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Abstract

We introduce different ways of being dependent for the input noise of stochastic
algorithms. We are aimed to prove that such innovations allow to use the ODE
(ordinary differential equation) method. Illustrations to the linear regression
frame and to the law of the large number for triangular arrays of weighted
dependent random variables are also given.

Algorithmes stochastiques a bruit dépendant

Résumé

La dépendance du bruit d’un algorithme stochastique est modélisée de diffé-
rentes manieres, de sorte que la méthode de I’équation différentielle ordinaire
reste applicable. Ces techniques de dépendance faible sont illustrées par des
applications & un algorithme de régression linéaire et a I’étude de tableaux
triangulaires de variables aléatoires pondérées dépendantes.
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1 Introduction

We consider the IR%-valued stochastic algorithm, defined on a probability space
(Q, A, P), and driven by the recurrence equation

Zn+1 =Zn+ ’Ynh(Zn) + Nnt1, (1)

where
e h is a continuous function from an open set G C IR? to IRY,
¢ (vn) a decreasing to zero deterministic real sequence satisfying

Z'Yn:OO (2)

n>0

e (1) is a “small” stochastic disturbance.

The ordinary differential equation (ODE) method (see [3], [12], [17], ...)
associates the possible limit sets of (1) with the properties of the associated
ODE

dz

i h(z). (3)
If this algorithm has bounded sample paths, then these sets are compact con-
nected invariant and “chain-recurrent” in the Benaim sense for the ODE (cf.
[2]). These sets are more or less complicated. Various situations may then
happen, for example the most simple case is an equilibrium: (z is a solution of
h(z) = 0), an equilibria cycle, or a finite set of equilibria is linked to the ODE’s
trajectories, connected sets of equilibria or, periodic cycles for the ODE ...

One often assumes the following assumptions on the “small disturbance”

TIn+1 = Cn(5n+1 + Tn+1)a (4)
where (¢,,) denotes a nonnegative deterministic sequence such that
Y =0(cp) , B2 < o0 (5)

(¢,) and (r,) are IR%-valued random vectors sequences, defined on (£, A, P),
and adapted with respect to an increasing sequence of o-fields (F,)n>0 and
satisfying almost surely (a.s.) on A C Q:
E(ept1|Fn) = 0 Vn > 0, and (6)
Tn —n—soo 0 a.s. (7)
The aim of this paper is to consider algorithms satisfying each of those assump-

tions except for (6). We substitute it by some dependence conditions. In this
framework, we shall be able to apply the ODE method as soon as

Z CnEnt1 CONVETEES a.s. (8)



The paper is devoted to sufficient conditions for (8). Section 2 considers the
weak dependence condition from Doukhan & Louhichi in [11]; set for this

Wz, .. 20) — h(yr,. ..
Lip (h) = sup | (wl’ ,(Eu) (yla 7yu)|
(@1, 2u) A(Y150-Yu) |21 —y1| + - + [Tw — Yul
£={h/ such that h: R > I, for some u > 0°, Lip (k) + |hllc < o0}

, if h: R - IR,

and consider some function from €' : IN** — IR. The sequence (€n) is said
to be (0, L,C)-weakly dependent if there exists a sequence 6 = (6,),>0 such
that 6, | 0 as n 1 oo and statisfying, for any (u + v)-tuple (t1,...,ty1,) with
t1 < "'Stu<tu+rStu+1 < "'Stu+va

|Cov (R (etrs---2tn) sk (Etugas- -+ Etuyn)) | < Clu,v)(Lip(h) + Lip(k))6,.
(9)
Various examples of this situation may be found in [10]; they include

e general Bernoulli shifts, e, = 2, Zkl,...,kz aﬁfl)’“,,kﬂt—kl M=k

e stable Markov chains such as, e, = G(g4—1,...,&—p) + 11,
e or ARCH(o0) models, g, = (ag +2 51 ajEt_j) T

generated by some i.i.d. sequence (7). In the first example, the situation
of an infinite moving average, for which ¢ = 1, is of a special interest and
Or < 4E|n0] 305> r |a,(€1)|. Now 6, | 0 (geometrically) in the second case, if
G210 2p) =G (Y1, -5 Yp)| < 325 bjlw —ys] with 375 a; < 1and Elno| < ocf.
In the last, non-Markov and non-linear, example a chaotic expansion holds if
>_j>1laj|Elmo| < 1 and then any class of rate may be obtained for 6,. Note that
r always denotes the gap in time between “past” and “future”. A generalization
to the vector IR%-case is also provided below.

Section 3 considers a weakly dependent noise in the sense of the y-weak
coefficients in Dedecker & Doukhan, [8]. The mixingale-type coefficients, defined
for the sequence (e,,)n>0, used there is defined as 7, = sup;>q || E(x4r|o(s, 4 <
k)) — E(eg4r)|]1- The sequence (g,) is said to be y-weakly dependent if ~, — 0
as r — oo. In [8], this is proved that a causal version of (6, £)-weak dependence
implies y-weak dependence, where le right left hand side in eqn. (9) writes
< C(v)Lip(k)é, only depends on k. Counter-examples of y-weakly dependent
sequences which are not (8, £)-weakly dependent may also be found there. We
first settle an immediate extension of this notion to IR? valued sequences. The
definition of v-weak dependence extends to IR :

Proposition 1 The two following assertions are equivalent :
(i) A IR -valued sequence (X,,) is v-weakly dependent,
(ii) Each component (XL) (¢ =1,...,d) of (X,,) is v-weakly dependent.



Proof. Clearly, | E(X;,, — E(X; )| Fn)ll < 1E(Xntr — E(Xp4r)|F)ll1 and
(i) implies (ii). On another hand,
IE(Xntr — EXup)|F)ll = E@Ll( (XL, — B(XL,,)|F)? hence
1E(Xntr — E(Xpir)|[Fo)ll < \/amaxlﬁfgd er- [ |

In the frame of the (8, £)-weak dependence we say that the IR%-valued se-
quence (X,,) is (6, £)-weakly dependent if each component (X/) is (¢, £)-weakly
dependent.

The two forthcoming sections are devoted to provide moment inequalities of
the Marcinkiewicz-Zygmund type adapted to deduce the relation (8) in those
two frames. The last section 4 is devoted to apply the study to the examples of
Robbins-Monro algorithm and to strong laws of the large numbers for triangular
arrays.

2 Weakly dependent noise

Let (e,) be a sequence of centered random variables. satisfying a (6, £)-weak
dependence as described in eqn (9). We denote by S,,, the sum Z?:l €; and
Cy = maxy4y<q C(u,v),

sup |Cov(es, =+ €, Etmyy 1y )| < Coq"MI20,. (10)

where the supremum is taken over all {¢1,...,t,} such that 1 <#; <--- <t,,
and 1 <m < ¢ such that ¢,,41 —t,,, =7, or

min(6,,1
|Cov(et, * = EtprsEtpmys * " Et,)| < Mq/ Qe (7) - Qe (z)dz. (11)
0

where we denote by @ x the quantile function of |X|, which is the generalized
inverse of the tail function ¢t — P(|X| > t) and M, = max(C,,2).

The bound (10) is mainly suitable for bounded sequences while (11) holds
for more general r.v.s, using moment or tail assumptions. Various examples for
which one of these two bounds holds in [11]. Moreover, let p be some fixed
integer not less than 2.

If (10) holds for all g < p, then, for any n > 2

»/2 n—1
s G (enge) (e )
: =0 r=0

If, now, (11) holds for all ¢ < p, then, for any n > 2

p (2p 2): min(6 p—1
Bsz) < P {(Z/ WPQE (w)d ) (13)



nooa p/2
v (@Z / fmin (9" (u), m)}" 1 Q2. <u>du)

Hence, if £, = >} ¢h_16n, and
sup |Cov(es, *+* Etp s Etmyr " €ty)| =2 Crq(t1),

where the supremum is considered, for ¢; > 1 fixed, over all {¢,---,¢;} such
that t; <--- <ty <tpmyr--- <tgand r =tyq1 — b
Using similar techniques as in [11], we derive the following result

Proposition 2 Let p > 2 be some fized integer and let (e,) be a centered (6, L)-
weakly dependent sequence of real random variables. Assume, for all 1 <i<n
and 2 < q < p, that

a=2 P—gq

Cry(i) < G (1) (0) (14)

Then for n > 2,
By < 2R { (Z &0 Y Crli)r + 1>P—2> (15)

n n—1 p/2
v [>e, zcrp@)
=1 r=0

Note that (14) is satisfied as soon as (10) holds. And in this case, as in the
most of examples in [11], we obtain :

|[EXP| < % { (Cpvap—Q Zcfﬂ z_:(r + l)P—Qar) (16)

i=1 r=0
n n—1 p/2
Vo G2 ) 0,,>
i=1 r=0
This result is mainly adapted to the bounded sequence. The following result is

appropriate to more general r.v.s but require a moment assumption.

Proposition 3 Let p be some fized integer not less than 2 and (e,,) a centered
(0, L)-weakly dependent sequence of r.v.s. Assume that for all 2 < q < p, eqn.
(11) holds and there exists a constant ¢ > 0 with,

q-=2 p—q
M, < Mg 2 M& 2, and, (17)

3 k>p, Vi0:  Ps>0)< - (18)

~~



Then for n > 2,

|EXP| < %-cl/k { <Mp§cf_1 i(” 1)1’20:Tp> (19)

r=0
n n—1 Ko p/2
v <M22c,2»120ﬂ“>
i=1 r=0

Note that (18) holds as soon as the €,’s have a k-th order moment such that
Vi >0 Eleg|* < e
Arguing as in Billingsley ([4]), if (15) holds for some p such that

00 00 oo 00 p/2
(Z D Crpi)(r + 1):02) Y, (Z Ry C”,(i)) <oo,  (20)

hence Ve > 0, lim;, 0 P(SUpg>q [Znir — Xn| > €) = 0, thus (X,) is a.s. a
Cauchy sequence, hence it converges. In the same way, if (19) holds for some p
such that

n %) o n n-1l ., p/2
(Z &3+ 10 ) v (Z DI ) <o (@
1=1 r=0 i=1 r=0

then, (X,,) converges with probability 1.

Equip IR? with its p-norm ||(z1, ... ,xq)|lh = af +- -+ k. Let the sequence
(¢n)n>0 be an IR%-valued and (6, £)- weakly dependent sequence. Set ¢, =
(el,...,e%) then |30, ci5i||£ = Y0 (X7, ciel)P. And if each component
(e8)n>0 is (0, £)-weakly dependent and such that relations (20) or (21) hold,
then E||X,|[b < oc. Arguing as before, we deduce that the sequence (X,)n>0
converges with probability 1.

The Proofs of the propositions 2 and 3 is in section 7.

3 ~—weakly dependent noise

Let (en)n>0 be a sequence of integrable real valued random variables, and
(vr)r>0 the associated mixingale-coefficients. Then we obtain the following re-
sult, :

Proposition 4 Let p > 2 and (¢,),,. v be a sequence of centered random vari-
ables such that (18) holds. Then for any n > 2,

p/2
2(k—p) "1 2k—p)

ESD| < (20K, Y e, PO 340 ) (22)
i=0

i=1

where Ky depends of r, p and c.



Quote that here p € IR, and is not necessarily an integer. If, now, (22) holds
for some p such that

o0 oQ
DETY P < oo, (23)
i=1 j=0

2(k—p)

2= < 1, then (X,) converges with probability 1. The proof of
this proposition is in section 7.

As in section 2, the result extends to IR?. Indeed, if we consider a centered
IR%valued and y-weakly dependent sequence (en)n>0, we have as in section 2

d n p
BISP = EY (z) |
=1 =1

and if each component (¢4),>0 (¢ = 1,...,d) are y*-weakly dependent and
verifies (23), E||X,||? < oo and we conclude as before that (¥,),>0 converges
a.s.

where m =

4 Examples of application

4.1 Robbins-Monro algorithm

The Robbins-Monro algorithm is used for dosage: to obtain level a of a function
f which is usually unknown. It is is also used in mechanics, for adjustments, as
well as in statistics, to fit a median ([12], page 50)...It writes

Zn+1 = Zn — Cn(f(Zn) — CL) + CnEn+1- (24)

Tt is usually assumed that the prediction error (g,,) is an identically distributed
and independent r.v. sequence, but this does not look natural. Weak depen-
dence seems more reasonable. Hence the previous results, ensure the conver-
gence a.s. of this algorithm, under the usual assumptions and the conditions
yielding the a.s. convergence of Y ¢ ¢p&pn1-

Under the assumptions of the proposition 2, if for some p > 2

Vi >0, (i Crp(i)(r + 1)1’—2) % (i Crp(i)) < 00, (25)

the algorithm (24) converges a.s.
If the assumptions of proposition 3 hold, then the convergence a.s. of the
algorithm (24) are ensured as soon as, for some p > 2,

3 (r+ 1)”‘20;% \Y; 3 0:%2 < 0.
=0 =0

Under the assumptions of proposition 4, as soon as (23) is satisfied, algorithm
(24) converges with probability one.



4.2 Kiefer-Wolfowitz algorithm

It is also a dosage algorithm. Here we want to reach the minimum z* of a
real function V which is C2 on an open set G of IR?. The Kiefer-Wolfowiftz
algorithm ([12], page 53) is stated as :

Tnir = Zon = 2eaVV(Z0) = T (26)
where 1,41 = §2ent1+enbia(n, Zn), |la(n, Zy)|| < K (for some K > 0), 3" ¢p =
00, Y enby < o0 and Y(§2)* < oo (for instance, ¢, = 5,0, = n~" with
0<b< 3).

Usually, the prediction error (g,) is assumed to i.i.d, centered and square
integrable and independent of Zy. The results of sections 2 and 3, improve on
this assumption until weakly dependent innovations. It is now enough to ensure
the convergence a.s. of }_ f*ept1. The (0, £)-weak dependence assumptions
are the same as for the Robbins-Monro algorithm. Concerning the vy-weak
dependence, the condition (23) is replaced by

[e%s} ) 2—m oo
Y(i) pore<s

i=1

5 Weighted weakly dependent variables trian-
gular arrays

In this section, we consider a sequence (g;);>1 and a triangular array (cui){1<i<n,n>1}
n

of non-negative real constants. We denote U,, = Z cnig;. If the €;’s are i.i.d.,
=1
Chow has established the following complete convergence result :

Theorem (Chow, [5]) Letey,..., &, ... be independent and identically dis-
tributed random variables with E(e;) = 0 and E|e;|? < oo for some q¢ >
2. If for some real constant K, non depending on n, > ., ez, < K, and
n'/fmaxi <i<n |cni| < K, then,

Vn >0 ZP(n’l/q|Un| > 1) < oo.

n=1

The last inequality is a result of complete convergence of n=1/4|U,| to 0. This
notion was introduced by Hsu and Robbins [15]. Complete convergence implies
the almost sure convergence from the Borel-Cantelli Lemma.

Li et al. [18] extend this result to arrays (cni){n>1 icz} for ¢ = 2. Quote also
Yu, [22], who obtains a result analogue to Chow’s for martingale differences.
Ghosal and Chandra [13] extend the previous results and prove some similar



results to these of Li et al. for martingales differences. As in [18], their main
tool is the Hoffmann-Jorgensen inequality ([14]). Peligrad and Utev [20] propose
a central limit theorem for partial sums of a sequence U, = Z:.L:l cni€i where
sup,, cfn» < 00, MaXi<i<n |cni] = 0 asn — oo and ¢;’s are in turn, pairwise mix-
ing martingale difference, mixing sequences or associated sequences. Mcleish,
[19], De Jong, [7], and, more recently Shinxin [21], extend the previous results in
the case of L,-mixingale arrays. Those results have various applications. They
are used for the proof strong convergence of kernel estimators. In this paper
we extend Li et al. results to our weak dependent frame. A straightforward
consequence of proposition 3 is the following result :

Corollary 1 Under the assumptions of proposition 3, if q is an even integer
such that k > q > p, and if for some real constant K, non depending on n

Y chiq <K, and if 0, = O(r—?), with a > (%)k, or 0, = O(e™ "), then

V>0 ZP(n_l/p|Un| > 1) < 00,

Proof. Proposition 3 implies

_ 1 n n—1
E|U,* < —((Qqq_ 12)),'01/ * ((Mq D i ()G ’“)
’ i=1

r=0

(MQ (zn: sz n—i Ti:l 07(“k2)/k)p/2> :
i=1

r=0

<

If Y ¢, < Kand6, =0 *), with a > (%)k, then there exists a

real constant K1 E|U,|¢ < K1, and the result follows from P(n~/?|U,| > n) <

E|U,|? n _

nqn‘?/p Y i < K and 6, = O(e™"), E|Uy,|? < K for a real constant

K, and ZP (nil/p|Un| > 77) < oo. [ |
n

As a straight consequence of proposition 4, we obtain the following result:

Corollary 2 Under the assumptions of proposition 4, if ¢ > p, k> q > 1, and

0 2—n [e's] m _ 2(k—q
Y it Cri =07 <0 where m = E(k—l)’ then

Vn >0 ZP(n_l/p|Un| > 1) < oo.

/2
n n—1
Proof. E|U,|? < | 2qK: Z i Z o from proposition 4, and the re-
i=1 =0
lation > 50 2" =0 7] < oo implies ZP(n_l/p|Un| > 1) < oo. This con-

n

cludes. B



6 Linear regression

We observe a stationary (bounded) sequence, (yn,z,) € IR X ]Rd, defined on a
probability space (2,4, P). Let M = sup,, ||ynznl|-

We look for the vector Z* which minimizes the linear prediction error of y,
with z,. We identify the IR%-vector z,, and its column matrix in the canonical
basis. So

Z* = arg min E[(y, — 2 Z)?).
zelR?

This problem leads to study the gradient algorithm

D1 = Zn + cn(yn+1 - ngrl Zn)xn+1; (27)

where ¢, = O(n™!) (so (¢,) verifies (2) and (5)). Let Chq1 = @pqrzl,,, we
obtain:

Zn+1 =Z,+ cn(yn—i-lxn-l-l - Cn+1Zn))- (28)
Let U = E(ynt1Zn+1), C = E(Cpy1) and h(Z) = U — CZ, then (28) becomes :

Znt1 = Zn+cnh(Zy) + culinga, with (29)
In+1 = (yn—i-lwn-l-l - U) + (C - Cn+1)Zn- (30)

Denoting F,, = (o(y;, z;);i < n) and we define the following assumption A-lr:

C is not singular and for any i,j € {1,...,d}, (zi2)) and (ypx,) are
v-weakly dependent, such that the vy-weakly dependent coefficient -y, is
O(a™") with a > 1.

Note. If (yn,=n), N is 6-weakly dependent in the Dedecker and Doukhan
sense ([8]), then A-Ir is satisfied. This is proved in annex.

Denoting A, (C) and Ay, (C), respectively the largest and the smallest eigen-
value of the matrix C', we now claim:

Proposition 5 Under assumption A-lr :

(1) if (Z,) is a.s. bounded then the perturbation (n,) of algorithm (29) splits
into three terms of which two are v-weakly dependent and one is a rest leading
a.s. to zero.

(i) if a.s.

/\min (0)3/2

limnsup |C = Chll < Nomas (C)172

(31)

then (Z,) is bounded and the result of (i) follows.



We thus can use the previous proposition 4 and the tools of the ODE method

in order to study the algorithm (29).

Proof of the proposition 5. To start with, we prove the result of (i) and assume

that (Z,,) is a.s. bounded. Then we prove that this assumption is justified.
The perturbation (n,) splits into two terms : (yp+1Zn+1 — U) and (C —

Cpn+1)Zp- The first term is obvious y-weakly dependent thanks to assumption

A-lIr. Tt remains to study (C — Cp41)Zn.

Study of (C — Chy1)Zy: write (C — Chy1)Zn = €ng1 + Tny1 with 41 =
(C—Cnt1)Zn — E|(C —Chy1)Zy] and 1441 = E[(C — Chy1)Zy]. We will prove
that the sequence (&) is 7-weakly dependent and that r, — 0 a.s.

Notice that 41 = E[(C = Cni1) Xj=z (Zj+1 — Zj)] + E[(C = Cpi1) Zs],
and since Zj 11 — Zj = ¢;j(yj+12501 — Cj1 Z5),

n—1
rast = Y Bl(C = Cppa)ejyjrizji]
=%
n—1
— Y E[(C - Cn41)¢jCi1 Z)]

+ E[(C —Chy1)Zg]

If 3 is not an integer, we replace it by "T_l Expectations conditionally with
respect to Fji1 of each term of the first and the second sum and with respect

Fn of the last term give, by assuming (Z,) bounded :

n—1 n—1
Tny1 < K Z %l%jcj + Ko Z %117]-03' + ’71%,1,

j=% =%

where K; and K, are non-negative constants and v, denotes the y-weakly de-
pendent coefficient of the sequence (C'—C),) which is y-weakly dependent, thanks
to assumption A-Ir (v} < dM~,). And since ¢; = O(j ') and v, = O(a™")
with a > 1, r, = O(n~!) and converges a.s. to zero. On the other hand, for
r>6:

E(entr|Fn) = E[C = Cnir)Znsr—1|Fn] = Eentr),
n+r—2

= Z E[(C - Cn+7')(Zj+1 - Z])|-7:n]
Jj=n+%

+E[(C - Cn+r)Zn+§ |Fn] = Pre

Note also that if 7 is not an integer, we replace it by % Conditionally with
respect to Fji1, the expectation of each term in the sum (and with respect
Fnz for the the last term) yields, for some non-negative constant K,

10



n+r—2

ElE(entr|Fn)ll < K ( > Vit +7;/2) + O((n +r)™*) hence,

j=n+3

T — _
Bl E(ents|Fa)ll < O((n+3) D+ Ky +0((n+1)7"), and E||E(ent|Fn)ll

72, with lim, 1o 72 = 0. So (g,) is 7-weakly dependent.
We now prove (ii). Let V(Z) = Z7CZ = |V/CZ||*. Since C is not singular, V/
is a Lyapounov function and VV (Z) = CZ is a Lipschitz function, we have

V(ZnJrl) < V(Zn) + (Zn+1 - Zn)TVV(Zn) + K||Zn+1 - Zn||2:

where K > 0 is a constant. Furthermore ||Z,11 — Zy|* < 2 (|[yns12ni1l]* +
|Cs1Znl?). Since (Yn,z,) is bounded, (Cy,) is also bounded and ||Cy,y1Z,|* <
K1||Z,||?, where K, is a non-negative constant. Moreover,
Znl|? 1
12, < ] < V(Z,). 32)

ez P S 5m©)

So that, ||Cpi1Z,|]? < K2V (Z,), where K5 > 0 is a constant, and
V(Zni1) <V (Zp) (A 4 Koc2) + M+ (Znir — Zn) T CZ,,.
The last term gives
(Znt1 — Z0)TCZy = cu(yni13-,1CZy — Z1CrinCZy)
en(Yni12E 1 CZy — ZE (Cpyr — C)CZ, — ZEC? Z,),
en(M|CZy|| + ZE(C = Cpi1)CZy — Anin(C)V(Z2))
en(MA/ Mnaz(CVV (Zn) + ZE(C = Cry1)CZn — Anin(CYV (Z)).

The last inequality follows from:

IN N

1C2l| <\ (VO Z,)TCVTZ1) < A/ Aaa OOV (Z). (33)

On the other hand, Z1(C~C,,11)CZ, < ||C=Chri1|||Zal|||CZ,||, and we deduce

)\maac (C)

Zy(C = Cny1)CZy < ||C = Cr|| Aonin(C)

V(Z,), from (32) and (33), and

(Zn+1 - Zn)TCZn S _)\mzn(c)v(zn)

X <1 —|IC = Crall VAmaz (C) M Amaz(C) ) .

)\min(c)3/2 )\mm(C) V(Zn)

Thanks to the assumption (31), for n large enough (n > N), and for
— .\ -2
V(Zy) > M, (Whefe My = M?3gpe=lS) <1 —Ic—- Cn+1||>\)3\7;701(0)> >

Agm(c) (©)

min

(Zpi1 — Zn)TCZ, < 0.

11



And if T = inf{n > N/V(Z,) < M;}. By the Robbins-Sigmund theorem,
V(Z,) converges a.s. to a finite limit on {T' = +o0}, so (Z,) is bounded since
V is a Lyapounov function.

On {liminf, V(Z,) < M:}, V(Z,) doesn’t converge to oo and using Delyon
([9], Theorem 2), we deduce that V(Z,) converges to a finite limit, as soon as :

VEk > 0, Zci ||h(Zn) + "7n+1||2][{V(Zn)<k} < 0 (34)
VE>0, > cn(ini, VV(Zn) My(z,)<ry < 0 (35)

Using relations Y ¢2 < oc and the fact that {V(Z,) < k}, [|h(Zn) + nns1]]? is
bounded, we thus deduce (34). To prove (35), it is enough, by proposition 4, to
prove that

(Mnt1, VV(Z0)) Ly (2, )<k} = €nt1, is a y-weakly dependent sequence. But to
use the result of proposition 4, it is necessary to center e,. So we are going
to prove that > ¢pFept1 < oo and that (e, — Fe,) is a y-weakly dependent
sequence.

Study of E(e,). First of all, we must note a few elements. Denoting I the unit
matrix of RY, Z,, = (I —cn-1Cn)Zn—1+ cn_1Znyn- If X = sup,, Anax(Cr), then
A is a.s. finite since (z,,) is a.s. bounded. So, for n large enough ¢,_1A < 1 and
(I — ¢p—1Cy) is not singular. So we obtain

1
Y/ < —(||Z, 1M
1Zaall < gy (12l 4+ caa M)
< (L4 bea1)(1Zall A M)

where b is some non-negative constant, non depending on n. Moreover

k
Zn Zn 2 N /N
V(Z,) < k=2l <)\mm(0) and
1Zall < ¥ = V(Zn) < Amaa(C)K2.  So that,
Lvzo<ry = Lyza)<kn} =1 z0jli<kn;}s where

; k
. J -
kn_] < (1 + Cn—l) < /\mln(o) A M) .

And since ¢, = O(n~1), for any 0 < j < n, (1+ ac,_1)’ is bounded indepen-
dently of n, so is ky—;.

E(en) = E(@ni1yny —U)'Z, Ly (z,)<k}
+ EZ}(C—Cni1)C2y Lv(z,)<ky = An + Bn, and,

A= E@nir@at1 = UV C(Zj11 = Zj) Yz <k + EWnt12nia —U)TCZy.

12



Note that if 3 is not an integer, we replace it by "T_l Expectations conditionally
with respect to F;i; of each term of the sum and with respect to }'n of the

last term give us : A, < K1Z 2 c]fyn —j + K2yz 41, where Ky and K are
non-negative constants. So, since 7,, =0(a™") with a > 1,

Ap =0+ 0(a™ %), (36)
and > ¢, A4, < occ.

n—1
By = Y E(Zjy1— Z)"(C = Coy1)C(Zjg1 — Zj) Wy z,)<k51
n—1 n-—2
+ 2 Z > E(Zjs1 = Z))(C = Coy1)C(Zis1 — Zi) Wz, <y zal <ki)
j=% i=j+1

+ 2 Z EZn/2 (C = Cont1)C(Zjs1 — Zj) Ny 7)1 <k; 30| Zo jall <k 2}

+ n/2(C Crnt1)CZy 2 Wy 7, o)<k jo}-

Expectations conditionally with respect to F;41 of each term of the first and
the third sums, with respect to F;y; of the second term, and with respect to

Fz of the last term give us :
n—1 n—1 n—2 n—1
Bn §K3 Zc ’Yn J +K4ZC] Z CZ’Yn Z+K5 ZCJ’Yn ]+K6ryn/2+1’
j=% j=% i=j+1 =%

where K3, K4, K5 and Kg are non-negative constants. And
B, =0n"2)+0n2)+0n™")+ 0@ "/?*1). (37)

Hence Y ¢, By < 00 and > e¢pFeptq < oo.
Study of (e, — Ee,). We now prove that this sequence is y-weakly dependent.
Write E(6n+r - Een+7‘|-7:n) = _Dn+7= + Gn+7- - E6n+r, with

Dpyr = E[(yn—i-rwn—i-r - U)TCZn+r—1 ]I{V(Zn+,,,1)<k} |-7:n]a

Gn+r = E(ZZ_H_I(C - Cn+r)CZn+r—1 ]I{V(Z"+T,1)<k} |-7:n]
n+r—2

Dypyr = Z E yn+r$n+r - U) C( J+1 j) ]I{||Zj|\<kj} |‘7:”]
j=n+3

+  E[(yntrTngr —U)"'CZpyg ]I{||Zn+§||<kn+§} |7l

Here again, if 7 is not a integer, we replace it by *5=. Expectations conditionally
with respect to Fj41 of each term of the sum and w1th respect Fpqz of the last

13



term give us :

n+r—2
E||Dpirll < Z cj’yrlz+r—j—l+’771l+§’
j=nts
= O(——) +0(a""%)
n+r

Hence lim,_, 4 oo E||Dypir|| = 0. We study Gt in the same way and E||G p4r|| =
O(=), and by (36) and (37), since Ee, 1 = A, + B,, we obtain Ee,, =

n+r
O(=+-), the result is proved.

n+r

7 Proofs

7.1 Proof of proposition 2

We use a sketch similar to Doukhan and Louhichi’s proof in [11].

E(Zcisi)” <p! Z Cty -, |E(et, - €1,)]
i=1

1<t1<-<ty<n

Denote
Ap(n) = > oo, |Bler e,

1<t <-<tp<n

so for any t» <t <tp_1,

Ap(n) S Z Ctl T Ctp |E(6t1 e Etm)‘E(Ethrl T

1<t1<-<ty<n

+ E Cty = Ct, [COV(Et, €ty Etpyr

1<t1<-<ty<n

Denote
A;)(’n,) = Z Ctq ---Ctp|E(5t1 "'Etm)E(Etm+1
1<t;<...<t,<n
Ai(n) = Z Cgq =t Ctp |COV(Et1 e Etm,Etm+1 e

1<ty <...<tp<n
Since the sequence (c,) is decreasing to 0, we deduce, as in [11],

A;(n) < Ap(n)Ap—m(n).

14
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By the definition of Cr4(¢1), using lemma 15 in [11], we obtain

Ay <D, i Crp(ta)(r + 1772,

t1=1 r=0

And by (14), the expression Y1, ¢ 3722 O,y (i) (r 4+ 1)P72 = V,y(n), verifies,
for any integers 2 < g¢<p-—1:

Now, lemma 12 of [11] leads to A,(n) < % < 2};’7__12 > (Vf (n) V V,(n)), hence

E (Z cisi) < %(Vf (n) V Vp(n)).

This ensures the result. [ |

7.2 Proof of proposition 3

Using the same denotations as in the previous proof, by (11)
n 1
Vo) < M, 3o [ min(6? ) )" QF )
i=1 0
where 6(u) = 6,1 ([u] denotes the integer part of u). Denote
n 1
Wy(n) = 1,3 / min(6=" (w), )"~ QP (u)du.
i=1 70

If (17) is verified,
W,(n) < Wy(n)i=2 (n)Wy=" (n).

So we can conclude as in the previous proof. [ ]

7.3 Proof of proposition 4

Proceeding as in [8], we deduce

|E(Eh)] < (%Z bn> :

i=1

15



where

—i
bin = = max | cici Z E(ciyreivklFi)
k=0 P
Let ¢ = -£5, then there exists Y such that ||Y]|, = 1.

Applylng proposmon 1 of [8], we obtain

n_i ey
b’i,n S Z/(; Q{Yciei} o G{C;JrkEiJrk}(u)du
k=0

where Gx is the inverse of x = [ Qx(u)du. Since Gy.,.;3(u) = Ge () =
G(%), we get

Tk
Z/ Q{Yc e} © G C

and the Fréchet inequality (1957) yields

Ydu < Ci / 1“ cie:t 0 G(u)du,
. Z +k Qyeiery © G(u)

i+

o ST
bin < ZciJrk/ o QY(U)Q{CiEi}(u)Q(u)du
k=0 0

n—i 1
< Zcici-i-k/o H{uSG(%)}Q2(U)QY(u)dU
k=0 )

where () = @).,. Using Holder’s inequality, we also obtain

. 2
n— )
bin < CiZCHk (/ ]I{u<G( ke }Q (u)d > :
k=0

c+k

By (18), Q(u) < ¢vu~+ and setting K = =L yields

rer

2
n—i 1 P
bin < ¢ )Y Ciyk / cru v du
i,n sz:O 7] o {u<G( 7+kk)}
r(1-2)2
 Eoe(s2)
zZ o G
)
Noting that (c¢n)n>0 is decreasing, the result follows with Ky = K Fe=y ) ]
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8 Annex

8.1 Proof of the note in the section 6

This note claims that if (y,, xn)ne]N is -weakly dependent in the Dedecker and
Douhkan sense ([8]), then A-Ir is satisfied. Let us remind the definition of a
6-weakly dependent IR%-valued sequence which is used in ([8]):

If £; is the space of bounded 1-Lipschitz real valued functions defined on
RY, (X,,) is 6-weakly dependent as soon as

Or = sup{ sup (|| E[f(Xy1n)lo(Xi,i < n)] = E[f (Xp4n)]ll1)}
n>0 feLl,

tends to zero as r tends to infinity.

For any f € L1, |f(z) — f(y)] < |zt —y|+ -+ + |27 — y?|, where the z7’s
(j =1,...,d) are the components of z.

First, note that if a IR%-valued sequence (X,,) is 6-weakly dependent, any IR’-
valued sequence (j = 1,...,d—1) (Y,) = (X%, ..., X}7) is 6-weakly dependent.
So, if (yn,Ty) is f-weakly dependent, then so are (y,,) and (z7) (j = 1,...,d).

Let f a bounded 1-Lipschitz function, defined on IR and g the function
defined on IR? by g(z,y) = f(zy). It is enough to prove that g is a Lipschitz
function defined on IR?.

_ 1o o o ! o
l9(z,y) — gl )| ey =2y fally =y + Y] wlgmaXﬂwa,D’

|z -2 +ly—y'| T le—2+ly—y[~ |e-2'[+]y—y
and g is Lipschitz as soon as x and y are bounded.
Thus, since (z,) and (y,) are bounded, the result follows. [ |
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