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Résumé

Cet article présente un modele d’une vente aux encheéres multi-unitaires avec
option d’achat. L’option d’achat permet au vainqueur d’une enchere de choisir
le nombre d’unités qu’il souhaite acquérir, en payant pour chaque unité le prix
atteint & ’enchere. Nous déterminons la stratégie optimale des enchérisseurs.
Le modele est estimé & partir des résultats de plusieurs ventes de vin & Drouot.
Des simulations montrent que le revenu (hypothétique) qu’aurait eu Drouot s’il
avait vendu les biens séquentiellement (les unités sont alors vendues les unes
apres les autres) est identique a celui obtenu en utilisant le mécanisme avec
option d’achat.

Abstract

This paper presents a model of bidding behavior in multi-unit ascending (En-
glish) auctions with a buyer’s option. The buyer’s option gives the winner of
an auction the right to purchase any number of units at the winning price. We
derive the optimal strategies for the bidders. The model is estimated using a
unique data set on wine auctions held at the Paris-based auction house Drouot.
A counterfactual comparison shows that the seller’s revenue in a system where
items are auctioned sequentially (i.e. one after the other) is the same as in a
system based on the buyer’s option.



1 Introduction

Whenever several fully identical goods have to be sold, many auction houses
use the following auction mechanism. The first unit of the good is auctioned.
Once this first auction is over, the winner of the auction is given the possibility
to exercise a so-called buyer’s option. The buyer’s option gives him the right
to buy any number of units of the good he desires, the price per unit being the
price established at the first auction. In case the winner decides to purchase all
units, the sale is over. If he decides to buy only part of the total quantity of
goods on sale, a second auction is held for the remaining units. And this scheme
repeats itself until all units are eventually sold. As an illustration, suppose there
are initially 2 units of a particular good on sale, and let the first-auction price
be p. The winning bidder then has the choice between buying just one unit (in
which case he pays p to the seller) or both units (in which case he pays 2p).
If the winner does not exercise his option, another auction is organized for the
second unit. It is important to note that the first-auction winner is allowed to
participate and compete in this second auction.

The buyer’s option is used in many auctions throughout the world. At
the flower auction of Aalsmeer, the Netherlands, huge quantities of flowers and
garden plants are auctioned each day. The products are sold via descending (or
Dutch) auctions with a buyer’s option (see van den Berg, van Ours, and Pradhan
(2001)). Prestigious auction houses such as Christie’s and Sotheby’s in the UK
and the USA (see Ashenfelter (1989) and Ginsburgh (1998)), and Drouot in
France, systematically use the buyer’s option in their ascending (or English)
auctions of wine and champagne. Cassady (1967, pp. 154-156) gives historical
examples of auctions where the buyer’s option or variants of this mechanism
have been practiced (fur auctions in Leningrad and London; fish auctions in
English port markets).

A question that arises is why these auction houses sell their goods with
the buyer’s option arrangement, and not via some other auction mechanism?
What explains that in the above examples the auction mechanism with a buyer’s
option is apparently preferred over a mechanism where all units are sold sequen-
tially, i.e. one after the other, via independent auctions? Or, alternatively, what
explains that the auction houses do not sell all available units simultaneously,
in a single one-shot auction? According to Ashenfelter (1989), auctioneers use
the buyer’s option as a device to conceal the declining price anomaly. This
phenomenon is typically observed when identical objects are auctioned sequen-
tially. Auctioneers are afraid that bidders find something fishy about the fact
that identical objects do not fetch identical prices. By introducing a buyer’s
option, auctioneers render any possible price decline less transparent, and they
can thereby limit the extent to which bidders become aware of the declining
price anomaly.

Cassady (1967) gives another explanation for the fact that the buyer’s op-
tion arrangement is so popular among auctioneers. He argues that an auction
mechanism based on the buyer’s option is more flexible than a one-shot auction,
and that it is faster than a pure sequential auction. Indeed, an auction wherein



all units are sold simultaneously is not flexible in the sense that it may not fit
the “small” buyers. Small buyers are not much interested in the total quantity
of units on sale, and might not want to participate in a one-shot auction. An
auction procedure that includes a buyer’s option, however, accommodates even
the small buyers as they are allowed to purchase any number of units, provided
of course that they manage to win an auction. On the other hand, a sequen-
tial auction can be very time-consuming, especially when the total number of
units is large, and according to Cassady a motive for auctioneers to introduce
a buyer’s option is to accelerate the auction operations. The auctioneers with
whom we spoke at Drouot, the largest auction house in Paris, appear to share
this point of view. They find that sequential auctions tend to take too much
time, and mentioned higher speed as the main reason for making a buyer’s
option available.

A revenue argument is never invoked in this debate. That is, ‘higher expected
earnings’ is never explicitly mentioned as a motive for adopting say the auction
with a buyer’s option, and not the pure sequential auction. Intuition suggests,
however, that the expected revenue for the seller is not the same in these two
auction mechanisms. This can be easily seen in our two-unit example. In a
sequential auction, all agents know that if they lose the first auction, they still
have a chance to win a unit in the subsequent second auction. However, when the
seller provides a buyer’s option, the losers do not have this second opportunity
if the first-auction winner decides to exercise his buyer’s option. This increased
risk of ending up empty handed implies that bidding for the first unit should
be more aggressive when a buyer’s option is available. The revenue that the
seller obtains from the first unit is therefore likely to be higher in an auction
with the buyer’s option. But the seller’s revenue obtained from the second unit
is expected to be lower in an auction with buyer’s option. Indeed, if the first-
auction winner does not exercise his buyer’s option, the situation is analogous
to the second round in a pure sequential auction mechanism, which implies that
in this case there is no effect of the buyer’s option on the revenue obtained
from the second unit; if, on the contrary, the winner exercises his option there
is no competition for the second unit, so that in this case the buyer’s option
has a negative effect. Nothing can be said, in general, on the total revenue-
effect (effect on the first unit plus effect on the second unit). The example
merely shows that the buyer’s option can affect the seller’s income, and that
the decision to introduce a buyer’s option or not ought to play a role in the
sellers’ choice of auction mechanism.

The purpose of this paper is to study, both theoretically and empirically, the
revenue-effect of the buyer’s option in ascending (or English) auctions. That is,
we study the effect on the seller’s income from switching from a system where
units are sold sequentially via ascending auctions to a system whereby they are
sold via ascending auctions with a buyer’s option. We consider an Independent
Private Value (IPV) model where two identical units are sold to n risk-neutral
buyers. In modeling behavior at wine auctions, the IPV paradigm was also
adopted by McAfee and Vincent (1993).

It is assumed that the valuations attributed to the two units are either the



same (flat demand), or that a buyer’s valuation for the second unit is less than
his valuation for the first unit (decreasing demand). This is exactly the frame-
work studied by Black and De Meza (1992). Our analysis differs from Black and
De Meza since we assume that the units are sold via English auctions (while
they considered second-price (or Vickrey) auctions). We derive the optimal bid-
ding strategies, and, comparing our results with those given in Black and De
Meza, show that English and second-price auctions with a buyer’s option are
not theoretically isomorphic (except when the number of bidders equals n = 2).
This can be explained by the fact that in an “oral” auction, such as the English
auction, more information is released than in a “sealed-bid” auction, such as the
second-price auction. We also derive the equilibrium bidding strategies under
the assumption that the two units are auctioned sequentially without buyer’s
option. Given these optimal strategies, we can theoretically determine what the
revenue-effect is of the buyer’s option. It turns out that, depending on the pre-
cise form of the distribution function of private values and the demand function,
the impact of the buyer’s option can be positive or negative.

The second objective of the paper is to estimate our model using data on
wine auctions. Part of the data were collected by ourselves during an important
sale of fine wine held at Drouot in April 2000. As explained in the data section
of the paper, by being present in the auction room, we were able to register
all sorts of information that is crucial for the identification and estimation of
the econometric model (such as the numbers of potential bidders in the room
at different points in time, the winning bid price for each unit of wine sold at
auction, and especially details on the use of the buyer’s option). These auction-
specific data are matched with information that was available in wine catalogues.
The catalogues could be consulted by potential buyers prior to the auction and
describe, for each wine on sale, its name, colour, vintage, the production region
(Bordeaux, Burgundy, Cotes du Rhone, etc.), the condition of the etiquette on
the bottle (whether it was readable or not, whether it was numbered or not,
etc.), the level of wine in the bottle, etc... We finally complemented this unique
data set by adding to the data, for each wine, the highly influential Parker’s
grade, and also a grade taken from a wine web site.

The fundamental parameter to be estimated in our model is the distribution
function of the private values for the wines. There is evidence in our data that
this distribution function can be well described by a log-normal distribution.
We estimate the parameters of this distribution function (conditionally on the
wine characteristics) using the maximum likelihood method. As a byproduct of
this estimation, we can determine which characteristics influence the willingness
to pay for wine. We thus determine how the different wine regions affect the
willingness to pay for wine, and what are the effects of the condition of the
label, the vintage, the Parker-rating, the level of wine in the bottle, etc... But
the ultimate purpose of the estimation results is to evaluate the impact of the
buyer’s option. Using a counterfactual comparison based on simulations, we find
that the seller’s expected revenue in the pure sequential auction is the same as
in the mechanism with buyer’s option.

The paper proceeds as follows. The next section presents the theoretical



model. Section 3 describes the wine auction data, section 4 derives the likelihood
function, section 5 presents the estimation results and the revenue-comparison,
and section 6 concludes.

2 A model for two-unit ascending auctions with
and without the buyer’s option

The two-unit auctions with and without buyer’s option are modeled as non-
cooperative games. First we consider the model with the buyer’s option. Two
units of a good are sold to n > 2 buyers. The first unit is auctioned using
an English auction (ascending auction). At the end of the first auction, the
winner has the possibility to use a buyer’s option which allows him to purchase
the second unit at the price of the first unit. If the winner uses this option,
the game is ended. If the winner does not use the option, the second unit is
auctioned, again via an English auction. The first-auction winner is allowed to
participate in this second auction.

Adopting the IPV framework, let v; represent the value that buyer i places
on the first unit. The values v;, ¢ = 1,...,n, are independently drawn from a
distribution F'(-) on the support [0, +00[. The associated density is denoted f(-),
and it is assumed that this density is strictly positive on the whole support, and
that beyond some large value of the valuation the density f(-) is a decreasing
function. As usual in the IPV paradigm, only player ¢ knows the valuation v;.
The opponents of ¢ only know that this valuation is drawn from the commonly
known distribution F'(-).

It is assumed that the value that i places on the second unit is kv;, with
0 < k < 1. The value of k is the same for all bidders, and this is common
knowledge. Note that 0 < £ < 1 implies that the second unit is valued less than
the first unit (decreasing demand), and k£ = 1 implies that both units are valued
the same (flat demand).

Let p; and ps be the winning prices in respectively the first and second
auction. If the buyer’s option is exercised we automatically have po = p;. The
n players are supposed to be risk neutral. Thus, for a player with valuation
v, the following outcomes are possible in the game: if he wins the first unit
and uses the option, his utility is (1 + k)v — 2pq; if he wins the first unit but
does not exercise the option, he has utility (1 + k)v — p1 — p» when he wins the
second auction, and utility v — p; otherwise; if he loses the first auction but wins
the second, his utility is v — po (note that this outcome can only occur if the
opponent who won the first auction does not use the buyer’s option); finally, his
utility equals 0 if he does not win any unit.

The above framework is identical to the one introduced by Black and De
Meza (1992). There is one crucial difference however with their model and that
is that we consider the case where each unit is sold via an English auction, and
not, as in Black and De Meza, via a Vickrey auction (sealed-bid second price
auction). For this reason, the Nash equilibrium strategy given in Proposition



1 below differs from their optimal bidding strategy (Black and De Meza, 1992,
Proposition 5, page 613).

Proposition 1. The following strateqy forms a bayesian equilibrium of the
game:

1. In the first auction:

e As long as there are at least three active agents, each bidder i should
bid up to his valuation v;.

e Once the (n —2) “smallest” bidders have dropped out of the game,
each of the two remaining players should bid according to the strategy
b(-). The form of b(v) depends on whether v is smaller or larger than

U("T’z), with v(,_2) being the third largest valuation:

d(v) if v > =2

The strategies ¢(-) and d(-) are the solutions of the following differ-
ential equations

U(n—2)

Fe(®) = o) f0) = (0= c@)F(e®)/R)©) if viusy <o <

Y(n-2)

kd©) =ko)f(v) = (v=d©))f(d)/k)d () ifv> =2

2. The strategy d(-) is the unique solution of the second differential equa-
tion defined on [U("T’Z),-l-oo[, and c(-) is the unique solution of the first
differential equation that verifies the conditions c(“%72) = d(“2=2) and

C(’U(n,2)) = V(n-2)-

3. At equilibrium, the first-auction winner exercises the buyer’s option iff
kv > p1, that is iff his second valuation is above the first-auction winning
price.

4. In the second auction each bidder should bid up to his valuation. The first-
auction winner (who has not exercised the buyer’s option!) should thus
participate until the price has reached the value he attributes to having a
second unit, while all other bidders should continue until the price reaches
their valuation for the first unit.

Proof. The fourth claim in the proposition follows immediately from the stan-
dard dominated-strategies argument: in the second auction, players have a dom-
inant strategy that consists in bidding until their valuation.

The proof of the third claim is also immediate. Because players bid more
aggressively in the second auction than in the first one (c(v) < v; d(v) < v),



the winner in the first auction must use his option whenever this decision im-
plies a direct gain, i.e., iff his second valuation is higher than the first-auction
equilibrium price.

Let us now turn to the proof of the first claim. Consider first the “final”
stage of the first auction, that is the game once there are only 2 bidders left. We
suppose, for the moment, that the players have not deviated from the optimal
strategy before the final stage. We thus suppose that the (n — 2) smallest
bidders have stopped bidding once the price reached their valuation, and that
the 2 remaining bidders have valuations above v(,_»).

Suppose the ascending auction has reached the price p. Let G(0,p) denote
the expected total gain (gain in first plus second auction) for a player with
valuation v who decides to withdraw at p. His opponent thus wins the first unit
at the price p. The form of G(0,p) depends on whether p is smaller or larger
than b(v(p_2)/k):

_ R f (w)dw
G(0,p) = /b_l(p) (v— maX(U(n—2),kw))W

Un—2)/k f(w)dw
/b—1<p> = -2 TR )

p/k Fw)dw o
+/v(n2)/k(1) - k"w)m if b (p) < v(n72)/k

and

p/k wydw ., 4
G0,p) = /b_l(p) (v— kw)% if b~ (p) > vin—2)/k.

The expression for G(0,p) can be explained as follows. Clearly the first-auction
loser (who decided to drop out at p) can only win something in the game if there
is a second auction. A second auction takes place only if the first-auction winner
does not exercise his option, that is if his valuation is smaller than p/k (note
that the winner’s valuation is necessarily above b~!(p)). The first-auction loser
then automatically wins the second auction at the price equal to the maximum
of v(,,_2) and k times the valuation of the winner. Note that the density in
the above integrals is the conditional density of the valuation given that the
valuation is larger than b=!(p).

Let us now again assume that the ascending auction has reached p, and let
G (g, p) now be the expected total gain if the player with valuation v decides that
he will stop participating once the auction has reached p + £ (whereas G(0,p)
denotes the expected gain when he decides to stop immediately):



e f(w)dw voonfk f(w)dw
Gen = [, TN+ [ 0 e T i
(pt+e)/ f(w)dw S
+/U(n2)/k (U—kw)m if b (p-l-S) S’U(n,2)/kf
and

b~ (p+e) w)dw
Gep) = / (v — b(w))— L)

~(p) W
(p+e)/k F(w)dw
+ /b—l(p+s) (v — k’w)m if b~ (p +¢e) > U(n_g)/k.

The first part in the expression of G(g, p) corresponds to the total expected
gain of the player if he wins the first auction. The player with valuation v
wins the first auction if the valuation of his competitor is between b~!(p) and
b=Y(p+e¢). It is easy to verify that, at the equilibrium, he will not exercise the
buyer’s option and he will not win the second auction. The remaining term(s) in
G (g, p) correspond to the total expected gain if the valuation of the competitor
exceeds b~!(p + €). The agent with valuation v can then only hope to win
the second auction and his total expected gain is determined similarly as above
(indeed the expression of his gain in this case is very similar to G(0,p + ¢€)).

Derivation of G(e,p) with respect to € gives

Len = 0 o+ot—lr Dl e
S e
Ev= (P :f();fl(gp);r B st 419 4 €) < vy /1
and
Ten = 67)p+ot D00t
RSN 118 S
pis ip_+;()b)f1(g; I g1y > V(n-2)/k-

The equilibrium condition can be written as



oG

5 (E=0,p=0b(v))=0.
First we consider the equilibrium condition in the case b= (p + ¢) < V(n—2)/k-
At (e = 0,p = b(v)) this bound becomes v < v(,_2)/k, so that in this case

b(v) = ¢(v). Note also that v(,_s < v. We have

oG 1 f)

c(v)/k
e e =0 =) = s (s —e) T s flew/b) _

1
o (0=c(®)
which can be rewritten as

k(e(v) = vn—2)) f(0) = (v = () fe(0)[R)e! (v) i v 2) S0 < —

Next we consider the equilibrium condition in the case b~!(p+¢) > V(n—2)/k-
At (¢ = 0,p = b(v)) this bound becomes v > v(,_2)/k, so that in this case
b(v) = d(v). We have

oG o _ _ 1 fw) 1 fld(w)/k) _
g(s =0,p=d(v)) = 7 () (kv — d(v))m + E(U - d(v))m =0
which can be rewritten as

Kd(0) ~ k) f(0) = (0 = d@) f(d(0)/R)d (0) it 0 > 22,

To end the proof of the first claim, we must now verify that it is not profitable
for the players to deviate from the optimal strategy before the final stage of
the first auction. We thus have to show that as long as there are at least
three persons actively bidding, each bidder should bid up to his valuation. To
show this, we first consider the deviation that consists in bidding less than
one’s valuation when two other players are still active. This strategy is clearly
dominated by the following strategy (that we shall call “strategy s”): stop
participating in the auction either when the price has reached the valuation or
when one of the two remaining opponents has stopped bidding. Both strategies
(the strategy that consists in bidding less than the valuation and “strategy
") lead to the same first-auction winner; similarly, under both strategies the
identity of the second-auction winner is identical. However, “strategy s” leads
to a higher first-auction equilibrium price, which reduces the probability that
the first-auction winner uses the buyer’s option, and the expected payoff is
thus higher. The “strategy s” is in turn dominated by the strategy given in
Proposition 1. We can therefore conclude that it is not profitable to quit the
auction before the price reaches one’s valuation if there are still at least two
other players bidding. Next we have to consider the deviation that consists in
bidding above one’s valuation when at least two other players are active. This is
clearly not a profitable deviation since at equilibrium the two remaining players



have a greater valuation than the deviating agent, who is therefore sure to lose
the second auction. The deviating agent can win the first auction but the profit
he obtains is negative. We can therefore conclude that it is not in the interest
of an agent to bid above the valuation when at least two other bidders still
participate in the game.
Finally, the proof of the second claim is given in the appendix.
O

Unlike the standard IPV auction for a single unit, it turns out that in a se-
quential auction with buyer’s option the English and second-price auctions are
not theoretically isomorphic. This follows from the fact that the English auction
mechanism reveals more information about competitors than the second-price
auction.! Indeed, contrary to the sealed-bid auction, bidders in the oral auction
can learn at which prices their competitors drop out. They learn in particular
at which price the person with the third highest valuation abandons the first
auction, and, given the equilibrium strategy, they thereby know the valuation
V(n—2) of the third largest bidder. The two strongest competitors use this in-
formation in updating their optimal bidding strategy. The only case where the
English and second-price auctions are strategically equivalent is when there are
just 2 bidders. That the strategy obtained by Black and De Meza and our’s
coincide in this case is quite intuitive because n = 2 implies v(,_5) = 0.

Next we study the pure sequential auction model. The framework described
above remains exactly the same except that the 2 units are now always sold
sequentially via two English auctions.

Proposition 2. The following strateqy forms a bayesian equilibrium of the
game:

1. In the first auction:

e As long as there are at least three active agents, each bidder i should
bid up to his valuation v;.

e Once the (n —2) “smallest” bidders have dropped out of the game,
each of the two remaining players should bid according to the strategy:

V(n-2)

U(n—2) if VU(n—-2) <v< A

b(v) =
kv if v > 2222

2. In the second auction each bidder should bid up to his valuation. The
first-auction winner should thus participate until the price has reached the
value he attributes to having a second unit, while all other bidders should
continue until the price reaches their valuation for the first unit.

I This fundamental difference between the two auction mechanisms also explains why in a
common value model the optimal bidding strategies are no longer identical (see for instance
Milgrom and Weber (1982)).



Proof. The proof is similar to the proof of Proposition 1. O

Let us now turn to the revenue-effect of the buyer’s option. To do this
one should calculate the revenue with and without buyer’s option using the
equilibrium strategies that we have just found, and compare the two outcomes.
However, given the form of the equilibrium strategies with buyer’s option, it is
quite impossible to find a theoretical result and one has to use simulations to
compare the revenue with and without buyer’s option. Such simulations show
that there is no general result about the revenue effect. That is, we can not say
in general that one of the mechanisms dominates the other. The comparison
between the two mechanisms depends on the distribution function considered
and on the value of the parameter k. For example, if the distribution function
is uniform, the revenue of the seller is greater with a buyer’s option. To answer
the question on the effect of the buyer’s option at Drouot one cannot therefore
rely on theory alone. The data should determine which is the appropriate
distributing function and the relevant value of the demand parameter k. Using
the estimates of the fundamental parameters then allows to determine which is
the best mechanism for the seller.

3 The data

The data are based on auctions that were held at the Paris-based auction house
Drouot. The wine auctions took place in the afternoon of 20 April (from 14:15
to 16:45), and in the morning of 21 April (from 11:15 to 12:30), and were headed
by the same auctioneer. The auctioneers of Drouot organize wine auctions on
almost every working day of the year. The two sale days were chosen arbitrarily
by us, so that a priori there is no reason to think that the auction results are
in some way specific or non-representative.

Auctions at Drouot are open to the public and anyone who wishes to attend
them can do so. Two authors of this paper were present in the auction room
of Drouot during the sales of April 20 and 21. They recorded all relevant
information released during the auctions (number of bidders, winning prices,
identity of the winners, use of the buyer’s option, etc.). We added to these
auction-specific data the information published in the wine catalogue of the
sales. The catalogue could be consulted prior to the sales and record the precise
characteristics of each wine on sale. We finally complemented the data set
by adding for each wine two indicators for quality. One indicator is the grade
assigned by the highly influential wine connoisseur Robert Parker, and the other
is taken from a wine web site.

The next three subsections describe these three different sorts of information
in our data set. The fourth subsection describes the link between the theoretical
model and the real-life auctions as they were held at Drouot.

10



3.1 Auction-specific information

During the 2 sale days different sorts and kinds of wine were auctioned. The
notion of “unit” that we have used so far in this paper can vary from wine to
wine. In our data there is for instance a unit of wine consisting of a crate of 12
bottles of Chdteau Latour 1985, a unit that is made up of 6 bottles of Chdteau
Lafite Rothschild 1890, a unit made up of a single bottle of La Romanée Conti
1976, etc... In the sequel, a “lot” of wine designates a group of strictly identical
units of wine. In our data the lot of Chateau Latour 1985 has 3 units (3 identical
crates of 12 bottles), the lot of Chdteau Lafite Rothschild 1890 consists of 4 units
(4 units of 6 bottles), and the lot of La Romanée Conti 1976 only has 1 unit
(of 1 bottle).

During the 2 sale days a total of 225 lots of wine were sold. The 225 lots were
made up of 413 units, thus the average number of units per lot is 1.8. Table 1
gives the empirical distribution of the number of units per lot.

Table 1. Number of units per lot

Number of units Number of lots
152
31
21

oo

— ==
oD ©o~To otk W~
= e RN N W

Thus 152 lots of wine were made up of just 1 unit, 31 lots had 2 units, 21 lots
had 3 units, etc...

The lots were sold one after the other using ascending oral auctions. After
announcing the number of units in a lot,2 the auctioneer started the auction for
the first unit at a low starting price. As in practically all ascending auctions,
a bidder in the auction room could indicate that he wished to bid above the
current price by raising his hand. The increments by which successive prices
jumped were most of the time chosen by the auctioneer himself, but occasionally
by a bidder (he could do this by simultaneously raising his hand and shouting
out the new price). In any case, the winner was the bidder who was the last to
remain active, and the winning price was the price established at the moment

2Fach time a lot consisted of more than 1 unit, the auctioneer emphasized that the winner
could exercise a buyer’s option (at Drouot the buyer’s option is called faculté de réunion).
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Figure 1: On the use of the buyer’s option

he raised his hand for the last time. The auctioneer asked the winner how many
units he desired to purchase (the price per unit being the winning price). If
he bought all units in the lot, the auctioneer immediately went on with the
sale of the next lot; if the winner purchased only part of the lot, a second
ascending auction was organized for the remaining units, ..., and this sequence
was repeated until all units in the lot were auctioned.

For each lot sold in this way we recorded the identity of the winner of each
auction and the number of units purchased by the winner. This information is
synthesized in Figure 1.

Thus of the 31 lots that were made up of 2 units, 27 were sold via a single
auction (i.e. the first-auction winner exercised his buyer’s option in these cases),
and 4 were sold via 2 auctions (the winner did not use the option). Note that in
all of these 4 cases the first -and second auction winners are different persons:
exactly as predicted by our theoretical model, the first-auction winner who does
not exercise his buyer’s option never wins the second auction. Also perfectly
in line with the theory is the fact that in these cases the winning price of the
second auction is always lower than the winning price of the first auction. Note
furthermore that there is a lot of variation in the outcomes of the sales of lots.
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For instance, 13 lots of 3 units were sold in 1 shot, whereas 2 of such lots were
each sold to 3 different buyers. Similarly, 2 lots of 6 units were sold in a single
shot, and 1 lot was sold to 6 different buyers!

For each lot we also recorded the successive winning prices. To make the
winning prices in different lots comparable, we normalized each price to the
price of a single bottle containing 75 cl. For instance, if a unit of 12 bottles
(containing 75 cl each) is sold at the price p, the normalized price of that unit
is p/12. Table 2 gives statistics on the winning prices for all lots. If there is
more than 1 winning price per lot, then we calculate an average of the winning
prices for that lot (weighted by the number of units sold at each auction).> The
statistics are therefore based on 225 observations. As the table indicates, the
average winning price is quite high (more than FFr1300), and there is substantial
heterogeneity in the winning prices, since they vary from slightly less than FFr30
to more than FFr30000 per bottle of 75 cl.

Table 2. Winning price per lot (in FFr)

Mean 1322
Std. dev. 2 956
Max 30 833
75% quantile 1200
50% quantile 500
25% quantile 217
Min 29

Finally we counted, every 15 minutes, the number of persons in the auction
room. In counting the number of individuals we did not include the auctioneer,
those who assisted him, or ourselves. Table 3 summarizes this information.

3For instance, if a two-unit lot is sold via 2 auctions with winning prices p; and p2, the
average winning price for that lot is simply %.
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Table 3. Number of bidders in the auction room

Time Lots auctioned Number of bidders
20 April
14:15-14:30 1-23 65
14:30-14:45 24-45 65
14:45-15:00 46-53 70
15:00-15:15 54-65 80
15:15-15:30 66-75 80
15:30-15:45 75-86 75
15:45-16:00 87-105 60
16:00-16:15 106-118 70
16:15-16:30 119-123 60
16:30-16:45 124-136 50
21 April
11:15-11:30 137-145 45
11:30-11:45 146-176 50
11:45-12:00 177-185 65
12:00-12:15 186-207 65
12:15-12:30 208-225 55

Thus on April 20 at 14:15, that is when the sale started, 65 persons were present
in the auction room; fifteen minutes later, when we counted again, there were
still 65 person in the room, at 14:45 there were 70 participants, etc... Note
that the number of participants over time follows the same pattern during both
auction days: at the start of both sale days the number of bidders is relatively
low, this number then increases to reach its peak at about halfway the sale day,
and then decreases until the end of the sale. Table 3 also indicates which lots
were sold during which time interval. Thus, on April 20 between 14:15 and
14:30 the lots 1 to 23 were sold, between 14:30 and 14:45 the lots 24 to 45, etc...

3.2 Data from the wine catalogue

The wine catalogue* could be consulted by potential buyers before and during
the auctions. It records all kinds of information about the wines on sale. For
each lot auctioned, the catalogue lists the number of units, the number of bottles
of wine per unit (1 bottle, 6 bottles, 12 bottles, etc.), the type of bottle (a
standard size bottle of 75 cl., or a magnum bottle of 150 cl.), and a number of
other variables that characterize the wine in the lot. Table 4 gives these wine
characteristics together with some descriptive statistics.

4Published by Millon & Associés, the auctioneer in charge of the April 20-21 sales. A copy
of the catalogue can be obtained from the authors.

14



Table 4. Wine characteristics

Variable Mean Std. dev.
Age of wine (in years) 27.09 21.04
Authentic wooden crate 0.19 0.39
Label damaged 0.13 0.34
Level wine low 0.08 0.27
Wine reconditioned 0.13 0.34
Wine region:
Bordeaux 0.65 0.48
Burgundy 0.05 0.22
Champagne 0.22 0.41
Cotes du Rhone 0.08 0.27

The variable “Age of wine” is missing for one observation;
descriptive statistics are therefore based on 224 observations.

All variables except “Age of wine” are 0-1 indicator variables. The variable
“Authentic wooden crate” equals 1 if the wine is sold in an authentic wooden
crate and 0 otherwise; the variable “Label damaged” equals 1 if the label on
the bottle is in some way damaged, and 0 otherwise; “Level wine low” is equal
to 1 if the level of wine in the bottle is low (this may indicate that the cave
where the wine has been kept and stored was too dry and too hot), and 0
otherwise; the variable “Wine reconditioned” is 1 if the wine had at some point
in time (while still at the chateau or domain) been uncorked and refilled with the
original wine, and 0 otherwise; finally, the 4 region variables indicate from which
wine producing region the wine originates (Bordeaux, Burgundy, Champagne
or Cotes du Rhone).

3.3 Two quality indicators

Since the wine characteristics described in the previous subsection may perhaps
not capture all the quality differences between the wines in our sample, we added
two additional quality indicators to our data set. One is taken from Parker’s
guide (1995). Each wine in the guide is ranked between 1 star (lowest possible
rank) and 5 stars (highest rank). This grading system reflects the overall and
the long-term quality of each wine and does not depend on the vintage. Pre-
cisely because the Parker ranking does not take into account the specific vintage
effects, we also added a grade reflecting the quality of the vintage. This Vintage
grade is taken from the French wine web site http://www.vindelice.com. This
site grades wines acording to their vintage, their production region and their
colour of the wine (for instance it attributes a grade to red Burgundy 1989, or
to white Bordeaux 1950, etc.). The site ranks wines as “To avoid”, “Average”,
“Good”, “Very good”, or “Exceptional”. Table 5 lists the frequencies of the
values taken by the Parker grade and the Vintage grade.

15



Table 5. Parker grade and Vintage grade

Parker grade

Unknown *% FEX FEEE *oxkkok
Number of lots 16 4 52 32 121
Vintage grade
To avoid  Average Good Very good Excellent
Number of lots 11 11 72 110 21

The majority of lots are made up of top quality wines: 121 lots consist of wines
with 5 Parker stars; for 21 lots of wine the vintage grade is “Excellent” and for
110 lots it is “Very good”.

3.4 The link between theory and practice

From the description of the sales at Drouot it is clear that our theoretical frame-
work differs in several ways from practice. This subsections comments on these
differences.

The first difference is that the model described in section 2 is a model for
lots made up of 2 units. As Table 1 indicates, our data not only contain two-
unit lots, but also single-unit lots and lots with more than 2 units. The optimal
bidding strategy for the English auction of a single unit being well known, our
method of statistical inference will also use the one-unit lots to estimate the
parameters of interest of our model. However, we will not use the remaining
observations in the sample, that is the observations corresponding to lots with
more than 2 units. The reason is that we do not know the optimal bidding
strategies in a model where more than 2 units are auctioned. Discarding these
observations from the estimation sample does not, however, bias our estimates
if the process that determines the number of units per lot is independent from
bidders’ valuations.

A second difference is that the model treats the sale of a lot as a completely
isolated event. The model does not take into account that sales of other lots
take place almost simultaneously and that a given bidder might be interested in
buying several of these lots. However, at Drouot such inter-dependencies might
well have existed. Most bidders stayed in the auction room not just for the sale
of one particular lot, but for several different lots. It is plausible that some of
such bidders were interested in more than 1 lot at the same time and that their
bidding strategies reflected these synergies. It does not appear easy to extend
our model to take into account these possible interactions between auctions of
different lots. Furthermore, given our data, it would certainly be impossible
to identify and estimate such an extended model. We will therefore ignore the
(hopefully small) effects of inter-dependency. We thus assume that there are no
interactions whatsoever between the auctions of the different lots, so that the
sales of the different lots constitute independent observations.

The third difference is that in our model it has implicitly been assumed that
bidders know at each moment the precise number of active competitors, and the
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prices at which each opponent drops out of the game. They are in particular
assumed to know when and at which price the third strongest bidder quits the
first auction. In contrast, the bidders in the auction room of Drouot had less
information at their disposal. Basically, all they learned during the course of
the auction was the sequence of successive prices proposed by the auctioneer
and, for each of these prices, the identity of the bidder who raised his hand (see
section 3.1). At first sight this suggests an incompatibility between theory and
the real-life auctions as they were held at Drouot. Interpreting the model in
a different way shows however that this is not true. It is in fact sufficient to
assume that all the bidders always play according their “final” strategies (¢(.)
and d(.)) and that they actualize the value of v(,,_s) each time new information
is revealed during the auction. In this spirit, the “two last bidders” assume
that v(,,_o) corresponds to the highest bid of all other bidders. As soon as the
identity of the “two last bidders” changes, the value of v, _s) is actualized.

4 The likelihood function

As mentioned in the previous section, the different lots are treated as “indepen-
dent” entities, and as such each lot contributes independently to the likelihood
function. We also mentioned that we only consider the lots made up of 1 or 2
units.

4.1 One-unit lots

First we consider the contribution to the likelihood of a one-unit lot. To capture
the between-lot heterogeneity of wines, we introduce the vector of variables
z characterizing the wine sold in the lot. Thus z contains all variables that
appear in Tables 3 and 4. Let us denote the parametric density and distribution
functions of the valuation v given z by respectively f(v|z;6) and F(v|z;6), with
f an unknown parameter that has to be estimated. Let n be the number of
bidders present in the bidding room at the moment the lot is auctioned (see
Table 2), and let p be the (normalized) price at which the single unit in the
lot is sold. Let f(,—1),(n)(v(n—1),v(n)|2;0) be the joint density of the second
largest and largest evaluation conditional on z in a sample of size n (see Mood,
Graybill, and Boes (1982)):

ftn=1),(n) W(n=1),V(n)|2;6)
= n(n—DF(u 1|2:0) " f (0 1)|2:0) F (V)23 0) 1{v(n 1) < v(m)}-

It is well known (see for example the survey of Klemperer (1999)) that in
an English auction for a single good the optimal strategy is for all agents to
bid up to their private value. The contribution to the likelihood function of
a single-unit lot sold at the price p (when n bidders are in the room and the
characteristics of the wine are z) is therefore the probability of the event that
the second largest evaluation equals p and the largest evaluation exceeds p:
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ll(panaz;k76)
= / f(n—1)7(n) (pa U(n)|z)0)dv(n)
= n(n—1)f(plz;0)F">(plz;0)(1 — F(p|2;0)). (1)

This corresponds of course to the contribution to the likelihood function of a
standard IPV single-good-English-auction observation (see for example Paarsch
(1997)). Note that in writing the contribution to the likelihood (1), it is implic-
itly assumed that the n evaluations are independent drawings from the density
f(+]z;6), and not from some truncated density of v. It is thus assumed that
potentially all types of bidders could have been present in the bidding room,
and not just the bidders with an evaluation above some truncation point.?

4.2 Two-unit lots

Let us now consider the contribution to the likelihood function of a two-unit lot.
Let p; and ps now represent the (normalized) winning prices in the first and
second auction. If the buyer’s option is exercised then there is no second auction
and we automatically have py = pi. Let f,—2),(n—1),(n) (V(n—2)s V(n—1), V(n)|2; 0)
be the joint density of the third largest evaluation, the second largest evaluation,
and the largest evaluation, conditional on z, in a sample of size n (see Mood,
Graybill, and Boes (1982)):

fin=2),(n=1),(n) W(n=2), V(n=1), V(n)|2; 0)
= n(n—1)(n —2)F(v—2)|z; 9)(”73)f(v(n,2) |z; 6)
X f(0(n-1)|2;0) f (V(n)|2; ) H{v(n—2) < V1) < V(n)}-

The form of the likelihood contribution depends on whether the buyer’s op-
tion is exercised or not. First consider the case where the first auction winner
does not use the buyer’s option. For simplicity, we denote p = p; = p>. From
section 2 we know that in the first auction the n — 3 “smallest” bidders should
in equilibrium bid up to their evaluation, and that the two bidders with the two
highest evaluations should play according to the bid function b(-), solution of the
differential equation given in Proposition 1. We therefore know that the winning
price in the first auction exceeds the third largest evaluation, i.e., v(,_2) < p.
We also know that the winning bid equals the bid of the agent with the sec-
ond highest evaluation, i.e., p = b(v(n_1),V(n—2)), 0 that the second highest

5For instance, had the auctioneer published, ex-ante, a binding reservation price for a unit
of wine, it would have been appropriate to assume that only bidders with an evaluation above
the reservation price are in the bidding room, in which case the evaluations are drawings from
the truncated distribution of v (truncated at the reservation price).
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evaluation equals v(,_1) = b~ L(p, U(n_g)).ﬁ Finally, since the first-auction win-
ner exercises the option we also know that kv(,) > p, so that v, > B. The
contribution to the likelihood of this type of observation is thus

lgption used (pa n,z; ka 0)

P oo
/0 [ﬂ Ftn=2),(n=1,(n) ©(n=2), b (D, V(n—2))s V() |2; )V () | dV(r—2)
3

n(n—1)(n—2)(1 = F(7)]z6)

4
></ F" 3 (0(n—2)12;0) f (V(n—2)|2;0) F (07" (D, V(n—2))|2; ) dv(r—2)-  (2)
0

We next turn to the contribution of the likelihood of lots where the first-
auction winner does exercise his buyer’s option. For the same reason as in the
previous case, we still have that v(,_1) = b_l(p1,v(nf2)). Unlike the previous
case, since the winner does not use his option it must now be that the value
of a second unit is worth less to him than the first-auction winning price, i.e.,
kv(ny < p1. Also unlike the previous case, there is now a second auction. In the
second auction, all bidders should bid up to their value for the unit they attempt
to obtain: the first-auction winner should thus participate in the auction until
the price has reached kv(,), and the bidders with the second and third largest
evaluations should bid up to respectively v(,_1) and v(,_2). Since kv(,) < p1 =
b(V(n—-1),V(n-2)) < VY(n-1), it is the agent with the second highest evaluation
who wins the second auction at the winning price p, = max(kv(,), v(n—2)). We
must now again distinguish two cases.

e Case A: py = kv(p) > v(n_2)

In this case we thus have v,y = £ and v(,_5) < p». The probability of

this type of observation is therefore

loption not used
2

(p17p27n72;k79)

P2 1 D2
= /0 fn=2),(n=1),(n) (V(n—2),0" (pl:v(n72))a?)dv(nf2)-

It should be verified under which conditions the above probability is
strictly positive. We automatically have for all values of v(,,_s) between 0
and po that v, s < b_l(p1,v(n72)) because v(,_2) < p1. So for the prob-
ability to be strictly positive, it needs to be verified that there is at least
one value for v(,,_) such that b= (p1, v(,—2)) < p2/k. Since b (p1, v(,_2))
is a decreasing function of v(,,_s), the condition that must be imposed is

b (p1,p2) < p2/k. (3)

5From now on we explicitly indicate the dependence of b(+) on the third highest evaluation
U(p—z)- In the expression b~ L(p, v(n_Q)), the inverse is taken with respect to the first variable.
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It can be shown that condition (3) implies that b~ (py,v(n—2)) < p2/k for
all relevant values of v(,_s). Thus under condition (3), the 3 elements in
the density function f(,,_s) (n—1),(n) are all the time ranked as they should,
and the above probability can then be rewritten as

lgAption not used(pl,pz, n,z; k, 0) (4)
= n(n-1)n-2)f(2]0)
P2
X Fn_3(v(n—2) |Z; O)f(v(n—Q) |Z; 0)f(b_1 (pla U(n—2))|z; a)dv(n—Q)-
0

e Case B: p2 = v(n_2) > kv

We know in this case that v(,_3) = p2 and v(,_1) = bil(pl,v(n_g)) =
b=1(p1,p2). Concerning the largest valuation U(n), We should have that
V(n—1) = b7 (p1,p2) < V(n) and v(,) < V(n_2)/k = p2/k. The 2 bounds
on v(, are coherent if b=Y(p1,p2) < p2/k. There is thus coherency if
condition 3 holds. The probability for this type of observation can then
be written as

l;)gtion not used(pl,pz, n,z; k, 0) (5)
P2
%
= / Fn—2),(n=1),(n) P2, b7 (1, 92), vy |2 0)dv
b=1(p1,p2)

n(n —1)(n = 2)F" % (p2|2;0) f(p2]2;0) f (b~ (p1, p2)| 23 6)
<[(F(E212:60) = P65~ (b1, p2)|=: ).

Since we do not know whether case A or case B is the relevant case, the
likelihood of observing that the first-auction winner does not exercise his option
(while the winning prices are p; and ps, there are n bidders in the room, etc.)
is the sum of the probabilities (4) and (5):

lgption not used(pl,pz, n,z; k, 0) (6)

lopt ion not used

- A (p1,p2,m, 2 k,0) + l;’gtm“ not used

b1,p2,Nn, 2] kae)

This contribution to the likelihood is strictly positive if condition (3) holds,
and is equal to 0 otherwise. There are discontinuity problems at the boundary,
that is the contribution (6) is not continuous at the values of § and k such that

b='(p1,p2) = pa/k.” This is due to the fact that l;ﬁti‘m not used 4o discontinuous

option not used

at these values of 6 and k (I55 however is continuous at these points).

"Note that the optimal bid function b(-) implicitly depends on # and k.
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The total likelihood function consists of the product of 3 terms. The first
term is the product of all likelihood contributions corresponding to the one-
unit lots, that is the contributions of the form (1); the second term is the
product of all contributions of the two-unit lots where the buyer’s option has
been exercised, i.e., the contributions of the form (2); and the third term is the
product of all contributions of two-unit lots where the buyer’s option has not
been exercised, i.e., the contributions of the form (6). To obtain the maximum
likelihood estimates of k and 6, the total likelihood must be maximized with
respect with to these parameters. Maximization must take place under the
constraint 0 < k < 1, and the constraints of the form (3). There are as many
constraints (3) as there are contributions of the type (6), that is 4 in our sample
(see Figure 1).

5 Results

The distribution function of private values is assumed to be the log-normal dis-
tribution. The log-normal distribution passes the standard Kolmogorov test of
fit, so the parametric assumption that we have made seems justified.® We as-
sume that the conditional mean E(v|z) = (1,2')3, and the conditional variance
Var(v|z) = o, where § and o are unknown parameters. The complete vector
of parameters describing the distribution function is thus 8 = (8',0)". The
parameters to be estimated are 6 and k.

We did not manage to maximize the total likelihood with respect to these
parameters. This is due to the discontinuity problem raised in the previous
section. To solve this problem we estimated the parameters of interest using
the following two-step method. In the first step we maximized the first term
of the likelihood (the contribution of the one-unit lots) with respect to 6. The
resulting estimate of 6 is given in Table 6, together with the asymptotic T-
statistic (based on the standard asymptotic variance of the estimate). In the
second step we maximized the second and third term with respect to k, with
0 fixed at its first-step estimate. In this second step each contribution of the
form (6) was replaced by ISP mot used (), ) n 2k, 0)SK(b 1 (pr,p2) — p2/k)
where

i) :1—/_96 Kn(t)dt

and K, (-) is the Epanechnikov kernel with bandwidth k. We thus smoothed the
likelihood at its points of discontinuity. We took h = 0.01. At each iteration
the the strategy b(-) appearing in the likelihood is approximated numerically.
The resulting estimate of k is given in the last line of Table 6. In calculating the
asymptotic variance (and thus the T-statistic) we did not correct for the fact
that the likelihood is smoothed.

8We used the Kolmogorov test corrected for the fact that the parameter in the log-normal
distribution is estimated by maximum likelihood (see D’Agostino and Stephens (1984)).
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Most parameters are significant and take the expected sign. The value bid-
ders attribute to wine increases with its age and if the bottles are sold in an
authentic wooden crate. When the label on the bottle is damaged the willing-
ness to pay for the wine is reduced. Wine experts tend to say however that a
damaged label is an indicator of good quality. Our result suggest that consumers
neglect this and prefer the label to be in good shape. As expected, the value of
wine decreases when the level in the bottle is low and increases when the wine
has been reconditioned. Burgundy wines are valued the most, followed by Cotes
du Rhone, Bordeaux and Champagne. The Parker and vintage parameters are
ranked as expected. The parameter k equals 0.83 and is significantly smaller
than 1. This suggest that the bidders in our sample had decreasing demand for
wine.

Table 6. Estimation of the parameters 8 and k

Variable Est. T-stat.
Mean of valuation (5):
Constant 3.40 13.561F
Age of wine 0.01  4.67TF
Authentic wooden crate 0.36  2.08TT
Label damaged -0.23 -1.65T
Level wine low -0.24  -1.70%
Wine reconditioned 0.88  4.63TF
Wine region:
Bordeaux 0.28  2.08T"
Burgundy 1.15  5.94%F
Cotes du Rhone 0.99  4.93tF
Parker grade:
Unknown -2.08 -12.24*F
*k op FHE -1.09  -8.72+F
ok -0.89  -6.29%F
Vintage grade:
Average or good -0.38  -3.36++
Very good -0.19 -1.78%
Variance of valuation (o) 1.40  16.297F
k 0.83 280.96TF

++ = significant at 5%; + = significant at 10%. Reference variables
are Champagne, Parker grade=*****_Vintage grade=Excellent.

To evaluate the effect of the buyer’s option on the revenue of the seller we
simulated, for each of the 31 two-unit lots in our sample, the revenue under both
the pure sequential auction (using the equilibrium strategy in Proposition 2) and
the auction with buyer’s option. We simulated 5000 times and calculated for
each lot the simulated revenues over the 5000 observations. The average revenue
obtained from the first unit is (standard error) FFr17429 (35.2) in the sequential
auction and FFr18602 (36.6) in the auction with buyer’s option. The average
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revenue obtained from the second unit is FFr19813 (41.4) in the sequential
auction and FFr18490 (36.3) in the auction with buyer’s option. The total
simulated revenue is FFr37243 (76.4) in the sequential auction and FFr37092
(73) in the auction with buyer’s option. Revenue is thus slightly higher in a
pure sequential auction, but the difference is not significant.

6 Conclusion

This paper has presented a theoretical model for two-unit English auctions.
The two units are sold sequentially. Equilibrium strategies have been derived
for the case where the buyer’s option is available and also when it is not. Using
structural econometric techniques, the model has been estimated using a rich
data set on wine auctions. The analysis in this paper suggests that the buyer’s
option has no impact on the revenue of the seller. Given that the mechanism
with buyer’s option is quicker and thus saves time, this result can be seen as an
ex-post justification for the fact that so many auction houses use the buyer’s
option.

23



References

[1]

2]

3]

[4]

[5]

[6]

[7]

[14]

Ashenfelter, O (1989), How Auctions Work for Wine and Art, Journal of
Economic Perspectives, 3, 23-36.

Van den Berg, G., J. van Ours and M. Pradhan (2001), The declining price
anomaly in Dutch Dutch rose auctions, American Economic Review, 91,
1055-1062.

Black, J. and D. de Meza (1992), Systematic price differences between
successive auctions are no anomaly, Journal of Economics and Management
Strategy, 1, 607-628.

Cassady, R. (1967), Auctions and Auctioneering, California University
Press.

D’Agostino, R. and M. Stephens (1984), Goodness-of-fit techniques, Statis-
tics: textbooks and monographs, vol. 68, Dekker.

Di Vittorio, A. and V. Ginsburgh (1996), Des enchéres comme révélateurs
du classement des vins, Journal de la Société Statistique de Paris, 137,
19-49.

Février, P., L. Linnemer and M. Visser (2001), Buy or wait, that is the
option: the buyer’s option in sequential laboratory auctions, Working Paper
# 2001-30, CREST.

Ginsburgh, V. (1998), Absentee bidders and and the declining price
anomaly in wine auctions, Journal of Political Economy, 106, 1302-1319.

Klemperer, P. (1999), Auction theory: a guide to the literature, Journal of
Economic surveys, 13, 227-260.

McAfee, R. Preston, and D. Vincent (1993), The declining price anomaly,
Journal of Economic Theory, 60, 191-212.

Milgrom, P.A. and R.J. Weber (1982), A theory of auctions and competitive
bidding, Fconometrica, 50, 1089-1122.

Mood, A.M., F.A. Graybill and D.C. Boes (1982), Introduction to the The-
ory of Statistics, McGraw-Hill.

Paarsch, H. (1997), Deriving an estimate of the optimal reserve price: an
application to British Columbian timber sales, Journal of Econometrics,
78, 333-357.

Parker, R. (1995), Guide Parker des Vins de France, Editions Solar, Paris.

24



Appendix

A Study of the differential equations

Let us first consider the following differential equation:

k(d(v) — kv) f(v) = (v = d(v)) f(d(v)/k)d (v)

We look for a solution defined on [0, +oo[ such that Vv, d(v) € [kv,v]. On
this interval, the function is increasing as d' > 0.

Let us introduce the solution d4 of this differential equation that verifies
the condition d4(A) = kA, A € [0,400[. The Cauchy-Liptchitz conditions are
verified which proves the existence and the uniqueness of the solution. Further-
more, as d'4(4) = 0, d verifies d(v) € [kv,v] at least locally for v < A. We will
prove that d4 is defined on [0, A] and verifies the condition ¢4(0) = 0.

e Suppose that there exists B, B < A, such that d4(B) = kB. If there is
more than one B satisfying this condition, then we consider the greatest
real value. If B # 0, we then obtain that d', (B) = 0. Solocally d4(v) < kv
for v > B. This implies that B can not be the greatest real that verifies
the previous condition.

e Suppose then that there exists B # 0 such that ds(B) = B. Suppose
again that B is the greatest real that verifies this condition. Because
d'y(B) = +o0, locally da(v) > v for v > B, again a contradiction with the
definition of B.

We then conclude that dg4 is defined on [0, A] and verifies d4(0) = 0.

We prove in the same way that the solution d* of the differential equation
that verifies the condition d*(A) = A, A € [0, +oo[ is defined on [0, A] and
verifies d4(0) = 0.

Let then z # 0 be a real fixed number. We introduce I = {da(z), A €
[z, +oo[} and J = {d*(x), A € [z, +oo[}.

e We first prove that I is an interval of the form [kz,z[. As d,(z) = k=,
we have kx € I. Moreover, let us verify that if y € I, then z € [kx,y[
also belongs to I. Indeed, the Cauchy-Liptchitz properties imply that the
solutions d.(.) and d,(.) are functions that do not cross each other. We
then deduce that d.(.) < dy(.) and consequently, d, crosses the straight
line f(v) = kv before d,(.) which implies that z belongs to I. This proves
that I is an interval. One must now prove that it is an open interval. Let
z be the superior bound of the interval. If z € I, then there exists A, such
that da,(A;) = kA,. The same reasoning as previously allows to prove
that a solution da with A > A, verifies da(z) > da, (), a contradiction
with the definition of z.

We have then proved that I is of the form [kz, z[.
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e Using the same reasoning, one can prove that J is of the form |z, z].

e Finally, I and J are two disjointed sets as the solutions that correspond
to the interval I can not cross the line g(v) = v and the solutions that
correspond to the interval J can not cross the line f(v) = kv. We then
conclude that z < .

e To prove that there exists a unique solution of the differential equation
that is defined on [0, 4+00[, one has to show that z = Z.

Suppose then that z # Z, and consider the two solutions d,(.) and dz(.)
that are defined on [0,4occ[. If there exists v such that dg(v) = dz(v),
then the Cauchy-Liptschitz conditions imply that d;(.) = dz(.). We can
therefore conclude that dy(v) < dg(v) for every v. Using the differential
equation, we obtain

o de) | (L Rplds(e) — de )]
P T O ) = T T ) o = dav)

The function f(v) being decreasing for v large enough, we obtain for v
large enough

di(v) — diy (v S k(1 - k)vf(v)
dz(v) = ds(v) = (v — dr(v)) (v — dy (0)) F(22D)
kf(v)
>
T A -Ref(EY)
1
~ (1-kw

where the second inequality follows from the fact that v—d, (v) < (1—k)v,
and v — dz(v) < (1 — k)v. The first and third inequalities follow from the
fact that f is decreasing.

Integrating the previous inequality allows us to obtain that
dz(v) — dy(v) > Cot/ (17K

which is a contradiction for v large enough with the fact that dz(v) —
de(v) < (1—k)v

This allows us to conclude that x = T and that there exists a unique
solution of the differential equation: d(-) = dz(-) = dg(+) that is defined
on [0, +o00[. This solution verifies in particular that Vv, d(v) €]kv,v][.

In fact, this unique solution interests us only on the interval [U("T_”, +oo
and we now have to study the second differential equation:
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k(e(v) = vn-2)) f(v) = (v = ¢(v)) f(c(v)/ k) (v)

with the two conditions c(“2F2) = d(“72) and c(v(p—2)) = V(n—2)-

The same kind of demonstration as above can be applied. The Cauchy-
Liptchitz conditions show that there exists a unique solution of this differential
equation that verifies c(v("—k’z)) = d(U("T’z)) and one can prove that this solution
also verifies c(v(,—2)) = V(n—2)-
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