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Résumé: Soient y une variable binaire, v une variable explicative continue et x d’autres
variables explicatives. On suppose que la fonction de répartition du vecteur aléatoire w =
(y, v, x) satisfait deux conditions: de monotonicité (E(y | v, x) est monotone en v) et de
support étendu (E(y | v, x) varie de 0 à 1 quand v varie sur son support. Dans ce cadre,
ce papier étudie les méthodes d’inférence du paramètre β dans le modèle semiparmaétrique
binaire y = 1(xβ + v + ε > 0). On montre que les restrictions de moment que Lewbel
(2000) propose permettent la juste identification du paramètre d’interêt, β. En d’autres
termes, l’absence de corrélation entre régresseurs et erreurs (E(x′ε) = 0) et une hypothèse
d’indépendance partielle (Fε(ε | v, x) = Fε(ε | x)) sont des conditions nécessaires et suff-
isantes pour l’identification. On montre aussi que cette méthode d’estimation atteint la
borne d’efficacité semiparamétrique. Pourtant, les hypothèses d’absence de corrélation et
d’indépendance partielle ne sont pas suffisantes quand le support de v n’est pas assez étendu.
On propose des restrictions identifiantes naturelles pour lesquelles β demeure juste identi-
fié. Des simulations par Monte-Carlo montrent que l’estimation est satisfaisante dans des
échantillons assez petits. Des extensions aux modèles à choix discrets ordonnées est aussi
proposée.

Mots-clés: Modèles binaires, Méthodes Semiparamétriques; Bornes d’Efficacité.
Classification JEL: C14, C25.

Abstract: Let, y, a binary outcome, v a continuous explanatory variable and x some
other explanatory variables. Assume that the population distribution of the random variable
w = (y, v, x) satisfies Monotone (1) and Large Support (2) assumptions: (1) E(y | v, x) is
monotone in v and (2) E(y | v, x) varies from 0 to 1 when v varies over its support. Within
this framework, this paper studies inference on the parameters of the semiparametric binary
regression model y = 1(xβ + v + ε > 0). It shows that the moment restrictions that Lewbel
(2000) proposed lead to exact identification of the parameter of interest, β. In other words, an
uncorrelated-error restriction (E(x′ε) = 0) combined with a partial-independance assumption
(Fε(ε | v, x) = Fε(ε | x)) are sufficient and necessary for identification. We also show that
Lewbel’s moment estimator attains the semi-parametric efficiency bound in the set of latent
models that he considers. Yet, uncorrelated-error and partial-independence assumptions
are not sufficient to identify β when the support of v is not sufficiently rich. We propose
intuitive additional identifying assumptions under which β remains just identified. Monte-
Carlo experiments show that the estimation performs well in moderately small samples. An
extension to ordered choice models is also provided.

Keywords: Binary models, Semiparametric methods, Efficiency bounds.
JEL Classification: C14, C25
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1 Introduction1

Consider the latent binary response model,

y = 1(xβ + v + ε > 0), (LV)

where y is a binary variable, 1(A) is an indicator function that equals one if A is true and

zero otherwise, x is a vector of covariates, v is a continuous covariate whose coefficient is

set equal to 1 by convention and ε is an unobserved random variable. It was proved by

Manski (1988) that a mean-independence restriction (i.e. E(ε | x, v) = 0) is not sufficient for

identifying β whatever conditions on the support of (v, x) are adopted. As a consequence, an

uncorrelated-error assumption (i.e. E(v′ε) = E(x′ε) = 0) is not sufficient either. In contrast,

Manski (1988) shows that, provided that the support of v is sufficiently rich, a quantile-

independence assumption (i.e., for a given α, Pr(ε < 0 | x, v) = α for any x, v) is sufficient

for identifying β. In a recent paper, however, Lewbel (2000) provides a very simple estimator

of β under the combination of an uncorrelated-error restriction (i.e. E(x′ε) = 0), a partial

independence assumption ((Fε(ε | x, v) = Fε(ε | x)) and a large support assumption (i.e., for

almost any x, the support of v contains the support of −(xβ+ε)). Under these assumptions,

Lewbel considers the following transformation of the dependent variable, ỹ =
y − I(v > 0)

f(v | x)
,

where f(v | x) is the density of v conditional on x, and show that β can be consistently

estimated by the linear regression of ỹ on x. Lewbel also provides an instrumental variable

version of this estimator when errors are correlated with x but uncorrelated with a set of

instrumental variables z. Honoré and Lewbel (2002) extends this method to estimating

binary choice panel data models with fixed effects.

All in all, the partial independence hypothesis is an appealing identifying restriction. It

overcomes Manski’s fundamental impossibility result and allows for the estimation of β un-

der very general forms of endogeneity and conditional heteroskedasticity (see e.g., Maurin,

2002, for a recent empirical application). We are not aware, however, of any literature dealing

with the identification of this model. In particular, it remains unclear whether the partial

independence hypothesis imposes restrictions on the range of binary phenomena that may

actually be analyzed through model (LV) and whether these restrictions are testable or not.

In this paper, we first adress this issue and prove that the partial independence hypothesis

is actually general enough to provide a semi-parametric estimator in a fairly wide class of

1We thank Arthur Lewbel for very helpful discussions and participants at seminars at CREST for helpful
comments. The usual disclaimer applies.
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binary choice models. Namely, we prove that the set of semi-parametric latent binary models

satisfying the assumptions of Lewbel (2000), that is, uncorrelated errors2, partial indepen-

dence and large support for v, is one-to-one with the set of non-parametric binary models

where: 1. The probability of success is monotone with respect to the continuous regressor, v.

2. The probability of success varies from 0 to 1 over the support of the continuous regressor.

Under these two conditions, the unconditional moment restrictions that Lewbel derived are

shown to be the only restrictions on the parameter of interest β in the latent model and

therefore β is just identified.

Making identification restrictions as weak as possible is not the only concern when es-

timating binary choice models. The simplicity of the approach and its efficiency properties

should also be taken into account. Parametric methods such as Probit or Logit are still

the most commonly used methods in empirical work even if economic theory can hardly

justify their assumptions. Popular semi-parametric methods are based on the properties

of statistical independence (i.e., Fε(ε | x, v) = Fε(ε)) or of single-index sufficiency (i.e.,

Fε(ε | x, v) = Fε(ε | xβ + v)). They use weaker distributional assumption than standard

parametric models, but still impose strong constraints on the distribution of ε (see e.g.

Cosslett (1983), Ruud (1983), Powell, Stock and Stoker (1989), Ichimura (1993), Klein and

Spady (1993) who provide estimators of β under statistical independence or index suffi-

ciency). The quantile-independence assumption permits much more general forms of con-

ditional heteroskedasticity. Still, the fact remains that very few empirical studies use the

corresponding maximum score estimation method, as developed by Manski (1975, 1985) or

its smoothened version developed by Horowitz (1992). The numerical methods needed for

optimizing the score may be one cause of underutilization, the lower than root-n rate of

convergence might be another reason. Some advances have recently been proposed by Chen

(2002) by stengthening the median-independence assumption into conditional symmetry and

a weak restriction on conditional heteroskedasticity. Estimation can then be proved to be

root-n consistent though optimisation is still needed. In contrast, Lewbel estimator can be

directly obtained without optimization and is root-n consistent. The implementation of the

estimation method is actually quite simple. It only requires the estimation of a conditional

density (i.e., f(v | x)) and a linear regression. As far as we know, there is no result about

efficiency though.

It is where this paper presents a second contribution. We prove that Lewbel’s estimator

2For the moment, errors are supposed to be uncorrelated with explanatory variables, x. See the main
text for the general case with instrumental variables.
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attains the semi-parametric efficiency bound in the set of latent models under considera-

tion. This result is derived using our equivalence result reported above though it is not

straightforward since the unknown non-parametric component of ỹ (i.e., f(v | x)) is also the

density function with respect to which the moment restriction (i.e., E(x′ [ỹ − xβ]) = 0) is

defined, and we cannot directly use the analysis of Chamberlain (1992). We evaluate the

semi-parametric efficiency bound using the formal derivation framework proposed by Sev-

erini and Tripathi (2001). Also, in the specific case where f(v | x) is known, we prove that

the estimate of β has a smaller variance when we use the estimated f̂(v | x) rather than the

true f(v | x) to transform y. This paradoxical finding was conjectured in Lewbel (2000) and

should be reminiscent of the central result of Hirano, Imbens and Ridder (2002).

These results emphasize that the partial independence assumption is definitely worthwhile

considering when analyzing binary responses. Deep structural parameters are identified

without imposing particularly strong restrictions on the range of phenomena that can be

analyzed. As it turns out, the weakness of Lewbel’s setting is not so much the partial

independence assumption as such, but the accompanying assumption on the support of the

continuous regressor. In general, the identification of semiparametric binary choice models

is lost when the support of the continuous regressor is not rich enough (Manski, 1988)

and the partial independence hypothesis does not overcome this problem. Under Lewbel’s

assumptions, the support of v should include the support of −(xβ+ ε). As already said, this

assumption restricts the domain of application of this method to the analyses of phenomena

such that the probability of success actually varies from 0 to 1 when v varies over its support.

Analysing probabilities of entry or exit as a function of age (v) and other covariates (x)

provides examples where the assumption may hold. Namely, if the support of the age variable

is sufficiently large, the youngest persons should all respond 0 and the oldest, 1. In contrast,

it is not possible to analyze phenomena such that at least some low-v persons and some high-

v persons give the same response, which is admittedly restrictive. The analysis of fertility is

one such example since, at all fecund ages, the probability of birth is never equal to 0 or to

1.

To address this issue, our paper proposes some additional intuitive identifying restrictions.

One such restriction is related to the conditional symmetry of the tails of the distribution

of individual propensities to respond. Even though Manski (1988) showed that conditional

symmetry has no identifying power over and above median-independence, uncorrelated errors

and conditional symmetry of the tails of the distribution are shown to be sufficient. For
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instance, under the partial independence hypothesis, the binary response under consideration

may be understood as the result of the comparison of an individual propensity to respond

(xβ+ε) and a continuous cost function (−v). The response is observed if and only if the cost

is less than the propensity, which leads to the binary latent structure (see Lewbel, Linton and

McFadden, 2001, for other interpretations and examples adapted to experimental design).

We show that the identification of β through unconditional moment restrictions remains

possible provided that we impose a symmetric distribution of the very high and very low

propensities, i.e. propensities that are either so high or so low that the responses do not

depend on the specific value taken by v. Necessary and sufficient conditions, though less

intuitive, are also provided. These conditions provides exact identification of the parameters

of interest and they are not testable.

Finally, we design Monte Carlo experiments in moderately small samples between 100

and 1000 in simple and more elaborate cases including endogeneity of covariates and/or

heteroskedasticity of regressors. The sensitivity of the estimation method to the distribution

of the continuous regressor v is analyzed as well as its sensitivity to the size of the support of

v. Monte-Carlo results support our claim that the estimation method is worth considering

even when samples are small. Lastly we explore whether our results hold for other linear

latent variable models such as those considered in Lewbel (1998) or Lewbel (2000). In general

the answer is no, but we find interesting exceptions. In particular, there exists an interesting

set of ordered discrete choice models which, under the partial independence hypothesis, is

actually one-to-one with a very general class of monotone ordered response models.

Section 2 introduces the framework and presents the equivalence result. Section 3 com-

putes the efficiency bound and reports additional results about the variance of the estimator.

In Section 4, we study (non) identification when the condition on the support is not satisfied

and we provide additional sets of identifying restrictions. We report Monte Carlo experiments

in Section 5. Section 6 provides extensions to ordered choices and Section 7 concludes.

2 The Set-up and the Equivalence Result

Let the “data” be given by the distribution of the following random variable3:

ω = (y, v, x, z)

3For simplicity, we only consider random samples and we do not subscript individual observations by i.
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where y is the binary variable, v is the continuous regressor, x are the “structural” ex-

planatory variables and z are the instruments. At this point, explanatory and instrumental

variables cannot be distinguished since no model has been written so far. Their respective

role will be clarified below in the latent model. We first introduce some regularity conditions

on the distribution of ω. They will be assumed valid in the rest of the text.

Assumption R(egularity):

R.i. (Binary model) The support of the distribution of y is {0, 1}

R.ii. (Covariates & Instruments) The support of the distribution, Fx,z of (x, z) is Sx,z ⊂

R
p×R

q where the p explanatory variables x can partially overlap with the q ≥ p instrumental

variables z with no loss of generality. Variables (x, z) may be functionally dependent4 (for

instance x, x2, log(x),...). The dimension of the set Sx,z is r ≤ p+ q where p+ q − r are the

potential overlaps and functional dependencies. Finally, rank(E(z′x)) = p.

R.iii. (Continuous Regressor) The support of the conditional distribution of v conditional

on (x, z) is [vL, vH ] almost everywhere Fx,z. Moreover, vL < 0 < vH and vL and vH can be

infinite. The conditional distribution is denoted Fv(. | x, z) and is defined almost everywhere

Fx,z. Furthermore, for any interval I ⊂ [vL, vH ] of positive Lebesgue measure, Pr(v ∈ I |

x, z) > 0 a.e. Fx,z.

R.iv. (Functional independence of v and (x, z)) There is no subspace of [vL, vH ]×Sxz of

dimension strictly less than r+1 which probability measure, (Fv(. | x, z).Fx,z), is equal to 1.

The first two assumptions define a binary model where there are p explanatory variables

and q instrumental variables (assumption R.ii). According to assumption R.ii, we could

denote the functionally independent description of (x, z) as u and this notation could be

used interchangeably with (x, z).5 Assumption R.iii defines the continuity assumption of

continuous regressor v. Note that mass points are allowed because what matters is that the

distribution of y given v, x and z can be defined almost everywhere in [vL, vH ]. Assumption

R.iv avoids the degenerate case where v and (x, z) are functionally dependent.

We now consider two possible formulations of the distribution of y conditional on v and

(x, z) and show that they are equivalent. The first formulation is a semi-parametric latent

index binary model as Lewbel (2000) and Honoré and Lewbel (2002) set it up. The second

4A collection (x1, ., xK) of real random variables is functionally independent if its support is of dimension
K (i.e. there is no set of dimension strictly lower than K which probability measure is equal to 1).

5Denoting (x, z) as u is used by Lewbel (2000) leads to more exact arguments below at the cost of an
additional notation. We prefer to stick to the more parsimonious notation (x, z).
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one is a non-parametric binary model. Let us start with the latent binary model:

y = 1(xβ + v + ε > 0), (LV)

where 1(A) is the indicator function that equals one if A is true and zero otherwise and

β ∈ R
p the vector of coefficients of interest. The distribution of the random error εi satisfies

the following properties as in Lewbel (2002):

Assumption L(atent) or L(ewbel)

(L.1) (Partial independence) The conditional distribution of ε given covariates x and

variables z is independent of the continuous regressor v:

Fε(. | v, x, z) = Fε(. | x, z)

The support of ε is denoted Ωε(x, z) and its distribution function Fε(. | x, z) is supposed to

be absolutely continuous. Denote fε(. | x, z) its density function.

(L.2) (Large support) The support of −xβ − ε is a subset of [vL, vH ].

(L.3) (Moment condition) The random shock ε is uncorrelated with variables z: E(z′ε) =

0.

Let M∗
L the set of latent models which elements (β, Fε(. | x, z)) satisfy partial indepen-

dence, support and moment conditions (L.1 − L.3). Using transformation (LV), we obtain

an image set of conditional distributions Pr(y = 1 | v, x, z) that we denote:

ML = ImLV (M
∗
L)

These conditional distributions necessarily satisfy the following conditions:

Lemma 1 Under partial independence (L.1) and large support (L.2) conditions, we neces-

sarily have:

(NP.1) (Monotonicity) The conditional probability Pr(yi = 1 | v, x, z) is increasing and

absolutely continuous in v a.e. Fx,z.

(NP.2) (Support) There exist (a.e. Fx,z) two values vl(x, z) and vh(x, z) (possibly infinite)

in the support [vL, vH ] such that:

Pr(yi = 1 | vl, x, z) = 0 Pr(yi = 1 | vh, x, z) = 1

6



Proof. Write:

Pr(yi = 1 | v, x, z) =

∫
xβ+v+ε>0,ε∈Ωε(x,z)

dFε(ε | x, z)

As dFε(ε | x, z) ≥ 0 and Fε is absolutely continuous, the first conclusion follows.

Second, for almost any (x, z), as the support of −xβ − ε is a subset of [vL, vH ] that we

denote [vl(x, z), vh(x, z)], we have for all ε ∈ Ωε(x, z):

vL ≤ vl(x, z) ≤ −(xβ + ε) ≤ vh(x, z) ≤ vH

and therefore for all ε ∈ Ωε(x, z):

vl(x, z) + xβ + ε ≤ 0 vh(x, z) + xβ + ε ≥ 0

The second conclusion follows.

Summing up, if we denote the set:

MNP = {F (y | v, x, z) satisfying monotonicity (NP.1), and support (NP.2) conditions}

we have just proved that ML ⊂ MNP . Let us prove the reciprocal, MNP ⊂ ML:

Lemma 2 Let Pr(y = 1 | v, x, z) (denoted G(v, x, z)) be a conditional probability satisfying

monotonicity (NP.1) and support (NP.2) conditions. Then, there exists a unique element

(β, Fε(. | x, z)) in M∗
L such that Pr(y = 1 | v, x, z) is its image throught the transformation

(LV). In particular, parameter β is uniquely defined by the following equation:

E(z′x).β + E(z′
∫

v
∂G

∂v
dv) = 0

Proof. Consider G(v, x, z) satisfying (NP.1) and (NP.2). According to the support

condition (NP.2), there exists (a.e. Fx,z) two values vl(x, z) and vh(x, z) in [vL, vH ] such

that G(vl(x, z), x, z) = 0 and G(vh(x, z), x, z) = 1. Assume that there exists (β, Fε(. | x, z))

in M∗
L such that G(v, x, z) is its image throught the transformation (LV). Define the support

of the random variable ε as:

Ω(β)
ε (x, z) = [−(vh(x, z) + xβ),−(vl(x, z) + xβ)] (1)

which is a subset of [−(vH +xβ),−(vL +xβ)] By definition of (LV), (β, Fε(. | x, z)) satisfies,

G(v, x, z) =

∫
v+xβ+ε>0,ε∈Ω(β)

ε (x,z)

fε(ε | x, z)dε =

∫ −(vl+xβ)

−(v+xβ)

fε(ε | x, z)dε

= 1− Fε(−(v + xβ) | x, z).
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which implies for any ε ∈ Ω
(β)
ε (x, z) that:

fε(ε | x, z) =
∂G

∂v
(−(xβ + ε), x, z). (2)

The ∂G
∂v

function is defined almost everywhere (Fv) since (a) by the monotonicity assump-

tion (NP1), G(v, x, z) is absolutely continuous in v ∈ [vL, vH ] (Billingsley, 1995) and (b) v

varies continuously (R.iii, R.iv).

Furthermore, condition (L.3) implies:

E(z′ε) = 0

= Ex,z(z
′
∫

εfε(ε | x, z)dε)

= −Ex,z(z
′
∫
(xβ + v)

∂G

∂v
dv

= −E(z′x)β − Ex,z(z
′
∫

v
∂G

∂v
dv) (3)

where the notation Ex,z means that the expectation is taken with respect to the subscript

variables only (if there is some ambiguity) and the integrals are taken on the support of

each variable. Because of R.iii, E(z′x) is of rank equal to the dimension of β. The previous

equation therefore uniquely defines β.

Thus if (β, Fε(. | x, z)) exists, it is defined by (1), (2) and (3). Reciprocally, consider

(β, Fε(. | x, z)) in M∗
L which satisfies (1), (2) and (3). Its image through (LV) is G. This

completes the proof.

Before discussing these results, remark that the equation determining β cannot be easily

used as an estimating equation because of the term
∫
v ∂G

∂v
dv. Some change of variables leads

however to the much simpler Lewbel’s estimating equation and this is proven now.

Proposition 3 Let the Lewbel transform of y be:

ỹ =
y − 1(v > 0)

f(v | x, z)
(4)

then under monotonicity and support conditions, (NP.1−NP.2):

Ex,z(z
′
∫

v
∂G

∂v
dv) = −E(z′ỹ)

Proof. See Lewbel (2000, page 115) or appendix A.

Returning to the main argument, lemmas 1 and 2 prove therefore that:
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Theorem 4 The class of latent models defined by independence, support and moment con-

ditions (L.1 − L.3) and transformation (LV) is one-to-one with the class of monotone and

bounded support binary models defined by conditions (NP.1−NP.2)

Theorem 4 sheds some light on the deep nature of the partial independence hypothe-

sis (L.1). This theorem shows that combining (L.1) with a rich support assumption such

as (L.2)) and an uncorrelated-errors condition such as (L.3) is exactly what is needed to

overcome the underidentification result of Manski (1988). Adding (L.1) to (L.2) and (L.3)

provides a framework where β is just identified. Adding (L.1) to (L.3) only would not be

sufficient as shown in section 4, while adding more than (L.1) to (L.2) and (L.3) would

generate testable overidentifying constraints.

Given this result, as far as identification is concerned, it is not straightforward to evalu-

ate the relative merits of Lewbel’s partial independence framework and Manski’s quantile-

independence setting, i.e. the two semi-parametric approaches that permit the most general

form of dependence between error distribution and covariates in binary models.

A first argument is that Lewbel’s framework accomodates endogeneous covariates while

Manski’s does not (at least to our knowledge). In contrast, the partial independence frame-

work requires conditions on the support of the covariates that are stronger than the conditions

required under quantile-independence. As shown by Horowitz (1998), a sufficient support

condition for estimating β under quantile-independence is that, for a set of x of positive

mass, v + xβ takes both positive and negative values when v varies over its support. It is

weaker (and in some cases strictly weaker) than (L2) which implies that v + xβ takes both

positive and negative value for any x when v varies over its support.

The quantile-independence assumption requires a weaker support condition than partial

independence but it may very well provide several alternative restrictions for identifying β

and generate testable overidentifying restrictions. Assume for instance that x is discrete and

belongs to {0, 1, ...K} while the density of v is positive everywhere on the real line. Under

median-independence, β is identified by looking simply to the change in sign of (P (y = 1 |

x = k, v)− .5) for any k such that v+kβ takes positive and negative value when v varies over

its support. More specifically, if vk is the value where (P (y = 1 | x = k, v)− .5) changes sign,

β is equal to −vk
k
. When v + xβ takes positive and negative values when v varies over its

support for at least two values of x (say, 1 and 2) median-independence provides at least two

ways of identifying β and at least one testable restriction (namely v2
2
= v1). Such restrictions

do not exist in Lewbel’s setting since identification is exact.
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All in all, the partial independance framework requires stronger support conditions on

the one hand. On the other hand, it yields exact identification while quantile independance

assumption might impose testable restrictions on the distribution of the covariates. This

trade-off between assumptions on disturbances and assumptions on explanatory variables

that exist when choosing between partial independence and quantile-independence is already

mentioned by Manski (1988) as something peculiar to the study of identification in the

discrete case.

Assuming partial independence is not the only way to overcome Manski’s result. A one-

to-one mapping such as the one exhibited in Theorem 4 also exists between monotone binary

models and latent linear variable models when some other relationship between random shock

ε and variable v is assumed. It simply happens that partial independence between ε and

variable v is the simplest type of relationship that one can think of and one that can be

easily implemented in experimental settings.

3 Information

Identification is not the only concern when choosing among different estimation methods,

information also is. Lewbel’s estimator is root-n consistent and asymptotically normal and

its variance-covariance matrix is relatively easy to compute (Lewbel, 2000). We do not

know much however about how precise it is with respect to other estimators. In the next

section, we take some steps further and prove that the specific estimator of β proposed

by Lewbel attains the semi-parametric efficiency bound and is semi-parametrically efficient.

One possible source of inefficiency comes from the relationship between the unknown non-

parametric component of ỹ (i.e., f(v | x, z) ) and the density function with respect to which

the moment restriction (i.e., E(z′ [ỹ − xβ]) = 0) is defined. Thus, the general framework

investigated by Chamberlain (1992) needs to be amended and the semi-parametric efficiency

of our moment estimator has to be checked by hand. Finally, we also show that it is more

efficient to use an estimate of the conditional density function than its true value when it is

known.

3.1 The Estimating Equation

Denote the function of interest:

m(y, v, x, z; β) = z′
[
y − 1(v > 0)

f(v | x, z)
)− xβ

]
= z′ [ỹ − xβ] ,
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since the estimate is based on the unconditional moment conditions:

E [m(y, v, x, z;β0)] = 0. (5)

From regularity conditions (R.i-iv.),

E [mm′] = Ω0

is of full rank, L. It is because E [mm′] = E(z′z.E [ỹ − xβ | z]2) and because E [ỹ − xβ | z] �=

0 on a set of positive measure Fx,z.

Note also that the derivative of function m with respect to β is constant and equal to:

−E(z′x),

so that the moment conditions are linear. If f(v | x, z) were known, the semi-parametric

efficiency bound for estimating solutions of unconditional moment restrictions would apply

(Chamberlain, 1987). The GMM efficiency bound would be:

(E(x′z)Ω−1
0 E(z′x))−1,

and the efficient estimate would then be obtained as usual. In our case however, the density

f(v | x, z) is unknown. Results reported by Chamberlain (1992) cannot directly be applied

because the unknown non parametric component is in our case also a density function with

respect to which the unconditional moment restriction is taken. The extension is however

shown to hold below.

For simplicity, we shall consider an estimation in two steps. First, we begin with the

estimation of parameter π0 = E(z′x).β0. Second we estimate parameter β0 using minimum

distance and this estimate of π0. In the first step, the unconditional moment restriction that

we consider is:

E(g̃(y, v, x, z; π0)) = E(z′ỹ − π0) = 0. (6)

We derive the efficiency bound and the matrix of variance-covariance of Lewbel’s estimate

for π0 in the next subsection and appendix. The efficiency bound and variance-covariance

matrices for β0 are derived next as in Newey and McFadden (1994), for instance. Namely,

if Vπ is the variance-covariance matrix of whatever estimate of π0 then, under the usual

regularity conditions, the variance-covariance matrix of the corresponding estimate of β0 is

given by:

(E(x′z).V −1
π .E(z′x))−1

11



3.2 The Semiparametric Efficiency Bound

The density function (with respect to products of Lebesgue and counting measures) of the

random vector w = (y, v, x, z), as defined by regularity conditions R, is rewritten as:

f(y, v, x, z) = f(y | v, x, z).f(v | x, z).f(x, z)

= φ2
1(y | v, x, z).ψ2(v | x, z).φ2

2(x, z)

to conform with the technique of Severini and Tripathi (2001) to derive efficiency bounds.

The “structural” parameter of interest is π and the “reduced form” fonctionals describing

the random variable are φ1, φ2, ψ which are assumed to belong to the following sets:

Φ1 = {φ1 : {0, 1}×[vL, vH ]×Sx,z → R,
∑
y=0,1

φ2
1(y | v, x, z) = 1, φ2

1(y | v, x, z) ≥ 0}

Φ2 = {φ2 ∈ L2(Sx,z),

∫
Sx,z

φ2
2(x, z)dxdz = 1, φ2

2(x, z) > 0,

φ2
2(x, z) is bounded and continuous}

Ψ = {ψ : [vL, vH ]×Sx,z → R,

∫
[vL,vH ]

ψ2(v | x, z)dv = 1, ψ2(v | x, z) > 0 a.e. Fx,z,

ψ2(v | x, z) is bounded and continuous a.e. Fx,z}

Let (φ̇1, φ̇2, ψ̇) denote a vector in the vector space L2({0, 1}×[vL, vH ]×Sx,z) which is

tangent, at the true value (φ0
1, φ

0
2, ψ

0) and corresponding π0, to the set E of all (φ1, φ2, ψ) ∈

Φ1 × Φ2 × Ψ which satisfies the unconditional moment condition given above (for all π).

The tangent space is the smallest linear space which is closed in the L2 norm and contains

all such (φ̇1, φ̇2, ψ̇). As shown in Severini and Tripathi (2001), under regularity conditions,

these tangent spaces are the product of the following subspaces:

linT (Φ1, φ
0
1) = {φ̇1 : {0, 1}×[vL, vH ]×Sx,z → R :

∑
y=0,1

φ0
1(y | v, x, z).φ̇1 = 0}

linT (Φ2, φ
0
2) = {φ̇2 ∈ L2(Sx,z) :

∫
Sx,z

φ0
2φ̇2dxdz = 0}

Let an arbitrary c ∈ R
K . We compute the semi-parametric efficiency bound for the parame-

ter:

ρ(φ0
1, φ

0
2, ψ

0) = c′π0

12



that is the minimum bound for any parametric path indexed by t ∈ [0, t0] on the set E of

interest such that:

ρ(φ1t, φ2t, ψt) = c′πt

We later derive the efficiency bound at π0 from this “directional” bound.

Only those (φ̇1, φ̇2, ψ̇) that satisfy the differentiation of the moment conditions shall be

used. The moment condition above can also be written as:∑
y=0,1

∫
[vL,vH ]×Sx,z

z′(y − 1(v > 0))φ2
1tφ

2
2tdvdxdz − πt = 0

What is remarkable is that this moment condition does not depend on ψ. Therefore differ-

entiation on any path through the true value π0 yields:∑
y=0,1

∫
[vL,vH ]×Sx,z

z′(y − 1(v > 0))2(φ̇1φ
0
2 + φ̇2φ

0
1)φ

0
1φ

0
2dvdxdz − π̇ = 0 (7)

As the objective is to estimate the functional ρ(φ1t, φ2t, ψt) = c′πt the tangent vectors also

have to satisfy (at (φ0
1, φ

0
2, ψ

0) and π0):

∇ρ(φ1t, φ2t, ψt) = c′π̇

Since this operator is a linear functional on the linear tangent space, Riesz theorem implies

that there exists a triplet (φ∗
1, φ

∗
2, ψ

∗) belonging to the tangent space such as:

4
∑
y=0,1

Ex,z,v(φ̇1φ
∗
1) + 4Ex,z

(∫
[vL,vH ]

ψ̇ψ∗dv
)
+ 4

(∫
Sx,z

φ̇2φ
∗
2dxdz

)
= c′π̇

As it is valid for all (φ̇1, φ̇2, ψ̇) in the tangent space, we can replace π̇ by its value given in

(7) and identify term by term. It is first obvious that ψ∗ = 0. Second:

φ∗
1(y | v, x, z) =

1

2
c′z′

[
y − 1(v > 0)

(ψ0(v | x, z))2
−E

(
y − 1(v > 0)

(ψ0(v | x, z))2
| v, x, z

)]
φ0
1

=
1

2
c′z′(ỹ − E (ỹ | v, x, z))φ0

1

where we used that φ∗
1 and φ̇1belong to the tangent space and therefore that:∑

y=0,1

φ0
1(y | v, x, z).φ∗

1 = 0
∑
y=0,1

φ0
1(y | v, x, z).φ̇1 = 0

in order to get the “centering” second term in the RHS. Furthermore, we have:

φ∗
2(x, z) =

1

2
c′.z′

(∑
y=0,1

∫
Sv

y − 1(v > 0)

(ψ0(v | x, z))2
(φ0

1)
2(ψ0)2dv − π0

)
φ0
2

=
1

2
c′.(z′E (ỹ | x, z)− π0)φ

0
2

13



where we used that φ∗
1 and φ̇1belong to the tangent space and therefore that:∫

Sx,z

φ0
2φ

∗
2dxdz = 0

∫
Sx,z

φ0
2φ̇2dxdz = 0

in order to get the “centering” second term in the RHS.

As shown in Severini and Tripathi (2001), the efficiency bound is thus:∥∥φ∗2
1

∥∥
F
+
∥∥φ∗2

2

∥∥
F

= c′E
(
z′(ỹ −E (ỹ | v, x, z))2z

)
c

+c′.E((z′E (ỹ | x, z)− π0)(z
′E (ỹ | x, z)− π0)

′).c

= c′E
(
z′(ỹ −E (ỹ | v, x, z))2z

)
c

+c′.E(z′(E (ỹ | x, z)− xβ0)
2z).c

= c′E(z′(ỹ − E (ỹ | v, x, z) + E (ỹ | x, z)− xβ0)
2z).c

where we used that π0 = E(z′x).β0. Thus, the semi parametric efficiency bound at π0 is:

E(z′(ỹ −E (ỹ | v, x, z) + E (ỹ | x, z)− xβ0)
2z).

For the paper to be self-contained, we provide again in appendix B a short proof of the

variance-covariance of Lewbel’s estimate that was derived by Lewbel (2000) and show that

it attains the previous bound.

3.3 Plugging-in the True or Estimated Conditional Density?

In this section, we assume that the conditional density f(v | x, z) is known. It may correspond

to the case where v is under experimental control or the case where one has access to

additional external information on the distribution of v (through census information for

instance). In such a case, we can consider both transformations, ỹ = y−I(v>0)
f(v|x,z) or y−I(v>0)

f̂(v|x,z)
when constructing the linear regression that leads to the estimation of β, where f(v | x, z) is

the true distribution and f̂(v | x, z) an estimate of f(v | x, z). It was conjectured in Lewbel

(2000) that the estimate of β obtained with ỹ and the true value of the density actually has

a larger asymptotic variance than the estimate obtained with ŷ and the estimated value of

the density. We now offer a proof for this conjecture:

Theorem 5 The estimate of π0 defined by the unconditional moment condition (6) (i.e.

E(z′ỹ − π0) = 0) has a smaller variance when the estimated f̂(v | x, z) is used to transform

the dependent variable.

14



Proof. When f(v | x, z) is unknown and estimated, Lewbel (2000) and Appendix B

shows that the variance-covariance matrix of π0 is the variance-covariance of the random

variable:

q = z′(ỹ − E(ỹ | v, x, z) + E(ỹ | x, z)− xβ0)

When f(v | x, z) is known, the variance is the usual GMM variance-covariance matrix of:

q0 = z′(ỹ − xβ0)

Note that it is the same variable ỹ which is used here since we deal with asymptotics and

f̂(v | x, z) is consistent for f(v | x, z). Denote:

η0 = ỹ − xβ0

and write:

q = z′(η0 − E(η0 | v, x, z) + E(η0 | x, z))

Consider:

η = η0 − E(η0 | v, x, z) + E(η0 | x, z)

so that we can write:

V q0 = E(z′.E((η0)
2 | v, x, z).z)

V q = E(z′.E((η)2 | v, x, z).z)

Some algebra yields:

E((η)2 | x, z, v) = E
[
(η0 − E(η0 | v, x, z) + E(η0 | x, z))

2 | v, x, z
]

= E
[
(η0)

2 + (E(η0 | v, x, z))
2 + (E(η0 | x, z))

2 | v, x, z
]

−2E [η0E(η0 | v, x, z) | v, x, z] + 2E [η0E(η0 | x, z) | v, x, z]

−2E(η0 | v, x, z)E(η0 | x, z)

= E
[
(η0)

2 | v, x, z
]
− (E(η0 | v, x, z))

2 + (E(η0 | x, z))
2

Therefore:

∆ = V q0 − V q = E(z′.
[
(E(η0 | x, z, v))

2 − (E(η0 | x, z))
2
]
.z)

As we can write:

E(η0 | x, z, v) = E(η0 | x, z) + η1

where E(η1 | x, z) = 0, we have:

E(η0 | x, z, v)
2 = E(η0 | x, z)

2 + (η1)
2 + 2E(η0 | x, z)η1

15



and therefore:

∆ = V q0 − V q = E(z′.
[
(η1)

2 + 2η1E(η0 | x, z)
]
.z)

= E(z′.(η1)
2.z) + 2E(z′.η1E(η0 | x, z).z)

= E(z′.(η1)
2.z) + 2E(z′.E(η1 | x, z)E(η0 | x, z).z)

= E(z′.(η1)
2.z)

is a semi-definite positive matrix.

The result can be understood by using broadly similar arguments to the ones presented

in Crépon, Kramarz and Trognon (1998) or the review of similar results reported in Hirano,

Imbens and Ridder (2002) when one has to deal with a nuisance parameter — which is here

the conditional density f — in a set of moment restrictions. In the case where the distribution

is known, there is a new set of equations that are added to the original moments conditions.

One can then show that the estimate based on the original set of moment equations where

the nuisance parameter is replaced by a consistent estimate is equivalent to the full set

of equations and is therefore efficient. In this sense, the estimate that uses the estimated

conditional density is “adapted” by construction to the empirical distribution of variables in

the sample while the true distribution is not.

All these results make it clear that the partial independence assumption is definitely

worthwhile considering when analyzing binary responses. It makes it possible to identify

and estimate efficiently deep structural parameters without imposing particularly strong

restrictions on the range of phenomena that can be analyzed.

In general however, the identification of β in binary choice models is lost when the support

of the regressors is not sufficiently rich. This is true when one uses the index sufficiency

or the quantile-independence models (Manski 1988) and it remains true under the partial

independence hypothesis. Horowitz (1998) provides some insights into the conditions that

can be added to the quantile-independence assumption for β to remain identified when the

support of the regressors is bounded. In the next section, we show how to complement the

partial independence assumption in order to identify β when the large support assumption

(L2) does not hold true.

4 Unrestricted Support and Identification

In this section, we analyze the conditions under which the partial independence assumption

remains necessary and sufficient for identifying β. We maintain the monotonicity condition
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NP1 but relax the large support condition NP2. The large support assumption implies that

for any population of characteristics (x, z), the probability of success actually varies from 0

to 1 when v varies from vL to vH . It is certainly not true for all applications of interest and

it is the reason why we now turn to study the case where this assumption is relaxed 6. We

have only that:

Pr(yi = 1 | vL, x, z) = G(vL, x, z) ≥ 0 Pr(yi = 1 | vH , x, z) = G(vH , x, z) ≤ 1

This framework includes the previous one since inequalities can be both binding. Yet, if

vH = +∞ and G(vH , x, z) < 1 (or if vL = −∞ and G(vL, x, z) > 0), then there is no latent

variable model in M∗
L which can lead to the conditional probability function G(v, x, z) since

the distribution of ε would be defective. It does not seem to be easy to make econometric

sense (and amenable to simple testing) of such cases. We shall consider, from now on, only

non-defective conditional probability functions that can agree with the latent structure:

lim
v→+∞

G(v, x, z) = 1 lim
v→−∞

G(v, x, z) = 0 (NP2’)

Note that in the case with unbounded support on the real line, vH = +∞ and vL = −∞,

(NP.2′) implies (NP.2). Cases of interest are therefore vL > −∞ or/and vH < +∞, condi-

tions that we shall assume here.

In this section, we first show that the combination of the partial independence and the

uncorrelated-error assumptions alone are not sufficient for identifying neither the distribution

of the random shock ε nor the structural parameters β. Secondly we present two different sets

of additional identifying restrictions which lead back to exact identification even when the

large support condition does not hold. It is shown that the first set preserves the consistency

of Lewbel’s estimation procedure.

4.1 Under-Identification of the Distribution of Latent Shocks

Consider a conditional distribution Pr(y = 1 | v, x, z), denoted G(v, x, z), satisfying the

monotonicity condition (NP.1) and condition (NP.2′). Assume that this conditional prob-

ability is the image of the latent model (β, Fε(. | x, z)) which satisfies partial independence

6The large support assumption is quite natural in many settings though. For instance, it is the case for
events that necessarily take place within a specific period of the life-cycle. When y describes such phenomena
as primary-school attendance, school-leaving, leaving parental home, the entry into (or the exit from) the
labor market (for male workers), age is the foremost candidate to be the special continuous regressor, v, and
the large support restriction is satisfied. Young enough children have never attended primary-school and old
enough children have all attended primary school for instance.
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(L.1) and moment condition (L.3). By definition, for any v in [vL, vH ], we have:

G(v, x, z) =

∫
v+xβ+ε,ε∈Ωε(x,z)

fε(ε | x, z)dv

G(v, x, z)−G(vL, x, z) =

∫ −(vH+xβ)

−(v+xβ)

fε(ε | x, z)dv = Fε(−(vL+xβ) | x, z)−Fε(−(v+xβ) | x, z).

Thus, for any ε in [−(vH + xβ),−(vL + xβ)], we have necessarily,

fε(ε | x, z) =
∂G

∂v
(−(xβ + ε), x, z). (8)

Yet, in contrast to the bounded support case, the support of ε (conditional on x and z) is

not included in [−(vH + xβ),−(vL + xβ)] if G(vH , x, z) < 1 or G(vL, x, z) > 0. Furthermore,

fε(ε | x, z) has no non parametric counterpart for ε in

B(x) =]−∞,−(vH + xβ)[∪]− (vL + xβ),+∞[.

The only restrictions on the distribution of ε on B(x) are that:

Pr{ε ≤ −(vH + xβ) | x, z} = 1−G(vH , x, z) (9)

Pr{ε > −(vL + xβ) | x, z} = G(vL, x, z)

which are compatible with (NP.2′). As a matter of fact, all elements of the set, , (β, Fε(. |

x, z)), which satisfies conditions (8) and (9), generate G through (LV ). This set is not empty

and Fε(. | x, z) cannot be completely identified under the independence (L.1) and moment

(L.3) conditions only, even if β is known. The only restrictions on F (ε | x, z) are conditions

(8) and (9) and the probability weight (9) is the only information on the distribution of ε

within the off-support set B(x). We are now going to show that the parameter of interest

β is itself underidentified.

4.2 Under-Identification of the Parameter of Interest

If (β, Fε(. | x, z)) generates G then Fε(. | x, z) satisfies conditions (8) and (9). The only

remaining restriction on β is given by the moment condition (L.3) :

0 = E(z′ε) = Ex,z(z
′
∫

εdF (ε | x, z)) (10)

= E(z′
∫
ε∈B(x)

εdF (ε | x, z)) + E(z′
∫ −(vL+xβ)

−(vH+xβ)

εdF (ε | x, z)) (11)

= E(z′
∫
ε∈B

εdF (ε | x, z))− E(z′
∫ vH

vL

(xβ + v)
∂G

∂v
dv)

= E(z′ε1{ε ∈ B(x)})− E(z′xβ
∫ vH

vL

∂G

∂v
dv)− E(z′

∫ vH

vL

v
∂G

∂v
dv) = 0
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The last term can be expressed as in the proof of lemma 3:∫ vH

vL

v
∂G

∂v
dv =

∫ vH

0

v
∂G

∂v
dv +

∫ 0

vL

v
∂G

∂v
dv

= [v(G(v, x, z)− 1)]vH0 −

∫ vH

0

(G(v, x, z)− 1)dv

+ [vG(v, x, z)]0vL −

∫ 0

vL

G(v, x, z)dv

= −

(
b(vH , vL, x, z) +

∫ vH

vL

(G(v, x, z)− 1(v > 0))dv

)
= − (b(vH , vL, x, z) + E(ỹ | x, z))

where:

b(vH , vL, x, z) = vH(1−G(vH , x, z)) + vL.G(vL, x, z) (12)

is a function of conditional probabilities at the bounds (and can be infinite). Note that it is

equal to zero when G(vH , x, z) = 1 and G(vL, x, z) = 0 (i.e., under NP.2).

The moment condition given by equation (10) can then be written as:

0 = E(z′ε1{ε ∈ B(x)})−E(z′x{G(vH , x, z)−G(vL, x, z)})β (13)

+E(z′b(vH , vL, x, z)) + E(z′ỹ)

= E(z′ε1{ε ∈ B(x)}) + E(z′x{1−G(vH , x, z) +G(vL, x, z)})β

+E(z′b(vH , vL, x, z))

−E(z′x)β + E(z′ỹ)

If the support condition (NP.2) would hold, we would have G(vH , x, z) = 1, G(vL, x, z) = 0

(therefore b(.) = 0) and B(x) = ∅. The last line of condition (13) would give Lewbel’s mo-

ment condition back (i.e., E(z′x)β = E(z′ỹ)). Given that (NP.2) does not hold, E(z′ε1{ε ∈

B(x)}) is unknown and parameter β cannot be identified. Moreover, E(z′ε1{ε ∈ B(x)})

cannot be bounded (put mass points of ε very close to + or −∞) and therefore, β cannot

be bounded.

We summarize this result in the following proposition:

Proposition 6 Under partial independence, moment condition, (L1) and (L3), parameter

β is identified if and only if E(z′ε1{ε ∈ B(x)}) is known and E(z′b(vH , vL, x, z)) is finite.

Proof. As G(v, x, z) is supposed to be known, the term b(vH , vL, x, z) is known and

finite. The only term which is not known in (13) is E(z′ε1{ε ∈ B(x)}).
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To understand such a condition, an interesting framework is the experimental setting

developed by Lewbel, interpreting v as (minus) the unit price and xβ + ε as the willingness

to pay for an object. Suppose that for every individual, random variables (x, z) are first

drawn according to their distribution. In a second stage, random shock ε is drawn according

to d.f. f(ε | x, z) and variable v is drawn according to its distribution Fv(v | x, z). Note

that because of the partial independence condition (L.1), the two last random drawings

are independent. Whether the sequence of drawings is sequential or simultaneous does not

make any difference. Suppose then that ε is drawn before v. Within this framework, B(x)

represents the set of ε such that the binary response is certain. It does not depend on the

resolution of uncertainty over v. Namely, there are two cases for elements of B(x). Either

(ε + vH + xβ < 0) and therefore for any v ≤ vH , (ε + v + xβ < 0) and the probability of

success is equal to zero. It is the subset of “certain failure”, (BF (x)). Or (ε+ vL + xβ > 0)

and therefore for any v ≥ vL, (ε+ v+xβ > 0) and the probability of success is equal to one.

It is the subset of “certain success”, (BS(x)). Our basic finding developed in the previous

proposition is that we need to specify how individuals are allocated to B(x) (i.e., allocated

to certainty) in order to define β. It is because choices of individuals allocated to B(x) are

not informative about their willingness to pay, xβ + ε.

In the remainder of this section, we explore two routes for specifying this allocation

process and solving the identification issue. First, we propose an additional assumption on

the density of ε in B(x). Second, as what makes things difficult is the absence of definition

of the density function of ε in B(x), we propose to replace (L.3) by a moment restriction

bearing directly on values ε /∈ B(x).

4.3 Generalizing Lewbel Estimation Method

As shown above, the set B(x) is the union of two “symmetrical” subsets, the subset of certain

failure (BF (x) = {ε : ε + vH + xβ < 0}) and the subset of certain success (BS(x) = {ε :

ε + vL + xβ > 0}). By construction, we have no means of identifying the distribution of

propensities of success and/or failure over these two sub-sets. One of the simplest assumption

we can think of is that the distribution of propensities of success within the certain-success

subset BS(x) is identical to the distribution of the propensity of failure within the certain-

failure subset BF (x)). Such a symmetry assumption is reminiscent of the symmetrically

trimmed least squares of Powell (1984). Most interestingly, this symmetry assumption is

sufficient for identification. The following proposition states the necessary and sufficient

20



assumption for exact identification of which symmetry is sufficient.

Proposition 7 Let vH < +∞ and vL > −∞. Denote y∗vL = (xβ + vL + ε) the propensity

of success for individuals with the lowest possible v and denote y∗vH = −(xβ + vH + ε) the

propensity of failure for individuals with the highest possible v. The class of latent models de-

fined by independence (L.1), moment condition (L.3) and transformation (LV) is one-to-one

with the class of monotone, continuous and bounded binary models defined by monotonicity

(NP.1) and (NP.2′) and the parameter β is defined by the usual moment condition (5) if

and only if:

E(z′y∗vH1{y
∗
vH

> 0}) = E(z′y∗vL1{y
∗
vL

> 0}) (14)

Proof. See appendix C.

In particular, once the distribution of y∗vL over BS(x) is the same as the distribution of

y∗vH over BvL(x), Lewbel estimator is unbiased. Alternatively, it is always possible to choose

conditional distributions for y∗vH and y∗vL such that equation (14) is satisfied (choose any

distribution for a positive y∗vL and set y∗vH = −y∗vL).

If either vH or vL is infinite7, this equation cannot be verified. Let vH = +∞ (say), then

the absence of bias means that E(z′y∗vL1{y
∗
vL

> 0}) should be set to zero which is impossible

since Ey∗vL1{y
∗
vL

> 0} > 0. Nevertheless as shown in Appendix C, the bias may affect the

intercept term only.

Proposition 8 Let vH = +∞ and vL > −∞. Denote y∗vL = (xβ + vL + ε) the propensity

of success for individuals with the lowest possible v. and denote y∗vH = −(xβ + vH + ε) the

propensity of failure for individuals with the highest possible v. The class of latent models de-

fined by independence (L.1), moment condition (L.3) and transformation (LV) is one-to-one

with the class of monotone, continuous and bounded binary models defined by monotonicity

(NP.1) and (NP.2′) and the parameter β is defined by the usual moment condition (5) apart

from the constant term if:

E(y∗vL1{y
∗
vL

> 0} | z) = α

is a constant which is independent of z.

As for information issues, we should emphasize that Lewbel’s estimator remains efficient

when the large support hypothesis (L.2) is replaced by a symmetry assumption such as

7but not both. If both K and L are infinite, we are back to the case described as restricted support (!),
condition (L.2). Theorem 4 applies.
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condition (14). As a matter of fact, the derivation of the semi-parametric efficiency bound

and of the variance-covariance of estimator do not depend on the specific assumptions made

on bounds. Whether conditions (L.2) or (NP.2) are satisfied or not, the same properties

apply to Lewbel’s estimate. It is consistent and semi-parametrically efficient under the

conditions of Propositions 7 or 8.

If one is ready to lose some efficiency then in the asymmetric case described by Proposition

8, one can always use the symmetrical trimming proposed by Powell (1986).

4.4 A Conditional Moment Restriction

When ε belongs to the certainty set B(x), variations in v have no empirical counterpart and

there is no way for defining the conditional distribution of ε or the propensity of success.

In this specific sense, the certainty set has no possible real-world counterpart. Given that,

it may seem more natural to impose restrictions on conditional moments relative to ε and

z, conditional on its being within the region of interest (and outside B(x)) rather than

restrictions on conditional distribution. In particular, once B(x) is non-empty, it may seem

preferable to assume:

E(z′ε | ε /∈ B(x)) = 0, (L3’)

rather than moment condition (L.3). This modification of Lewbel’s identifying restriction

makes identification possible at the cost of changing the definition of the parameter of inter-

est. Lewbel’s basic estimator is not valid anymore, however.

Proposition 9 The class of latent models defined by independence (L.1) and the conditional

moment (L.3′) restrictions and transformation (LV) is one-to-one with the class of monotone

binary models defined by (NP1) and (NP2′)

Proof: See appendix D.

The definition of β however changed. Let:

y̆ =
ỹ + b(vH , vL, x, z)

G(vH , x, z)−G(vL, x, z)

where ỹ is the Lewbel transform of variable y as defined by (4) and where b(vH , vL, x, z) is

given by equation (12). Then parameter β is defined by the moment restriction:

E(z′x).β = E(z′y̌)
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5 Monte-Carlo experiments

We present results concerning two Monte Carlo experiments and show that the estimators

developed in the case where the large support assumption (L.2) is not satisfied perform

well in medium-sized samples. The first experiment corresponds to the simplest model we

can think of and we call it the simple experiment. In the second and more sophisticated

experiment, we can accomodate endogeneity and heteroskedasticity issues and we call it the

complete experiment.

5.1 First Monte Carlo experiment

Consider the simple experiment where the scalar random variable x can take two values 0

and +1 and where 0 < β < 1. Assume also that the coefficient of the constant term α = 0

and that the support of v is given by vL = −1 and vH = +1. Let the support of ε be:

Ωε = [−2, 2],

and the distribution of ε be piece-wise uniform with f(ε | x) taking constant values over the

intervals [−2,−1[ , [−1, 0[ , [0, 1[ , [1, 2]. In Appendix E.1 we show the restrictions that has

to be imposed on these values in order to impose the uncorrelated-errors condition and the

no-bias restriction (i.e., conditions 5 and 14).

Results of the Monte-Carlo experiments are reported in Tables 1 to 4. These experiments

were replicated 200 times, the number over which averages and standard errors of estimates

remain stable. For each experiment, we report the bias, the empirical standard error, the

root mean square error and the mean absolute error. The number of observations varies

between 100 and 1000. Other details are reported in Appendix E.1.

In Table 1, we evaluate the influence of the distribution of the continuous regressor v.

In the simulations, we consider 4 types of distributions, uniform, Logit based, triangular

and assymetric as explained in the Details section of Appendix E.1 but we do not use this

information at the estimation stage.

For the uniform, biases are extremely small and the root mean square error is virtually

equal to the variance. Biases are more important for the other distributions in small samples

of 100 from 8% for the triangular to more than 100% for the assymetric distribution that

we use. Yet the part of biases in the RMSE is small and biases become very small when the

sample size reaches 200 observations. The reported mean absolute error shows that nothing

particular happens in the tails of the distribution except when the sample size is small (100).

23



The Logit case gives average results and it will consequently be the distribution that we use

in the following Tables.

In Table 2, we evaluate the impact of the method used for estimating the conditional

density of v. We estimate the model using differing window sizes around the optimized value

as suggested by Lewbel (2000) and which construction is explained in Appendix E.3. For

every sample size, we make the window size vary between half and twice the optimal window.

Optimization does not seem to work well in the current experiments since the RMSE of the

estimates is never minimal for this choice of window size. For all sample sizes, the larger the

window is, the smaller the RMSE. It might only translate that the optimization is performed

over a constant term only while there is an explanatory variable in the experiment reported

here. Yet a method of minimization of the RMSE might be advisable in this context.

In Table 3, we vary the average frequency of observations such that the probability of

success is certain over all the support of v (the setBs(x) as described in the previous sections)

and the average frequency of observations such that the probability of failure is certain over

all the support of v (the set Bf(x) as described in the previous sections). As before, biases

are small and do not vary systematically with the average frequencies of “perfect” success or

failure. Yet, these observations where the issue can be perfectly predicted in the support of

v, do not contribute to the information about the parameter of interest and this can be seen

in the increases of RMSEs with the increase in frequencies for almost all sample sizes. All

these comments remain valid when we vary the value of the coefficient of interest β (Table

4).

5.2 Second Monte Carlo experiment

Consider β a vector of parameters. The sample that we construct consists in a variable v,

in a scalar variable x and scalar instrument z where:

x = zγz + εx

Consider two random disturbances. The first one is constructed from:

ε0 = εx.α.γ0 + exp(γs + xγx).α0

where α is distributed uniformly over [0, 1] and α0 is distributed uniformly over [−0.5, 0.5].

Parameters (γ0, γs, γx, γz) index the Monte Carlo experiments. A second random drawing ε1

is shown below to be less important because it only affects the tails of the distribution. We
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will consider that ε1 is the absolute value of a zero mean and unit variance normal variate.

It is therefore a positive random variable

Consider the following device to construct the final disturbance ε in the Monte Carlo

simulations. Fix δ ∈ R
L:

ε = ε0 + zδ if − (xβ + vH) < ε0 + zδ ≤ −(xβ + vL)
ε = −(xβ + vH)− ε1 ε0 + zδ ≤ −(xβ + vH)
ε = −(xβ + vL) + ε1 ε0 + zδ > −(xβ + vL)

In terms of the model, the last two regimes respectively describe the certain failure set,

BF (x) = {ε ≤ −(xβ + vH)}, and the certain success set, BS(x) = {ε > −(xβ + vL)}. As

these two last regimes will lead to a simulation ys = 0 or ys = 1 it is why the distribution of

ε1 is less important provided that the unbiasedness condition (14) is satisfied. Namely the

simulations are given by:

ys = 1{v + xβ + ε > 0}

The random term ε should verify the conditions of the model that are the moment

restriction (5) and the unbiasedness condition (14). In Appendix E.2 we explain how to find

a value of δ such that these conditions hold.

Results of the Monte-Carlo experiments are reported in Tables 5 to 8. These experiments

were replicated 200 times as in the simple case. Even if an intercept is present, we only report

the OLS and IV estimates of the coefficient β of the explanatory variable x. Other details

are explained in Appendix E.2.

In Table 5, we report results when the explanatory variable is exogenous and there is

no heteroskedasticity. The OLS estimate behaves very well and differences across different

distributions for the continuous regressor v are much smaller than in the simple experiment.

The largest bias when the sample size is 100 is equal to 20% for the triangular distribution.

The reported mean absolute errors show that the tails of the distribution are thin and that

the RMSE is hardly explained by outliers. As expected, almost all of the RMSE is due to

the variance of the estimates. Also as expected, the bias of the 2SLS estimate is much larger,

can reach 40% for 100 observations and remains significant for samples of 1000 (around 30%

for the triangular). The part explained by the bias in the RMSE can be almost equal to the

part of the variance for 100 observations.

In Table 6 we make the degree of endogeneity vary through coefficient γ0. We adopt the

Logit distribution for v as in the simple experiment. As expected, the bias of OLS increases

when the degree of endogeneity increases, whatever the number of observations. In contrast,

the 2SLS estimate performs better when the degree of endogeneity increases and the bias is
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generally lower by a factor equal to 1/3. Overall, these tables confirm that this estimation

method performs well even when potential specification errors are present. In Tables 7 we

introduce heteroskedasticity. As expected, the bias of the OLS estimate is quite insensitive

to the presence of heteroskedasticity though it tends to slightly increase in absolute value

in large samples. It is the reverse property that holds for the 2SLS estimate though, as

they are opposite in signs, both biases tend to be lower in relative value. More surprisingly,

the RMSE is very insensitive to heteroskedasticity which may mean that the degree of it is

not “sufficient”. Finally, we combine both endogeneity and heteroskedasticity specification

problems in Table 8. Results are mainly resulting from the sum of these two problems and

interactions are weak.

6 Extensions

Lewbel (1998) and Lewbel (2000) use the continuous regressor hypothesis to estimate the

structural parameters of other linear latent variable models, y = L(xβ + ε), such as the

ordered discrete choice model with constant thresholds or the censored regression model.

One obvious issue is whether the equivalence results given by Theorem 4 can be extended

to these models. In some interesting cases the answer is positive. In other cases, the con-

tinuous regressor hypothesis imposes testable restrictions on the set of monotone statistical

phenomena that may be generated by the latent structure.

To illustrate the generalization of Theorem 4, we consider the most straighforward ex-

tension of binary responses which are ordered choice models. Assume that the support of

y is now Sy = {0, 1, ..., K} (K ≥ 1). The discussion will be split into two according to two

definitions of ordered choice models. In the first one, each individual is defined by an or-

dered set of propensities (i.e., y∗1, ., y
∗
K) and his/her response (y ∈ {0, 1, ..., K}) depend on

how propensities compare with a given cost variable v. In the second model, each individual

is defined by one specific propensity y∗ and his/her response depends on how this propensity

compares with an ordered set of thresholds αk(v).We are going to show that a straightfor-

ward extension of theorem 4 only holds in the first case. In the second model, structural

parameters are overidentified.

6.1 Ordered Choices: First Model

Let us consider the following definition for latent ordered choice models.
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Definition 10 Latent ordered discrete choice models are characterized by a set of ordered

latent random variables {y∗1, ., y
∗
K} where y∗k > y∗k+1. By convention define y∗K+1 = −∞. The

observable model is given by:

y =
K∑
k=1

I(v + y∗k > 0, v + y∗k+1 ≤ 0), (LV1)

=
K∑
k=1

I(−y∗k < v ≤ −y∗k+1).

To conform with the binary model, we only consider linear latent models such as:

∀k = 1, .,K y∗k = xβk + εk,

and where every random shock ε1, ., εK satisfy (L.1− L.3).

This model is also a direct generalization of (LV ). WhenK = 1, the two models coincide.

Such an ordered choice model may typically be used for analyzing the schooling choices

that are made at the end of compulsory school where (a) y is the number of year of post-

compulsory education, (b) v is the finanacial cost of each year of post-compulsory schooling

while (c) y∗k is the marginal net return to the k − th year of post-compulsory education (a

plausibly decreasing function of k and which plausibly depends on preferences and social

background).

Another possible application is when the observed variable y records the number of units

of a good that is bought by consumer i when the offered unit price is (−v), the latent

variables, y∗k, stands for the average willingness to pay for a unit of this good when the

number of units bought is k. If marginal utility is decreasing, then the unit willingness to

pay is decreasing which justifies the ordered choice setting. The fact that an entire array

of unobserved components affect willingness of pay is due to individual differences in the

relations between marginal utility and quantity purchased.

One of the nice consequence of the setting given by (LV 1) is that it is equivalent to a

system of K binary latent models given by:

yk = I(−y∗k < v), (LV1k)

For instance, y1, is the indicator of purchase (any quantity), y2 is the indicator of 2 or more

units purchased and so on yk is the indicator that more than k units were purchased:

yk = I(y ≥ k).
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Reciprocally:

y =
K∑
k=1

yk.

Within this framework, letM∗
OC be the set of latent ordered discrete choice models which

elements (βk, Fεk(. | x, z), k = 1, ...,K) satisfy partial independence, support and moment

conditions (L.1− L.3) and the additional inequality restrictions across alternatives:

y∗k = xβk + εk > xβk+1 + εk+1 = y∗k+1 (15)

Those inequalities do not translate into restrictions on the marginal distributions of εk but

only on the joint distribution of (εk, εk+1). Let Ωk(x, z) be the support of εk as defined in

the first section. The support of (ε1, ., εK) is therefore:

Ω(β, x, z) = {(ε1, ., εK) ∈ Ω1 × ..×ΩK | ∀k;xβk + εk > xβk+1 + εk+1}

The consequences in terms of non-parametric predictions are now straightforward. They

consist in (NP.1) and (NP.2) for any choice k. Inequalities (15) in the latent model translate

into:

yk = 1{−(xβk + εk) < v} ≥ 1{−(xβk+1 + εk+1) < v} = yk+1

with some strict inequalities for a positive mass of v. Thus:

E(yk | v, x, z) = Gk(v, x, z) > Gk+1(v, x, z) = E(yk+1 | v, x, z)

which is a sensible assumption in most cases. For instance, the probability of buying more

than k units is decreasing with k. Those inequalities do not translate into restrictions on the

marginal distributions of εk but only on the joint distribution of (εk, εk+1) and their joint

distribution is underidentified. Only the marginals are.

We can now summarize these results. Let the setM∗
LOC of latent ordered models be given

by parameters (β1, ., βK) ∈ R
K, distribution functions (f1(ε1 | x, z), ., fK(εK | x, z)) ∈ DK, a

family of set Ω(β, x, z) ⊂ R
K, and the transformation (LV1) such that they verify (L.1−L.3).

Let the set MNPOC given by:

MNPOC = MNP (y1)× ..×MNP (yK)

that satisfy (NP.1) and (NP.2) and where ∀k;Gk(v, x, z) > Gk+1(v, x, z). Then:

Theorem 11 M∗
LOC is one-to-one with MNPOC.
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6.2 Ordered Choices: Second Model

Let us now consider the following semi-parametric latent model which is defined with respect

to the unobserved heterogeneity component:

y =
K∑
k=1

I(αk(v) < xβ + ε ≤ αk+1(v)), (LV2)

where the thresholds αk(v), k = 1, ..., K + 1, satisfy,

α1(v) = −v ≤ α2(v) ≤ ... ≺ αk(v) ≤ αK+1(v) = +∞, (16)

while ε satisfies (L.1), (L.2) and (L.3).

This model also is a direct generalization of (LV ). WhenK = 1, the two models coincide.

The xβ + ε may be interpreted as a propensity to respond as in (LV), but the response has

now several possible levels of intensity. The αk(v) thresholds may be interpreted as the cost

of responding with intensity k. The only structural assumption about these costs is that

they increase with the response’s intensity.

Such a model may describe for instance the performance of young children when starting

school where y∗represents their (latent) schooling ability (plausibly dependent on family

inputs) and the αk(v) the set of thresholds (plausibly dependent on v being the birthdate

within the year) imposed by the educational system for deciding who has to be held back

(y = 0), who has to be on time (y = 1) and who has to be ahead (y = 2) at school8.

Let M∗
LOC2 be the set of latent ordered discrete choice models which elements (β, Fε(. |

x, z), αk(v), k = 2, ..., K) satisfy independence, support and moment conditions (L.1−L.3).

Consider also a statistical model F (y | v, x, z) on Sy such that Pr(yi ≥ 1 | v, x, z) satisfy

conditions (NP.1 − NP.2) and assume that there exists a latent ordered choice model (β,

Fε(. | x, z), αk(v), k = 2, ..., K) in M∗
LOC2 which image is F (y | v, x, z).

Let us denote G0(v, x, z) = P (y = 0 | v, x, z). By definition, −G0 belongs in M∗
NP . Thus,

using Theorem 4, we can exactly identify the parameter of interest β and the distribution of

errors ε. In particular, we necessarily have fε(. | x, z) =
∂G0

∂v
(−(xβ + ε), x, z).For any k ≥ 1,

define now Gk(v, x, z) = P (y ≤ k | v, x, z). We have,

8Maurin (2002) uses the binary approach to estimate the probability to be held back using v = date of
birth within the year as a special regressor and interpreting xβ + ε as schooling abilities. −α2(v) can be
interpreted as the ability threshold (defined by the educational system) above which children can be ahead
at school.
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Gk(v, x, z) =

∫ −xβ+αk(v)

−∞
dF (ε | x, z) =

∫ −xβ+αk(v)

−∞

−∂G0

∂v
(−(xβ + ε), x, z)dε

= G0(−αk(v), x, z).

It therefore yields:

αk(v) = −G−1
0 (., x, z) ◦Gk(v, x, z).

Thus F (y | v, x, z) is the image of an element ofM∗
LOC2 only if G−1

0 (., x, z)◦Gk(v, x, z) do not

depend on x and z. Put differently, a monotone ordered discrete phenomena can be analyzed

as a structural ordered choice model that satisfies the partial independence hypothesis only

under the testable assumption according which G−1
0 ◦ Gk do not depend on x and z. Note

finally that inequalities described by (16) translate into the same inequalities on functions

Gk that we had in the previous subsection and which are adapted to the present setting.

They do not affect our argument.

Therefore, the ordered discrete choice models with fixed thesholds (i.e., αk(v)− α0(v) =

γk) considered in Lewbel (2000) or in Lewbel (1998) are not one-to-one with the monotone

discrete models. The partial independence hypothesis makes it possible to identify very easily

the structural parameters that characterize these ordered choice models, but this assumption

also implies (testable) restrictions on the set of discrete monotone phenomena that can be

analyzed with such models.

7 Conclusion

In this paper, we show that the uncorrelated-error, partial independence and large-support

assumptions proposed by Lewbel (2000) are necessary and sufficient for identifying the struc-

tural parameters of a very general class of monotone binary response phenomena. Further-

more, we show that Lewbel’s moment estimator attains the semi-parametric efficiency bound

in the corresponding class of latent models. We also show that the large support assumption

-which might be unadapted in some instances- can be amended using additional credible re-

strictions such as conditional symmetry of the tails of a distribution. We also report Monte

Carlo experiments which work well and propose an extension to ordered choice models.

It would be interesting to extend our results to other settings, such as the analyses

of selection models (Kahn and Lewbel, 2002), treatment effects (Lewbel, 2002) or panel

data (Honoré and Lewbel, 2002). We are currently exploring another route by relaxing the
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assumption that partial independence holds with respect to the regressor which is continuous.

We consider that v is discrete or has been discretized and show that bounds of an interval

containing β are identified in this case.
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Appendices

A Proof of Lemma 3

∫
v
∂G

∂v
dv =

∫ vH

0

v
∂G

∂v
dv +

∫ 0

vL

v
∂G

∂v
dv

= [v(G(v, x, z)− 1)]vH0 −

∫ vH

0

(G(v, x, z)− 1)dv

+ [vG(v, x, z)]0vL −

∫ 0

vL

G(v, x, z)dv

= −

∫ vH

vL

(G(v, x, z)− 1(v > 0))dv

= −

∫ vH

vL

(E(y | v, x, z)− 1(v > 0))dv

= −

∫ vH

vL

E(ỹ | v, x, z).dFv(v | x, z) = −E(ỹ | x, z)

and the proof follows.�

B The variance-covariance of Lewbel estimate

As in Newey (1994), consider the estimation of the parameter of interest πt = E(z′ỹ) on any

differentiable path indexed by t and where t = 0 gives π0. For simplicity, denote u is the

functionally independent representation of (x, z):

πt =

∫
z′
y − 1{v > 0}

ft(v | u)
ft(ε, v, u)dεdvdu

Therefore:

πt =

∫
z′(y − 1{v > 0})ft(ε | v, u)ft(u)dεdvdu

Under regularity conditions given by Newey (1994), formal differentiation with respect to t

yields:

∂πt

∂t

∣∣∣∣
t=0

=

∫
z′(y − 1{v > 0})

∂

∂t
(ft(ε | v, x, z)ft(x, z))dεdvdu

=

∫
z′(y − 1{v > 0})

(
∂

∂t
ln ft(ε | v, u) +

∂

∂t
ln ft(u)

)
f0(ε | v, u)f0(u)dεdvdu
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∂πt

∂t

∣∣∣∣
t=0

= E

[
z′
y − 1{v > 0}

f0(v | u)
.

(
∂

∂t
ln ft(ε | v, u) +

∂

∂t
ln ft(u)

)]

= E

[
z′ỹ.

(
∂

∂t
ln ft(ε, v, u)−

∂

∂t
ln ft(v, u) +

∂

∂t
ln ft(u)

)]

= E [z′ỹ.S(ε, v, u)]−E

[
z′ỹ.

∂

∂t
ln ft(v, u)

]
+ E

[
z′ỹ.

∂

∂t
ln ft(u)

]

= E [z′ỹ.S(ε, v, u)]−E [z′E(ỹ | v, u).S(v, u)] + E [z′E(ỹ | u).S(u)]

where S(ε, v, u) = ∂
∂t
ln ft(ε, v, u) is the score of the model evaluated at the true value (re-

spectively S(v, u) = ∂
∂t
ln ft(v, u) and S(u) = ∂

∂t
ln ft(u). As for any function φ(v, u) :

E(φ(v, u)S(v, u)) = E(φ(v, u)S(ε, v, u))

we therefore have:

∂πt

∂t

∣∣∣∣
t=0

= E [z′(ỹ −E(ỹ | v, u) + E(ỹ | u)).S(ε, v, u)]

and the variance covariance of π̂ is the variance of q:

q = z′(ỹ −E(ỹ | v, u) + E(ỹ | u)− xβ0)

since Eq = 0 and where we used that π0 = E(z′x)β0 �

C Proof of Proposition 7

Equation (13) proves that Lewbel’s estimator is biased except if:

E(z′ε1{ε ∈ B(x)}) + E(z′x{1−G(vH , x, z) +G(vL, x, z)})β

+E(z′b(vH , vL, x, z)) = 0

⇐⇒

E(z′ε1{ε < −(vH + xβ)}) + E(z′ε1{ε > −(vL + xβ)})

E(z′(xβ + vH){1−G(vH , x, z)}+ E(z′(xβ + vL){G(vL, x, z)} = 0

⇐⇒

E(z′(xβ + vH + ε)1{ε < −(vH + xβ)}) + E(z′(xβ + vL + ε)1{ε > −(vL + xβ)}) = 0

which is equivalent to:

−E(z′y∗vH1{y
∗
vH

> 0}) + E(z′y∗vL1{y
∗
vL

> 0}) = 0

where y∗vL = −(xβ + vH + ε) and y∗vL = xβ + vL + ε.

If vH = +∞ and using the support condition (NP.2′), the bias is characterized by the

quantity:

E(z′y∗vL1{y
∗
vL

> 0})

If the conditional mean is independent of z :

E(y∗vL1{y
∗
vL

> 0} | z) = α

then the constant only in β is biased. �
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D Proof of Proposition 9

We replace the unconditional moment restriction given by L3, by the following conditional

moment restriction:

E(z′ε | ε /∈ B(x)) = 0

⇐⇒ E(z′ε | vH + xβ + ε > 0, vL + xβ + ε < 0) = 0

The conditioning event means that we are only considering unobserved heterogeneity terms

such that there exists observable values (v, x) such that v+xβ+ε = 0. Similar developments

to equation (10) lead to:

−E(z′x)β + E(z′
ỹ + b(vH , vL, x, z)

G(vH , x, z)−G(vL, x, z)
) = 0

If we define:

y̆ =
ỹ + b(vH , vL, x, z)

G(vH , x, z)−G(vL, x, z)

estimates of β can be obtained by regressing y̆ on x using instruments z.

There is an alternative form to y̆. It is obtained by noting that:

∫ vH

vL

(G(v, x, z)− 1(v > 0))dv = b+

∫ vH

vL

(G(v, x, z)− 1(v > b))dv

Therefore if:

ŷ =
y − 1{v > −b(vH , vL, x, z)}

f(v | x)(G(vH , x, z)−G(vL, x, z))

then:

Ez′ŷ = Ez′y̌

�

E Details of the Monte Carlo experiments

E.1 First Monte-Carlo experiment

Let the support of ε be:

Ωε = [−2, 2],

and the distribution of ε be piece-wise uniform and given by its conditional distributions. If

x = 1 :
f1(ε) = µ+ if 0 ≤ ε < 1
f1(ε) = µ− if − 1 ≤ ε < 0
f1(ε) = λ+ if ε ≥ 1
f1(ε) = λ− if ε < −1
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and if x = 0,

f0(ε) =
µ+ + µ−

2
if − 1 ≤ ε < 1

f0(ε) =
λ+ + λ−

2
if ε ≥ 1 or ε < −1

We show how to impose three restrictions among which restrictions (5) and (14).

Restrictions First, fi(.) are density functions if:

µ+ + µ− + λ+ + λ− = 1 (17)

Second, the moment conditions (5), E(ε) = 0 and E(xε) = 0, hold in our case if E(ε | x =

1) = 0 and E(ε | x = 0) = 0. The first condition implies that:

3λ− + µ− = 3λ+ + µ+ (18)

and the second condition is always satisfied by symmetry of f0(ε).

Furthermore, the support of xβ + ε is [−2, 2] if x = 0 and [−2 + β, 2 + β] if x = 1.The

first interval is always larger than the support of v, and as β < 1, the second interval is as

well so that:

Pr(y = 1 | v) ∈ (0, 1)

The support condition(L2) is therefore not verified.

Finally, the unbiasedness conditions are:

−E(x(xβ + 1 + ε)1{ − (xβ + 1 + ε) > 0}) = E(x(xβ − 1 + ε)1{xβ − 1 + ε > 0}

−E((xβ + 1 + ε)1{ − (xβ + 1 + ε) > 0}) = E((xβ − 1 + ε)1{xβ − 1 + ε > 0}

Because x takes two values only, it is again equivalent to:

−E((xβ +1+ ε)1{− (xβ +1+ ε) > 0} | x = 1) = E((xβ − 1+ ε)1{xβ− 1+ ε > 0} | x = 1)

−E((xβ +1+ ε)1{− (xβ +1+ ε) > 0} | x = 0) = E((xβ − 1+ ε)1{xβ− 1+ ε > 0} | x = 0)

thus:

−E((β + 1 + ε)1{ε < −(β + 1)} | x = 1) = E((β − 1 + ε)1{ε > 1− β} | x = 1)

−E((1 + ε)1{ − (1 + ε) > 0} | x = 0) = E((−1 + ε)1{ − 1 + ε > 0} | x = 0)

The second condition is always satisfied since RHS and LHS are equal to
3(λ+ + λ−)

4
. The

first condition is more informative. Since β ∈]0, 1[ its left handside is equal to:

−

∫ −(β+1)

−2

(β + 1 + ε)λ−dε = −

∫ 0

−1+β

uλ−du = λ−.
(β − 1)2

2

Moreover, its right hand side is equal to:∫ 1

1−β

(β − 1 + ε)µ+dε+

∫ 2

1

(β − 1 + ε)λ+dε =

∫ β

0

uµ+du+ βλ+ +

∫ 1

0

uλ+du

= µ+

β2

2
+ βλ+ + λ+/2
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Summary Summarizing we have 3 equations:

µ+ + µ− + λ+ + λ− = 1

3λ− + µ− = 3λ+ + µ+

λ−.
(β − 1)2

2
= µ+

β2

2
+ βλ+ + λ+/2

and inequations:

µ+, µ−, λ+, λ− ≥ 0, 0 < β ≤ 1

Therefore:

λ−.
(β − 1)2

2
= (

1− 4λ+ + 2λ−)
2

)
β2

2
+ βλ+ + λ+/2

Thus:

2λ−.(β
2 + 1− 2β) = (1− 4λ+ + 2λ−)β

2 + 4βλ+ + 2λ+

λ−.(2− 4β) = λ+.(2 + 4β − 4β2) + β2

λ− = λ+.
1 + 2β − 2β2

1− 2β
+

β2

2− 4β
(19)

If we restrict the domain of variation of β to [0, 1/2[, both coefficients are positive and

therefore the domain of variation of λ+ is the real positive line. Considering the other

equations:

µ+ + µ− +
2− 2β2

1− 2β
λ+ =

2− 4β − β2

2− 4β

λ+.
3 + 6β − 6β2

1− 2β
+

3β2

2− 4β
+ µ− = 3λ+ + µ+

thus:

2µ− + λ+.
2 + 12β − 8β2

1− 2β
=

1− 2β − 2β2

1− 2β

λ+.
−2 + 12β − 4β2

1− 2β
+

1− 2β + β2

1− 2β
= 2µ+

and therefore:

µ− =
1

1− 2β
(1/2− β − β2 − λ+.(1 + 6β − 4β2)) (20)

µ+ =
1

1− 2β
(
1− 2β + β2

2
+ λ+(−1 + 6β − 2β2)) (21)

that we can also write:

µ− = a− + λ+.b−

µ+ = a+ + λ+.b+
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On the domain β ∈ [0, 1/2[, b− < 0 and a− > 0 only if β < −1+
√
3

2
. We shall restrict the

domain of variation of β to [0, −1+
√
3

2
[. On this domain, a+ is always positive though b+ is

negative at β = 0 and positive at β < −1+
√
3

2
. The domain of variation of λ+ is therefore

[0, u+] where:

u+ = min(
1/2− β − β2

1 + 6β − 4β2 ,
1/2− β + β2/2

1− 6β + 2β2 ) if 1− 6β + 2β2 > 0

u+ =
1/2− β − β2

1 + 6β − 4β2 if 1− 6β + 2β2 < 0

It can be proven that the first bound applies and therefore:

u+ =
1/2− β − β2

1 + 6β − 4β2

Example In the case where β = 1/4, equations (19), (20) and (21) yield:

λ− =
11

4
λ+ + 1/16

µ− = 3/8−
9

2
λ+

µ+ =
3

4
λ+ +

9

16

All parameters are positive if λ+ < u+ = 1/12.

Details Different distributions of v are used in the experiments (Table 1):

1. Uniform: v � U [−1, 1]

2. Logit: The support of the distribution is [−1, 1] and the distribution F (.) is given by:

3v = log [(F (v) + c)/(1− F (v) + c)]

where c = 1/(exp(3)− 1)

3. Triangular: The support of the distribution is [−1, 1] and the distribution F (.) is

given by:

v = [2.1{F (v) < 1/2} − 1] [2.(F (v)− 1/2)]2

4. Assymetric: The support of the distribution is [−1, 1] and the distribution F (.) is

given by:

3v = log
[
(F (v)2 + c)/(1− F (v)2 + c)

]
where c = 1/(exp(3)− 1)

Kernel: All estimations of the conditional distribution of f(v | x, z) are performed using

a bi-weight kernel function:

K(u) = 15/16.(1− u2)21{ |u| ≤ 1}

39



E.2 Second experiment

The random term ε should satisfy two constraints that are the moment restriction (5) and

the unbiasedness condition (14) that is:

E(z′ε) = 0

−E(z′(xβ + vH + ε)1{ − (xβ + vH + ε) > 0}) = E(z′(xβ + vL + ε)1{xβ + vL + ε > 0})

Consider the second one. By definition, it yields:

E(z′ε11{ε0 + zδ ∈ BF (x)}) = E(z′ε11{ε0 + zδ ∈ BS(x)})

As ε0 and ε1 are independent drawings conditional on z, it is always satisfied for any value

of δ. Consider now the first moment condition:

E(z′ε) = E(z′(ε0 + zδ)1{ε0 + zδ ∈ BM(x)}

+ E(z′(−(xβ + vH)− ε1)1{ε0 + zδ ∈ BF (x)})

+ E(z′(−(xβ + vL) + ε1)1{ε0 + zδ ∈ BS(x)})

where we denoted:

BM(x) = R/(BF (x) ∪BS(x))

By the same argument as above, we can eliminate ε1:

E(z′ε) = E(z′(ε0 + zδ)1{ε0 + zδ ∈ BM(x)})

− E(z′(xβ + vH)1{ε0 + zδ ∈ BF (x)})

− E(z′(xβ + vL)1{ε0 + zδ ∈ BS(x)})

and we must find δ such that this moment is equal to zero. We can then rewrite:

0 = E(z′(ε0 + zδ)− E(z′(ε0 + zδ + xβ + vH)1{ε0 + zδ ∈ BF (x)})

− E(z′(ε0 + zδ + xβ + vL)1{ε0 + zδ ∈ BS(x)})

Consider the following algorithm. Let δ0 = 0. Find δn such that:

0 = E(z′(ε0 + zδn)− E(z′(ε0 + zδn−1 + xβ + vH)1{ε0 + zδn−1 ∈ BF (x)})

− E(z′(ε0 + zδn−1 + xβ + vL)1{ε0 + zδn−1 ∈ BS(x)})

that is:

δn = − [E(z′z)]−1
{E(z′ε0)− E(z′(ε0 + zδn−1 + xβ + vH)1{ε0 + zδn−1 ∈ BF (x)})

− E(z′(ε0 + zδn−1 + xβ + vL)1{ε0 + zδn−1 ∈ BS(x)}}

If the algorithm converges, it converges to a value which satisfies the different conditions

above. To find parameter δ as a function of the Monte Carlo parameters (γ0, γs, γx, γz) and

the distribution L, we use a very large sample consisting of many replications of the original

sample and drawings of ε0 and ε1.

Some details are also reported in the previous Appendix E.1.
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E.3 Optimizing the Window Size

For choosing the window, we adapt the procedure reported by Lewbel (2000). It is an

attempt to exploit the identity:

δ = E((1{δ + v + ε > 0} − 1{v > 0})/f(v | x, z))

where ε is any zero mean homoskedastic random shock satisfying conditions (L.1− L.3).

1. We divide the interval between the 5th percentile and the 95th percentile of the dis-

tribution of v into I intervals and consider any corresponding value of δi at the mid

interval.

2. By simulation we compute the average, δ̄i,of the argument given above within the

expectation using a uniformly distributed ε satisfying conditions (L.1 − L.3) for any

δi. We compute the following distance:

S(h) =
I∑

i=1

(δ̄i − δi)
2

σ̂2
i

where σ̂i is the empirical standard error of δ̄i and where h is any window size.

3. We repeat the previous step for window size h around the Silverman window:

h0 = (4/(k + 2))pn−p

where k is the number of covariates, n is the number of observations and p = 1/(k+4).

The number of window size h is equal to 30 and the range is between h0/4 and 4h0.
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Table 1: Baseline Monte Carlo experiment (Simple version)

α :True value = 0.00 β : True value = 0.25

Distribution Nobs Window Bias StdErr RMSE MAE Bias StdErr RMSE MAE

Uniform 100 0.3781 0.0003 0.1121 0.1119 0.0904 0.0245 0.1989 0.1999 0.1573
200 0.3766 0.0017 0.0723 0.0722 0.0570 0.0162 0.1327 0.1334 0.1041
500 0.3531 -0.0013 0.0425 0.0424 0.0341 0.0100 0.0798 0.0802 0.0623
1000 0.2385 0.0001 0.0301 0.0300 0.0238 0.0055 0.0537 0.0539 0.0441

Logit 100 0.2690 0.0382 0.4204 0.4211 0.1323 -0.0651 0.7398 0.7408 0.3000
200 0.2817 0.0359 0.2859 0.2875 0.0980 -0.0195 0.3176 0.3174 0.1595
500 0.2345 0.0022 0.0522 0.0522 0.0420 0.0039 0.0921 0.0919 0.0742
1000 0.1697 0.0026 0.0355 0.0355 0.0282 0.0024 0.0592 0.0591 0.0484

Triangular 100 0.3235 0.0082 0.2864 0.2858 0.1452 0.0163 0.3781 0.3775 0.2447
200 0.3291 -0.0022 0.0951 0.0949 0.0705 0.0123 0.1621 0.1621 0.1289
500 0.2740 -0.0009 0.0511 0.0510 0.0387 0.0102 0.0884 0.0887 0.0715
1000 0.2041 0.0013 0.0347 0.0347 0.0266 0.0002 0.0594 0.0593 0.0478

Assymetric 100 0.1054 -0.1777 2.2279 2.2294 0.3583 0.2757 2.4128 2.4225 0.6840
200 0.0918 -0.1911 1.5399 1.5479 0.2724 0.0088 1.8123 1.8078 0.5196
500 0.2345 0.0072 0.0587 0.0590 0.0469 -0.0056 0.1113 0.1112 0.0844
1000 0.1697 0.0020 0.0422 0.0422 0.0335 0.0043 0.0751 0.0750 0.0569

Notes: 200 replications. All details are reported in Appendix E.1. Distribution corresponds to different
choices for the distribution of v. Nobs is the number of observations. The Window size is optimized according
to the device explained in Appendix E.3. Bias is the average of differences between the estimates and
the true value. Stderr is the empirical standard error of the estimates, RMSE is the root mean square error and
MAE is the mean absolute error. The average probabilities of perfect success and perfect failure (see text and
Appendix E.1) are equal to 0.15 and 0.12.



Table 2: Monte Carlo experiment (Simple version): Window sensitivity

α :True value = 0.00 β : True value = 0.25

Nobs Window Bias StdErr RMSE M AE Bias StdErr RMSE MAE

100 0.1345 0.0251 0.8366 0.8349 0.2004 -0.0197 1.2544 1.2 514 0.5309
0.2018 0.0086 0.1626 0.1624 0.1108 0.0442 0.4109 0.41 22 0.2668
0.2690 0.0382 0.4204 0.4211 0.1323 -0.0651 0.7398 0.7 408 0.3000
0.3363 0.0605 0.4381 0.4411 0.1527 -0.0456 0.4812 0.4 821 0.2544
0.4035 0.0199 0.1750 0.1757 0.1103 -0.0117 0.2596 0.2 592 0.1962

200 0.1408 0.0161 0.1653 0.1656 0.0842 0.0022 0.3002 0.29 94 0.1743
0.2112 0.0124 0.3995 0.3987 0.1055 0.0046 0.4218 0.42 08 0.1737
0.2817 0.0359 0.2859 0.2875 0.0980 -0.0195 0.3176 0.3 174 0.1595
0.3521 0.0134 0.1023 0.1030 0.0720 -0.0024 0.1656 0.1 652 0.1273
0.4225 0.0088 0.0853 0.0856 0.0658 0.0007 0.1494 0.14 90 0.1181

500 0.1172 0.0027 0.0570 0.0569 0.0448 0.0045 0.1074 0.10 72 0.0854
0.1759 0.0026 0.0542 0.0542 0.0430 0.0144 0.1765 0.17 66 0.0869
0.2345 0.0022 0.0522 0.0522 0.0420 0.0039 0.0921 0.09 19 0.0742
0.2931 0.0020 0.0499 0.0498 0.0407 0.0028 0.0895 0.08 93 0.0721
0.3517 0.0018 0.0485 0.0484 0.0395 0.0027 0.0886 0.08 84 0.0713

1000 0.0849 0.0034 0.0384 0.0385 0.0295 0.0070 0.0765 0.0 766 0.0548
0.1273 0.0032 0.0363 0.0363 0.0284 0.0030 0.0623 0.0 622 0.0504
0.1697 0.0026 0.0355 0.0355 0.0282 0.0024 0.0592 0.0 591 0.0484
0.2122 0.0022 0.0354 0.0354 0.0281 0.0022 0.0585 0.0 584 0.0476
0.2546 0.0019 0.0352 0.0351 0.0279 0.0023 0.0581 0.0 580 0.0471

Notes: 200 replications. All details are reported in Appendix E.1. The distribution of v is Logit. Nobs is the
number of observations. The Window size is varying between one half and 2 times the optimized value according
to the device explained in Appendix E.3. Bias is the average of differences between the estimates and
the true value. Stderr is the empirical standard error of the estimates, RMSE is the root mean square error and
MAE is the mean absolute error.



Table 3: Monte Carlo simple experiment: Sensitivity to the support of v

Probabilities α :True value = 0.00 β : True value = 0.25

Nobs Success Failure Bias StdErr RMSE MAE Bias StdErr RMSE MAE

100 0.08 0.04 0.0079 0.0706 0.0708 0.0471 -0.0030 0.5205 0.5192 0.1849
200 0.0124 0.0758 0.0766 0.0339 0.0106 0.1575 0.1574 0.0972
500 0.0053 0.0274 0.0278 0.0211 0.0032 0.0712 0.0711 0.0554
1000 0.0012 0.0188 0.0188 0.0144 0.0034 0.0462 0.0462 0.0364
100 0.13 0.09 0.0230 0.4092 0.4088 0.1085 -0.0164 0.6678 0.6663 0.2551
200 0.0293 0.2752 0.2761 0.0833 -0.0061 0.3048 0.3041 0.1420
500 -0.0002 0.0450 0.0449 0.0362 0.0102 0.0867 0.0871 0.0690
1000 -0.0001 0.0300 0.0300 0.0237 0.0047 0.0565 0.0565 0.0450
100 0.17 0.15 0.0240 0.4563 0.4558 0.1558 -0.0751 0.8328 0.8341 0.3558
200 0.0353 0.2866 0.2880 0.1073 -0.0190 0.3223 0.3220 0.1716
500 0.0045 0.0588 0.0588 0.0474 -0.0008 0.0983 0.0981 0.0770
1000 0.0026 0.0396 0.0396 0.0316 0.0000 0.0628 0.0627 0.0515
100 0.21 0.20 0.0131 0.4693 0.4683 0.1816 -0.0694 0.8298 0.8306 0.3737
200 0.0209 0.2083 0.2088 0.1127 -0.0186 0.2750 0.2750 0.1850
500 0.0022 0.0659 0.0658 0.0527 -0.0021 0.1021 0.1019 0.0798
1000 0.0014 0.0479 0.0478 0.0373 -0.0021 0.0704 0.0702 0.0569

Notes: 200 replications. All details are reported in Appendix E.1. The distribution of v is Logit. Nobs is the
number of observations. The Window size is optimized according to the device explained in Appendix E.3.
Bias is the average of differences between the estimates and the true value. Stderr is the empirical standard error of
the estimates, RMSE is the root mean square error and MAE is the mean absolute error. Success (resp. Failure)
probabilities are the frequency of observations such success (i.e. yi = 1, resp. failure) is certain whatever value v takes.



Table 4: Sensitivity to the support of v (2nd version)

Probabilities α :True value = 0.00 β : True value = 0.10

Nobs Success Failure Bias StdErr RMSE MAE Bias StdErr RMSE MAE

100 0.03 0.01 -0.0007 0.0315 0.0314 0.0078 0.0109 0.1724 0.1724 0.1251
200 0.0001 0.0144 0.0143 0.0051 0.0119 0.1308 0.1310 0.0790
500 0.0003 0.0080 0.0079 0.0040 0.0014 0.0585 0.0584 0.0473
1000 -0.0005 0.0057 0.0057 0.0037 0.0012 0.0398 0.0397 0.0330
100 0.12 0.11 0.0382 0.4204 0.4211 0.1323 -0.0803 0.7299 0.7325 0.2802
200 0.0359 0.2859 0.2875 0.0980 -0.0305 0.3130 0.3137 0.1529
500 0.0022 0.0522 0.0522 0.0420 -0.0060 0.0904 0.0904 0.0723
1000 0.0026 0.0355 0.0355 0.0282 -0.0031 0.0583 0.0582 0.0468
100 0.21 0.22 0.0137 0.4763 0.4753 0.1957 -0.0919 0.8325 0.8355 0.3794
200 0.0235 0.2122 0.2129 0.1167 -0.0301 0.2819 0.2828 0.1855
500 0.0024 0.0671 0.0669 0.0538 -0.0051 0.1063 0.1062 0.0858
1000 0.0001 0.0497 0.0495 0.0385 -0.0044 0.0736 0.0735 0.0596

Notes: 200 replications. All details are reported in Appendix E.1. The distribution of v is Logit. Nobs is the
number of observations. The Window size is optimized according to the device explained in Appendix E.3.
Bias is the average of differences between the estimates and the true value. Stderr is the empirical standard error of
the estimates, RMSE is the root mean square error and MAE is the mean absolute error. Success (resp. Failure)
probabilities are the frequency of observations such success (i.e. yi = 1, resp. failure) is certain whatever value v takes.



Table 5: Baseline Monte Carlo experiment: Complete version

β = 0.25 : OLS estimate β = 0.25 : 2SLS estimate
Distribution Nobs Window Bias StdErr RMSE MAE Bias StdErr RMSE MAE

Uniform 100 0.6642 0.0246 0.1980 0.1985 0.1488 0.0986 0.2789 0.2945 0.2246
200 0.7629 0.0196 0.0970 0.0984 0.0775 0.0698 0.1448 0.1601 0.1232
500 0.5997 0.0005 0.0628 0.0625 0.0517 0.0569 0.0806 0.0984 0.0785
1000 0.5343 0.0003 0.0382 0.0380 0.0307 0.0460 0.0534 0.0703 0.0573

Logit 100 0.6402 -0.0251 0.1775 0.1784 0.1419 0.0570 0.2638 0.2686 0.2060
200 0.6559 -0.0209 0.1104 0.1118 0.0841 0.0328 0.1520 0.1547 0.1271
500 0.5447 -0.0176 0.0764 0.0780 0.0601 0.0382 0.0959 0.1028 0.0800
1000 0.4525 -0.0090 0.0574 0.0579 0.0401 0.0450 0.0697 0.0827 0.0633

Triang 100 0.5922 0.0553 0.2457 0.2507 0.2006 0.1053 0.2926 0.3096 0.2352
200 0.5062 0.0482 0.1785 0.1840 0.1365 0.0910 0.2586 0.2730 0.2064
500 0.4529 0.0384 0.0883 0.0959 0.0743 0.0977 0.1217 0.1556 0.1186
1000 0.4035 0.0298 0.0920 0.0963 0.0545 0.0726 0.0992 0.1226 0.0851

Assymetric 100 0.5442 0.0031 0.2742 0.2729 0.2092 0.1211 0.3710 0.3885 0.2966
200 0.6345 0.0056 0.1307 0.1301 0.0968 0.0622 0.1848 0.1941 0.1552
500 0.5263 -0.0031 0.0853 0.0850 0.0670 0.0478 0.1247 0.1329 0.1050
1000 0.4689 0.0024 0.0717 0.0714 0.0480 0.0669 0.1175 0.1347 0.0976

Notes: 200 replications. All details are reported in Appendix E.2. Distribution corresponds to different
choices for the distribution of v. Nobs is the number of observations. The Window size is optimized according
to the device explained in Appendix E.3. Bias is the average of differences between the estimates and
the true value. Stderr is the empirical standard error of the estimates, RMSE is the root mean square error and
MAE is the mean absolute error.



Table 6: Complete Monte Carlo experiment: Sensitivity to endogeneity

β = 0.25 : OLS estimate β = 0.25 : 2SLS estimate
Nobs Endogeneity Bias StdErr RMSE MAE Bias StdErr RMSE MAE

100 0.0000 -0.0251 0.1775 0.1784 0.1419 0.0570 0.2638 0.2 686 0.2060
0.3333 0.0419 0.1638 0.1683 0.1260 0.0576 0.2590 0.26 41 0.2034
0.6667 0.1115 0.1663 0.1995 0.1548 0.0573 0.2509 0.25 61 0.1981
1.0000 0.1609 0.1719 0.2349 0.1908 0.0448 0.2531 0.25 58 0.1992

200 0.0000 -0.0209 0.1104 0.1118 0.0841 0.0328 0.1520 0.1 547 0.1271
0.3333 0.0406 0.1042 0.1113 0.0856 0.0267 0.1411 0.14 29 0.1154
0.6667 0.1065 0.1061 0.1499 0.1217 0.0301 0.1355 0.13 81 0.1079
1.0000 0.1562 0.1091 0.1903 0.1618 0.0249 0.1392 0.14 08 0.1129

500 0.0000 -0.0176 0.0764 0.0780 0.0601 0.0382 0.0959 0.1 028 0.0800
0.3333 0.0434 0.0705 0.0825 0.0612 0.0280 0.0953 0.09 89 0.0770
0.6667 0.1057 0.0746 0.1292 0.1072 0.0256 0.1014 0.10 41 0.0817
1.0000 0.1596 0.0724 0.1751 0.1596 0.0234 0.1043 0.10 64 0.0849

1000 0.0000 -0.0090 0.0574 0.0579 0.0401 0.0450 0.0697 0. 0827 0.0633
0.3333 0.0520 0.0545 0.0751 0.0587 0.0364 0.0706 0.0 791 0.0613
0.6667 0.1093 0.0561 0.1228 0.1093 0.0293 0.0710 0.0 765 0.0590
1.0000 0.1633 0.0527 0.1715 0.1633 0.0222 0.0715 0.0 745 0.0577

Notes: 200 replications. All details are reported in Appendix E.2. The distribution of v is assumed to be
Logit. Nobs is the number of observations. The Window size is optimized according to the device explained in
Appendix E.3. Bias is the average of differences between the estimates and the true value. Stderr is
the empirical standard error of the estimates, RMSE is the root mean square error and MAE is the mean absolute
error. The endogeneity parameter is γ0 as explained in the text. γ0 = 0 stands for the exogeneity case.



Table 7: Complete Monte Carlo experiment: Sensitivity to heteroskedasticity

β = 0.25 : OLS estimate β = 0.25 : 2SLS estimate
Nobs Heteroskedasticity Bias StdErr RMSE MAE Bias StdErr RMSE MAE

100 0.0000 -0.0251 0.1775 0.1784 0.1419 0.0570 0.2638 0.2686 0.2060
0.3333 -0.0186 0.1872 0.1872 0.1466 0.0767 0.2732 0.2825 0.2146
0.6667 -0.0269 0.1946 0.1955 0.1541 0.0763 0.2721 0.2813 0.2144
1.0000 -0.0223 0.2057 0.2058 0.1603 0.0582 0.2583 0.2635 0.2074

200 0.0000 -0.0209 0.1104 0.1118 0.0841 0.0328 0.1520 0.1547 0.1271
0.3333 -0.0212 0.1145 0.1159 0.0889 0.0342 0.1545 0.1575 0.1245
0.6667 -0.0286 0.1207 0.1235 0.0949 0.0318 0.1558 0.1583 0.1226
1.0000 -0.0324 0.1238 0.1274 0.0981 0.0282 0.1594 0.1611 0.1230

500 0.0000 -0.0176 0.0764 0.0780 0.0601 0.0382 0.0959 0.1028 0.0800
0.3333 -0.0187 0.0837 0.0854 0.0637 0.0339 0.1055 0.1103 0.0853
0.6667 -0.0288 0.0812 0.0858 0.0645 0.0272 0.1077 0.1106 0.0845
1.0000 -0.0301 0.0816 0.0866 0.0655 0.0230 0.1094 0.1112 0.0872

1000 0.0000 -0.0090 0.0574 0.0579 0.0401 0.0450 0.0697 0.0827 0.0633
0.3333 -0.0101 0.0639 0.0644 0.0447 0.0432 0.0771 0.0880 0.0700
0.6667 -0.0183 0.0626 0.0649 0.0456 0.0327 0.0740 0.0806 0.0644
1.0000 -0.0251 0.0582 0.0631 0.0454 0.0251 0.0710 0.0749 0.0610

Notes: 200 replications. All details are reported in Appendix E.2. The distribution of v is assumed to be
Logit. Nobs is the number of observations. The Window size is optimized according to the device explained in
Appendix E.3. Bias is the average of differences between the estimates and the true value. Stderr is
the empirical standard error of the estimates, RMSE is the root mean square error and MAE is the mean absolute
error. The heteroskedasticity parameter is γx as explained in the text. γx = 0 describes the homoskedastic case.



Table 8: Sensitivity to Endogeneity and Heteroskedasticity

β = 0.25 : OLS estimate β = 0.25 : 2SLS estimate
Endogeneity Heteroskedasticity Bias StdErr RMSE M AE Bias StdErr RMSE MAE

0.00 0.00 -0.0176 0.0764 0.0780 0.0601 0.0382 0.0959 0.1028 0.0800
0.33 -0.0187 0.0837 0.0854 0.0637 0.0339 0.1055 0.1103 0.0853
0.67 -0.0288 0.0812 0.0858 0.0645 0.0272 0.1077 0.1106 0.0845
1.00 -0.0301 0.0816 0.0866 0.0655 0.0230 0.1094 0.1112 0.0872

0.33 0.00 0.0434 0.0705 0.0825 0.0612 0.0280 0.0953 0.0989 0.0770
0.33 0.0370 0.0840 0.0914 0.0675 0.0267 0.1071 0.1099 0.0853
0.67 0.0291 0.0834 0.0879 0.0646 0.0240 0.1056 0.1078 0.0811
1.00 0.0214 0.0830 0.0853 0.0657 0.0188 0.1084 0.1095 0.0859

0.67 0.00 0.1057 0.0746 0.1292 0.1072 0.0256 0.1014 0.1041 0.0817
0.33 0.0982 0.0797 0.1262 0.1036 0.0238 0.0992 0.1016 0.0808
0.67 0.0854 0.0818 0.1180 0.0960 0.0172 0.1112 0.1120 0.0843
1.00 0.0697 0.0842 0.1090 0.0884 0.0088 0.1166 0.1163 0.0865

1.00 0.00 0.1596 0.0724 0.1751 0.1596 0.0234 0.1043 0.1064 0.0849
0.33 0.1560 0.0787 0.1745 0.1565 0.0227 0.1061 0.1080 0.0875
0.67 0.1356 0.0823 0.1584 0.1401 0.0056 0.1100 0.1096 0.0880
1.00 0.1210 0.0880 0.1494 0.1289 0.0015 0.1192 0.1186 0.0919

Notes: 200 replications. All details are reported in Appendix E.2. The distribution of v is assumed to be
Logit. The number of observations is 500. The Window size is optimized according to the device explained in
Appendix E.3. Bias is the average of differences between the estimates and the true value. Stderr is
the empirical standard error of the estimates, RMSE is the root mean square error and MAE is the mean absolute
error. The endogeneity parameter is γ0 as explained in the text. γ0 = 0 stands for the exogeneity case. The
heteroskedasticity parameter is γ

x
as explained in the text. γ

x
= 0 describes the homoskedastic case.


