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Abstract

This paper studies the properties of empirical likelihood for Hadamard differentiable func-
tionals tangentially to a well chosen set and gives some extensions in more general semi-
parametric models. We give a straightforward proof of its asymptotic validity and Bartlett
correctability, essentially based on two ingredients convex duality and LAN properties of
the empirical likelihood ratio in its dual form. Extensions to semiparametric problems with
estimated infinite dimensional parameters are also considered. We give some applications
to confidence intervals for the position parameter of a symmetric model and general func-
tionals in biased sampling models.

Résumé
Dans cet article nous montrons comment les idées de vraisemblance empirique se généralisent
à des fonctionnelles Hadamard différentiables tangentiellement à un ensemble de fonctions
bien choisies et donnons des extensions à des modèles semiparamétriques plus généraux. Des
arguments de dualité convexe et les propriétés localement asymptotiquement normales du
rapport de vraisemblance empirique sous sa forme duale permettent de montrer la validité
asymptotique de la méthode et la validité des corrections de type Bartlett. Nous proposons
des extensions à des modèles semiparamétriques avec paramètres de nuisance estimés. Ces
résultats sont illustrés par plusieurs exemples dont l’estimation d’un paramètre de position
dans un modèle symétrique et l’estimation de paramètres fonctionnels dans des modèles
avec biais de sélection.

KeyWords and Phrases: Empirical likelihood, Hadamard differentiability, Empirical process,
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1 Introduction

The likelihood principle has been one of the major tools in parametric statistics.
Owen (1988, 1990, 2001) introduced an ”empirical likelihood” ratio and obtained in a
non-parametric setting a generalization of Wilk’s (1936) theorem, stating that twice
the log-likelihood ratio is asymptotically distributed as a χ2 distribution. The idea of
empirical likelihood goes back to Thomas and Grunkemeier (1975), but also in some
sense to Hartley and Rao (1968) in the context of survey sampling, where it is known
as model based likelihood. It is closely connected to the notion of non-parametric
maximum likelihood introduced by Kiefer and Wolfowitz (1956). Nice accounts of
empirical likelihood may be found in Hall and La Scala (1990) and Owen (2001)’s
recent book, where one may find a huge bibliography.
For independent, identically distributed (i.i.d.) data, empirical likelihood ratio al-

lows to build confidence regions for smooth parameters, mainly Fréchet differentiable
parameters with respect to the Kolmogorov metric, including M-robust estimates (see
Owen (1988)). A more precise description of the method is recalled in section 2 in
the general framework of Hadamard differentiable functionals. We give a short proof
of the validity and Bartlett correctability of empirical likelihood, extending results of
Qin and Lawless (1994) (and removing third order moment conditions). It relies on
the existence of a convex dual representation of the empirical likelihood, which may
itself be seen as the log-likelihood ratio associated to a least favorable parametric
family passing through the true model. This representation is closely connected to
the important notion of dual likelihood introduced by Mykland (1995). It immedi-
ately leads to a Wilk’s type theorem and the validity of the Bartlett correctability
of empirical likelihood ratio, provided that this family satisfies the LAN property,
which may be checked for instance by showing that it is quadratically differentiable,
see Le Cam (1986). We also show that Hadamard differentiability (according to a
well chosen set of functions) is sufficient to validate the use of empirical likelihood of
general functionals, extending some results of Owen (1988) (2001). Part 3 discusses
extensions to a more general semiparametric framework with nuisance parameters of
infinite dimension. Our approach (based on derivatives of functionals) is different
from the one considered in Murphy and van der Vaart (1997), in which the semi-
parametric likelihood incorporates the knowledge contained in the likelihood of the
model. We give a general formulation of empirical likelihood in our framework. The
idea is essentially based on using an estimated version of the efficient influence func-
tion which serves as the basis for the empirical likelihood procedure : we prove its
validity under weak assumptions. In Part 4, we give some examples and applications
to semiparametric models including confidence intervals for the position parameter of
a symmetric distribution, a problem discussed in chapter 10 of Owen (2001) and reex-
amine the results of Qin (1993) in biased sampling models under weaker conditions.
We do not discuss here the algorithmic problems, which may appear practically and
refer to Owen (2001), chapter 12 for some propositions. The technical proofs of the
lemmas and theorems are deferred to section 5.
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2 Empirical likelihood for Hadamard differentiable functionals.

2.1 Empirical likelihood for a functional parameter

Let X1, ...., Xn, ... be i.i.d. random variables defined on a probability space (Ω, A, PΩ)
with common probability measure P belonging to a convex set ℘ of signed measures
(containing the Dirac measure). Denote (x1, ...., xn) a realization of (X1, ....,Xn) tak-
ing their value in X n. In the following, we are interested in constructing a confidence
region for the functional parameter θ = T (P ) (see Von Mises (1936)) defined on ℘,
taking its value in Rq. The empirical probability measure defined by

Pn = n
−1

n[
i=1

δXi

is known to be the non-parametric maximum likelihood estimator (NPMLE) of P (see
Gill (1989), Owen (1988), (1990)) The non-parametric maximum likelihood estimator
(NPMLE) of θ = T (P ) is then its empirical counterparteθn = T (Pn).
Many statisticians since von Mises have been interested in deriving the asymptotic
properties of eθn using differentiability assumptions on T (see Gill (1989)) via Taylor
expansion (the delta method). Under some regularity assumptions, it is then pos-
sible to build confidence intervals or regions for the parameter θ. The approach of
Owen (1988) is dual to this approach: the idea is to profile an ”empirical likelihood”
supported by the data so as to built directly a confidence region without relying on
previous estimations.
The empirical likelihood ratio evaluated at θ is defined by

RE,n(θ) = sup
Qn∈Pn

�
Πni=1

dQn
dPn

(Xi), T (Qn) = θ

�
where Pn is the set of discrete probability measures dominated by Pn that is

Pn = { hPn = n[
i=1

pi,nδXi , pi,n ≥ 0,
n[
i=1

pi,n = 1}.

Actually it should be noticed that for certain values of θ, RE,n(θ) may not have
any solution (consider for instance θ = EPX, then for values of θ outside the convex
hull of the Xi there is no solution to the maximization problem). In that case we
arbitrarily put RE,n(θ) = 0. This does not have any consequence in the construction
because we will essentially be interested in the value of θ for which RE,n(θ) > 0. The
empirical log-likelihood ratio is thus

log(RE,n(θ)) = sup
pi,n ,i=1,...n

+
n[
i=1

log(pi,n/(1/n)), T (
n[
i=1

pi,nδXi) = θ, pi,n ≥ 0,
n[
i=1

pi,n = 1

,
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A better way to see this problem from a probabilistic point of view is to consider
rn(θ) as the minimization of the Kullback distance that we define here as

K(Q,P ) =


− U log(dQ

dP
)dP , if Q << P

∞ , else

between Q and Pn, over all the probability Q dominated by the empirical distribution
Pn, with Q satisfying the constraint T (Q) = θ, that is

(1) − log(RE,n(θ))/n = inf
Qn∈Pn

(K(Qn, Pn), T (Qn) = θ,

]
dQn = 1)

This thus may be seen as the empirical minimization of a particular distance to
solve the inverse problem T (Q) = θ. Other distances, which are all particular cases of
convex distance or I-divergence (see Liese and Vajda (1986)) have been suggested in
place of the Kullback distance. This has given rise to what is called in econometrics,
”maximum entropy econometrics” (see for instance Golan, Judge and Miller (1996)).
Most of the (first order) asymptotic that we discuss here may be obtained in the
much more general framework of I-divergence for which a dual representation holds.
We will however focus here on the particular case of Kullback distance and empirical
likelihood because of its interesting third order properties.
Owen (1990) showed that if T (P ) = EPX is the mean of a q-variate random vari-

able with a covariance matrix Σ = V ar(X) of rank q then − log(RE,n(θ)) converges
in distribution to a χ2(q) distribution, a result which is Wilk’s (1936) non-parametric
analog.
This yields a confidence region asymptotically of level 1− α

(2) ?n,1−α =
�
θ, Λn(θ) = −2 log(RE,n(θ)) ≤ χ21−α(q)

�
It is easy to show by reciprocal inclusion that in the case of a linear functional
that

(3) ?n,1−α = {T ( hPn), hPn ∈ Pn,1−α}
with

Pn,1−α = {
n[
i=1

pi,nδXi ,
n[
i=1

pi,n = 1, pi,n ≥ 0,−2
n[
i=1

log(pi,n/(1/n)) ≤ χ21−α(q)}

= {Q ∈ P , K(Q,Pn) ≤ χ21−α(q)
2n

,

]
dQ = 1, Q ≥ 0} ⊂ Pn

This equality which plays an important role in our analysis fails for non linear statistics
for which we simply have {T ( hPn), hPn ∈ Pn,1−α} ⊂ ?n,1−α. Notice that for any fixed
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n, the set Pn,1−α contains Pn for any fixed value of 0 < α ≤ 1. One purpose of
this paper is to show that asymptotically for Hadamard differentiable functionals
{T ( hPn), hPn ∈ Pn,1−α} is still an asymptotically valid 1 − α confidence region for
T (P ) ∈ Rq
Owen(1988) showed that in the case of the mean

(4) P (θ ∈ ?n,1−α) = 1− α+O(n−1).

This is actually the error rate for a two-sided confidence interval based on the nor-
mal asymptotic distribution in regular cases for instance smooth functions of the
means. DiCiccio, Hall and Romano (1989, 1990) (see also DiCiccio and Romano
(1989) and Hall (1990)) proved that empirical likelihood ratios (like in the para-
metric case) are Bartlett correctable. The Bartlett correction aims at fixing the
expectation of Λn(θ) = −2 log (RE,n(θ)) exactly to q, the expectation of the limiting
distribution. Because the first term in the Edgeworth expansion of Λn(θ) is of order
n−1 multiplied by a polynomial of degree 1, a simple and explicit correction of the
form qΛn(θ)/EPΛn(θ) allows to obtain a confidence region with a coverage error of
size O(n−2) (see Bickel and Ghosh (1990)). Notice that this is also the rate that can
be obtained with the bootstrap in the case of two sided confidence intervals in smooth
cases. In practice EPΛn(θ) is generally unknown but may be replaced by a suitable
estimator : if the estimator is chosen adequately the accuracy up to O(n−2) still holds
(Barndorff-Nielsen and Hall (1988)). Thus empirical likelihood does not require in-
tensive computations in opposition to the Bootstrap distribution, which, in most
cases, needs to be approximated by Monte-Carlo simulations. It should be noted
that a ”corrected version” of the weighted bootstrap has been proposed in Barbe and
Bertail(1995) to improve over the usual bootstrap. Adequate choice of the weights,
depending on the data (which may be seen as an attempt to invert the Edgeworth
expansion of the bootstrap distribution thanks to the weights) typically leads to an
accuracy of O(n−5/2), for symmetric statistics, under regularity assumptions on the
functional of interest (see also Guillou(1999)). However this requires strong knowl-
edge on the functional of interest (the gradients up to order 6!) whereas as we will see,
empirical likelihood may lead to an accuracy of order O(n−2) in a quite automatic
way.
Computational problems may however arise in the algorithms used to built the

empirical likelihood regions if the parameter is very complicated : see Owen (2001)
for tricks and algorithms to improve the computational aspects. In the case of smooth
functions of a (possibly vector) mean, the confidence region is convex and the problem
is to find the boundary of the confidence region. This may be done by solving a sys-
tem of simultaneous equations and is achieved practically, for instance, via standard
multivariate Newton algorithms. These results have been generalized by Hall and La
Scala (1990) for smooth functions of multivariate mean.
The case of a Fréchet differentiable functional with respect to the Kolmogorov

metric has been studied by Owen (1988, 1990) and of M-estimators by Qin and
Lawless (1994). These results may be generalized to more general functionals, Fréchet
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differentiable with respect to an adequate metric which shares the same properties
as the Kolmogorov metric, for instance a metric indexed by a class of functions (see
Dudley (1993), Barbe and Bertail (1995)). In the following paragraph, we show that
Hadamard differentiability is sufficient to obtain such generalizations.

2.2 Asymptotic validity of empirical likelihood for Hadamard differen-

tiable functionals

We will establish our results for Hadamard differentiable functionals with an explicit
canonical gradient (see for instance Pfanzagl (1981)). Hadamard differentiability is
a notion of differentiability in which the remainder is controlled over compact neigh-
borhoods. It is well suited for studying functionals of asymptotically tight random
sequences (see Gill (1989)). Moreover Hadamard differentiability is the weakest form
of differentiability for which the chain rule holds and preserves asymptotic efficiency
which makes it a privileged tool in semiparametric analysis (see van der Vaart (1998)).
The main problem to apply this notion in statistical applications lies in the choice
of the metric or the topology which ensures both the convergence of the empirical
process and the Hadamard differentiability.
For sake of generality, we will consider the following abstract empirical process

framework. Assume that the functional T is defined on P considered as a subset
of L∞(F). F is a subset of functions of a normed space of function here L2(P ) =
{h, EPh2 < ∞} endowed with ||f ||2,P = (EP (f)

2)1/2.L∞(F) is equipped with the
uniform convergence norm (or equivalently Zolotarev metric)

||P −Q||F = dF(P,Q) = sup
h∈F

|
]
hdP −

]
hQ|

To avoid any measurability problem, we assume that expectations (resp. probability)
are outer expectations (resp. outer probability) so that weak convergence is inter-
preted as Hoffman-Jørgensen convergence (see Van der Vaart and Wellner (1996) for
details). For the same reason, we will also assume that F is image admissible Suslin.
This ensures that the classes of the square functions and difference of square func-
tions are P-measurable (see Dudley(1984)). In the following, it is assumed that F is
a Donsker Class of functions with envelop H satisfying

(5) 0 <

]
H2dP <∞

so that the F indexed empirical process n1/2(Pn − P ) converges (as an element of
L∞(F)) to a limit GP , a tight Borel measurable element of L∞(F).with uniformly
|| ||2,P continuous sample paths f → GP (f). Extensive references and results on
empirical processes indexed by class of functions and conditions on F to be Donsker
may be found in Van der Vaart and Wellner (1996).
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More precisely, denote the covering number (the minimal number of ball of radius
ε for the seminorm ||.|| needed to cover F) by N (ε,F , ||.||). We will assume the
following usual uniform entropy condition

(6)
] ∞

0

sup
Q∈D

t
log(N(ε||H||2,Q,F , ||.||2,Q)dε <∞

where D is the set of all discrete probability measures Q with ∞ >
U
H2dQ >

0. Notice that if H is an envelop of the class then H +1 is also an envelop so that we
may assume without loss of generality that H ≥ 1.
The following lemma shows that the set Pn,1−α is small and contained in a

band around Pn. It implies that the associated weighted empirical process indexed
by F correctly standardized is asymptotically converging in L∞(F) uniformly over
Pn,1−α.

Lemma 2.1 . For any α ∈ [0, 1[, there exists non negative constants a(α) < 1 < b(α)

such that for any hPn =Sn
i=1 pi,nδXi in Pn,1−α we have

a(α)

n
≤ pi,n ≤ b(α)

n

where b(α)→ 1 when α→ 1 (and b(α)→∞ when α→ 0).

For any fixed α ∈]0, 1[, if F is a (Suslin) Donsker class of functions satisfying (5)
and (6) then, #

n[
i=1

p2i,n

$−1/2
( hPn − P ) w→

n→∞
GP in L∞(F)

uniformly over Pn,1−α, where GP is a gaussian process in L∞(F).

Define nowB(F , P ), the subset of L∞(F) (seen as application (or path) f → µf =U
fdµ from F →R) which are || ||2,P−uniformly continuous and bounded (which is

the smallest natural space in which GP lies). We recall the following definition of
Hadamard differentiability tangentially to B(F) which is adapted from Pons and
Turckeim (1991). Notice that the fact that differentiation is taken tangentially to
B(F , P ) (and not to L∞(F) which is too large) weakens the notion of differentiation
and makes it easier to check in statistical problems (see examples in Gill (1989), Pons
and Turckheim (1991), Van der Vaart (1998), Chap. 20.3, Van der Vaart and Wellner
(1996), chap. 3.9).

Definition 2.1 The functional T from P ⊂ L∞(F) to Rq (or any Banach space
(B1, ||.||B1) is said to be Hadamard (or Compact) differentiable at P ∈ P tangentially
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to B(F , P ), say T is HDTF − P, iff there exists a continuous linear mapping dTP
(defined on P), such that for every sequence hn → h ∈ B(F , P ), for every sequence
tn → 0 such that P + tnh ∈ P,

T ((P + tnhn))− T (P )
tn

− dTP .h→ 0 as tn → 0.

For a Hadamard differentiable functional, we call canonical (or first) gradient T (1)(., P )

any function from X to B1 such that

dTP (Q− P ) =
]
T (1)(x, P )(Q− P )(dx)

with the normalization

EPT
(1)(X,P ) = 0

In the robustness terminology T (1)(x, P ) is the influence function of the parameter

T (P ) and is defined by limt→0
�
T ((1−t)P+tδx)−T (P )

t

�
(see Hampel (1974)). Notice that,

in a semiparametric framework, in which the parameter is defined implicitly by the
model, the canonical gradient may not be unique. In the following we will assume
that such a gradient exists and is non degenerated that is the covariance operator
associated to T (1)(X,P ) has full rank.
Assume that T is Hadamard differentiable (HDTF − P ) with canonical gradient

T (1)(., P ) then we have

T ( hPn)− θ =

]
T (1)(x, P )( hPn − P )(dx) +Rn( hPn, P ).

The preceding lemma implies that the solutions hPn in Pn,1−α are close to P typically
up to OP (n−1/2) in L∞(F). Thus we expect the Delta method for Hadamard differen-
tiable functionals to yield Rn( hPn, P ) = oP (�S p2i,n

�1/2
) = oP (n

−1/2) uniformly over all
the admissible hPn in Pn,1−α. These arguments suggest that the empirical likelihood
ratio may be replaced by a linearized version

R
L

E,n(P )(7)

= suphPn∈Pn
q
Πni=1nd hPn(Xi), E hPnT (1)(X,P ) = 0

r
= sup

pi,n i=1,...,n

+
Πni=1npi,n,

n[
i=1

pi,nT
(1)(Xi, P ) = 0, pi,n ≥ 0,

n[
i=1

pi,n = 1

,
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yielding an asymptotically (but intractable) asymptotic confidence region for T (P )
of the form

?ξ
n,1−α = {T (P ) +

]
T (1)(., P )d hPn, hPn ∈ Pn,1−α}

But the analog of (3),
?Tn,1−α = {T ( hPn), hPn ∈ Pn,1−α}

is ”close” up to oP (
�S

p2i,n
�−1/2

) = oP (n
−1/2) to the linearized confidence region which

may be deduced from (7) so that the use of ?Tn,1−α is asymptotically justified.
The following theorem states that such approximations are asymptotically valid

and establishes the validity of empirical likelihood for Hadamard differentiable func-
tionals.

Theorem 2.1 Assume that P is dominated by a measure µ. Assume that there

exists a (Suslin) Donsker class of function F with envelop H, satisfying (6) such

that T defined on P is HDTF − P with gradient T (1)(., P ). If V ar(T (1)(X,P )) <∞
is of rank q, then we have

−2 log
�
R
L

E,n(P )
�
→
n→∞

χ2(q)

and

P (θ ∈ ?ξ
n,1−α) = 1− α+O(n−1)

which implies

P (T (θ) ∈ ?Tn,1−α) →
n→∞

1− α

If in addition R
L

E,n(P ) ≡ RLE,n(θ) only depends on θ through T (1)(x, P ) ≡ T (1)(x, θ), assume
that the following Cramer condition holds

(8) lim
t→∞

|E exp(itT (1)(Xi, P ))| <∞

and that

(9) E||T (1)(Xi, P )||s <∞ for s ≥ 8 + ε, ε > 0,

then the Bartlett corrected confidence region

?B1−α =
q
θ, q log

�
R
L

E,n(θ)
�
/E(log

�
R
L

E,n(θ)
�
) ≤ χ21−α(q)

r
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is a third order correct confidence region for T (P ) that is

P (θ ∈ ?B1−α) = 1− α+O(n−2)

Proof: For a better understanding of these results which are quite straightfor-
ward, we do not defer the proof to the appendix and give here a commented proof of
the result.
Recall that using standard variational calculus (see Owen(2001)), the solution of

the maximization problem (7) is given by

pi,n(λ) =
1

n(1 + λ�T (1)(Xi, P ))
> 0

where λ, the Kuhn and Tucker coefficient, satisfies

n[
i=1

pi,n(λ) = 1 , 0 ≤ pi,n(λ) ≤ 1 and
n[
i=1

pi,n(λ)T
(1)(Xi, P ) = 0

By standard Kuhn and Tucker duality theory, we have

(10) −2 log
�
R
L

E,n(P )
�
= 2 sup

λ∈Rq

n[
i=1

log(1 + λ�T (1)(Xi, P )) := 2 sup
λ∈Rq

Ln(λ)

We may see Ln as the log-likelihood ratio of a worst parametric family of distribution
parameterized by λ, which passes through the true model at λ = 0. Indeed since
EPT

(1)(Xi, P ) = 0,

pλ(.) =
dP

dµ
(.)(1 + λ�T (1)(., P ))I{1+λ�T (1)(.,P )>0}

is a density defined for any λ (notice that we may also choose µ = P ). The log
likelihood ratio in this parametric family at 0 is exactly Ln(λ). In some sense empirical
likelihood generates a least favorable model (see Bickel and al. (1993)) indexed by
the Kuhn and Tucker parameters.
This interpretation of empirical likelihood ratio as the likelihood ratio associated

to a least favorable family will be particularly useful in semiparametric models. Since
Ln(0) = 0, Ln(λ) may also be seen exactly as a dual log-likelihood in the sense of
Mykland (1995) that is, in his terminology, a log-likelihood such that�

∂Ln(λ)

∂λ

�
λ=0

=
n[
i=1

T (1)(Xi, P )

Ln(λ) is well defined, strictly concave thus admitting an unique maximum. More-
over by concavity of the log,

EP (log(1 + λ�T (1)(Xi, P )) ≤ log(1 + λ�EPT (1)(Xi, P )) = 0
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Thus EP (log(1 + λ�T (1)(Xi, P )) has an unique maximum at λ = 0 and the m.l.e.
converges to 0. Notice that since V ar(T (1)(X,P )) exists and is strictly positive,
the family {pλ, λ ∈ Rq} is differentiable in quadratic mean and thus the associate
log-likelihood ratio is Locally Asymptotically Normal (LAN) (see Le Cam(1986)).
Indeed, the differentiability in quadratic mean follows from lemma 7.6 of Van der
Vaart (1998), p. 95. pλ(x) is continuously differentiable in λ everywhere except on
the set {x, 1 + λ�T (1)(x, P ) = 0}. But it is easy to see that this set has probability 0
if V ar(T (1)(X,P )) > 0 (see also the direct proof of Owen(2001), lemma 11.1 p.217).
Thus the empirical likelihood ratio is simply a likelihood ratio for testing λ = 0 in
the LAN model {pλ, λ ∈ Rq} and it follows that

−2 log
�
R
L

E,n(P )
�
→ χ2(q).

Because Ln(λ) is itself a parametric log-likelihood ratio (as a function of vector para-
meter λ), it is Bartlett correctable under (8) and (9). These conditions are sufficient
to ensure the validity of the Edgeworth expansion of the standardized version of
n−1

S
T (1)(Xi, P ) up to order O(n−2), which is needed for the Bartlett correction to

hold. Thus if R
L

E,n(P ) depends only on θ, Bartlett corrected empirical likelihood can
be used to construct confidence region with improved accuracy.
Now define the linear parameter for Q ∈ P ,

ξ(Q) = θ(P ) +

]
T (1)(x, P )Q(dx)

then a 1− α empirical likelihood based confidence region for this parameter is

?ξ
n,1−α = {ξ( hPn), with hPn ∈ Pn,1−α}}

=
q
ξ(P ), − 2log(RLE,n(P )) ≤ χ21−α(q)

r
= {θ(P ), −2log(RLE,n(P )) ≤ χ21−α(q)}

with P (θ(P ) ∈ ?ξ
n,1−α) = 1− α +O(n−1) (since the parameter ξ(Q) is linear).

Now we have by Hadamard differentiability

T ( hPn) = ξ( hPn) +Rn( hPn, P )
= θ(P ) +

]
T (1)(x, P )( hPn − P )(dx) +Rn( hPn, P )

The results now follow from similar arguments as in Th. 20.8 of Van der Vaart
(1998). Take t =

�S
p2i,n
�−1/2

which is of order o(n−1/2) uniformly over Pn,1−α by
lemma 2.1 and hn =

�S
p2i,n
�−1/2

( hPn−P ) ∈ L∞(F) in the definition Hadamard dif-
ferentiability then by definition h = GP ∈ B(F , P ). We deduce thatR( hPn, P ) = o(n−1/2)
uniformly over Pn,1−α. It follows that ?ξ

n,1−α and ?Tn,1−α are asymptotically equivalent
up to oP (n−1/2).
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Remark 2.1 : The proof essentially relies on a convex duality argument which
allows to write the empirical likelihood as a true parametric likelihood ratio indexed
by the Kuhn and Tucker coefficient. Duality is used in a constructive way in Myk-
land(1995) : here duality is actually a consequence of the fact that Kullback distance
is a convex statistical distance (see Liese and Vajda(1986)). The duality principle
generates a least favorable family which may be checked to be locally asymptotically
normal, under V ar(T (1)(X,P )) <∞. Hadamard differentiability is essentially needed
to show that ?ξ

n,1−α and ?Tn,1−α are asymptotically equivalent. Such arguments may
be used in a large number of applications to obtain the asymptotic distribution of
the empirical log-likelihood ratio as well as its Bartlett correctability (see example
4 in the last section). It also may be used to prove (first order) asymptotic results
when the Kullback distance in (1) is replaced by another convex statistical distance
for instance the entropy or actually any convex statistical distance (I-divergence) for
which a convex duality principle holds. In the case of empirical likelihood, Bartlett
correctability follows from the fact that the dual function is itself a likelihood, which
is not the case for more general convex statistical distance.
Remark 2.2 : Owen (1990), Qin and Lawless (1994) showed how that kind of

results may be used for M estimates: indeed in that case the influence function
depends only on θ and RLE,n(θ) may be quite easy to calculate. Notice that in a
semiparametric model the choice of the influence function is left to the statistician.
Of course if the efficient influence function (in the sense of Bickel, Klaassen, Ritov,
Wellner (1993)) is known and independent of nuisance parameter (see the work of
Amari and Kawanabe (1997) for the existence of general estimating equation) then
this would be the best candidate for T (1). However many problems may appear :
-the efficient influence function is not always easy to obtain since most of the time

it involves the projection into an infinite dimensional space
-it is not clear whether this expression may be used in practice for T (1)(., P ) may

have a very complicated form and depend on some nuisance parameter. This kind of
problems typically appears in the ”challenges” exposed in chap. 10 of Owen (2001)
We shall further examine these points in the next paragraph.
Remark 2.3 : The preceding arguments mainly rely on the existence of a dual

form for the likelihood ratio and it is interesting to investigate and use the special
structure of this dual representation. At 0, the information matrix with respect to λ
is given by VP (T (1)(X,P )) and the m.l.e. for λ in this LAN family is such that

eλn(P ) = �1
n

[
T (1)(Xi, P )T

(1)(Xi, P )
�
�−1 n[

i=1

T (1)(Xi, P ))(1 + op(1)) = OP (
1√
n
)

and we have easily by the strong law of large number for the first term and the central
limit theorem for the second term in this expression

√
neλn(P ) →

n→∞
N(0, V (T (1)(Xi, P ))

−1)

11



It follows that at the m.l.e. eλn(P ) , Ln(eλn(P )) that is the empirical likelihood ra-
tio behaves asymptotically like the usual GMM (generalized method of moments)
objective function#

1√
n

n[
i=1

T (1)(Xi, P )

$� �
1

n

[
T (1)(Xi, P )T

(1)(Xi, P )

�−1#
1√
n

n[
i=1

T (1)(Xi, P )

$
.

which may be seen as the square of the norm of an autonormalized sum (which is as-
ymptotically χ2(q)). This auto-normalization, carried out internally by the optimiza-
tion procedure as noticed by several authors is essentially due to the LAN structure
of the dual likelihood ratio.
Remark 2.4 : Because Ln(λ) is itself a likelihood (as a function of λ), a rather

interesting property of this approximate linearized empirical likelihood is that even
though we do not take into account the second order terms in the Taylor expansion
of T (Pn), it shares the same properties as the empirical likelihood of the mean that
is, it is Bartlett correctable. This is a rather amazing fact which plays in favor
of empirical likelihood against other third order correct methods for constructing
confidence intervals such as iterative inversion of Edgeworth expansion or weighted
bootstrap approximations. Indeed in these cases, the structure of the statistics (its
Hoeffding decomposition in term of orthogonal U-statistics) plays a fundamental role
for implementing these methods (see Barbe and Bertail (1995)). However it should
be noticed that this is only possible when the influence function is simple and does
not depend on additional nuisance parameter. If T (1)(., P ) does not depend only on
θ, it is in general not possible to control the error induced by the linearization of
T (P ), so that the Bartlett properties will not hold.
Remark 2.5 Hadamard differentiability seems to be the weakest form of differen-

tiability which ensures that we may approximate the exact interval by its linearized
form. Lemma 1 is the key point for showing the validity of the approximation. Of
course other type of conditions may be used to obtain a similar result, for instance
by using bracketing entropy.

3 Empirical likelihood in semiparametric models.

3.1 Semiparametric extensions

A model is said semiparametric if ℘Θ,H= {Pθ,G, θ ∈ Θ, G ∈ H} is a set of prob-
ability measures indexed both by a parameter of interest in a set Θ of Rk and a
nuisance parameter G in a space H possibly of infinite dimension. Such models and
generalization to the infinite dimensional case for Θ are studied at length in Bickel,
Klaassen, Ritov, Wellner (1993). One of the main problem which appears in semi-
parametric model is that generally the parameter of interest θ = T (Pθ,G) is defined
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on a smaller set ℘Θ,H than the one considered before, so that T (Pn) or the gradient
T (1)(x,Q) at Q = Pn may not be defined properly.
To illustrate and motivate a generalization of empirical likelihood in semiparamet-

ric models, we first begin by examining some examples. When dealing with confidence
intervals for quantiles in the real valued case,

Tα(P ) = inf(t, P (]−∞, t]) > α)

with ℘Θ,H = {P, with P << µ and f = dP/dµ, f ∈ H}, where H is a restricted set
of densities Chen and Hall (1993) have shown that the standard empirical likelihood
method as presented before leads to confidence intervals with coverage error of size
O(n−1/2) (which is actually the error size of the asymptotic approximation). However
a version based on the smoothed influence function of the fractiles leads to an error
of size O(n−1). Recall that the influence function of Tα(P ) is lattice and given by

T (1)(x, P ) =
δ{x<Tα(P )} − α

f(Tα(P ))
.

Moreover an exact Bartlett correction leads to an error of size O(n−2). This result
shows that, when the functional involves the density f of the underlying probability,
it is clearly preferable to smooth the gradient. A similar reasoning also holds when
the parameter of interest is the density itself (see Chen (1996)).
This suggests the following generalization for functional parameters defined on a

restricted set of probability. Consider a semiparametric model

℘Θ,H = {Pθ,G ∈ ℘ , η ∈ IRk, G ∈ H}
whereH is a infinite dimensional space. We are interested in estimating the functional

θ = T (Pθ,G)

Then it is clear that there is no reason for hPn =Sn
i=1 pi,nδXi to belong to ℘Θ,H . The

semiparametric approach generally used in such a context is to extend the functional
T (.) to a more general space. For this, one generally introduces a pseudo metric d on
℘ and defines a pseudo projection Π (not necessarily unique) into the model of any
P ∈ ℘ to be

Π(P ) = Arg min
Q∈℘Θ,H

(d(P,Q))

Then the functional hT (P ) = T ◦ Π(P )
extends T defined on ℘Θ,H to ℘. hT (Pn) defines a minimum distance estimator (see
Bickel, Klaassen, Ritov, Wellner (1989)). More generally we may choose any function
which extends the functional to ℘, the set of all signed measures. For instance, in
the case of ℘Θ,G being the set of probability measures with continuous density with
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respect to the Lebesgue measure λ, we may choose Π as being the convolution of P
with a continuous kernel if P does not have a continuous density with respect to λ and
Π(P ) = dP

dλ
else. In that case because of the linearity of the convolution operator the

influence function of hT will be exactly the smoothed version of the influence function
of T as considered in Chen and Hall (1993). If such extension exists then we may
define the empirical likelihood ratio in the semiparametric model as

(11) RE,n(θ) = sup
pi,n , i=1,...,n

+
Πni=1npi,n,

hT ( n[
i=1

pi,nδXi) = θ, pi,n ≥ 0,
n[
i=1

pi,n = 1

,

However, in many problems, the right ”efficient” choice of Π (in the sense of
Bickel, Klaasen, Ritov and Wellner(1993)) depends on the geometry of the problem.
Ideally it should be chosen in such a way that the gradient at P of hT coincides
with the efficient influence function of T in the original semiparametric problem. In
many problems, it may be however easier to work directly with the efficient influence
function or a non efficient but tractable one. Let hT (1)(., Pθ,G) be such quantity. The
linearized version of the original problem is thus

(12) sup
pi,n , i=1,...,n

+
Πni=1npi,n,

n[
i=1

pi,n hT (1)(Xi, Pθ,G) = 0, pi,n ≥ 0, n[
i=1

pi,n = 1

,

Of course, since in practice G is unknown this also depends on the nuisance pa-
rameter G. However one may in many situations , for any fixed θ, find a smooth
estimator eGθ,n of G. Assume that such a consistant estimator exists, then we may use
as semiparametric empirical likelihood

(13) hRE,n(θ) = sup


Πni=1npi,n,
Sn

i=1 pi,n
hT (1)(Xi, Pθ, eGθ,n

) = 0,

pi,n ≥ 0,
Sn

i=1 pi,n = 1

 .
It should be noticed that in general the solution of the original problem (11) and

that of (13) are different but asymptotically equivalent (for instance if hT Hadamard
differentiable with a gradient continuous in P ).
Another possible definition which would ease the technical difficulties that we

will encounter later, when studying the asymptotic properties of this approximate
empirical likelihood, would be to use the splitting trick frequently used in the semi-
parametric literature. For this define G(1)θ,n/2 and G

(2)
θ,n/2be the estimators of G, based

respectively on the first half ([n/2] first values) and second half of the sample. Then
we may define the approximate semiparametric empirical likelihood by
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(14)

hhRE,n(θ) = sup


Πni=1npi,n, pi,n ≥ 0,
Sn

i=1 pi,n = 1S[n/2]
i=1 pi,n

hT (1)(Xi, Pθ,G(2)
θ,n/2

) +
Sn

i=[n/2]+1 pi,n
hT (1)(Xi, Pθ,G(1)

θ,n/2

) = 0

 .
However from a practical point of view the splitting trick is less than satisfactory

(the loss in using only half of the sample for the estimation of the nuisance parameter,
for instance a density may have disastrous effects on the semiparametric estimators for
fixed n), so that we will not pursue this analysis. The results that we have obtained
may be carried out in this case too using the same kind of arguments.

3.2 Asymptotic validity under weak assumptions

Consider the optimization program (11), similar arguments as in the preceding part
yield the dual equality

−2 log( hRE,n(θ))
= 2 sup

λ∈Rq

+
n[
i=1

log
�
1 + λ� hT (1)(Xi, Pθ, eGθ,n

)
�,
≡ 2 sup

λ∈Rq
hLn(λ).

Notice however that hLn(λ) cannot be seen directly as a log-likelihood ratio because
of the dependencies in eGθ,n and the absence of recentering. Indeed, there is no
reason that EPθ,G hT (1)(Xi, Pθ, eGθ,n

) = 0. However a result similar to Theorem 2.1 may
be proved by combining martingale and empirical process arguments, provided thateGθ,n is chosen adequately.

To prove the validity of empirical likelihood in this framework, we will assume the
following hypotheses :
H1 : Assume that the sequence of estimators eGθ,n is a symmetric statistic of the

observations X1, ...Xn converging to G with probability.one.
The following condition is the usual one ensuring that the bias of the estimated

influence function is small compared to the rate of convergence, that we expect. This
implies that ln,E(θ) is close to a sequence of likelihood ratio.
H2 : The estimator eGθ,n is such that

EPθ,G
hT (1)(Xi, Pθ, eGθ,n

) = o(n−1/2).

H3 : hT (1)(., Pθ,G) is a continuous function of G (with respect to a metric metrizing
convergence of eGθ,n to G).
The last condition implies a uniform control of the approximation of hT (1)(., Pθ,G)
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by hT (1)(., Pθ, eGθ,n
).

H4 : For every θ and n the functions hT (1)(., Pθ, eGθ,n
) belong to a Donsker-class of

functions with probability one. The class has an envelop H(.) > 0 may be depending
on θ with

EPθ,GH(X)
2 <∞.

Actually these conditions are weaker than the conditions that one usually assumes
in the framework of semiparametric models (see for instance Bickel, Klaassen, Ritov
and Wellner (1993) or Van der Vaart (1998), chap. 25, see his theorem 25.54). The
main reason for this is that we just want to give here conditions for the asymptotic
validity of the empirical likelihood principle. Moreover, the fact that we choose an
estimator eGθ,n which is symmetric of the observations allows to weaken the usual
hypotheses thanks to backward martingale arguments (see lemma 5.1). Nevertheless,
if we want to obtain efficient estimators by minimizing the resulting asymptotically
χ2 statistics, additional assumptions (uniformity conditions in the neighborhood of
the true value θ) as required by Van der Vaart (1998) seem to be needed.

Theorem 3.1 Assume that H1 −H4 holds then, if V ar(hT (1)(X,Pθ,G)) is of rank q,
−2 log( hRE,n(θ))→ χ2(q) as n→ +∞

yielding asymptotically correct confidence intervals of level 1− α of the form

{θ,−2 log( hRE,n(θ)) ≤ χ21−α(q)}

Remark 3.1 Another way to prove this result is to consider the sequence of
approximate least favorable models (notice the recentering factor which ensures that
we have a density)

pλ,n(.) =
dP

dµ
(.)
k
1 + λ�

�hT (1)(., Pθ, eGθ,n
)− EPθ,G hT (1)(X1, Pθ, eGθ,n

)
�l

I�
1+λ�

� hT (1)(.,P
θ, eGθ,n)−EPθ,G hT (1)(X1,Pθ, eGθ,n )

�
>0

�

Even if it may be possible to check the quadratic differentiability, conditions which
ensure that the maximum likelihood estimator of λ in this family has a good behavior
in the presence of the estimated parameter eGθ,n may be less easy to check. However
it is interesting to see that for the Bartlett correctability of the approximate empirical
likelihood (13) to hold, the behavior of EPθ,G hT (1)(X1, Pθ, eGθ,n

) is of great importance.
In many situations, for instance convex linear models (see Bickel, Klaassen, Ritov,
Wellner (1993)) we have

(15) EPθ,G
hT (1)(Xi, Pθ, eGθ,n

) = 0 ,
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so that it may be easier to show the Bartlett correctability (at least up to order
O(n−3/2)) in that case (see Chen(1996), Chen and Hall (1993) for some examples).
Remark 3.2
Although the splitting trick used to construct (14) is not very satisfactory from

a practical point of view, it may be used to weaken the hypotheses of the preceding
theorem. Indeed in that case, we do not even have to assume that the class is Donsker
(provided that we still have a square integrable envelop). If we assume instead

H5 EPθ,G ||hT (1)(X1, Pθ, eG(i)θ,n)− EPθ,G hT (1)(X,Pθ,G)||2 → 0 as n→∞, for i = 1, 2

then the result of theorem 3.1 still holds. Indeed, the Donsker property is only
needed to show the uniformity (24) in the proof. To obtain a similar theorem for
(14), we have to check that

n−1/2

 n[
i=1

hT (1)(Xi, Pθ,G)− [n/2][
i=1

hT (1)(Xi, Pθ, eG(2)θ,n
)−

n[
i=[n/2]+1

hT (1)(Xi, Pθ, eG(1)θ,n
)

 = oP (1)

which is a consequence of H5. Condition H5 may be sometimes easier to check than
the Donsker property.

4 Examples

Most of the examples of Hadamard differentiable functionals considered in Pons
and Turckeim (1991), Van der Vaart (1998) enter the framework of part 2. There
is nothing really new in detailing these examples : provided that we consider fi-
nite dimensional parameter (this includes constructing confidence intervals at several
points for a density or a hazard rate with censored data), ?Tn,1−α = {T ( hPn), hPn ∈
Pn,1−α} is asymptotically a valid confidence region. We rather illustrate our results
and remarks by some examples taken from the semiparametric literature. In Example
1 and 2, the efficient influence function is known (up to a unidimensional parameter
in example 1). We show also how empirical likelihood internally calculates this value.
Many problems quoted as challenging in Chapter 10 of Owen (2001) are actually semi-
parametric problems which may be treated as example 3. Finally we show in example
4 how extensions and Bartlett correctability may be obtained quite straightforwardly
in the case of bias sampling models studied by Qin (1994).

Example 1 : Third order correct confidence interval for a P constrained mean
Consider the example 3 p. 68 of Bickel and al. (1993) in which one is interested

in estimating the mean θ = EPX 9= 0 with T (1)(x, P ) := T (1)(x, θ) = x − θ, on the
set of probability with a fixed coefficient of variation {P such that EPX8 < ∞ and
γ(P ) = EPX

2− (1+ c0)(EPX)2 = 0, c0 9= 0}. Let γ(1)(., P ) be the influence function
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of γ(.) at P . By a straightforward calculus, it is given by

γ(1)(x, P ) := γ(1)(x, θ) = x2 − 2(1 + c0)θ(x− θ)− (1 + c0)θ2

The efficient influence function which is given by the projection on the nuisance
tangent space {h ∈ L2(P ), EPh = 0 and EPhγ(1) = 0} has the following expression
(this is simply the residual of the regression of T (1) on γ(1), see Bickel and al. (1993)
p.55)

(16) hT (1)(x, P ) = T (1)(x, P )− covP (T (1)(X,P )γ(1)(X,P ))
V arP (γ(1)(X,P ))

γ(1)(x, P )

and has variance

VP hT (1)(X,P ) = VPT (1)(X,P )− covP (T (1)(X,P )γ(1)(X,P ))2
V arP (γ(1)(X,P ))

.

However the regression coefficient α = covP (T
(1)(X,P )γ(1)(X,P ))

V arP (γ(1)(X,P ))
is unknown and must

be estimated for instance by

eα(θ) = 1
n

S
T (1)(Xi, θ)γ

(1)(Xi, θ)
1
n

S
γ(1)(Xi, θ)2

which is a symmetric function of the observations. However hT (1)(x, P ) is clearly
continuous in α (which plays here the role of the nuisance parameter G) and we have
by lemma 2, eα(θ)→ α(θ) a.s..We then may use the ”estimated” estimating function

n[
i=1

T (1)(Xi, θ)− eα(θ)γ(1)(Xi, θ) = 0
It is easy to check that

EP (T
(1)(Xi, θ)− eα(θ)γ(1)(Xi, θ))

= −EP
+

1
n

Sn
j=1 T

(1)(Xj, θ)γ
(1)(Xj , θ)γ

(1)(Xi, θ)
1
n

Sn
j=1 γ

(1)(Xj , θ)2

,
= O(n−1).

Moreover, H4 is satisfied with

H(x) = |T (1)(x, θ)|+ 2VP (T (1)(X,P ))1/2VP (γ(1)(X,P ))−1/2|γ(1)(x, θ)|.
Moreover under EX8 <∞, we have

EP
�
T (1)(Xi, θ)− eα(θ)γ(1)(Xi, θ)− T (1)(Xi, θ)− α(θ)γ(1)(Xi, θ)

�2
≤ �

EPγ
(1)(Xi, θ)

4
�1/2 �

EP (eα(θ)− α(θ))4
�1/2 → 0 as n→∞
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so that H5 is satisfied. We may then apply Theorem 3.1 to obtain an empirical like-
lihood based confidence intervals.
In this case, it is simpler to consider this semiparametric model as a problem in

which there are two estimating functions corresponding respectively to
EQ(T

(1)(X,P )) = 0 and EQ γ(1)(X,P ) = 0. Notice that at P , these two estimating
functions only depend on θ so that the results of Qin and Lawless (1994) apply in this
framework. This result may be explained by the fact that the optimization problem
internally computes (up to a constant) the efficient influence function. Indeed if one
tries to solve directly the dual optimization problem

sup
λ,µ
n−1

n[
i=1

log
�
1 + λ�T (1)(Xi, P ) + µ�γ(1)(Xi, P )

�
straightforward calculus based on Taylor expansion (see remark 3) yields

Ω

 eλ
eµ
 =

 1
n

Sn
i=1 T

(1)(Xi, P )

1
n

Sn
i=1 γ

(1)(Xi, P )

+ oP (1)
with

Ω =

 VP (T
(1)(X,P )) CovP (T

(1)(X,P )γ(1)(X,P ))

CovP (T
(1)(X,P )γ(1)(X,P )) VP (γ

(1)(X,P ))


that is  eλ

eµ
 =

 1
n

Sn
i=1

hT (1)(Xi, P )/VP (hT (1)(Xi, P ))
1
n

Sn
i=1 hγ(1)(Xi, P )/VP (hγ(1)(Xi, P ))


where hγ(1) is the residual of the regression of γ(1) on T (1)

hγ(1)(x, P ) = γ(1)(x, P )− covP (T
(1)(X,P )γ(1)(X,P ))

V arP (T (1)(X,P ))
T (1)(x, P )

that is the efficient influence function when estimating γ(P ) with a known mean θ.
Thus the m.l.e. of λ is exactly proportional to the efficient estimating function given
by (16). As a by product, this suggests that we may use the solution of the estimated
KT coefficient seen as function of the parameter θ, eλ = eλ(θ) to obtain an efficient
estimator of θ by solving eλ(θ) = 0 (which may be done practically by discretizingeλ(θ)), without any preliminary estimation (of α) as in the first method.
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Moreover the likelihood ratio behaves like

Gn = n

 1
n

Sn
i=1 T

(1)(Xi, P )

1
n

Sn
i=1 γ

(1)(Xi, P )


�

Ω−1

 1
n

Sn
i=1 T

(1)(Xi, P )

1
n

Sn
i=1 γ

(1)(Xi, P )


which is no more than the usual General Method of Moments (GMM) objective func-
tion. Because of the likelihood structure of the least favorable family parameterized
by µ and λ, we may straightforwardly modify Theorem 2.1 and obtain the Bartlett
correctability of the empirical likelihood. Notice however that the two methods, that
is, on one hand calculating first the efficient influence function and then applying the
empirical likelihood method or on the other hand, applying the empirical likelihood
to the constraints seen as estimating functions lead to different objective functions.
The first method somehow amounts in estimating �Ω−1, which is actually internally
computed in the second method.
Example 2 Mixture models (see Chap. 4.5 of Bickel and al (1993) and Amari

and Kawanabe (1997))
Let g(η) be an unknown positive density on R and {f(x, θ, η), θ ∈ R, η ∈ R} be

a regular parametric exponential family of density

f(x, θ, η) = C(η, θ) exp(ηT1(x, θ) + T2(x, θ))

where T1 and T2 are measurable functions not depending on η, differentiable in
θ such that ∂T1(.,θ)

∂θ
is a function of T1.

The observations (X1, X2, ...Xn) are taken from

p(x, θ) =

]
f(x, θ, η)g(η)dη

then the efficient influence function of θ is given by

T (1)(X, θ, P ) =
∂T2(X, θ)

∂θ
− EP{∂T2(X, θ)

∂θ
|T1(X, θ)}

and is independent of the nuisance density g (see Amari and Kawanabe (1997)) for
details on the existence of an estimating function in this case).so that we may directly
apply theorem 2.1.

Example 3 : Confidence region for the center of symmetry of a semiparametric
family
Assume that the model is given by ℘θ,G = {Pθ,η << µ (any dominating measure) with

dPθ,η
dµ

= η(x − θ) and η symmetric about 0, η ∈ G}. To avoid technical difficulties,
we assume that the densities are bounded and strictly positive on the whole support.
We will also assume some conditions (Lipschitz or Sobolev type conditions) to ensure
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that the class {
.
η(x−θ)2
η(x−θ) , η ∈ G} is a Donsker class (see for instance Van der Vaart and

Wellner(1996)). It is known that θ may be estimated adaptively. An efficient influ-
ence function for the parameter θ is given by −I(η)−1

.
η(x−θ)
η(x−θ) with I(η) =

U .
η(x−θ)2
η(x−θ) dx.

Let eηθ be a symmetrized kernel density estimator of η based on the recentered obser-
vations {Xi − θ, −Xi − θ}. Consider for instance the construction in van der Vaart
(1998), p. 397, then all the conditions of Theorem 3.1 are satisfied (H1 follows by
construction, H2 is implied by the bounding hypotheses on the family of densities,
H3 follows from the symmetry). Thus the semiparametric empirical log-likelihood
given by

2 sup
λ
n−1

n[
i=1

log

#
1 + λ�

.eηθ(Xi − θ)eηθ(Xi − θ)

$
is asymptotically χ2(1). Bartlett correctability essentially depends on the choice of
the smoothing parameter for constructing eηθ and will be investigated elsewhere.
Example 4 : Empirical likelihood in biased sampling model revisited.
We refer to chap 6 of Owen(2001) for complete references and give only a few ar-

guments showing how our approach can lead directly to the validity of empirical like-
lihood for general parameters. In biased sampling problems, we have s-independent
samples generated by s biased distributions defined by nonnegative weight functions
wi

Qi(dy) =
wi(y)

Wi(P )
P (dy)

Wi(P ) =

]
wi(y)P (dy).

We do not assume here that there is a preliminary selection of a ”stratum” with known
probabilities : this case may be handled quite similarly. We assume for simplicity that
P is dominated by a measure µ.
Let

X1,i, .......Xni,i i.i.d. Qi , i = 1, ...., s

and denote n =
Ss

i=1 ni the total sample size. We use in the following the dominating
measure

Pn = n
−1

s[
i=1

ni[
j=1

δXj,i

Notice that this is not the non parametric maximum likelihood estimator for P.
Let us give some examples :

Example 4.1: Stratified sampling
Let X be a random variable taking its value in Rk. And let S1, S2, ...., Ss be a

partition of the space:
s

U
i=1
Si = R

k, Sj∩Si = ∅. Then the weight functions are wi(x) =
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ISi{x} where IA{.} is the indicator of set A. It is known that, unless auxiliary
(transverse) informations are available, the probability P is not identifiable.

Example 4.2: Enriched sample
It is more frequent that a sample obtained by sampling in the population is com-

pleted by s − 1 biased samples (this is for instance the case when a survey is first
based on a random sampling scheme and then completed by some additional biased
sample), in that case S1 = Rk and S2, ...Ss do not form a partition and we have simply
in that case w1(x) = 1. It is generally assumed that the biasing scheme i.e. the wi
are known. Then the likelihood of the data is given by

(17) Ln(P, µ) = Πsi=1Π
ni
j=1

dQi
dµ
(Xj,i) = Πsi=1Π

ni
j=1

wi(Xj,i)

Wi(P )

dP

dµ
(Xj,i)

Example 4.3: Length biased sampling
It happens sometimes that the bias of the sampling scheme is related to the length

of the variable (see Vardi (1982)). In survey sampling this often happens when the
inclusion probability is proportional to a positive measure of size. In that case the
weight is typically of the form w(x) = x.

Vardi (1982, 1985), Gill, Vardi and Wellner (1988) have given conditions for the
identifiability of P and for the existence and unicity of the non-parametric maximum
likelihood estimator (NPMLE) of P say Pw,n. If one is interested in a functional of
P , then the von Mises’ principle (known as the delta method) yields asymptotically
convergent (and often Gaussian) estimators. The NPMLE of T (P ) is no-more than
T (Pw,n).Qin (1993) has generalized the approach of Owen (1988) in the case of exam-
ple 2 (enriched sample with s=2). We think that it is easier to understand his work
in our framework : most of his results may be obtained and generalized in a more
straightforward way by using convex duality arguments provided that an adequate
(LAN) least favorable family is constructed. The empirical likelihood in a biased
sampling model evaluated at θ is defined here similarly to (17) by considering only
probability dominated by Pn

Lw,n(θ) = sup
Q

�
Ln(Q,Pn), Q << Pn, T (Q) = θ,

]
dQ = 1

�

= sup
pj,i,n
i=1,...,s
j=1,...,ni


Πsi=1Π

ni
j=1

wi(Xj,i)Ss
k=1

Sni
l=1 wi(Xl,k)pl,k,n

npj,i,n,

T (
Ss

i=1

Sni
j=1 pj,i,nδXj,i) = θ, pj,i,n > 0,

Ss
k=1

Sni
l=1 pj,i,n = 1


= sup

pj,i,n,Wi
i=1,...,s
j=1,...,ni


Πsi=1Π

ni
j=1

wi(Xj,i)

Wi
npj,i,n, T (

Ss
i=1

Sni
j=1 pj,i,nδXj,i) = θ, pj,i,n > 0 ,Ss

k=1

Sni
l=1 pj,i,n = 1,

Ss
k=1

Sni
l=1wi(Xl,k)pl,k,n =Wi
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which we approximate by the linearized version

hLw,n(θ) = sup
pj,i,n,Wi
i=1,...,s
j=1,...,ni


Πsi=1Π

ni
j=1

wi(Xj,i)

Wi
npj,i,n,

Ss
i=1

Sni
j=1 pj,i,nT

(1)(Xj,i, θ) = 0,

pj,i,n ≥ 0 ,
Ss

k=1

Sni
l=1 pj,i,n = 1,

Ss
k=1

Sni
l=1wi(Xl,k)pl,k,n =Wi


We assume for simplicity that the gradient (or the estimating function) T (1)(Xj,i, θ)

only depends on θ. We will also assume the following conditions (see Vardi (1985),
Owen (2001)) which ensures the existence of a non parametric maximum likelihood es-
timator. This condition essentially means that we are not in the situation of example
4.1, that is that we have transverse informations or ”linking” observations.
(H1) For every proper subset B of {1, ..., s},�

∪
i∈B
{X1,i, ...,Xni,i}

�
∩
�
∪
i/∈B
{X, wi(X) > 0}

�
9= ∅.

Actually this condition plays the role of a qualification constraint ensuring that
the original and dual solutions have a finite solution so that the set equivalent to
Pn in this framework is non empty.
The following condition also appears in Qin (1993)1. It ensures somehow that

the sampling bias is not proportional to T (1)(X,P ). This hypothesis thus excludes
example 4.3 in the case of the mean with T (1)(x, P ) = x − θ and w(x) = x, a case
which can be considered by itself by minor modification.
(H2)

V ar

 T (1)(X,P )

w(X)

 is of rank q + s

Under the condition H1, the value of the empirical likelihood calculated at Vardi’s
non-parametric maximum likelihood is

Lw,n = sup
pj,i,n,Wi
i=1,...,s
j=1,...,ni


Πsi=1Π

ni
j=1

wi(Xj,i)

Wi
pj,i,n, pj,i,n ≥ 0 ,Sn

i=1 pj,i,n = 1,
Ss

k=1

Sni
l=1wi(Xl,k)pl,k,n = Wi


= sup

Q

�
Ln(Q,Pn), Q << Pn,

]
dQ = 1

�
1Notice that Qin (1993) makes the assumption on p.1183 that w(x) (w2(x) in our notation) is

not proportional to x. See also his comment after his Theorem 1.
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that is the non-parametric maximum likelihood estimator Pw,n of P is the solution
of the unconstrained empirical likelihood. The empirical log-likelihood ratio for θ is
then

RE,w,n(θ) = hLw,n(θ)/Lw,n
Define w(x) = (w1(x), ..., ws(x)) and W = (W1, ...,Ws). As in part 2, we may

now define the least favorable model

pλ,γ(x)(18)

=
dP

dµ
(x)(1 + λ�T (1)(x, θ) + γ�(w(x)−W ))

I
�
1 + λ�T (1)(x, θ) + γ�(w(x)−W ) > 0�

=
dQi
dµ
(x)(1 + λ�T (1)(x, θ) + γ�(w(x)−W )) Wi

wi(x)
I{x ∈ Si}

I
�
1 + λ�T (1)(x, θ) + γ�(w(x)−W ) > 0�

where the family is indexed by the parameter (λ, γ,W ) ∈ Rq ×Rs × Rs.
The convex duality arguments of part 1 (used twice) imply that the empirical

likelihood ratio is

−2 log(RE,w,n(θ))(19)

= 2

#
sup
W,γ

#
s[
k=1

nk[
l=1

log(1 + γ�(w(Xl,k)−W )) +
s[
k=1

nk log(Wk))

$

− sup
W,λ,γ

#
s[
k=1

ni[
l=1

log(1 + λ�T (1)(Xl,k, θ) + γ�(w(Xl,k)−W ) +
s[
k=1

nk log(Wk)

$$

which is exactly the log likelihood ratio for testing λ = 0 in model (18). Compare with
Qin (1993). Now underH1 andH2, (18) is quadratically differentiable (using the same
arguments as in Th. 1) (if H2 does not hold then P (1+λ�T (1)(X, θ)+µ�(w(X)−W ) =
0) 9= 0 and the quadratic differentiability may fail). It follows immediately that (19)
is asymptotically χ2(q), yielding a confidence region of the form

?1−α =
�
θ,−2 log(RE,w,n(θ)) ≤ χ21−α(q)

�
,

asymptotically of level 1−α. Under additional moments on (T (1)(X,P ), w(X)) Bartlett
correctability also follows from representation (19) as a log-likelihood ratio for testing
λ = 0 in the family (18).
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5 Technical details

5.1 Proof of lemma 2.1

Put r0 = exp(−1
2
χ21−α(q)) < 1 for α ∈]0, 1[ and p∗ = mini(pi,n) ≤ 1

n
≤ max(pi,n). Consider

j such that p∗ = pj,n then the constraint on the likelihood implies

r0 ≤
p∗
Tn
i=1,i�=j pi,n�
1
n

�n ≤
p∗max

Tn
i=1,i�=j pi,n�
1
n

�n with ,
[
i�=j
pi,n = 1− p∗(20)

= n p∗(1− p∗)n−1(n/(n− 1))n−1

because (n/(n− 1))n−1 is an sequence converging and increasing to e. This yields the
inequality

1

n

r0
e
≤ p∗ ≤ 1

n

Now we have that
dH(Q,P ) ≤ K(Q,P ),

where

dH(Q,P ) =

]
(

�
dQ

dP

�1/2
− 1)2dP

is the Hellinger distance between Q and P when Q is dominated by P.
It follows that on Pn,1−α

dH(Q,Pn) ≤ χ21−α(q)
2n

implies

n−1
n[
i=1

�
(npi,n)

1/2 − 1
�2
≤ χ21−α(q)

2n

and particularly

p∗ ≤ n−1
#
1 +

�
χ21−α(q)
2

�1/2$2
Notice that when α→ 1, then the bound converges to 1

n
, that is at the limit all the

p�i,ns are equal to
1
n
.

Now notice that
�Sn

i=1 p
2
i,n

�1/2
( hPn−P ) = �Sn

i=1 p
2
i,n

�1/2
(
S
pi,n(δXi−P )) is noth-

ing else than a weighted empirical process with deterministic weights pi,n/
�Sn

i=1 p
2
i,n

�1/2
.

First check that
max
1≤i≤n

pi,n�Sn
i=1 p

2
i,n

�1/2 → 0,
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since each pi,n is of order 1nby the first part of the lemma. Since theXi are i.i.d. and F
is Donsker and satisfy the uniform entropy condition (6), it follows (see Van der Vaart
and Wellner (1996) p. 210 and Koul (1992) Th. 2.2 for the real multidimensional
case), that

1

(
Sn

i=1 p
2
i,n)

1/2

[
pi,n(δXi − P )→ GP in L∞(F)

whereGP is a gaussian process with covariance operator independent of the weights. Now
for pn = (p1,n, ...., pn,n)
constrained by Pn,1−α (we will use the notation pn Pn,1−α), put for f ∈ F

Gn,pn(f) =
1

(
Sn

i=1 p
2
i,n)

1/2

[
pi,n(δXi − P )(f).

To prove the uniform convergence over Pn,1−α, it is sufficient to check the uniform
equicontinuity condition

lim
δ→0

lim sup
n→∞

sup
pn Pn,1−α

Pr(|| sup
||f−g||2,P<δ

|Gn,pn(f)−Gn,pn(g)| > ε)→ 0.

where

||f − g||22,pn =
n[
i=1

p2i,nSn
i=1 p

2
i,n

(f(Xi)− g(Xi))2.

Using the first part of lemma 2.1, there exists non negative constants A and B such
that for any pn Pn,1−α
(21) A||f − g||22,Pn ≤ ||f − g||22,pn ≤ B||f − g||22,Pn
Thus ||f − g||22,pn is uniformly equivalent over Pn,1−α to ||f − g||22,Pn .Define also

Fδ,P = {f − g, f ∈ F , g ∈ F , ||f − g||2,P < δ}
is a measurable class of function by the Suslin hypothesis.
Now using standard empirical process arguments, subgaussiannity of Gn,pn(f) (for

the seminorm ||f − g||22,pn), symmetrization and Markov inequality (see the proofs of
Th 2.5.2 and 2.8.3 in Van der Vaart and Wellner (1996)), we have for any sequence
δ → 0, there exists a constant C such that

∆n = P ( sup
||f−g||2,pn<δ

|Gn,pn(f)−Gn,pn(g)| > ε)

≤ CEP

] θn/||H||2,pn

0

t
log(N(ε||H||2,pn,Fδ,P , ||.||22,pn)dε ||H||2,pn

with
θn = sup

f∈Fδ,P
||f(Xi)||2,pn ≤ B sup

f∈Fδ,P
||f(Xi)||2,Pn = θ∗n
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Now (21) implies that there exists a constant C such that for all pn Pn,1−α,

N(ε||H||2,pn ,Fδ,P , ||.||22,pn) ≤ CN(ε||H||2,Pn ,Fδ,P , ||.||22,Pn).

Since we have ||H||2,Pn ≥ 1 and EP ||H||22,Pn = EPH2, it follows that by Cauchy-
Schwartz inequality that

∆2
n ≤ C1EP

#] θ
�
n/A

0

u
sup
Q
log(N(ε||H||2,Q,Fδ,P

, ||.||2,Q)dε ||H||2,Pn
$

≤ C2

EP #] θ
�
n/A

0

u
sup
Q
log(N(ε||H||2,Q,Fδ,P

, ||.||2,Q)dε
$21/2 �

EPH
2
�1/2

(22)

≤ C3

#] η

0

u
sup
Q
log(N(ε||H||2,Q,Fδ,P

, ||.||2,Q)dε+ P (θ∗n/A > η)

$1/2 �
EPH

2
�1/2

Under the uniform entropy condition, the right hand side of (22) does not depend
on pn and may be made as small as we want provided that θ

∗
n → 0.This a consequence

of Th 2.5.2 in Van der Vaart and Wellner(1996) and follows from the uniform laws of
large number over the class {f − g, f ∈ F , g ∈ F}, which is measurable in our case
because F is admissible Suslin. Taking the supremum over Pn,1−α on the right hand
side of (22) yields the result.

5.2 Proof of Theorem 3.1

We recall the following lemma taken from Bertail and Lo (1996). This result may
also be useful in semiparametric applications (when one wants to avoid the splitting
trick). For seek of completeness, we give a short proof of this result.

Lemma 5.1 Assume X1,X2, ...Xn are i.i.d. random variables and for each n, let

Gn be a symmetric statistic of the observations. Let ω(x, t) be a function of two vari-

ables such that (i) ||ω(x, t)|| ≤ H(x) with EH(X) <∞ and (ii) ω(x, t) is continuous

in t. Then Gn
a.s.→ G implies that

Sω
n =

1

n

n[
i=1

ω(Xi, Gn)
a.s.→ E(ω(Xi, G))

Proof : see also Bertail and Lo (1996). It is sufficient to write

Sω
n = E (ω(X1, Gn)|Sn)
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where Sn is the symmetric field containing all the symmetric functions ofX1, X2, ..., Xn.
By the extended backward martingale convergence of Blackwell and Dubins (1965),
Sω
n converges with probability one to E (ω(X1, G)|S∞) . But by the Hewitt-Savage
zero-one law, S∞ is non trivial and therefore E (ω(X1, G)|S∞) is constant equal to
E (ω(X1, G)) .
This implies the convergence of the estimated efficiency bound to the true one

stated in the following lemma.

Lemma 5.2 Under H1 and H3,

In(θ) = n
−1

n[
i=1

hT (1)(Xi, Pθ, eGθ,n
)hT (1)(Xi, Pθ, eGθ,n

)
� → I(θ, G) a.s.

with

I(θ, G) = EPθ,G
hT (1)(Xi, Pθ,G)hT (1)(Xi, Pθ,G)�

Proof : Apply Lemma 5.1 with ω(Xi, G) = hT (1)(Xi, Pθ,G)� hT (1)(Xi, Pθ,G).Under
H3 , ||ω(Xi, G)|| ≤ H(X)2. Since Pθ, eGθ,n

is symmetric of the observations and
EH(X)2 <∞, In → I(θ, G) as n→∞.
We also use the following useful and straightforward result which may be found

in Le Cam (1986): p. 188. This simple lemma allows to avoid the assumptions on
the existence of third order moments generally made in the literature.

Lemma 5.3 Let Yk,n be an array of r.v. such that

(i) maxk(Yk,n)→ 0 in probability

(ii)
Sn

k=1 Y
2
k,n is bounded in probability

and let φ(x) be a measurable and second order (Peano) differentiable function at 0

with φ(0) = 0 then

n[
k=1

φ(Yk,n)− φ
�
(0)

n[
k=1

Yk,n − φ
��
(0)/2

n[
k=1

Y 2k,n = oP (1)

Proof : Taylor expansion.
Proof of Theorem 3.1 :
The proof is now on the same line as Owen (1990). Notice first that by lemma 5.1,

for each fixed λ, Ln(λ) = n
−1Sn

i=1 log
�
1 + λ� hT (1)(Xi, Pθ, eGθ,n

)
�
converges to

EPθ,G log
�
1 + λ� hT (1)(X,Pθ,G)� ≤ log�1 + λ�EPθ,G hT (1)(X,Pθ,G)� = 0
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by Jensen inequality. Thus the unique maximum of the limit is 0. Because of the
strict concavity of Ln(λ), the supremum is attained at eλ which is the unique solution
of the equation

(23)
1

n

n[
i=1

hT (1)(Xi, Pθ, eGθ,n
)

1 + λ� hT (1)(Xi, Pθ, eGθ,n
)
= 0

Since supn(EPθ,G ||hT (1)(Xi, Pθ, eGθ,n
)||2) < EPθ,GH2(X) < ∞,following Owen (2001)

p. 220, we obtain eλ = OP (n−1/2) (use his arguments as well as lemma 5.2 to control
the moments uniformly) and that we have by direct Taylor expansion of (23)#

n[
i=1

hT (1)(Xi, Pθ, eGθ,n
)

$
−

n[
i=1

hT (1)(Xi, Pθ, eGθ,n
)hT (1)(Xi, Pθ, eGθ,n

)
�eλ = oP (1).

Under H2 and H4, we get that

(24) n−1/2
n[
i=1

hT (1)(Xi, Pθ,G)− n−1/2 n[
i=1

hT (1)(Xi, Pθ, eGθ,n
) = oP (1).

(24) and lemma 5.2 implies

√
neλ = I(θ, G)−1#n−1/2 n[

i=1

hT (1)(Xi, Pθ,G)$+ oP (1)→ N(0, I(θ, G)−1).

Now put Yk,n = eλ� hT (1)(Xi, Pθ, eGθ,n
), then we can check

max
1≤i≤n

(Yk,n) = max
1≤i≤n

(hT (1)(Xi, Pθ, eGθ,n
)) OP (n

−1/2) = oP (1)

and, using lemma 5.2[
Y 2k,n = n

1/2eλ�#n−1 n�[
i=1

hT (1)(Xi, Pθ, eGθ,n
)hT (1)(Xi, Pθ, eGθ,n

)
�
$
n1/2eλ = OP (1)

Thus applying lemma 5.3 with φ(x) = log(1 + x) and using lemma 5.2 we get

n[
i=1

log
�
1 + eλ� hT (1)(Xi, Pθ, eGθ,n

)
�

=

#
n−1/2

n[
i=1

hT (1)(Xi, Pθ,G)$�

I(θ, G)−1
#
n−1/2

n[
i=1

hT (1)(Xi, Pθ,G)$+ oP (1)
and the result follows.
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