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RESUME

Dans cet article, nous étudions 'ordre du développement d’Edgeworth de la loi d’une
statistique qui est, au premier ordre, une forme quadratique, dans le cas d’observations
iid et lattices. Matthes (1975) montre que la probabilité qu'une somme standardisée de
variables aléatoires lattices appartienne a un ensemble convexe et borné peut étre par ap-
prochée par la version continue d’Edgeworth avec une erreur de ’ordre de n~P/(P+1) | Nous
étendons ce résultat aux statistiques du type rapport de vraisemblance ou autre statis-
tiques asymptotiquement quadratiques, avec ou sans paramétres de nuisance, et lorsque
le score n’est pas forcément une statistique exhaustive. D’un point de vue mathématique,
cette extension correspond a considérer des ensembles qui ne sont que conditionnellement
convexes et bornés. Ainsi, le terme principal quadratique de la statistique d’intérét peut
étre dégénéré et les termes suivant, dans le développement de la statistique, peuvent in-
clure des variables n’apparaissant pas dans la forme quadratique. Dans ce cadre, nous

obtenons le méme ordre d’erreur que Matthes, & savoir n=P/@+1),
ABSTRACT

In this paper we study the order of error of the Edgeworth approximation to the
distribution of statistics that allow for an expansion with a quadratic leading term, in the
case of independent identically distributed lattice random variables. Matthes (1975) proves
that the error O(n P/(P+1)) is obtained for smooth and bounded convex sets. We extend
his result to cover likelihood ratio tests and other asymptotically quadratic statistics,
essentially allowing for nuisance parameters and for non-sufficiency of the score statistic.
In mathematical terms the extension is to sets that are only conditionally convex and
bounded. Thus, we allow the quadratic leading term in the asymptotic expansion of
the statistic of interest not to be positive definite and higher order terms to depend on
components that are not in the quadratic form. Like Matthes (1975), we obtain the order

O(n—?/(°+1)) for the error term.



1 Introduction and main result.

Asymptotic expansions of probabilities of sets for lattice random variables are difficult
to obtain because of the jumps in the distribution. In one dimension the jumps in the
distribution have probabilities of order 1/4/n, and continuous approximations ignoring
the precise location of the lattice points will only be correct to this order of error. For
this situation it may be feasible to apply some kind of continuity correction improving
the order, but only because the position of the lattice points relative to the boundary of
the set may be identified. If the dimension is higher than one even a halfspace, bounded
by a hyperplane, is difficult to handle. If the hyperplane follows the lattice directions
the situation is as in the one-dimensional case, but in other cases the order of the error
is unknown. For sets with curved boundary the situation may, perhaps surprisingly, be
slightly better, essentially because the boundary of the set cannot hit quite as many lattice
points as in the linear case.

The chi-squared approximation to the distribution of the likelihood ratio test statistic
in a parametric statistical model is a primary example of a situation with an approximately
elliptical boundary. If the set is expanded beyond the first order the set changes slightly
in the leading variable, but more awkwardly further variables appear in the expansion,
namely derivatives of the log likelihood function with respect to the nuisance parameters,
and derivatives of higher order. The chi-squared approximation is known to be correct
apart from an error of order O(n~!) in well-behaved continuous models for independent
replications. When the data are discrete the situation is much more complicated, with
error ranging from O(n~'/2) in the simplest one-dimensional lattice cases to the same
order as for the continuous case in the very best situations of higher dimensional tests, see
Gotze (2000).

Let p denotes the degrees of freedom for the chi-squared test, or equivalently the di-
mension of the parameter of interest. Esseen (1945) proved that the error of the normal
approximation for a mean of lattice random variables in IRP is O(n~P/(®*+1) for the prob-
ability of centered ellipsoids. Matthes (1975) extended this result to a uniform bound for
any class of convex sets with uniformly bounded curvatures (above and below) instead of
the ellipsoids. Because the convex sets are not necessarily symmetric Matthes’ result dealt
with the approximation provided by the second order Edgeworth expansion. His result
was based on a mathematical result on Fourier transforms and convex sets by Herz (1961).
The best available general result for the chi-squared approximation to the likelihood ratio
test and HPD (highest posterior density) regions gives the error O(n?/(P+2) logn) when
the log-likelihood derivatives are lattice random variables, see Rousseau (2002).

In the present paper we prove that O(n*p/ (p+1)) can be obtained also for the case

of independent replications of a lattice random variable when the expansion of the test



statistic can be given in terms of linear functions of the lattice random variable and the
leading term is quadratic. In the cases of likelihood ratio tests or modified likelihood ratio
tests the linear statistics are derivatives of the log likelihood function statistic, and the
leading term is quadratic in the score statistic for the parameters of interest.

A linear combination of lattice random variables is not in general itself a lattice ran-
dom variable. Therefore the leading terms of these statistics can be considered either
as quadratic forms of possibly non-lattice, but not strongly non-lattice, random vectors
or as degenerate quadratic forms of lattice random vectors; that is, quadratic forms of a
projection of the lattice random vector. In neither case can we apply the existing results
on continuous approximations of sums or the error bounds previously obtained for lattice
random variables.

To prove the result we use the technique of Matthes (1975) which again is based on the
important papers by Herz (1961) and Esseen (1945). We concentrate on confidence regions
that are, to first order, ellipsoids, possibly degenerate, because they are of relevance to
statistics, although the technique can be applied to more general sets as indicated in the
discussion section. The same comment applies to our restriction to statistics which have
a limiting asymptotic chi-squared distribution.

To be more precise consider independent and identically distributed random variables
Y1, ..., Y, supported on a lattice in IR?; without loss of generality we take the lattice to
be the shifted d-dimensional integer lattice yo + Z? where 3, € IR? is fixed. Furthermore
let EFY; = 0 and assume that Y; has non-degenerate variance, I' say, and finite moments
of order 4. Let A be a p x d matrix of rank p and consider a statistic of the form

W=W(X)=(AX)'s 14X + %Q(X) + R, (X), (1)

where X =Y, Y;/\/n, & = Var(AX) = AT'A”, Q(X) is an odd polynomial in X, and for
any constant C' > 0 there exists a ¢ < 1/(p+ 1) and a ¢ > 0 such that R,(X) is bounded
by en='*t whenever | X|| < Cy/Iogn. Our main result is the following.

Theorem 1 With W as above we have
|P(W < w) — Fy(w)| = O(n?/PF1),

uniformly in wy < w < wy for any fized positive wy and wo, where F, denotes the distri-

bution function of the chi-squared distribution with p degrees of freedom.

The proof, given in the next section, employs Matthes’ result to sets in p coordinates

of X conditional on the remaining coordinates. Relative to a straightforward application



of Matthes’ result two technical difficulties arise: the conditional distributions must be
represented in Matthes’ framework of sums of independent replications and the error bound
obtained for the probabilities of the conditional sets must be uniform in the conditioning
variables, thus allowing the error to remain of the same order when integrated.

It is a reasonable conjecture that the uniformity of the approximation extends to all w.
Technically, for large w, this is because the possible increase in the lattice versus continuous
approximation error for unbounded sets is compensated by the small probabilities for large
observations. For small w the scaling result, Theorem 3, in Matthes (1975) may provide
the extension.

Theorem 1 covers many typical applications of the likelihood ratio test to lattice ran-
dom variables. For example, if X = (Xq,...,X,;) are multinomially distributed with
probabilities (p1(0),...,pq(0)), the log likelihood function and all its derivatives are lin-
ear in X, and the log likelihood ratio test statistic for any smooth hypothesis within any
smooth model is of the form (1), see, for example, Lawley (1956) and Chandra & Ghosh
(1979).

For the same reason the result applies to the log likelihood ratio statistic in linear or
non-linear logistic regression if only it fits into the framework of independent replications.
Similarly, log-linear Poisson models and other smooth, linear and non-linear, models are
covered.

As an alternative to the log likelihood ratio test statistic other asymptotically equiv-
alent statistic, such as the Pearson chi-squared statistic for multinomial models, similarly
admit an expansion of the form 1. This also applies to HPD regions and other modified

likelihood ratio statistics, see DiCiccio & Stern (1994).

2 Proof of the theorem.

Without loss of generality we may assume that R, (z) = 0. If the theorem holds under this
condition it also holds in the stated form, because we may squeeze the set {W(z) < w}
between two similar sets without the R, (z) term and with w replaced by w — ¢, and
w + 0, say, with 6, = O(n~'*?). When the chi-squared approximation is uniformly valid
without the R, (z) term, the result follows. Thus, we assume in the sequel that R, (z) = 0.

First we split X into two parts, X = (X, X5) with X; € R? and X, € R%P. For
our purpose we have to select p linearly independent columns of A, and without loss of
generality we assume these to be the first. Then X is simply the first p coordinates of X
and

AX = A1 X1 + A X,

where A; is the p X p matrix consisting of the first p columns of A and A, contains



the remaining d — p columns. Note that A; has full rank, p, and hence is invertible.
For fixed w let K, = {z € RY : W(z) < w} and consider also the conditional sets
Kp(z2) = {z1 € R? : (z1,22) € K,}. Similarly, defining Wy(z) as the leading term,
(Az)"S~1(Az), of W we consider the corresponding sets Ky = {z € R? : Wy(z) < w}
and Ko(z2) = {z1 € R : (z1,22) € Ko}

The set Ky(z2) is of the form

(X1 + b(w2))" B(X1 + b(x2)) < w,

where b(z9) = A1_1A2x2 and B = AITE*IAl is a positive definite symmetric matrix.
Thus, to first order the set K, (x3) is the ellipsoid {z! Bx; < w} parallelly translated by
the vector —b(x2) which is linear in z5.

The probabilities of the full lattice vector X may be expanded in an Edgeworth ex-
pansion to second order, see Bhattacharya & Rao (1986, Theorem 22.1), as

Py(X =z) = n~Ypp(2) (1 + %Hg,p(x)> +0(n™h),

where the error is uniform in z, ¢r denotes the d-dimensional normal density function
with variance I', and Hs () is an odd polynomial of order 3.

A considerable convenience is that we may limit attention to values of  bounded in
Euclidean norm by C+/logn for some sufficiently large C' > 0, because the probability of
the complement of this set is o(n ') when fourth moments are finite. In the sequel we
therefore assume z to be within this range without further mention.

The desired probability is
P(W <w) =P, +Py+ Py + Py + Ps + O(n™"),
where

Poo= [ erla)do=Fyw)

P = (/K—/KO><PF($)d$,

P3 = n—d/QZ*(pF(a:)—/ (pp(]?)dl‘,
K K
P, = n_1/2/ or(z)Hsr(z)dz =0,
Ko
P5 = n_1/2 (n_d/QZ*wp(x)Hg,p(x) —/ (,OF(ZE)H;),,F((II) dx) R
K Ko

where Y " refers to summation over lattice points for z, that is, over points in L, =

Vnyo + ﬁ 7%, and the error term stems from the Edgeworth expansion over the set K.



The term P, vanishes because the set K; is symmetric and the integrand is an odd
function.
Next, P, = O(n~!) because the polynomial Q(z) is odd and Kj is symmetric in z so

1/2 yanishes, leaving an error of order O(n=").

the contribution of order n~

The term P; is our main concern for which we will use the result from Matthes (1975).

Also, Ps = O(n~!) which is seen by considering the conditional sets (given z3). The
discrete sum over such a set is equal to the Riemann approximation to the integral of
the same function on the same set. As this function is the Gaussian density function
(times a polynomial) and the set is convex, the error of the Riemann approximation is of
order n~!/?
Bhattacharya and Rao (1986, Corollary 3.2).

Now consider P3. Let I's = Var X, and consider the conditional Gaussian density

. This error is uniform over all convex sets and is therefore uniform in w, see

p(r1|z2) of X1 given Xo; that is ¢(x1|22) = @y, (as),r,.(71), the Gaussian density with
mean ji2(72) which is linear in x5 and variance T'y 5 = Var X1 —Cov (X1, X3)(Var X3) ! Cov(Xa, X1).

Decompose Pj as

Py = Pyy+Pyy=n"0)2 Z or, (72) P31 (72)
L2,n

DS et = [ ereates) o
2n
with
Pyy(m) =n""? > p(xi|zy) —/ p(@1|z2) dz1,
L1n K (22) Kan(w2)

where g(z2) = fKn(m) @(z1|z2) dzy is twice continuously differentiable, and L, is the
lattice v/nyo1 + ZZP /\/n, where the vector yo; consists of the first p coordinates of yg.

To handle P; 1 (z2) define the shifted variable Z; = z1 — po(x2) and the correspondingly
shifted lattice Ly, = v/nyo1 — pa(xe) + ZP/y/n and the shifted set K, (z2) = K, (z2) —
p2(z2). Then

Pyy(zy) = n?? ) wo,rl.z(il)—/ Po,r, .5 (Z1)d21
Zl,nﬁf(n(:L‘Q) Kn(ivz)

is now written in terms of the density function ¢qr, , which is independent of n.

Ideally we would apply Matthes’ result at this stage to show that the lattice sum of
the Gaussian point probabilities over K, (z2) is approximated to the prescribed order by
the integral. Matthes’ result, however, applies only to a standardized sum of independent
replications of a lattice random variable, so we need to show that the conditional Gaussian
density may arise as the leading term of an Edgeworth expansion for such a standardized
sum. Unfortunately, this may not be true because the statistic must have support on

the lattice I:Ln which depends awkwardly on n. To solve the problem we make another,



very small, shift of the lattice so that zero becomes a lattice point. This will change the
mean of the Gaussian density slightly, but only by a magnitude that will give an error of
sufficiently small order.

Let pn(z2) = v/nyor — p2(z2) — [v/nyor — pe(z2)], where the square brackets denote

coordinate-wise integer rounding, and define z} = &1 — pp(z2)/v/n, Ki(z2) = Kp(z2) —
pn(z2), and Lg, = 7P //n. This leads to

Pyi(za) = n7P2 " gor,, (@} + pa(z2)/V/n)

Lo,nﬂKﬁL(xz)

[ ot o)/ Vi) dot
Kx*

-1
S S (R
1 1.2
Lo,nﬁKﬁ(Iz) \/ﬁ

TF*IIL,*
_ * (1_m> d:z:*+0n*1 .
/K o Furaed) o F+O(n Y

The right hand side of the above equation can thus be written as two differences
between sums and integrals. The first is a first order difference, the second corresponds to

—1/2 times the error of the Riemann

the rounding error term. This latter term is equal to n
approximation of the integral of wg 1, ,(2)pn(22) T} 32 over a convex set. Using the same
argument as for P5, we obtain a term of order O(n~"') uniformly over w and z9, since 3
only appears in K}, for which we can use the uniformity over convex sets, and in py,(z2)
which is bounded by 1/2.

To deal with the first order difference, we apply Matthes’ (1975) result. Using Lemma. 1,
see the appendix, we can construct n independent replications of lattice random vectors
Zi, ©+ = 1,...,n with zero mean, covariance matrix I'; 2, null third order cumulants and

finite fourth order cumulants. Then using Bhattacharya and Rao (1986, Theorem 22.1)

to expand the point probabilities, p,(z), of the standardized sum, we have

Z pn(z)_nip/2 Z 900,F1.2(z) = O(nil)a

Lo,nﬂK:L(:vg) Lo,nﬂK,’;(xz)

uniformly over z9, as xy only appears in the set K (z2). Consequently

Pya(z2) = Y. a2 _/ 0.0, (#1) dzf + O(n™").
LonNKZ(z2) Ky (22)

When n is large enough, KX(z2) is a convex set for each |z3] < Clogn; it is the
translation of the ellipsoid {z; : :E?B(L‘l < w} by the vector —(b + p2 + pr)(x2) plus a
perturbation Q(x} + p2(z2) + pn(z2), z2)/+/n, which is a polynomial in z7. Hence it has
uniformly bounded curvature from above and below and its re-centered support function
is infinitely differentiable, and uniformly bounded in z3. Re-centering does not change

Matthes’s result, since the set enters the proof only through the absolute value of the



characteristic function of the indicator of the set. This is obviously independent of the

origin. We can therefore apply Matthes’” Theorem 1 (1975); apart from terms of order
O(n 1),

Pyi(ze) = Z pn(z) — / Qo (27) dat| < c(By)*P/ AP+ D) g P/ (0+1)
Lo,nNK}(z2) K} (w2)
where (4 is the sum of the fourth moments of the coordinates of Z; and hence is indepen-

dent of zo. The constant ¢ is independent of n and z5. We thus obtain

P = 0 2N or () Py () = O(n#/0740),
L2,n
Now consider the second part of P3, namely P39. Since K,(z2) is smooth, g(z2) is

twice continuously differentiable and is bounded by 1. Thus, uniformly in s,

WY oo = [ eraaaten) = O )

Lo

which completes the proof.

3 Discussion.

It is important to notice that our result gives only an upper bound for the error of the
chi-squared approximation but does not rule out the possibility that the error could be of
lower order. Recent results by Gotze (2000) and Bentkus & Gotze (2001) indicate that
for classes of sets including exact ellipsoids the order O(n!) is achievable for dimension
p > 5. This extends previous results by Bentkus & Gotze (1997, 1999) where similar
results for p > 9 were obtained. In our setting their results correspond to the situation
where the matrix A in the definition of the statistic W (X) ~ (AX)TS71(AX) is of full
rank and without a term of order O(n~'/2) in W (X), see equation (1). From an intuitive
point of view one would expect the inclusion of the extra components, due to the nuisance
parameters of dimension d — p, to have some smoothing effect rather than adding to the
discreteness error. It is unclear, however, whether such a smoothing effect improves the
order of the approximation in particular cases.

Frydenberg & Jensen (1989) simulate some examples of the likelihood ratio test for
multinomial random variables to investigate the order of error empirically. In particular,
they compare with the Bartlett correction which, in the continuous case, would improve
the error from order O(n~!) to O(n=2). If the error due to discreteness is of order O(n~!)
it would give some meaning, asymptotically, to apply the Bartlett correction to a discrete
model since it might remove part of the dominating error. The empirical findings of Jensen

& Frydenberg indicate that this is not the case, but their examples are low-dimensional



(p < 3) and therefore do not challenge the conjecture of a general error of order O(n ') for
p > 5. Moreover, a Bartlett correction would still correct the expectation of any smooth
function of W, (X). Even though it might not improve the order of the approximation of
the discrete probabilities by its continuous counterparts, it would re-center the approxi-
mation to a better order of accuracy. In the special case of the one-dimensional binomial
Brown et al. (2002) prove that re-centering diminishes the coverage error of confidence
regions.

We have concentrate on approximate, possibly degenerate ellipsoids. However, as
Matthes’s (1975) result is valid for any bounded convex set, our result remains valid if
W (X) in equation (1) is a more general (smooth) function, provided that the conditional
sets, K,(z2) = {z1 : W(z1,22) < w}, are convex for sufficiently large n and satisfy
Matthes’ conditions of bounded curvature. Under this framework, the technique that we
have used to prove Theorem 1 can be applied directly, although we would have to add the
second term, of order 1/y/n, in the Edgeworth expansion if the set is not symmetric.

Actually, the condition on independent and identically distributed random vectors is
not necessary either. Indeed, it is enough to assume that there exists a suitable pointwise
Edgeworth expansion on lattice points for the distribution of z, as the key point in our
proof was the use of Matthes’s result on the vector z that is constructed from the pointwise
Edgeworth expansion. So assuming that we have such an Edgeworth expansion on a lattice
say L/+/n, it is possible to construct a vector z as a renormalised sum of independent and
identically distributed lattice vector z; € L with zero mean and the same covariance
matrix. Then z would have the same Edgeworth expansion to the first order as our
original statistic and we would be able to use Matthes’s result as above to obtain the
order O(nP/(*+1)). One possible application of such an extension is the logistic regression
with lattice covariates. In fact, logistic regression would already be covered by Theorem

1 in the case of systematic replications of the covariates.

Appendix: Lattice distribution with certain moments.

As a technical tool we need to prove the existence of a distribution on the integer lattice,
7P having zero mean and a given non-singular covariance matrix, A, say.

Lemma 1 For any positive definite symmetric matriz, A, of size p X p there exists a
probability distribution on the integer lattice ZZP with mean zero and variance matriz A.

Furthermore, there exist symmetric distributions of this kind with moments of all orders.



Proof. Let V be a p-dimensional Gaussian random variable with FV = 0 and VarV = A.

Then, for any positive number k define the lattice random variable

W 0  with probability 1—1/k?
k =
[kY] with probability 1/k?

where [kY] denotes the integer rounding of kY, that is kY = [kY] 4+ Rx(Y) with all

coordinates of Ry(Y) bounded by 1/2. Since the distribution of Wj, is symmetric we have
EW}, = 0. Further,

Var W, = % (k* VarY — k Cov(Y, R(Y)) — k Cov(Ry,(Y),Y) + Var Ry, (Y))

= VarY + O(1/k),

as k — oo, thus implying that we can approximate any non-singular variance, A, as closely
as we want by a distribution on the integer lattice. Since the variance of a distribution
mixture is the mixture of the variances, the set of achievable variance matrices for lattice
distributions is convex. Thus, the target A, can be enclosed in a cube of which we may
approximate the corners, and appropriate mixing yields a lattice distribution with mean
zero and covariance matrix A. The distribution constructed in this way is symmetric and
has moments of all orders. O

Although the result is not valid if the condition that the mean is zero is removed, the
distribution may be shifted to have mean on any other lattice point. And by non-singular
linear transformation the result trivially extends to any non-degenerate lattice, meaning
that we may construct a lattice distribution with mean on any lattice point and with any

non-singular variance matrix.
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