ne refletent pas la position de I'INSEE et n'‘engagent que
leurs auteurs.

Working papers do not reflect the position of INSEE but only the views of the authors.

1 CREST-LSA.
2 INRA-CORELA.
3 INRA-SIAB.
4 INRA-CORELA.

Corresponding author : Jessica Tressou, INRA-Corela, 64-65 Boulevard de Brandebourg, 94204 Ivry sur Seine. France.
Email : jessicatressou@ivry.inrafr




Evaluation of food risk exposure
based on Extreme Value Theory. Application to

heavy metals from sea products.

Jessica Tressou! INRA-CORELA  Patrice Bertail, CREST, LSA
Max Feinberg, INRA-SIAB Amélie Crepet, INRA-CORELA

Jean Charles Leblanc, INRA

2003

*Corresponding author : Jessica Tressou, INRA Corela, 64-65, Bd de Brandebourg, 94205 Ivry

sur Seine. email : Jessica.Tressou@ivry.inra.fr



Abstract

Each food may contain various amounts of some contaminants. These will not
cause damage to health if levels of contamination are low and the food are not
excessively consumed. This paper presents statistical methods based on extreme
value theory, for evaluating risk exposures. We focus on the estimation of the
probability for the exposure to exceed a fixed safe level such as Provisional Tolerable
Weekly Intake (PTWI), when both consumption data and contamination data are
independently available. Different calculations of risk exposure are proposed and
compared. Indeed, as exposure is the product of contamination and consumption
values, assumptions about the aggregation of data have a crucial role in the risk
evaluation For many contaminants, PTWI belongs to the exposure tail distribution,
which suggests the use of Extreme Value Theory to evaluate the risk. Our approach
consists in modeling the exposure tail by a Pareto type distribution characterized by
a Pareto index which may be seen as a measure of risk. Using propositions by Hall
and Feuverger and Beirlant and al., we correct the bias of the usual Hill estimator
to accurately estimate the risk index. We compare the results with an empirical
plug-in method and show that the Pareto adjustment is relevant and efficient for
low risk evaluation while the plug-in method should be used for risky contaminants.
To illustrate our approach, we present some evaluations of risk exposure to heavy
metals (lead, cadmium, mercury) via sea product consumption.

Résumé

Les aliments peuvent contenir, dans certaines proportions, des contaminants
qui peuvent causer des problémes de santé si I’exposition globale est trop élevée.
Ce travail présente des méthodes statistiques d’évaluation des risques d’exposition
basées sur la théorie des valeurs extrémes. Nous nous intéressons a l’évaluation
de la probabilité de dépasser un seuil fixé: la Dose Journaliére Admissible (DJA),
lorsque qu’on dispose indépendamment de données de consommation et de données
de contamination. Différents type de calcul du risque sont proposés et comparés.
Pour de nombreux contaminant, la DJA appartient & la queue de distribution de
I’exposition suggérant 1'utilisation d’outils issus de la théorie des valeurs extrémes.
Notre approche consiste & modéliser la queue de distribution par une loi de Pareto
(perturbée par une fonction a variation lente) dont I'index s’interpréte comme un
indice de risque. Utilisant des propositions de Hall et Feuerverger, Beirlandt et al.,
nous corrigeons du biais de 'estimateur de Hill pour obtenir une évaluation précise
du risque. Nous comparons cette méthode avec des méthodes de type empirique.
Cette approche est illustrée par I’évaluation de ’exposition a des métaux lourds
(plomb, Cadmium, mercure), due aux produits de la mer.

Key Words : Food Risk assessment, Extreme Value Theory, Pareto index,
Heavy metals, Sea product consumption.



1 Introduction

Humans are exposed to heavy metals through out different pathways: air inhala-
tion, drinking water, contaminated soils and contaminated food. Food sources such
as fish and shellfish can become contaminated by trophic bioaccumulation. Met-
als are particularly toxic to children who may receive higher doses of metals from
food than adults, since they consume more food relatively to their body weight than
adultsl). Some of the heavy metals like lead (Pb), mercury (Hg) and cadmium (Cd)
are more dangerous for human health because of their accumulative properties. In
order to describe the risk related to exposure to these heavy metals via sea prod-
ucts, it is necessary to separately consider lead and cadmium which are present in
many other products and methylmercury (MeHg), another toxic form of mercury,
which is almost exclusively present in sea products. Furthermore, for exposure to
methylmercury, it will be interesting to compare children exposure to adults expo-
sure since long term health effects could be more important for this more sensitive
population.

A traditional method for the quantitative evaluation of the food consumer expo-
sure, either for pollutants or nutrients, consists in using average composition of food
items and average consumption values for a given food item or a group of items. This
approach is clearly explained in reference guidelines published by FAO/WHO work
groupm. However if individual data are available, exposure calculation at individual
level is recommended as it gives more accurate risk assessment, whereas hazard con-
cerns extreme food consumers. It seems evident that risk increases when a consumer
eats larger amount of a more polluted food. Moreover, the individual approach is
relevant in understanding the individual behavior and the intimate structure of the
food basket. In this work most attention is paid to the quantitative evaluation of
the risk of exposure to contaminants, it is obvious that a similar reasoning can be
used to evaluate nutrient deficiencies or, at the opposite, overexposures.

Exposure can be defined as the product of contamination and consumption data
for given food items and contaminants. Global exposure is a summation of sev-
eral exposure values. Due to the various data collection methods, many exposure
measurements can be proposed. In this paper, the proposed probabilistic approach
takes into account the whole structure of the recorded data, that is the marginal
distributions of contamination and consumption data. The parameter of interest is
the probability that a level of exposure, due to several food items, exceeds a given
risk level. This level may be fixed a priori, for instance it can be the Provisional Tol-
erable Weekly Intake (PTWI) established by the Joint Expert Committee on Food
Additives (JECFA) of FAO/WHO, or any adequate toxicological reference level.
When dealing with risk assessment, an important issue also consists in underscoring
consumer target groups, exposed to high values, due either to higher consumption
or higher food contamination. Therefore, estimating the whole tail of the exposure
distribution allows a better discrimination of these target groups.

Extreme Value Theory (EVT) has encountered a great success in many appli-



cation fields, such as flood or stock exchange prediction. The originality of EVT
is to fully take into account the very high observed values. One criticism which is
often made to this theory is that it only consists in modeling a part of the distrib-
ution, where there are a few or even no observations. Actually, this criticism may
be addressed to any statistical modeling technique, since any model always brings
some piece of information where there is no data. This study will demonstrate the
interest and the feasibility of EVT for the consumer exposure quantitative evalua-
tion. The principle is to model the tail of the exposure distribution by a Pareto type
distribution, characterized by a Pareto index which can be interpreted as a measure-
ment of risk. The well-known instability of the classical Hill estimator of the Pareto
index may be greatly improved by using bias correction techniques introduced by
Hall and Feuerverger ( 1999)[5]. Furthermore, this approach will be demonstrated to
yield good quantification of risk of exposure. Results will be compared to a more
empirical approach based on Monte-Carlo estimators of the distribution.

As an application, the risk exposure for lead, cadmium and methylmercury con-
tained in sea products - fish, farmed fish, mollusk and shellfish - will be evaluated.
The purpose here is not to evaluate the global food risk exposure but rather to
study the risks linked to the exposure to heavy metals from sea products. These
contaminants were chosen for both methodological and practical reasons. The ex-
posure to lead and cadmium due to sea product consumption is expected to be
low in comparison to the one due to all food consumption. In particular, empirical
methods even tends to predict a null risk; the proposed EVT techniques allows a
better extrapolation. Methylmercury is a toxic naturally occurring in fish after in-
gesting mercury polluted feeds. The associated risk is thus completely specific to sea
product consumption: a precise evaluation of risk exposure is thus of great interest.

Section 2 describes the general framework for risk exposure assessment: definition
and notation, calculus assumptions and characterization of risk. Section 3 presents
the methodology based on EVT and tail estimation. Contents of section 4 is the
evaluation of the risk exposure for lead, cadmium and mercury via sea product
consumption and a discussion about the different methods of quantification used.

2 Exposure level calculation and risk modelling

2.1 Characterization of the risk

Chemical food risks to human health are assessed by comparing the dietary exposure
with an adequate safe exposure level, such as Provisional Tolerable Weekly Intake
(PTWI) proposed by the Joint FAO/WHO Expert Committee on Food Additives
(JECFA). PTWI itself is defined as the estimated toxicological value of the weekly
amount of a contaminant that can be ingested without appreciable risk during the
lifetime. Our goal is to estimate the probability for exposure to exceed the PTWI.



One underlying hypothesis is that individuals are facing a constant level of con-
tamination and keep the same consumption behavior over their lifetime. Moreover,
it is assumed that occasional short-term excursions above the PTWI would have no
major health consequences, provided that the average intake over long periods is not
exceeding the PTWI; but the estimation of this long period intake is not actually
possible using the available data.

If K; is defined as the exposure value to a given contaminant for an individual i
(¢ =1,...,n) and assuming that exposure values are available for all individuals and
expressed in the same unit as the PTWI, a simple way to estimate the risk is to
use the Plug-In (PI) or empirical estimator of the probability to exceed the PTWI,

defined as:
# (K; > PTWI)

n
where # (K; > PTWI) denotes the number of exposure values that exceed the
PTWI.

The results obtained with the PI estimator can be compared to those issued
with the Tail Estimation (TE) method extensively described in section 3. One
clear drawback of the PI estimate is that risk can not be evaluated if PTWI is too
large when compared to the higher observed values (extreme tail of the empirical
distribution). Thus, when risk or sample size are small, precise quantification is not
possible with this method.

2.2 Assumptions for exposure calculation

Various strategies for exposure calculation can be achieved depending on the na-
ture of the available data. A quick review will help in understanding the various
assumptions made in this work.

Individual food consumption data and consumer body weight are avail-
able.

While PTWTI is expressed as contaminant unit per kilogram of body weight
it is interesting to know the consumer body weights. However, in many con-
sumption survey, no such data is available and consumption recorded at the
household level. Although, the information is available for this study, it is in-
teresting to evaluate the influence of the usual technique applied to get around.
In this application, ABW will denote the use of an approximated body weight
of 60 kg. TBW will denote the use of the true body weight. The impact of
such an approximation will be discussed.

No underlying probability distribution on consumption or contamina-
tion data is necessary.

When dealing with extreme values, any adjustment to a probability distribu-
tion, such as log-normal or exponential, is rather efficient in measuring mean
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behavior but irrelevant for these data. Moreover, adjustment tests, such as
Kolmogorov or x?2, give more importance to the central tendency than to ex-
treme values. In addition, it is not sufficient to model the distribution of each
contaminated food item consumption to understand the wholesome phenom-
enon because it essentially depends on the correlation structure of these con-
sumptions as some products may be complementary or substitute. Modeling
the distribution of the whole vector of consumptions is generally impossible as
it lies in a space of large dimension. Two kinds of calculus will be considered:

e Deterministic calculus. The contaminant concentration for each food will
be expressed according to three way: (i) D-AVE the average of all avail-
able contamination data for this food; (ii) D-97.5 for the 97.5™ percentile
and (iii) D-MAX for the maximum. In this notation, D stands for deter-
ministic because no randomization is assumed concerning contamination
data.

e Double random sampling. This other exposure evaluation method is a

Monte-Carlo method™. Tt consists in randomly drawing, on one hand a
consumer that is a basket of food consumption values and his associated
body weight, on the other hand as many contamination values as food
items in the basket. This method is denoted 2R while both consumption
and contamination distributions are randomly used.

Different ways for data aggregation.

When coupling contamination and food consumption data, different levels
of aggregation are possible depending on the calculus mode and the size of
the data set. For small contamination data sets, it is useless to consider
a large number of food items in consumption data. On the contrary, the
calculation will be more accurate if each food consumption may be weighed
by the correct composition data. In order to evaluate the impact of aggregation
or disaggregation, two levels noted AL and DL ranging from the most and the
less aggregated are considered. For example, if data are available for each
fish species, the aggregated level (AL) will consists in using one value for all
species; on the contrary for the disaggregated level (DL) each species value
. is a food item. AL is necessary for random samplings so that composition
data set is large enough. Only two aggregation levels are applied but it would
be possible to defined more than that.

How censored data can be treated ?

Due to the detection or quantification limits of analytical methods, conta-
mination data are very often left-censored. This rounding effect is related
to the physical chemical phenomena involved in any analytical measurement.
According to the proportion of censored data, these are usually replaced by,



either the limit of detection, or by the half of this limit or by zero. This last
assumption is the less conservative. Some details on the consequences of these
different assumptions are available in a study on Ochratoxin AP Tn this ap-
plication, the first assumption will be used since almost no censored data are
present.

As a summary, for each exposure computation, the calculation is performed
under the following assumptions:

e the aggregation level (AL or DL),
e the calculus mode (D-AVE, D-97.5, D-MAX or 2R),
e the assumption about the body weight (ABW or TBW).

Furthermore, individual consumptions are assumed to be independent and iden-
tically distributed as well as contamination data.

3 Risk exposure estimation from distribution tails

3.1 Extreme Value Theory (EVT) for risk assessment

EVT is well developed in finance and hydrology: stock exchange variation, portfolio
selection; flood occurrences!9. Tn these fields, extreme values are more interesting
than averages because ”extraordinary” events are more interesting than ”ordinary”.
Contamination and consumption data present the same properties i.e. risk mainly
concerns high consumers or highly polluted food items, which are extreme values.
In order to study these values, it is necessary to understand the asymptotic behavior
of the sample maximum or minimum. At the opposite lowest nutrient values are
the most relevant when dealing with malnutrition. A few basic facts about EVT are
now recalled.

Let Xi,..., X, be a n-sample with cumulative distribution function (cdf) F, i.e.
F(z) = Pr(X < z). In the following,

Xl,n S S Xn,n

denotes the associated ordered sample so that X, , is the sample maximum.
Under regularity conditions, the Fisher Tippett Theorem shows that there exists
a sequence of normalization terms a,, et b, such that

Xnn _bn



where W is a random variable (r.v.) with non degenerated law G.
There are only 3 possibilities for G, Gumbel, Fréchet or Weibull distributions.
They can be written according to the Jenkinson representation as:

G (z) =exp (—(1+~2) ") sil+yz >0

where limit case v — 0 is Gumbel law, case v > 0 corresponds to Fréchet law and
case v < 0 is Weibull law.

These laws are called extreme value distributions and each one corresponds to
a special tail behavior: Gumbel law is related to light tailed-distribution such as
normal or exponential distributions; Fréchet law to heavy-tailed distributions such
as Pareto, Cauchy or Student distributions and Weibull law to finite support distri-
butions that is for instance uniform distribution.

In the case of food risk exposure, the Fréchet type is the best adapted because
exposure values can often reach very high levels and it is observable that the tails of
distribution may be heavy. This approach is conservative since it is assumed that
very high values are not very rare. It was decided to model the distribution tail of
the exposure as a Pareto law, related to Fréchet type. In this context v is interpreted
as a risk index and many estimation methods were described. For sufficiently large
x, one generally assumes that

1—F(z)=Cz™

where F' denotes the cdf of the exposure and + is the risk index.
As far as the PTWI is sufficiently large, the probability for exposure to exceed
it would be defined by
C[PTWI| "

Figure 1 clearly illustrates the influence of v on thickness of the distribution tail
and consequently on the risk as defined earlier.

Figure 1

3.2 Estimation of parameters

The question of fitting the distribution tail to a Pareto law consists in estimating
the parameters C' and ~y. The first hypothesis is that for sufficiently large x, F'(z) =
1—Cx .

This notion of ”sufficiently large” is quantified by selecting a fraction of the
sample - i.e. the k largest observed values - and by supposing that these data are
distributed according to a Pareto law. If (X;) i=1,..n are independent and identi-
cally distributed (iid), conditionally to &k, maximum likelihood technique allows to



estimate v and C by:

where Hy,, denotes Hill estimator, which is strongly biased when there is a small
deviation from the exact Pareto case.
The Hill estimator is very sensitive to the choice of k as shown in Figure 2.

Figure 2

If n — oo and k/n — 0 then Hy, is supposed to be asymptotically gaussian
with mean 0 and variance 2 /k so that it should be expected that the Hill estimator
reaches a plateau; but it is scarcely observed as already stated!8. This behavior can
be explained by the following facts: for small £ the variance of the estimator is big;
for large k the tail distribution is not strictly of Pareto type but rather of the form:

F(z)=1-Cz YL(z)

where L(x) denotes a slowing varying function satisfying for all ¢ > 0, LL((%) — 1 as
x — 00, which takes into account small deviations from the exact Pareto case. It
should be stressed that any distribution with X, ,, asymptotically Fréchet can be
modelled by a distribution with a tail of this form.

One example of slowly varying function is L(z) = 1 + Dz~?, with 3 > 0 and
D € R*. This form can be justified by the fact that a population (with risk exposure
X) may be a mixture of two different populations with risk exposures X; and X5
corresponding to risk indexes ; and ;. This is clearly the case when considering
food exposure to some contaminants within an heterogeneous population. Define

X, with probability p ; Xy ~ Pareto(Cy,v)
X = V1> Y2

X, with probability 1 — p ; Xy ~ Pareto(Cs,2)

In that case, the resulting population has a tail of the form:
Pr(X >z) =pPr(X; >2)+ (1 —p) Pr(X, > )

= pCrz /" + (1 — p)Coz /7

which can be seen as a small deviation from the Pareto(C,~) distribution:

Pr(X > )= Ca "7 [L + Da™"]
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with C' = pC, vy =, D = % and 3 =1/v, —1/7 > 0.

Population mixture can therefore justify the introduction of slowly varying func-
tions. This slowly varying function induces a bias on the estimator and may strongly
reduce the rate of convergence of the Hill estimator. Bias correction methods have
been introduced by Hall and Feuverger@ and Beirlant and al.®l. The principle
of the bias correction method is to interpret the Hill estimator as an estimator of
the QQ plot slope perturbed by a small deviation induced by the slowly varying
function. Taking the weighted average of several slopes allows to reduce the bias
showing that this average behaves like an exponential r.v. with mean depending
on the parameters. The technical principles about the bias correction method and
about the estimation of parameters are described in Appendix A.

These estimations can be done for different values of k (7 is the current estimator
of v) and the optimal sample fraction £* is chosen as the solution of the program:

~2

Yk ~\2
Lk H, —
Jnin 25+ (Hin =)

which consists in minimizing the asymptotic mean squared error (AMSE) of the
Hill estimator. Figure 3 gives an example of bias correction.

Figure 3

As explained above, the exposure risk indicator is the probability for risk expo-
sure to exceed the PTWI; that is according to our model:

CPTWI|™

We will thus use
V=

that is the "unbiased" Hill estimator taken at the optimal sample fraction k*, and

—~— k* 1

* Xn—*n%*
C7 = — (Xt n) ¥

the resulting estimator of constant C'
Thus the estimated risk will be:

Cr [PTW IV



4 Exposure to heavy metals for sea product con-

sulers

4.1 Data description

Food consumption data

Consumption data came from the French survey INCA which concerns
the food consumption of 3003 individuals of 3 years and more. This survey
concerns all consumptions at home or outside, during one week. Besides of
a detailed food nomenclature of about 900 food items clustered in 45 groups,
individual socio-demographic data are available, including the individual body
weight and age.

Among this food list, 92 food items containing fish or sea products were found
in the groups ”Fish”, ”Shellfish and Mollusk”, ”Mixed dishes”, ”Meat prod-
ucts” and ”Soups”. For some of these items, such as breaded fish, consumption
data were weighed by a recipe factor. The operational study file contained the
properly weighed consumption values for 92 products and n = 2513 sea prod-
uct consumers, including socio-demographic information. As contamination
data were clustered into three categories ("Fish”, ”Farmed fish” and ”Mol-
lusks and shellfish”), each of the 92 food items was linked to one of these
categories. This leads to two levels of aggregation which are noted as:

e DL: Disaggregated Level, C’; is the consumption of product j for sea
product consumer ¢, with 5 varying from 1 to 92. .

o AL: Agregated Level, C’(ij) is the consumption of product from category

(7) for consumer ¢, with (j) being ”Fish”, ”Farmed fish” or ”Mollusks
and shellfish”.

So that a consumer is more generally defined by C?, a 92-dimensional or a
3-dimensional vector and his body weight w* for i varying from 1 to n.

Contamination data

Sea product contamination data were collected through different analytical
surveys performed by several French institutions (MAAPAR[U}, IFREMER[BU
during the period 1994-2002. For each of the three studied contaminants (Pb,
Cd and Hg), there were respectively 2995, 2641, and 3194 contamination val-
ues expressed in mg per kg of fresh weight. These values were clustered into
three categories ("Fish”, ”Farmed fish” and ”Mollusks and shellfish”) accord-
ing to their contamination level. Thus, calculus of exposure was possible for
the AL level, deterministic method and 2R. Concerning the DL level, it was



necessary to look up all analytical data in order to associate a value to each
92 food items. For instance, for ”Fried sole” or ”Vapor sole” all the contami-
nation data concerning sole were used to calculate average or maximum, while
for vaguer named items, such as ”Fish soup” or ”Fried fish”, all data from
clusters "Fish” and ”Farmed fish” were taken.

According to Claisse and al.[14], methylmercury in sea products can be ex-
trapolated from mercury contents. Therefore, conversion factors were applied
to analytical data in order to get the corresponding methylmercury (MeHg)
concentration in food: 0.84 for fishes, 0.43 for mollusks and 0.36 for shellfish.

International toxicological references (PTWI)

The toxicological limit to be used were established and revised by the JECFA.
The most recent references were used for this study and were:

e Lead, 25 ug/week/kg b.w. (revision 1999[15]),
e Cadmium, 7 pg/week/kg b.w. (revision 2000[16]),
e Methylmercury, 3.3 pug/week/kg b.w. (revision 1999[15}).

4.2 Results and discussion

Results for food risk exposure to lead (Pb), cadmium (Cd) and methylmercury
(MeHg) are given in table 1. Each line of this table corresponds to a different calcu-
lation of exposure for a given contaminant according to the proposed assumptions
leading to 18 scenarios. For example, for scenario 1, the exposure to lead from sea
products is described by its average, its 97.5!" percentile and its maximum over
the sea product consumers. This first scenario corresponds to a calculation with a
deterministic calculus at disaggregated level (DL) using average of contamination
(D-AVE) and true body weight (TBW). The last columns give the associated risks
calculated with our new method based on tail estimation (TE) and the Plug-In
method (PI). For 2R calculus mode, size of random samplings was 10,000 and the
presented results correspond to the mean results obtained after 100 repetitions of
the same calculus.

Table 1

This table does not present the results with approximated body weight (ABW):
this approximation leads to a systematic under-evaluation of the exposure. Expo-
sure is about 1,2 times lower in the case ABW. For example, average exposure to
Pb (scenario 1) varies from 0.325 ug/week/kg b.w. for TBW to 0.304 ug/week/kg
b.w. for ABW. Indeed assuming that all individuals have a 60kg body weight is very
imprecise since there are children in the sample. However, the calculus was made in
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order to show the impact of such vague approximations. In household consumption
surveys, two approximations have to be made: first to get the individual consump-
tions from the total household consumptions and then to approximate the weighed
consumptions. If body weight is not available, it is convenient to use different body
weights according to the sex and age of individuals.

An important remark concerns the significance of all these results. This risk eval-
uation of exposure to heavy metals was made on effective sea product consumers in
the INCA data. A multiplicative coefficient of 2513/3003 = 84% may be applied to
risk calculated with PI to take into account the non consumers in order to extrap-
olate to the whole population. However, because of the short period of the survey,
the bias due to the observed zeros is well known: individuals with null consumptions
in INCA may be true non-consumers of sea products or may infrequently consume
sea products, maybe in large quantity, but not during the survey week. This bias
that we can evaluate with other sources on household consumptions (Secodip) is not
significant in the case of sea products.

Our main observations are :

e the aggregation level assumption has a high impact on the results. DL gives
lower exposure levels and lower risks than AL for all contaminant at a given
calculus mode. For example, for Pb, comparison of average exposures of sce-
narios 1 and 3 show the importance of aggregation. This can be explained by
the fact that the mean contamination of DL is lower than the mean contami-
nation of AL. Indeed, under AL assumption, averages are taken over a larger
number of observations and high values boost the average of contamination.
For example , average of contamination for tuna is higher than for any other
fish but in AL, all fish are assumed to be contaminated at the average level of
all fishes which is higher because of tuna. However, 2R calculus is not possible
for DL assumption since there is not be enough data to sample in.

e At a given aggregation level, D-AVE et 2R give similar results in average but
randomization of contamination of calculus 2R allows to reach higher exposure
levels so that 97.5" percentile and maximum are respectively higher for 2R
than for D-AVE. Likewise, risk is higher for 2R than for D-AVE (see scenarios
9 and 12, similar averages but different maximum and risks). Indeed, if high
consumptions are associated to high levels of contamination, some exposure
may be very high and 2R allows to consider them without using an unrealistic
assumption such as D-MAX or D-97.5. These two last methods are not realist
but present the advantage to be conservative. Indeed if D-MAX or D97.5
gives null risks or negligible risks, there is no need to be more accurate in the
process.

e PI methods gives null risk for D-AVE calculus for Cd and Pb (see lines 1, 3, 7
and 9). For Pb, D-97.5 also give null risk with PI method. Exposure to these
two contaminants is not high enough to be risky, which is pleasant since these
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metals are contained in other food. However, a null risk does not exist and
the TE method allows a much more accurate quantification.

e TE mostly gives a higher risk evaluation than PI and differences are sometimes
very important (for example, scenario 18, risk varies from about 25% to 10%).
Moreover, TE sometimes does not allow to evaluate risk when it is important
(see scenarios 14, 16 and 17). As it is shown in the graphic illustration of Figure
4, if the PTW is far from the distribution tail (that is too low compared to
data), it is not in the support of Pareto distribution so that no risk evaluation is
possible. Indeed, Pareto cdf is defined for = > a, where a is such that F(a) = 0,
ie. Ca /" =1 = a = C7. Therefore, if PTWI < a, the probability to exceed
the PT'WI is not defined and the PI method will be used. Furthermore,
if the PTW is too close to a, risk evaluation may be too high (it may be
the case for scenario 15). As a summary about the TE method, a good risk
evaluation is obtained if the PTWI belongs to the distribution tail (PTW I3
in the illustration); an irrelevant risk evaluation (PT'W I, in the illustration)
or no risk evaluation (PTW 1 in the illustration) on the opposite case.

Figure 4

Results concerning MeHg according to the age of the population are presented in
Table 3. Risk was calculated according to PI method since PTWI may not belong
to the distribution tail, i.e. risk is too high to use TE. Three calculus scenarios
are presented: DL D-AVE, AL D-AVE and AL 2R. For 2R calculus mode, size of
random sampling was 5,000 and the presented results correspond to the mean results
obtained after 100 repetitions of the same calculus.

Table 2

The role of the aggregation level is even more important in this case for all pop-
ulation groups and especially for 3-8 year old children, where risk varies from 4%
(DL) to 25% (AL) for D-AVE calculus mode. However, it is clear that according to
this data, exposure of children (aged 3 to 8) is systematically higher than the expo-
sure of the rest of the population. As D-AVE calculus is concerned, contamination
is the same for all individuals so that the observed differences are due to the con-
sumption behaviors. Children eat more sea products relatively to their body weight
than the rest of the population. To be more accurate, confidence intervals for PI
risks are currently being constructed thanks to the use of incomplete U-Statistics.
Our first results show that the observed differences according to the population age
are significative. About the characterization of risky population, developments are
needed as suggested in Bertail(2002)[10}
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5 Conclusions

This paper leads to two types of conclusions: first, about method efficiency and
then, about exposure to heavy metals for sea product consumers.

It is important to note that assumptions of calculus (such as levels of aggregation
used to couple data, calculus mode, body weight approximation,...) have a strong
impact on the values of exposure so that one must not use numerical results without
detailing all the used assumptions. Indeed, aggregation of data and body weight
approximation lead to under-evaluation of risk. Furthermore, our definition of risk
is based on PTWI, the definition of which is based on a tolerable intake over lifetime.
Thus, results should be nuanced as the data and methods do not take into account
chronic consumptions or long-term contamination levels.

Concerning the feasibility of our method based on tail estimation, it is important
to check whether the studied contaminant is risky or not. Indeed, if the PTWI
does not belong to the distribution tail, Pareto tail adjustment is useless while,
on the opposite case, it allows to accurately quantify very low risk. Developments
are needed concerning confidence interval for such probabilities to exceed a given
toxicological level.

As far as food risk is concerned, according to the data used and by comparison
to the PTWI, methylmercury intake via the consumption of sea product seems
important for a significant part of the population, above all children. Our evaluation
method of the risks for lead and cadmium intakes are clearly more satisfying than
the usual methods which tend to under-estimate the risk.
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A Appendix: Bias correction method
Suppose that data are distributed according to the cdf
F(z)=1-Cz™ (14 Dz™")

Then, the generalized inverse cdf! is defined, for small y, by

Fri-y)=(£) "0+aw)~ (L) enbm) 1)

with 85(y) = yC~P1 Dyt where 8, = 0.
General results on order statistics give:

log Xpn—it1n = 10g (F" (Un—it1n)) = log (F" (1 = Uin)) (2)

where U, ,, is the order statistic of a uniform r.v. upon [0, 1], which can approximated
by %5 (its expectation).
For any small y, applying log to (1) gives:

log (F7 (1 —y)) = —vylogy + C; + 62(y) where C = ylogC. (3)
Using (2) and (3), we get for small values of 7 (that isi =1,...,k) :

log Xp—it1n = —v1og Uiy + C1 + 02(Ui ) (4)

Let us recall Renyi representation[g] introducing the r.v.:

n—i+1 E.
Vi=1,..,n Thivin = —
y ey 1y +1, Z n— ] +1
Jj=1
where (Ej);_, , is an exponential r.v. with mean 1 and E; ,, denote the associated

i'" order statistics.
Thanks to Renyi representation, we have the two following results:

n—i+1
L
Toivin= Y (Bjm—Ej1n) = Enitin (5)
j=1
and
- lOg Ui,n - - lOg (1 - Un—i—i—l,n) = Tn—i+1,n (6)

Then let us introduce Z; = i(log(X,—i+1.n) — log(Xn—in))-
Using (4) and Renyi representation (equations (5) and (6)), we have:

Zi = 1Y(Tniva — Tni) + 1 (02 (exp(=Tniy1,0)) = b2 (exp(=Tin))]  (7)
'The strict definition of which is F*~(z) = inf{y € R, F(y) > z}.
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Noting 63 (2) = 62 (exp(—2)), a Taylor expansion leads to:

63 (Tn—i+1,n) - 63 (Tn—i,n) ~ (Tn—i—i-l,n - Tn—z,n)d;) (Tn—i,n) (8)
But we have T),_; ,, £ _
so that:

log(Ui1,n) = log%5 ~ log% and 65 (logz) = — ()6 (x),

5, (%) (9)
=740 (%)m =6, (%) (10)

where 6 (z) = Dy2” with D; = —3,C~"1D.
Combining equations (7), (8) and (9) and the fact that T5,_ ;11— Th—in = @
(according to the definition of r.v. T,,_;11,), we finally deduce that for i =1,..., k:

1 1
Zi = En_i17y [1 + 01 <—>] ~ En_it17€exp {51 (—ﬂ
n n

This means that the weighted difference of log spacings Z; = i(log(Xpn—i+1.n) —
log(X,—in)) behaves like as an exponential r.v. with mean v exp [61 (%)] depending
on the parameters v, 3; and D;.

These parameters can be estimated by maximum likelihood (MV) or by least
square (LS) considering as a dependent variable log Z;. These estimations can be
done for different values of k (we thus get 7y, B/I\k and 5; estimators of v, 4; and
Dy) and the optimal sample fraction k* is chosen as the solution of the program:

Vi 2
iy g+ e =)
which consists in minimizing the mean squared error of the Hill estimator.

Practically, as advised in many papers dealing with this kind of models, we fix the
value of ) = v to 1 (see Drees and Kaufmann (1998)[7]) and used MV resolution
to get estimation of v and Dy = —D/C. LS resolution is not possible if some of
the Z; are null which is the case as soon as two individuals have the same exposure
(frequent case in our deterministic framework). These techniques were tested on

simulated data in Tressou (2002)[17] .
As explained before our risk indicator is the probability for risk exposure to
exceed the PT'WI that is according to our model:

CPTWI|™ (11)
or if slowly varying function is considered

CPTWI ™" (1 + D, [PTWI)*) ~ C[PTWI| V" — D[PTWI]'T (12)
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We will thus use

1

(Xo_pe) 7 for C,

o
*

andl/)\*:—li; x O* for D
Comparing estimation (11) and (12) we remark that the two approximations were

equivalent.
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Figure 1: Pareto Distribution tail for different values of v : v =1 (Solid), v = 0.5
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Figure 2: Hill estimator of the risk index ~y for different values of k.

Case of the exposure to lead, Disaggregated data, Average contamination.
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= Assumptions  Exposure (in ng / week / kg b.w.) Associated Risk
s| £
sl E |8 2 o 2 g
é % §” ?‘% E § :E:J § § g TE PI

& ;ﬁ -~ 5 = =z = ;g 3
1 D-AVE 0.325 1.406 5.143 3.17E-07 0
2 PL D-MAX 3.847 15.239 36.239 | 3.76E-03 4.78E-03
3 b D-AVE 0.387 1.774 7.735 2.90E-06 0
4 AL D-97.5 1.290 6.176 26.776 | 2.20E-04 0
5 D-MAX 6.392 23.095 93.934 1.67% 1.07%
6 2R 0.386 2.096 21.725 1.03E-04 2.60E-05
7 DL D-AVE 0.199 1.061 3.537 7.41E-05 0
8 D-MAX 2.592 13.200 32.080 10.94% 9.15%
9 cd D-AVE 0.235 1.211 5.434 7.54E-05 0
10 AL D-97.5 0.780 4.054 18.132 | 4.10E-03  1.99E-03
11 D-MAX 4.694 20.763 90.021 --- 16.95%
12 2R 0.234 1.422 19.391 | 7.92E-04 7.97E-04
13 DL D-AVE 0.628 2.712 17.213 1.46% 1.71%
14 D-MAX 9.167 39.989 110.486 _— 64.27%
15 Mekg D-AVE 1.337 5.031 12.852 23.61% 2.98%
16 AL D-97.5 5.757 21.783 55.666 -_— 50.78%
17 D-MAX  19.242 72.519 185.514 -_— 87.43%
18 2R 1.339 7.513 74.644 24.96% 9.52%

Table 1: Food risk exposure to Lead (Pb), Cadmium (Cd) and Methylmercury

(MeHg) for sea product consumers
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Figure 3: Example of bias correction for the risk index v: Hill estimator (dashed
line), debiased Hill estimator (solid line) and confidence interval for the Debiased
estimator (dots);

The minimization of AMSE gives k* = 50, v* = 0,252 and Hp+,, = 0,265.

Case of the exposure to lead, Disaggregated data, Average contamination.
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Figure 4: Pareto Adjustement and risk evaluation.
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Risk associated to Exposure (TBW)

n Asff‘mpt‘g“i 1 3-8 915  16-60  over 60 Ar:)l o
ggregation aleutus years old yearsold yearsold years old procu
level mode consumers
DL D-AVE 4.09% 1.60% 1.25% 0.56% 1.71%
AL D-AVE 25.45% 6.18% 2.89% 4.21% 2.98%
2R 19.51% 10.43% 6.39% 7.39% 9.52%

Table 2: Risk exposure to Methylmercury for sea product consumers according to

age (Method of risk evaluation: PT)
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