INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES
Série des Documents de Travail du CREST
(Centre de Recherche en Economie et Statistique)

n°® 2003-08

Empirical CLT for a Class
of Long Memory Bernoulli Shifts

P. DOUKHAN:
G. LANG?

D. SURGAILISs

M.-C. VIANO4

Les documents de travail ne refletent pas la position de I'INSEE et n'engagent que
leurs auteurs.

Working papers do not reflect the position of INSEE but only the views of the authors.

1 ENSAE-CREST, Laboratoire de Statisti gue, Timbre J340, 3 avenue Pierre Larousse, 92240 Mal akoff. France.
2 |aboratoire GRESE, ENGREF, 19 avenue du Maine, 75732 Paris Cédex 15. France.

3 Vilnius Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania

4 Université de Lille 1, Laboratoire de Mathématiques Appliquées, Bt. M2, 59655 Villeneuve d’Asq Cédex.
France.



EMPIRICAL CLT FOR A CLASS OF LONG MEMORY BERNOULLI SHIFTS
Paul Doukhan'!, Gabriel Lang?, Donatas Surgailis® and Marie-Claude Viano*

! ENSAE and Laboratory of Statistics, CREST. Timbre J340, 3, avenue Pierre Larousse, 92240
Malakoff, France

2 Laboratoire GRESE, ENGREF, 19 av. du Maine, 75732 Paris Cedex 15, France

3 Vilnius Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania

4 Université de Lille 1, Laboratoire de Mathématiques Appliquées, Bt. M2, Villeneuve d’Ascq, 59655
Cedex, France

Abstract. We prove a functional central limit theorem for the empirical process
of a stationary process X; = Y;+V;, where Y; is a long memory moving average in
iid. r.v.)s {(s,s <t},and V; = V ({4, (41, - . .) is a weakly dependent nonlinear
Bernoulli shift. Conditions of weak dependence of V; are written in terms of
L?—norms of shift-cut differences V ((s, ..., Cin»0,...) =V (o vy Giong1, 0,00,
Examples of Bernoulli shifts are discussed. The limit empirical process is a
degenerated process of the form f(z)Z, where f is the marginal p.d.f. of X
and Z is a standard normal r.v. The proof is based on a uniform reduction

principle for the empirical process.

Théoréme de limite centrale fonctionnelle pour le processus empirique

d’une classe de schémas de Bernoulli 4 longue mémoire

Résumé. Nous prouvons un théoréme de limite centrale fonctionnelle pour
le processus empirique d’un processus stationnaire de la forme X; = Y; + V4,
pour une moyenne mobile & longue mémoire Y; d’une suite i.i.d. {(s,s < t}, et
pour un schéma de Bernoulli V; = V((;,(4—1,...) faiblement dépendant. Des
conditions dépendance faible de V; sont écrites en termes de la norme L? des
accroissements A, ; du schéma de Bernoulli & bruit coupé:
Apt=V(Cy-esGens0,0.) =V (Cyev o Gmnt1,0,.00).

Des exemples de tels schémas de Bernoulli sont aussi discutés. Le processus em-
pirique limite est dégénéré sous la forme f(x)Z, ou f désigne la densié marginale
de X et Z est une variable normale standard. La preuve est fondée sur un

principe de réduction uniforme du processus empirique.
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FUNCTIONAL LIMIT THEOREM FOR THE EMPIRICAL PROCESS
OF A CLASS OF BERNOULLI SHIFTS WITH LONG MEMORY

Paul Doukhan, Gabriel Lang, Donatas Surgailis and Marie-Claude Viano

1 Introduction

Time series analysis has important statistical applications in various fields. For example,
nonlinear times series are used to model crashes in financial markets.

The main object of times series analysis is the study of short-range dependent random se-
quences for which the usual Donsker and the Empirical Functional Limit Theorems (EFLT)
hold with appropriate modifications. Rosenblatt (1961), in his seminal work, and after-
wards, Taqqu (1975), Dobrushin and Major (1979) and other authors found that alternative
limit behaviors may happen, in particular, non-v/N rates and non-central limits were exhib-
ited. Most of these authors studied Gaussian subordinated case, or partial sums of nonlinear
functions of a stationary Gaussian process with long-range dependence. The EFLT (with
normalization < N'/2) for such Gaussian subordinated processes was proved in Dehling
and Taqqu (1989). An important feature of their EFLT is the fact that the limiting empiri-
cal process is degenerated, i.e. it has the form g(z)Z, with some deterministic function g(z)
and a random variable Z. Similar results for linear processes with long-range dependence
were obtained in Giraitis, Koul and Surgailis (1996), Ho and Hsing (1996), Giraitis and
Surgailis (1999) and other papers.

It is clear that Gaussian subordination or linearity are very restrictive structural assump-
tions which might be hard to justify in practice. In this paper we discuss the EFLT for a
class of long-range dependent processes which are neither linear nor Gaussian subordinated.
These are strictly stationary processes with discrete time ¢ € Z := {0,+1,£2,...} which
can be represented as the sum

X, =Y+ Vi (1.1)



of a linear long memory process Y; and (nonlinear) short memory process V; of a rather

general form. More precisely, we assume that
o
Y, = sz{tﬂ‘ (1.2)
i=0

is a moving average process in i.i.d. random variables (;,7 € Z with zero mean and unit

variance, with hyperbolically decaying coefficients
bi ~coi®t (30<d<1/2,¢ #0). (1.3)
The short memory process V; in (1.1) is the so-called Bernoulli shift:

‘/t = V(Ct,ctfl,...), (14)

where V' (29, 21,...) is a Borel function on R”+,Z, = {0,1,...}. The short memory prop-
erty of V; roughly means that the dependence of the function V (2, 21, ...) on coordinates
zn is negligible with n — oo. Rigorous definition of the short memory property of V; in-
volves L?—norms of the shift-cut differences V' (o,...,¢ n,0,...) = V(Coy. -+, ¢ ny1,0,...),
see Section 2, which must decrease sufficiently fast (e.g. subexponentially or hyperbolically)
with n.

Section 2 contains the main result of the paper (the EFLT for the empirical process of X;
(1.1)-(1.4)). Concrete examples of Bernoulli shifts V; (1.4) are presented in Section 3. The
remaining Sections 4-7 are given to the proof of the EFLT. It uses martingale techniques

introduced in Ho and Hsing (1996) which were later applied by several authors.

2 Main result

Let Xq,...,Xn be the observed sample from the stationary process X; of (1.1). The

empirical c.d.f. (empirical process)
N
Fy(@)=N"1Y I(X;<z), z€R (2.1)
t=1

is a consistent estimator of the marginal c.d.f. F(z) = P[Xy < z]. In fact, from ergodicity of
the Bernoulli shift and the Glivenko-Cantelli theorem it follows that Fy(z) — F(z) (N —
oo) uniformly in z € R a.s. Write f(z) := F'(z) for the marginal p.d.f. of Xy, provided it

exists. In addition to (1.3), we shall assume the following conditions on the innovations:

|[Be"Cl<C(1+u?)™ (3C,0<0<1/4,VueR) 22



and

E|¢of® < oo. (2.3)

We do not consider the ’best’ (i.e. the larger) ¢ available here. If the inequality in (2.2)
is satisfied for § > 1/4 it is also satisfied for 6 = 1/4. Note that condition (2.2) is very
general because it does not imply that the density of { exists. But it excludes discrete
distributions. If the inequality in (2.2) is satisfied with § > 1/4, then the density exists in
L?, and if § > 1/2 the density is bounded.

Put Yy := N ! Zi\il Y:, and write = p () for weak convergence of random processes in

the Skorohod space D(R), R := [—o0, c0] with the sup-norm topology. Let
o = BV — V)R (2.4

where

V= V(... oy 0,0,...) (2.5)

is the truncated Bernoulli shift (1.4) which is (n + 1)—dependent stationary process.

Theorem 1 Assume conditions (1.2), (1.3), (2.2), (2.3). Moreover, let

Yo < CnP, (2.6)
where
1-2
p > max{24—22d, 13—11d+%}. (2.7)
Then
sup N1/2-d ‘FN(@«) _F(z) + f(x)YN‘ = op(1). (2.8)

zeR

Theorem 1 is the uniform reduction principle for the empirical process (2.1) which extends
the reduction principle of Dehling and Taqqu (1989) to Bernoulli shifts of the form (1.1)-
(1.4). From this theorem and well-known facts about the limit distribution of Yy, it easily
follows the EFLT below. Put é := (c3B(d,2 — 2d)/d(1 + 2d))1/2, where B(-,-) is the beta

function.
Corollary 2 Under conditions of Theorem 1,
N'Y24(Fy(z) - F(z)) = pew) &f (2) 2, (2.9)

where Z ~ N(0,1).



The fact that the functional dependence of the limiting empirical process in (2.9) reduces
to marginal p.d.f. of observable time series X; and does not involve probability densities
or any other characteristics of unobservable components Y; and V;, is rather surprising. It
appears that many results in statistical inference of long memory processes which rely on
the empirical process can be extended from linear or Gaussian models to the much more
general class (1.1), and that ”short memory perturbation” V; has no effect on large-sample
behavior of inferential procedures. It also seems that Theorem 1 can be extented to the
asymptotic expansion of the empirical process similar to that given by Ho and Hsing (1996)
in the case of linear process. This problem is closely related to the study of partial sums’
processes of nonlinear functions of X; (1.1) and the characterization of the limiting behavior.
In the case of Gaussian innovations (; and finitely dependent V; this problem was studied
in Surgailis (2000). Further possibilities involve nonadditive generalizations of (1.1) of the

form X; = H(Y;;¢t, (-1, -.) and will be studied in another paper.

3 Examples of weakly dependent Bernoulli shifts
3.1 Causal Bernoulli shifts

Causal Bernoulli shift is a stationary sequence V; of the form (1.4), where the function
V (20, 21,...) is tacitly assumed known. For m—dependent Bernoulli shifts (i.e. such that
V(z0,215---5) = V(20,21,--.,2m—1) depends on coordinates zg,...,2zy,—1 only), condition
(2.6) is satisfied provided ,,’s are finite. The most simple case of infinitely dependent causal

Bernoulli shift is a moving average process
[o.0]
Vi=" aiGi—i, (3.1)
i=0

where > a? < co. In this case, v, = |a,| and condition (2.6) implies a, = O(n"") with
p > 13, in other words, a,, must decay rather fast. Of course, the linear case (3.1) is not

very interesting as it reduces to V; = 0, with Y; = > (a; + by) i



3.1.1 Volterra processes

A Volterra process is a stationary process defined through a convergent Volterra expansion
Vi =Y pey Vi, where
Vk;t = Z ak;il,...,ik thil e Ct—k
0<i1<... <1y,
converges in L? provided the weights are square summable: D 0<iy <. <iy az,il i, < 00. For

a k—th order homogeneous chaotic process V; = Vi, the coefficient v, = 4., (2.4) equals

9 1/2
fYk;’rL = { E ail,...,ik_l,n}
0<41<...<ip_1<n

if n > k, and 7y, = 0 otherwise. For general infinite order Volterra series V; = ZZOZI Vit

the corresponding coefficients (2.4) are trivially related by orthogonality:
© 1/2
In = {Z%%n} :
k=1

3.1.2 ARCH(0) processes

A particular case of (non-Markovian) Bernoulli shifts is the ARCH(oo) process (see Robin-
son (1991), Giraitis, Kokoszka and Leipus (2000), Giraitis and Surgailis (2002)). It is subject

to the recursion equation

o
Vi = (ao +)° aj%—j)CtQa (3.2)
j=1
where (4, € Z are zero mean i.i.d. r.v.’s, as above, and a; > 0,5 = 0,1, ... are nonnegative

coefficients. Put u; := Eg‘gi,z’ > 1. Under the simple condition
o
ny? S ai < 1, (3.3)
i=1

equation (3.2) is known to have a unique stationary solution with finite variance and given
by a convergent (although nonorthogonal) Volterra expansion
o
1/t = aOCt2 (1 + Z Z At—s; " a5g_1—5gCS21 e Cs2[) . (34)
=1 5;<...<81<¢t
Below we assume (3.3) satisfied. Put

n
Gn = Z Z aj, ..., (3.5)

=1 j1+...4+ji=n



/2

where a,, := u; an and where the second sum is taken over all integers ji,...,7¢ > 1 such

that j1 + ...+ j; = n.
Proposition 1 For the ARCH(oc) process of (3.4),

Yo = BYVAVE V82 < aolpagn. (3.6)

Proof. We shall assume ag = 1 for simplicity. From (3.4) we obtain

n
Ve = C3(1+Z Z a_g, ...asZ_l_sZggl...g;)

=1 —n<s5/<...<51<0

and therefore
n
n n—1 __ 2,2 2 2
W -V = (p¢Z, E E A—gy - Qsy_1+nCsy - Copy
=1 —n<sp_1<...<81<0

Therefore by Minkowski inequality,

n
2
Tn = M2E1/2{ Z Z A—gy -+ asz-1+"<s21 ce CS2z71}

=1 —n<sp_1<...<851<0

n
K2 Z Z G—sy - 'a81—1+nE1/2C;11 e E1/2C§z71

=1 —n<sp_1<...<81<0

n
= ,UQZ Z gy oo Qp_g, | = H2gp. U

{=10<s1<...<8¢_1<n

IN

Inequality (3.6) allows to compare decay rates of 7, to those of a,, or «;,,. Note the following
relation between the generating series G(z) 1= Y 7| gn2"™, A(2) 1= Y 2| apz™

A(2)

G(z) = T-AG)

(3.7)

Proposition 2

(1) Let a,, = O(py) for some 0 < pg < 1. Then there exists 0 < p < 1 such that ~, = O(p").
(ii) Let a, = O(n=) with some A\ > 1. Then 7, = O(n™™).

Proof. (i) Note a, = O(p]) implies that A(2) is analytic on {z € C: |2| < p;'}. Moreover,
|A(2)] < D02 anlz™ < D02 ay < 1for |2z| <1 and therefore 1 — A(z) # 0 for |z| < ¢ and
some ¢ > 1. Therefore G(z) is analytic on a disc of the complex plane of radius > 1, which
implies v, = O(g,) = O(p™) for some p < 1.

(ii) Follows again by (3.7) and the argument as in (i). O



3.2 Stable Markov chains

Any (homogeneous) Markov chain V; may also be represented as solution of a recurrence
equation

Vi=M(Vi-1,G) (3.8)

where M (u,z) is a (measurable) kernel and {(;} is an ii.d. sequence, see e.g. Kallen-
berg (1997, Proposition 7.6). Below we show how iterative models (3.8) can be related to
Bernoulli shifts (1.4) and condition (2.6) verified. We shall discuss a more general situation
when V; and (; take values in Euclidean spaces R and RP, respectively, d, D > 1.

Following Duflo (1990), we call (3.8) a Lipschitz Markov model if the kernel M (u, z)
satisfies

B M (u, o) = M(v,6)l” < allu —off? (3.9)

for all u,v € R and some a < 1, where || - || is a norm on R?. We shall also assume that
{¢;} are i.i.d. random vectors with values in R” and zero mean E(y = 0 and that, for some
6 € RP, the function u — M (u, ) admits a fixed point which we denote ug; there is no loss
of generality to suppose that 6 = 0.

Let now Ut(n), t € Z be a Markov chain defined by

U0, if t < —n,
Ut(n) = { 0

MU™.¢), ift>—n.

. . . . (n)  pr(n+1)|? (n—-1) _ (n)|?
The Lipschitz condition (3.9) implies E ||U, U, <aFE ||U, U, . An easy

recursion implies

n n 2
E HUé U H)H < a"E || M (uo, o) — uol|*.

Hence Uén) — Up (n — 00) in L? for some square integrable random variable Uy. It is also
clear that Uén) being measurable w.r.t. the o—algebra generated by (;,# < 0, this is also
the case for Uy which thus can be represented as a measurable function Uy = V ({0, (-1, .. .)-
Then the sequence V; := V((;,(4—1,(t—2,...) is a stationary solution of the recurrence
equation (3.8).

Consider now the sequences (Ut(o))t and (Ut(l))t, then Uéo) = uy, Ul(o) = M(up, (1) =
V(¢1,0,0,...), U = M(M(ug, 1), ¢2) = V(C2,¢1,0,0, . ..) and recursively, for any ¢ > 0,

U = V(GG 1se005€1,0,0,0,..).



Analogously,
Ut(l) = V(Cta thla cee 7<1a Coﬂ 0,0,.. )

2
It follows that v, = EY/? HU,(LO) — U,(Ll) ‘ < a1/2'yn_1 and thus

Yo < aPyy = a"PEY? || M(ug, o) — uol|®

decay exponentially, due to a < 1. Diaconis and Friedmann (1999) provide a wide variety

of examples for which the previous techniques apply. See also Doukhan (1994, 2002).

3.2.1 ARCH-type processes

Assume for simplicity that d = D = 1, and let
M(u,z) := A(u) + B(u)z (3.10)

for suitable Lipschitz functions A(u), B(u),u € R. Set Lip(A) = sup,,, |A(u)—A(v)|/|u—v].
The corresponding iterative model (3.8) satisfies (3.9) if E(; = 0 and

a = (Lip(A))? + E¢? (Lip(B))? < 1.

Some examples of iterative Markov processes given by kernels (3.10) are:

- nonlinear AR(1) processes (case B = 1);

- stochastic volatility models (case A = 0);

- classical ARCH(1) models (case A(u) = au, B(u) = /B +yu2, a, 8,7y > 0).

In the last example, the Lipschitz constant a in (3.9) equals a = o? + E(Z7y, which follows
by calculation of the derivatives A'(u), B'(u).

3.2.2 Branching type models

Here d =1,D > 2. Set (; = (Ct(l),...,c,f(D)) and assume that ECt(i)Ct(j) =0if i # j. Let
now Aj(u),...,Ap(u),u € R be Lipschitz functions, and let

M (u, (z(l),...,z(D))) = iAj(U)Z(j),
j=1

(z, ..., 2(P)) € RP. For such kernel M, relation (3.9) holds with the Euclidean norm || - |
if

N2
(Lin(4;)” B || < 1.
1

a =

D
J]=



Some examples of this situation are

-If D = 2, and Cél) ~ b(p) is a Bernoulli variable independent of a centered variable
Cé2) € L? and A;(u) = u, Ag(u) = 1 then the previous relations hold if p < 1.

-1t D =3, Cél) =1- Cé2) ~ b(p) is independent of a centered variable Cé3) € L? then
one obtains usual threshold models if A3 = 1 and the conditions write F ‘Cé?))‘g < oo and

a = p (Lip(A1))* + (1 = p) (Lip(42))* < 1.
3.2.3 Nonlinear AR(p) models
Our last example is a nonlinear autoregressive process of order d:
Vi=r(Vict,.- . Viia) + G, (3.11)

taking real values. Then the sequence U,, := (V,,,V,—1,...,Vh_gq+1) is a Markov process

with values in R%. In this case, D = 1 and

M(uy, ... ,ug,2) = Aluy,...,uq) + (1,0,...,0)z,

where A(ui,...,uq) := (r(ut,...,uq),u1,...,uq_1). We assume F(Z < oo and
d
Ir(us, .. tg) = (w1, vd)| <Y alug — vl
i=1
for some aq,...,ay > 0 such that
d
1/d
a = (Zai> <1
i=1

Introduce a norm on R? by
(urs ... ug)|| == max{|u|,clusl,. ..,  ugl}.
Let u = (u1,...,uq), (v1,...,v4) € R® and let w; := |u; —vj|,j =1,...,d, then
|A(u) — A(v)|| < max {ad max{wi,...,wq}, qwr,... ,adilwd_l} < allu—v|.

This implies condition (3.9) with a = a® < 1. Hence for nonlinear AR (p) process (3.11), we

obtain v, < Ca™. Therefore the v,’s decay geometrically under the conditions given above.



4 Plan of the proof of Theorem 1

We first note that this theorem is known in the linear case X; = Y;, for V; = 0; see e.g. Ho
and Hsing (1996) and Giraitis and Surgailis (1999). However, the proofs in our paper are
essentially self-contained. Put X' :=Y; + V",

N
F(z) =N I(X{ < z), F"(z):= EFy(z) = P[X{ < z].
t=1
Let
n(N):=N* e (0,1),

where A € (0,1) will be specified below. The uniform reduction principle of (2.8) clearly

follows from Lemmas 1 and 2 below.
Lemma 1 If A < 2d, then

sup N/2-0 | PR () — PrO(z) + f(a)V| = op(1). (4.1)
z€eR

Lemma 2 If A > (3/2)(1 — 2d)/(p + 11d — 13), then

sup N1/2- (‘F};(N) (z) — FN(m)‘ n ‘F”(N) (z) — F(:v)‘) — op(1). (4.2)
T€ER

Remark 1 Note condition (2.7) of Theorem 1 ensures that there exists A satisfying condi-

tions of Lemmas 1 and 2.

The proofs of the above lemmas require some bounds of marginal densities and their
derivatives of the stationary processes Y; and X; and their approximations. These bounds
are discussed in Section 5. Everywhere below we assume that conditions of Theorem 1 are
satisfied. Note that the short memory process V; need not have a density and its marginal
distribution can be discrete. On the other hand, the long memory component Y; is known
to have a smooth density under the hypotheses of Theorem 1. As V; and Y; are dependent,

the fact that the marginal density f(z) of the sum X; = V; + Y} exists, is not trivial.

Notation. Put, for any 0 < n < m < oo,

m

Y=Y biGes,  GMM@) = PV < al,
i=n
o

V=Y biGes,  GM(x) = PV <al.
i=n

10



Let G(z) := P[Yy < z]. Note ¥; = Y," + Y"1 where ¥, and ¥;"""* are independent

for each ¢,n. Also, for 0 < n < m < oo, put

Xy = N+Vvy F'(z) = P[Xg <,

xpmo= Y2 ve, F™(z) = P[Xy™ < z].

We also write g(z) := G'(z), g""(z) := (G""(z))!, g">(z) := (G"*(2)), f"(z) :=
(F™(z)), fm™(z):= (F™™(z))" for the corresponding probability densities, provided they

exist, and

g(u) — Eei“YO, gn,m(u) — EeiuYOn’m’ gn,m(u) — EeiuYO"’w’

f(u) = Ee™Xo  frm(y) = EeXo™" () = BelXo
for the characteristic functions. Also, put
®(z) := Pl < z], P(u) 1= Ee'™o,

In the sequel, C' stands for generic constant which may change from line to line.

5 Bounds of marginal densities

Put ‘
n+j

B, ;= H b?.
i=n

Note that, by (1.3), for each j =0,1,...

2(1+j)n2(d71)(1+j) n — 00.

By ~ ¢

In particular, for any fixed j > 0 there exists a constant C' > 0 such that for all sufficiently

large n,
-1 2(1—d)(1+]
By L < Cp?-0H), (5.1)
Lemma 3 For any p = 0,1,... there exist an integer jo = jo(p) > 1 and a constant

C = C(p) < oo such that for all0 <n <m, m—mn>jo and any k =0,1,2,
|(uPg™™ () B)] + | (P g™ (u)) B < Cnl(1+ )72, (5.2)

11



and

W@ () — 5 W)W < CBn?(1 4 ) 5.9
where 6 := (1 —d)(9 + p).

Proof. Let us prove (5.2) for £ = 0. Without loss of generality, assume |b;| < 1Vi. By (2.2),

n+jo n+jo 5

g™ |<H|¢ub < o(TJa+wd)
=n
n+jo

IN

(Hb (1 +u?) 1) < OB, (14 u?)~Uot1l,

Hence

P ™™ ()] < CByS (14 u?)P/2 oo,

n,jo

Taking jo = [(6 + p)/2] leads to p/2 — (jo + 1)d < —3 and, by (5.1),

B b < opi-d(E+p+20)
7]0 -

thereby proving (5.2) for k = 0.

In a similar way, let us prove (5.2) for K =1 and k£ = 2. We have

m

@™ W) = Y b (uby) [T dlubs),
j=n 1=n,i#£j
@ ™ w)" = =Y 05" (uby) [ bubs)
j=n 1=n,i#£j
— Y b (uby ) (uby,) [ plubi).
J1:J2=n,j17£j2 1=n,i£J1,J2

Hence, using |¢(u)| < 1,|¢ (u)| < |ul,|¢" (u)| < 1, as well as (1.3) and (2.2) we obtain

n+jo

(™™ (u ZbQ|u| [T 16| < CBS lul(l +u?) =5,

i=n,i#£j
By taking jo = [(7 + p)/2d] + 1 and noting that B;";Ofl < Cnp-D(T+p+20) - we obtain (5.2)

for £ = 1. Similarly,

n+jo oo n+jo )
(@™ ()] < 262 [T i+ > woiel, [ lé(ub)
=N i=ni#] J.j2=n.j17j2 1=N,i7£]1,J2
< C(Bng0 [+ u?) 00 L B (1 u?) o 0)

< CBng0 (14 u2)Go— 1),

12



Taking jo = [(8 + p)/2d] + 2 and noting that B;";O_l < Cn20=ddjo < Op(-d)(E+p+40) e
obtain (5.2) for k = 2.
It remains to prove (5.3). Let £ = 0. Since

a? (577 () = " (W) = (w5 () ($lom) — 1)), (5.4)

inequality (5.3) follows from (5.2) and the bound |¢(bnu) — 1| < b2u?. Cases k =
1,2 follow similarly. For instance, among the three terms appearing in the case k = 2,
(uPg™™ = (u ))" (qg(bmu) — 1) leads to the value of 6 given in the lemma. Indeed, using
(5.2),

(g™ ()" (o) = 1)| < w22] (25" ()" | < C¥n® (1 +u?) 72,

The lemma is proved. O

Lemma 4 For any p=0,1,... there exist an integer jo > 1 and a constant C' = C, < oo

such that for all0 <n<m, m—n2>jo,z € R,
(9" (2)) P + (g™ (2))P)| < Cn’(1+2%)7" (5.9)

and

("™ (@) — g™ (@) < Clpn®(1+27)7", (56)

where 0 is the same as in the previous lemma.
Proof. Relation (5.5) follows from (5.2) and from

( C/ —zu:vupAnm )d x?(gn,m(x))(p) :C/e—iux(upgn,m(u))l/du.

Similarly, (5.6) follows from (5.3). O

Next we consider bounds for p.d.f. f(z), f"(z), f*™(z) of Xy, X} =V +Y;, X;"" =
Vit + Yto’m, respectively. To that end, we need elementary Lemma 5 below, whose proof

can be found in Doukhan, Lang and Surgailis (2002). Let
y
orla) = L+ a7y o) = [ pi@)dn o <ur>layeR
T

Note p, is a finite measure on R. For any integrable function ¢ = ¢(z),z € R, 1/3(u) =

Jg €“%9p(z)dz,u € R denotes its Fourier transform.

13



Lemma 5 Let h(z),z € R be a real valued function such that

h(z)] < Coplz),  |M(z) = h(y)| < Clz —yler(2), (5.7)

hold for any z,y € R, |z —y| <1 and some C < 00,1 < r < 2. Then there exists a constant

C, depending only on v and C in (5.7), such that for any z,y,v,z € R

ha+y) < o)V gl (5.8)

[ bt wid| < Coonta)ul v D), (5.9)

g +0)-mo)e| < Comlebl v (510

| [Caw [t 4w -2 - ande| < Cm@aloravi. G

Lemma 6 Let py be a non negative integer and 0 = (1 — d)(9 + po). If
Zn(’ 1/2 < (5.12)

then for any p € {0,...,po} and any 1 < r < 3/2, there exist jo > 1 and a constant
C = Cpyr < 00 such that for all0 <n <m,m—n > jo,z € R

(@) P+ (@) P] + (™ ()P < O+ |a]) ™ (5.13)
and, moreover,
|(f ()P = (f*(@)P)| < Can(1 + |2]) (5.14)
and
|(F™ @) P = (f™(2) P < COYP(L+ Ja]) ", (5.15)

1/2
where oy, 1= Zoonje,y]/ , By = Z;’on b?

Proof. We shall prove (5.13) for f"(x) and p = 0 only, as the remaining inequalities can be

proved analogously. Let
P () = () = [ (),
n >0, f 1(z) = g(x). Clearly (5.13) (for f"(x) and p = 0) follows from

(L+ J2])"|¢" (z)] < Only/?, (5.16)

14



where ny :=nV 1,7 := 1. To show (5.16), consider the Fourier transform

|1/;n (u)| — |Eeiuy0n+1,oo (Eew(yoo,n_l_von) B Eei“(YOO’n'i'Vonil)”
= |§”“’°°(u)||Eei“<Yo°’"+Vo"’1>(emwo”fvo"*) — 1)
n—1
< | n+1,00 (U)HE( (Vg =y )_1)|
< gt ()| [ BV (Ve = VT
< Cnafyn(l + u2)_2, n>1,

where in the last line we used (5.2) with p = 1,k = 0. Also, [¢°(u)| = |f%(u) — f~'(u)| =
|Eei™Yo ™ || Eeio (Vs — 1)| < 2|32 (u)| < C(1 + u2)~3 according to (5.2). This proves
" ()| < CnYyn,n > 0. To show (5.16), it remains to prove that there exist constants
C, ¢ > 0 such that

2" |9 ()] < Cnlyl?, el > e (5.17)

The proof of (5.17) is more complicated and uses fractional differentiation (c.f. Doukhan,
Lang and Surgailis (2002)). To that end, we will show that there exists a (complex-valued)
function ¢(x) satisfying

@) > elal™, 2l > (5.18)

where ¢, c; > 0 are some constants, and such that
lg(z)zy" (z)| < Cnﬂ’yﬁﬂ, z€R, n>0. (5.19)

Similarly as in the above mentioned paper, take

q(z) = / (1 —e %)z dy —/ (1 —e %)z "dy
0 1

_ |x|r716isgn(m)7r(r71)/2 o q~($),

where G(x f1 (1 — e %)z "dz is a bounded function on the real line. Therefore ¢(z)

satisfies (5.18). To show (5.19), note that by Parseval’s identity,

=0 Mm/éu Hlu— )T de,

for any smooth and integrable test function ¢. Consequently,
@62 ) = © [ e sau [ (@) - 5w - 06T
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h(u) == " w),  a(u) == Be"X (Y 1), X = X2 AV =V -V

") (w) = (") (u=8) = N(u)a(u)+h(u)a’(w) = 1 (u—Ea(u — &) = h(u = §a'(u - ¢)
= (W(u) = h'(u—§&))a(u) + (h(u) — h(u — §))d’ (u)
+ B (u—=&)(a(u) - alu— &) + h(u = §)(a'(u) - a'(u - §)).

From Lemma 3, (5.2) and Lemma 5, (5.8), it easily follows that

h(u—&)] < Cnf(1+u?)73,
B (u—¢)| < Cnf(1+u?)?,
() —h(u—&)| < CnllE[(1+u?)73,
W (u) — B (u—8)| < CnllE[(1+u?)?,

where the constant C' does not depend on n,u € R, ¢ € (0, 1). Next, consider a(u), a’ (u), a(u)—
a(u—§),d (u) —a'(u —€). We have

ja(u)| = |E™ (2 = 1)| < [u|E|AV] < Julyn.
Similarly,
|’ (u)| < [Be™F X ("2 —1)| + |Be™ AV AV < [u| BE[XAV | + EJAV| < C(1 + [ul)yn,
where we used Cauchy-Schwarz inequality and the fact that

2 _ n—1,n 2
EX’=E (X} <C.

aw) —a(u— )] = |BeX{(eMAY — 1)(1 - e XAV 4 (miEX (1 _ AV )y

IN

| BIAVI([X] + |AV]) + [EIEJAV] < CIE[(1 + [u]) 1,
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where we used 72 < Cv,. Finally, consider the most delicate term
() = d(u = &) = BN XAV — 1)(1 - eTENIAV)) o mIEN () iEAV))
Eeiu(X—l—AV) (zAV) (e—i.ﬁ(X—i—AV) _ 1)|
< EIX|2A[uAV)2 AKX + AV)]) + €| EIX[|AV]

+ KIEIAVI(X] +[AV]).

To evaluate the first expectation on the r.h.s., use the inequality 2 A z < (2z)/2, then by

Cauchy-Schwartz inequality,
EIX|2A AV AIEX]) < 2ug[PE(XP?AV]?)
< 2uel (BIXP)YEBIAV)Y
< Clug]/y/?.
Similarly, E|X|(2 A [uAV|)(2 A |EAV]) < 2/ué|'?E|X||AV| < Clué|'/?y, and we obtain

o (u) = a'(u = &)] < O (1 + [ul)7">.

Combining the above bounds(recall that || < 1) results in

") () — () (u— )] < Ol 2022 (1 + u?) 2,
yielding
1
lg(@) (i)™ (z)] < Cnly)2 / (1 + u?)2du / €177 de < Cnfy)2,
R 0

for any 1 < r < 3/2. This proves (5.17) and (5.16), hence also (5.13) for f"(z) and p = 0,
with any 1 < r < 3/2. Clearly, (5.16) implies (5.14) as well.

It remains to prove (5.15), where we again restrict ourselves to the case p = 0, as the case

p > 1 is analogous. We have
£r(@) = ) = [ () = £ ) ).
R
By (5.13),

/ P — ) — ()™ (y)dy < C(1+ Jaf) / lylg™ 1% (y)dy
ly|<1 ly|<1

— O+ [2) "B < O+ Jal) "B Y0P = O(L+ o)) Y.

17



Similarly, by (5.13) and Lemma 5 (5.8),

/ Frm @ —y)gm e (y)dy < C(1+ |z)) " / ly|" g™ () dy
ly|>1 ly|>1
< C(L+ |z]) "EYyOT < O+ |2]) T(BIYT)2

= C(1+1e)7 82

A similar estimate holds for the integral f‘y|>1 frm(z) g™t (y)dy. As ﬁ:n/il < Cﬁrln/i1 for

r > 1, this proves the bound (5.15) for p = 0. O

Remark 2 In the sequel, we use Lemma 6 with pg =2 and § = 11(1 — d) only.

6 Proof of Lemma 1

Lemma 1 follows from Lemma 7 below combined with a standard chaining argument as

in Dehling and Taqqu (1989). For any function v (z), and any z < y, put 9(z,y) =
P(y) — ().

Lemma 7 Assume condition (2.6), where
p > 24— 22d. (6.1)
Let n(N) := N*,0 < A < 2d. Define
k = min{2d — \,1 — 2d, A\(p + 22d — 24)}.

There ezists a finite measure p = p, (1 <7 <3/2) and a constant C' < oo such that for all
N>lz<y

< Cp(z,y) N?=1=5, (6.2)

- n _ 2
B ™ (,y) = F" ™ (a,y) + f(a,y) |

Proof. Put

N
Sh(@) == N (F(a) = F'(2) + f(2)Vn ) = Y Ri(a).
t=1

where R} (z) := I(X]' < x) — F™"(z) + f(z)Y;. By the telescoping identity due to Ho and
Hsing (1996), for any mqg > 0,

Ri(z) = > UM (x),

m>mo

18



where
Uf™(z) = I(X] <) = PIX} < alBiome] + f ()Y,
U"™"(z) = PIX] <z|Bi_m]— P[X} <z|Bim-1]+ f(@)bmCtm, m > my,

where B, := 0{(y,u < s} is the history o—field. Clearly, E(S%(z,y))? < 2(E(S%y(z, )+
E(S]’r\lfl ($, y))2)7 where

N N
S]%U(xay) = Z Utn’mo(may)a Sxfl(xay) = Z Z Utn’m(may)'
t=1

We claim that there exists 1 < r < 3/2,7p > 1 and a constant C < oo such that for any
0<n<mgmog—n2>jy,and any z < y
E(Syo(z,9))* < Cur(w,y)Nm, (6.3)

E(SR(2,9)* < Cur(z,y)(O(N) + N ab), (6.4)

where «, is defined in Lemma 6 and

N, if d < 1/4,
O(N):=<{ NlogN, ifd=1/4, (6.5)
N4, ifd>1/4.

The claim (6.3), (6.4) is proved below. To conclude the statement of the lemma, note
a2 = O(n*=224=r) as = 11(1 — d), see Remark 2. Hence afl(N) = O(N—AMpt22d=24)y apq
mo(N) = O(n(N)) = O(N?), implying E(Sy"™ (2,))? < Cpar (2, y) N' 24 or (6.2), with
K given in Lemma 7.

To prove (6.3) and (6.4), note by the orthogonality property of conditional expectations,

for any z,y

E[U™ (@)U ™ (y)] = 0, [t—1]>mq,
E[Utn’m(m)UZf’ml ()] = 0, t—m=#t —m', m,m' >my.
Then
E(Sko(z,y))? = > EUM™ (2, y)Upy "™ (2, ),
1§tatl§Na‘t/7t‘§m0
N ’
E(S{i(z,9)” = > EU™ (z,9)Uy " (2, y)
t,t'=1 m>mg,t’ —t+m>mg
N !
< > Yo EVAUM (@) BV U @)

t,t'=1 m>mg,t’ —t+m>mg
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Clearly, by stationarity,

BE(S%o(z,y))? < > EY2(UP (2, )2 EY2(U™ (2,1))?
1<t,# <N, |t —t|<mg

CNmOE(U6l7mO (‘/Ea y))2a

IN

where the constant C' does not depend on n,mg, N. Using definition of U™"™0(z,y) together
with Lemma 6 (5.13), we obtain

EU™™(x,y))* < 3(2P[r < Xg <yl +|f(z,y)PEY,™)?)
y
< ¢ [ +1w))du < Cpr(ay)
x
and therefore
B(S¥o(z,y))* < CNmo (2, y),
where the constant C' does not depend on N, mg,n. This proves (6.3).
To prove (6.4), we need a convenient representation of U,"™ (z,y). Note, for any m > n,
PIX! <a|B ] = PV ™ 4V (G om0, ) + Y < 2lCmy Gome 1,
= ey,
where (recall notation) F™(z) := P[X}"™ < z], XM =Y 4V = 5™ biioi +
V(¢ Cmns0,...). Then U™ (z,y) = Ugim(:v,y) + Ugém(m,y), where
y
Uei"(z:y) = / / L = b = V) = 1 (0 b = YY)
m(Gemm = 2) (Y (1w = V) }dD(2) du
Ul (@,y) = bl / L/ () = (£ (= ¥ %) b,

where we used E(y = [ 2d®(z) = 0. The term Utnim(:v, y) can be further rewritten as

Ui (@.y) = / /d“/bmgmd'v () (= Y
—(mm Y (0= v = ) L da2).

By Lemma 6 (5.13), the function h(z) = (f™™ 1) (z) satisfies conditions (5.7). Therefore
by Lemma 5 (5.11),

bmct m

' du do { (7t (w =y ) — (et (u—v—Yﬁ“""’)}‘

T
< Conong) e + ) avym ), s,
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implying
T
U @) < ol y)loml” (4 [l (1 [2]), s

By independence of {;_,, and Y;""1* and using E|(]? < oo, B[V, < C < oo, see

(2.3), we obtain for any r < 3/2 and any 0 < n < m,m —n > jo,
BU™(x,9))? < Cpr (@, y) bm |*". (6.6)

with C' is independent of n, m.

Next, consider

Yy
U™ (29) = bmCim / (F () — £ — V")

Y
+ metm/ {7 =Y %0) = () (w = V)
2

=: Z W™ (@, y).

=1

By Lemma 6, f' satisfies (5.7), hence by Lemma 5 (5.10),
T
‘Wtﬁm(%y)‘ < Cpr(2,y) |bmCe—ml (‘Y}mﬂ’m‘ + ‘thﬂ’oo‘ ) ,  a.s.

By Rosenthal inequality, for any 1 < r < 3/2 we obtain E|Y;"T1>®|2r < C(Bh41 +

Y iemat b;]?") < CBr, 1 < CPBm+1 and therefore
n,m 2 2
E (W™ @,9)) < Cura, 9)0 - 6.7)

Finally, to estimate Wt%m(:v,y), use Lemma 6 (5.14)-(5.15) together with Lemma 5 (5.8).
This yields

‘W&,m(x,y)‘ < Cpr(z,y) [bmCi—m] (an + ;,1/2) (1 + ‘thﬂ’oo‘ ) , a.s.

Consequently,
EW3™(z,y))* < Cpr(z,y)b5, (i + Brm)- (6.8)

Note |bp|?" = o(b2,8m) for r < 3/2 sufficiently close to 3/2. Hence and from (6.6) - (6.8)

we obtain

EU;"™(z,y))* < Cur(@,y)bp (Bm + i),
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implying

n 1/2
E(Sfy () < Cup(zy) Y, Z b bt | (BY? + ) (B2, + tn). (6.9)
1<t<#'<N m=1

Here,

Z Z || bt —t-+1m| Bt B2 tll/QHm < Z Zm(4d_3)/2(tl—t+m)(4d_3)/2

1<t<t'<N m=1 1<t<t'<N m=1

where O(N) is defined in (6.5). The remaining sums on the r.h.s. of (6.9) can be similarly

estimated. This proves the claim (6.4) and Lemma 7, too. O

7 Proof of Lemma 2

We shall use a chaining argument together with the following bound: forany N > 1,z; < z9

N 2
E (FN(wl,xz) —F];(N)(xl,@)) < CON—(pH1ld=13)x (7.1)

Clearly, it suffices to show (7.1) for z; = —oo,z3 = z. Note E(Fy(z) — Fli(z))? <
E(I(Xg <z) — I(X} < z))* =: q() by Cauchy-Schwarz inequality. Put X := Xg, X" :=
X{'. By Minkowski inequality,

(o] 2
ql@) = E(Z(I(X’fsm—f(xk—ls:c ) (Z 0 @)

k=n+1 k=n+1
where

ar(e) = B (10X <)~ 1(X* " <))

Recall X* = YO,k+Vk +Yk+1,oo’ where YE+1L00 — 21 1 b C—z is independent of YO k—l—Vk.
Then

Qk(‘r) = E/R(I(oo,mVk](y)_I(oo,mVk—l}(y))zngrl’oo(y+Y0’k)dy'

Note for any z, a < b

/R(I(—oo,:c—a} (y) - I(—oo,:c—b] (y))2dy = |a - b|
Therefore by sup, ¢¥71°(z) < CkY, see Lemma 2, we obtain

ar(o,a2)] < CRB|VE—VF! < Oy < CHI.
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Thus, q(z1,z9) < C(n'+(0=,)/2)2 = Cn?+0-+ where = 11(1 — d). This proves (7.1).

Next we describe chaining. For any integer k£ > 1 define the partition

=00 =M < Wi < v < Mgk g < Mok =1 +00,
such that

pir (T Ti1k) = pe(R)27F, 5 =0,1,...,28 — 1.
Here, p, is the measure in the formulation of Lemma 7. Let K = K(NN) = O(log N) be an
integer which will be specified below. For any z € R and any k£ =0,1,..., K, define ji by
Put Vi (z) := N/2-4 (FX,(N) (z) — Fn(N) (:v)) Then

VN(LE) = VN(TFJ‘}D(’K) + VN(ﬂ'jf(’K,x). (7.2)

By definition of Vi, for any y < w < z,

Vv(y.w) < NY21Ey(y,2) = N2 AR (g )
= N UEy(y,2) - EY(y,2) + NP (,2)

< [Va(y, 2)| + 2sup N2 | FRV) (2) — prN)(2) 4 f(2)Vy
TER

+  sup NY2ZAUF N (w,2) + f(w, 2)[ V).
y<w<z

In a similar way,

VN (ya ’LU) 2 _N1/2—dF]7\l7(N) (ya Z)
> —2sup N2 4N (z) — FPON) (1) 4 £(2) Ty
zER
- sup N1/2_d(Fn(N)(waz) +f(w7z)|YN|)
y<w<z

The above bounds combine to

y<w<z
where
Ry = sule/%d ‘F;\L,(N)(x) — F”(N)(x) + f(z)Yn|,
z€eR
Wa2) = NV () + 18] [ @)
y
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Thus,
sup |V (7,2 T < max |Vn(m;_ T + 2Ry + max Wy(m;_ TiK).
mp\ N (mje k1) < 1§j§2K| N(Tj 1,5, 7.5 )| N+ max, N (Tj-1,K, T, K)
Then from (7.2) we obtain

sup|VN(m)| < 2Ry + max |VN(7Tj’K)|+ max |VN(7T]'_17K,7TJ"K)|
T 0<j<2K -1 1<j<2K

+ 122)2%{ WN(ijl,Ka 71']"[(). (73)
Here, Ry = op(1) by Lemma 7. Next, by (7.1),

oK _1

r <0§23§—1 Vv (m,0)] > 5) < ]ZO P (|Vn(mj,x)| > )
2K 1
< 6% BlV(mk)f
j=0
S 06—2(2K + 1)N1—2d—(p+11d—13)A. (74)

so that the second term is also op(1). The third term is treated exactly the same way.
Consider the last term on the r.h.s. of (7.3). By Lemma 6, Wy (z,y) < Cpu,(x,y)N'/?~4(1+
|Yv]), implying

E max Wy(mj 15, mjx) < C2XN'2E(1+ [Yy|) < 027K N'/274, (7.5)
1<5<2

Now choose K = [logy N(1/2)=4+€] where € > 0 is small enough. Then the r.h.s. of (7.4)
and (7.5) tend to 0 in view of inequality (2.7). This completes the proof of Lemma 2. [
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