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Equidependence in qualitative and duration models

Abstract

The aim of this paper is to introduce factor models for joint analysis of
interdependent individual defaults. The default can be characterized either
by its occurrence, or by the date of default. In the first case we introduce
multivariate dependent models for dichotomous 0 — 1 variables, whereas mul-
tivariate duration models are considered in the second framework. We study
the stochastic process counting the number of defaults and discuss statistical
inference.

Keywords : Equidependence, Exchangeability, Durations, Factor Model,
Credit Risk, Default Correlation.
JEL number : C33, C41, G21.

Equidépendance dans les modeles qualitatifs et les modeles de durée.

Résumé

Nous introduisons des modeles a facteurs pour I’analyse jointe de défaillan-
ces individuelles. La défaillance peut étre caractérisée soit par sa survenance,
soit par la date a laquelle elle se produit. Dans le premier cas, nous con-
sidérons des modeles multivariés avec équidépendance pour variables quali-
tatives dichotomiques ; dans le second cas nous introduisons des spécifications
multivariées pour variables de durée. Nous étudions les propriétés du proces-
sus comptant le nombre de défaillances et discutons l'inférence statistique.

Mots clés : équidépendance, échangeabilité, durée, modele a facteur, risque
de crédit, corrélation de défaut.



1 Introduction

Portfolio management for corporate bonds requires a careful analysis of de-
fault risk, including the possibility of interdependent default, called default
correlation. The credit risk models depend on the definition of default [see
e.g. Crouhy, Galai, Mark (2000), Gordy (2000)].

In a crude approach the time of default is often neglected and the analysis
focuses on default occurrence. This approach implicitly assumes a portfolio
of bonds with identical residual maturities, in order to avoid a bias due to
heterogenous maturities. Then corporation default can be characterized by
a 0 — 1 variable Z;, where Z; = 1, if there is no default for corporation i,
Z; = 0, otherwise.

A more accurate specification takes into account the time of default D;
for any corporation ¢, ¢ = 1,...,n. Then the analysis can be performed for
portfolios of bonds with various maturities.

Finally the analysis can be completed by also considering the recovery
aspect. As before recovery can be treated without considering the timing
and then is characterized by a recovery rate assigned at default time. Al-
ternatively we can describe the sequence of recovery dates and rates for any
given failure.

The aim of this paper is to introduce factor models for joint analysis
of default. In section 2 we focus on default occurrence, characterized by
0 — 1 variables Z;,7 = 1,...,n. We consider a model with equidependence, in
which the distribution of 71, ..., Z, is invariant by permutation. We describe
a minimal set of parameters for the joint distribution and recall the factor
interpretation of the equidependent (exchangeable) model due to de Finetti
[de Finetti (1937)]. We also study the distribution of the count variable
N =" | Z; measuring the number of firms which are still alive at the end
of the period. In section 3 the timing of default is taken into account. We
introduce a factor model for the durations before default D;,7 = 1,...,n, in
which the factors have a direct influence on the individual survivor intensities.
We explain how to derive the joint duration distribution when the future
factor values have been integrated out. We also discuss the properties of the
associated count process N, providing the number of firms in the portfolio
which are still alive at time ¢. The general results are applied in section 4 to
credit porfolios and statistical inference is discussed in section 5, both in a
parametric and a nonparametric framework.



2 Dichotomous qualitative models

In this section we consider a set of n dichotomous qualitative variables
21y ..y L, and assume that their distribution is invariant by permutation.
Thus the distribution of Z,,..., Z5(») is the same as the distribution of
Z1y ..., Ly for any permutation o. The variables are said equidependent, sym-
metric [Savage (1954) p. 50] or exchangeable in the terminology proposed by
Frechet.

2.1 Characterization of the distribution

Equidependence implies restrictions on the joint distribution of 7y, ..., Z,,
which can be described by n independent parameters [Khinchine (1932)].

Proposition 1 : Let us consider equidependent dichotomous qualita-
tive variables Zi, ..., Z,, and denote by u(k) = E(Z,...Z;), k =1,..,n
the cross moments between the variables. Then the joint distribution
of Zy, ..., Z, is characterized by the set p(1), ..., u(n).

Proof : First note that the cross moments depend on the number of
dichotomous variables involved only, and not on individual indexes since :

E[Zo'(l)---Zg-(k)] = E[ZIZIC];

because of equidependence.

Then we have just to explain how to reconstitute the joint probabilities
from the cross moments. Let us consider a given probability :

P[Zl - 1, ;Zk == 1;Zk+1 - 0, ,Zn == 0]

=FE[7Z1..2(1 = Z1)...(1 — 7)),

(with appropriate convention for k£ = 0).
By expanding the latter expectation and by using the equidependence

property, we immediately deduce the expression of the joint probability in
terms of cross-moments p(1), ..., u(n) .
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Q.E.D.

In fact we directly get the expression of the joint probability since :
E[Z\..Zy (1 — Zg1)...(1 = Z,)]
= ¥hZo Chp(=1)"u(k + h)
= XhZs Cnoi (1) p(n — h)
= [ZhZ6 Cn (1) " LM u(n)
= (—1)"FA (),
where A =T — L denotes the differencing operator, and p(0) = 1.

We deduce from the expression of the joint probabilities the constraints
that have to be satisfied by the cross-moments to define a genuine probability
distribution.

Corollary 1 :  Under the equidependence assumption, the cross-
moments are such that :

(—1)*AFu(n) >0, Vk =0,...,n.

Therefore, when n is infinitely large, the sequence u(n) is completely
monotone [see Feller (1966) p. 225]. Then, by applying Hausdorff theorem
[see Castelnuovo (1930), (1933), Shohat and Tamarkin (1943), Feller (1966)
p. 224], we deduce that p(n) is the moment of order n of a distribution G
defined on the interval [0, 1] :

pin) = [ LG (w), V. (1)

Thus we get :



PlZy =1,..2y=1,Z441=0,...., Z, = 0]
= (—=1)"PA Fpu(n)
= Yo Ok (=1)"u(k + h)
= Yh2g Ch_ (=1 fy whHhdG (w)

= [Jw*(1 —w)" *dG (w).

This result due to de Finetti [de Finetti (1937), Savage (1954)] has a
simple factor interpretation and explains why the model is also known as a
conditionally independent credit risk model [Schoenbucher (2000)].

Corollary 2 : Let us assume a population of infinite size. The dichoto-
mous qualitative variables 71, ..., Z,, ... are equidependent if and only
if there exists a random variable W on [0, 1] such that, conditionally
to W, Zy,..., Z,, ... are independent identically distributed as Bernoulli
distribution B(1, W).

It is important to note that the joint distribution of default is charac-
terized by the sequence p(k),k = 1,2,... or equivalently (for n large) by
the distribution G of the factor. Although it has become common to speak
of default correlation, the term correlation is misleading. Indeed the linear
correlation between the Z variables involve p(1) and u(2) only, and neglects
the higher moments, that is the possibility of default clustering (for instance
when defaults occur ten per ten, or twenty per twenty). Similarly the whole
pattern of the factor distribution has to be considered, not only the mean
and variance of W. Typically multimodes in distribution F' can summarize
different regimes for default.

The characterization of equidependence by a one-factor representation is
valid for a population with infinite size n [see also Frey, McNeil (2001)]. It
implies a positive dependence when n = oo, since :

cov(Z;, Z;) = Ecov(Z;, Z; | W) +cov|E(Z; | W), E(Z; | W)]

=V >0.

When the size n is finite, negative equidependence can exist. For instance



form=2,7,=1—-27; and Z; ~ B(1,1/2), the equidependence is satisfied
with a correlation equal to —1. However when n increases, the range of
admissible values of the correlation diminishes and asymptotically does not
intersect the set of negative real numbers®. Thus if a model with equidepen-
dence has to be specified for studying default in a pool of credits and if the
size of the pool is not bounded a priori, the correlation coefficient has to be
nonnegative.

However negative default correlation can be observed in small pools. For
instance let us consider an industrial sector with two firms of similar size. The
failure of a firm will likely increase the monopolistic power of the remaining
firm and thus decreases its default probability.

2.2 Examples
2.2.1 Independence

The Corollary below is a direct consequence of Proposition 1.

Corollary 3 : Under the equidependence assumption, the variables
2y .oy Zy are independent if and only if :

wk) = p()* E=1,.. n.

2.2.2 Probit model with equicorrelation

A standard model introduced for default correlation is based on a multi-
variate probit specification [see e.g. Gupton, Finger, Bhatia (1997), Belkin,
Suchover, Forest (1998), Finger (1999), Schoenbucher(2000)]. Let us consider
latent variables X; such that :

Xi=m+F+u,i=1,..n, (2)

where m is a constant, F, uy, ..., u, independent zero mean gaussian variables,
such that VF = p* Vu; = 1 — p?. Thus the joint distribution of (X, ..., X},)

3This property is similar to a property of gaussian model with equicorrelation. If
Y1,..., Y, are homoscedastic gaussian variables with the same correlation p, the condition
of positivity for the variance-covariance matrix requires 1+(n—1)p > 0, 0r p > —1/(n—1).
Thus, for infinite n, the correlation is nonnegative.



is multivariate gaussian with mean (m,...,m)" and a variance-covariance ma-

102 ... p?

p’ p’
trix 3 which features equicorrelation : ¥ = )

0t ... ptl

The dichotomous qualitative variables are defined by :

Z; =1if  X; >0, Z;=0,otherwise. (3)

In the so-called firm’s value model [see e.g. Black, Scholes (1973), Merton
(1974), Vasicek (1997)], the latent variable is the difference between the asset
value of the firm and the liability. Default occurs when the obligor’s assets
fall beneath the value of liabilities.

This model with equidependence involves two parameters only that are
m and p.

Note that the dichotomous variables Z1, ..., Z,, are independent condition-
ally to F', with distribution B(1, W), where :

W =P[Z, >0|F]=Plui+m+F >0]|F]

= Pl—u; <m+ F | F] :qD(\%—t%).

We deduce how the canonical factor W of Corollary 2 is related with the
factor F' introduced in the standard probit model.

It has been proposed to extend the model above by suppressing the nor-
mality assumption and assuming different distributions G and H for the fac-
tor F' and the error term wu, respectively. A direct consequence of Corollary
2 is that G and H cannot be identified nonparametrically.

2.2.3 Factor with beta distribution

When W follows a beta distribution with positive parameters o, 3 and den-
sity :

_ T(a+p)

— P 1 — w) T (w



we get :

P[Zl = ]_, ,Zk = ]_,Zk+1 = 0, ,Zn = 0]

= Jo w(1 —w)" * f(w)dw

'« — _ _
F((a)it(ﬁﬁ)) fol whte 1(1 —w)" FHO dw

_ L(a+B) T(k+a)T(n—k+p)
T T(@r(B) T(ntatp)

In particular :

T'(k+a) T(a+p)
I(a) Tk+a+p3)

pu(k) =

2.3 Count variable

It is often interesting to summarize the values of the set of dichotomous
variables 71, ..., Z, by means of the count variable :

N = Z Z;. (4)
i=1
For instance N measures the number of firms, which are still alive at the
end of the period.

Under the equidependence assumption the moments of the count variable
are easily computed.

Proposition 2 : Under the equidependence assumption, we get, :
E[N*] =28 anALu(l),k=1,2,...,n,

where : AL, =n(n—1)..(n — [+ 1),

and the coefficients a4, are uniquely defined by :

nk =YF anyAl VEk <n.

Proof : See Appendix 1.

Moreover due to the factor representation given in Corollary 2, we imme-
diately deduce the distribution of the count variable for a portfolio of infinite



size.

Corollary 4 : Let us consider a population of infinite size n = oo.
Under the equidependence assumption, we get :

PIN = K = C* /01 Wk (1 — w)" FdG (w),

where G is the distribution of factor W. In particular the factorial
moments of the count variable are :

EIN(N—-1)..(N—k+1)]=nn-1)...(n —k+ 1)u(k), k.

Note that the expression of the moments of the count variable given in
Corollary 4 provides an interpretation of the result of Proposition 2 (valid
for any finite population size n). Moreover moment conditions of Corollary
4 explain how to identify the factor distribution G from the distribution of
the count variable. Indeed we deduce the power moments by :

u(k) = EIN(N =1)...(N — k + 1))/[n(n = 1)... (n — k + 1)), V.

These moments can be used to construct the characteristic function of
factor W by :

00 Z'ktk
ElexpitW] = kZ_% Fﬂ(k),
which exists since p(k) € [0,1],Vk. Finally the pdf of the factor is derived
by inversion of the Fourier transform.

3 Duration models

The results of section 2 can be extended to study a set of equidependent
duration variables. In section 3.1 we introduce a factor model for duration,
where the factor has a direct effect on the survivor intensity. Then we explain
how to compute at date ¢ the joint distribution of durations for individuals
who are still alive. This conditional distribution depends on the available
information by means of the current value of the factor and of the number
of remaining individuals. The distribution of the count process is studied in



section 3.2. Finally the results are particularized to the case of compound
autoregressive factor processes.

3.1 Factor duration model

Let us consider at date 0 a set of Ny individuals (firms) and denote D;,i =
1,..., Ny the lifetime of individual 7. By analogy with Corollary 2*, we intro-
duce the following factor duration model.

Definition 1 : The set of durations D;,i = 1,..., Ny satisfy a
factor duration model with equidependence, if there exist factors
F={F,,t=0,1,...} such that :

i) The durations D;,i = 1,..., Ny are independent conditionally to
(F') = (F},t varying) and Ny, with survivor intensity :

P[Dl >h+1 | Dl > ha (F)vNO] = /'L(Fh-l-l)a h Varyinga
where p is a function into [0, 1].

ii) The factor process is a Markov process, that is the conditional dis-
tribution of Fy, given (F}, F;_1, ..., Fy, Np) depends on F; only.

Thus the individual survivor intensities depend on a common factor which
creates intensity correlation. Moreover this influence depends on time by
means of the time varying factor. °

It can be noted that the discrete time duration model is defined by means
of the survivor intensity whereas the continuous time duration models usually
involve default intensity (or hazard function) [see e.g. Heath, Jarrow, Morton
(1992), Lando (1998), Duffie, Singleton (1999) for specifications in continuous
time applied to credit risk]. In the continuous time framework the survivor
function is given by :

4Factor representations of exchangeable distributions of continuous variables have been
proposed in the literature (see e.g. Hewitt, Savage (1955),Buhlmann (1960), Freedman
(1962)]. In this section we directly specify a convenient factor representation.

5When the factor is time independent we get the so-called multivariate mixed propor-
tional hazard (MMPH) model described in Van den Berg (1997), (2001).
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PID: > | (F), N, = exp — /Ot)\(Fu)du,

where A(F},) is the stochastic infinitesimal default intensity. Thus the discrete
time survivor intensity is :

h+1
P[Di > h+1|D;> h,(F),N,] = exp — / AF,)du.
h
A first order expansion provides :

P[Dl>h+1|Dl>h,(F),No]

~ exp [=A(Fp11)] (if A(F,) is smooth).

Thus the discrete time survivor intensity is approximately related to the
continuous time default intensity by : p = exp(—A). This relationship gives
a link between discrete and continuous time approaches.

The advantage of discrete time factor duration specification is double.
First it corresponds to the demand of the Basle Committee which requires
the computation at discrete dates of the CreditVaR, that is the amount of
reserve necessary to balance the risk included in a credit portfolio. Second
the defaults are easy to simulate by a recursive scheme. Let us denote :

Ziy = 1,if D; > t,= 0, otherwise,

the dichotomous 0—1 variables saying if firm i is still alive at ¢. For given ini-
tial values F,, N, the simulation can be performed along the following steps.

step 1 : draw the future factor value F} in the conditional distribution of
F| given F,, N, ;

step 2 : for each firm ¢ in the set I,, draw Z; ; in the Bernoulli distribution
B(1, p(FY)).

Then iterate the procedure.

11



The durations are given by :

Di = 1nf{t : Zi,t = 0}

3.2 Conditional intensities

In the factor duration model the basic survivor intensity is defined condi-
tionally to the past, current and future values of the factors. However the
notion of intensity depends on the conditioning set and it is interesting to
study how it evolves with time when only past and current values of the
factors are known °. Let us consider the situation at date t. There is a set
I, = {i: D; >t} of N, = Card I; individuals who are still alive. The infor-
mation available at time ¢ includes : this set I;, the lifetimes of individuals
already disappeared D;, j ¢ I, the current and lagged values F; of the factor
and the initial population size Ny. The conditional joint survivor function of
the durations is :

PID; > t + hy, iel)]
— E/(P[D; >t + hy,iel, | I, D;,j ¢ I, (F), Ny))
= Ey[I;er, P[D; >t + h; | D; > t,(F), No]
= By, T u(Fryy)]
= B u(Fi) M pu(Fpyo) N M pu(Foy ) Vet =1 ],
where h; > 1, i varying, H = maxh; and Ny x(h) = Card {i : iel; and
hi > k).

The successive numbers Ny (h) are deterministic functions of the popu-
lation size at ¢, that is NV;. Then from assumptions of Definition 1, a sufficient

6Tt can be checked that in an affine framework underlying values of the factors can be
recovered if we observed both the term structures of T-bonds and corporate bonds [see
e.g. Gourieroux, Monfort, Polimenis (2002)].
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information set includes N, F; only.

Proposition 3 : When the durations satisfy a factor duration model
with equidependence :

BD; > t + hy,iely] = Blp(Fp)V p(Frpo) VO p(Fypgr) Neer )|
Fta Nt] .

Thus by integrating out the future values of the factors, we have in-
troduced equidependence between the durations and implicitely selected a
specific copula. The specification of the copula by means of unobservable
factors has the advantage of being easily understandable and implementable
by simulation. Moreover the factor representation explains how the copula
is modified with the population size n [see e.g. Van den Berg (1997) or Li
(2000) for direct specifications of copulas on duration datal.

A similar computation provides the conditional survivor function of a
given firm iel; :

PD; >t + h] = E[u(Fyi1)-..po(Fyn) | Fiy Ni-

We deduce the associated survivor intensity.

Corollary 5 : The conditional survivor intensity is given by :
where :

p(h; By, Ni) = E(u(Fpin)-opt(Frnsn) | Fr, N

[E((Frir) o pt(Fern) | Fiy NI

For structural interpretations it is important to distinguish the basic and
conditional survivor intensities given in Definition 1 and Corollary 5, respec-
tively. The basic intensity is a deterministic function of factor F', and is
stochastic, if the future values of F' are not observable. On the contrary, at
date ¢, F; and N; are known and the conditional intensity pu(h, F;, N;) is a
deterministic function of A. To illustrate the difference between both types
of intensity, we can consider their limiting behavior when h tends to infinity.
If the factor process is stationary, the basic intensity u(F}) is a stationary

13



process and cannot converge in the long run. On the contrary we can expect
that p(h; Fy, Ny) tends to a limit when h tends to infinity. Thus a ”"mean
reverting” effect can be observed on the conditional intensity whereas it does
not exist for the underlying basic intensity .

Finally note that the conditional survivor intensity can be written as :

Qt
p(h; Fyy Ny) =E [p(Fypnin) | Fry Ni,
where (); is the probability distribution with pdf :

((Fr) - p(Fein) [ E[p(Figr) - - - p(Fipn) | Fry Ne

Thus it is equal to the expected underlying intensity with respect to a
modified measure.

3.3 Interpretation with failure indicators

We can relate the previous results to those of section 2. From Proposition 3
the distribution of the durations conditionally to the information available at
date t is invariant by permutation, which is the equidependence (exchange-
ability) property. The equidependence is also satisfied by the indicator func-
tions characterizing failure occurrence :

Ziwy = 1,if  D; >t+41,=0,otherwise, (5)
for any zel;.
Conditionally to the information at date ¢, the set Z; ;11, i€l;, corresponds

to equidependent 0 — 1 variables. From Section 2 the conditional joint dis-
tribution of these 0 — 1 variables is characterized by the cross-moments :

(1) = Ef(Z1441), oy (k) = E(Z1 i1 Zig ), - (6)
for k S Nt-

In our discussion the mean-reverting effect is a consequence of a different conditioning
and can arise even in a stationary framework. Mean-reverting basic intensities can also
be introduced in a nonstationary framework [see Duffie, Singleton (1999), section 6.1, for
an example].

14



The interpretation of the cross-moment y;(k) as a moment of order k of
a distribution defined on [0, 1] is immediate, since :

(1) = Ey[u(Fiy)], ooy pu(k) = Belp(Frir)"]. (7)

Thus the canonical latent factor corresponding to this set of qualitative
variables is simply : W1 = u(Fii1) € [0, 1].

3.4 The count process
i) Joint distribution of (V;, I})

The distribution of the count process (N;, ¢t varying) can also be easily
characterized from Proposition 3 and Corollary 5.

Proposition 4 : i) The bivariate process (Ny, F}) is a Markov process
of order 1.

ii) The conditional distribution of Ny given Fi,q, F;, N; is binomial
B[Ny, p(Fiq1)]-

iii) The conditional distribution of Fy,; given F}, N, coincides with the
conditional distribution of F;,; given F; only.

Proof : see Appendix 2

In particular the count process satisfies a set of autoregressive models
with stochastic coefficients [Andel (1976)]. Indeed we get :

E[Npsa | Ne, (F)] = p(Fia) Ne, (8)

E[Niy1(Npgy — 1) | Ny, (F)] = p(Fi1)’ Ny (N, — 1), (9)
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These autoregressive equations can be used to derive predictions at any
horizon H, when the past, current and future values of the factors are known :

E[Nyw | Ny, (F)] = Hl?:l/l’(Ft-i-k)Nta (10)

[N (Nevwr = 1) | Ny (F)] = [ a( BN (N = 1) (1)

ii) Second order properties for factors observable up to time ¢

We can now deduce the second order properties of the count process,
when the factors are observable up to time ¢. Since the count process is
decreasing, thus nonstationary, the first and second order moments have to
be computed for any date ¢ and horizon H.

We get :

Ei(Nern) = E(Nepr | Niy Fy) = NeE(IGL ju(For) | ), (12)

EyNiyu(Neyn—=1)] = E[Niy it (Neyn—1) | Niy Bi] = Ny(Ne= 1) E(IGL p(Frir)? | F).
(13)
The conditional autocovariance function is derived by iterated expecta-
tions. We get :

n(H, K)

= covy(Nyyms Nev o1 k)

= Ey(Niyn Nivwrvi) — Et(Neym) Ey(Niy i1 i)

= BNy i(Fopnir) oo tt(Frr 1)) = By(New) Ef(Ney iy i)

= NNy = DEI pu(Frr) T 0(Frir)] + N BTG (P

—N? BTG p(Fryi) | BTG (Fryp)), for H > 0, K > 0.

16



Therefore :

% (H, K) = Nfcovi[ILL pu(Fryr), TRE® p(Fipr)]

AN B p(F)] = BTG (B TES p(Fia)]} . (14)

Both terms in the decomposition of the conditional autocovariance are
nonnegative. In particular the conditional variance is given by :

v(H,0) = Vi(Niynr)

= NPV p1(Frei)] + N{ BTy p(Fran)] — BT p(Frae) ]} (15)

3.5 Exponential affine duration model

Closed form expressions of cross-moments and prediction of count variables
can be derived for particular specifications of the survivor intensity and of
the factor dynamics.

i) The specification

Definition 2 : An exponential affine duration model requires :
i) an exponential affine survivor intensity :

p(F) = exp(a'F + J),

where 3 is a scalar and a a vector with a dimension equal to the
number m of factors ;

ii) a compound autoregressive [C'AR] factor process, with a conditional
real Laplace transform (moment generating function) given by :

E(expu'Fyy | Fy) = expla(u)'Fy + b(u)],
where b is a scalar function and ¢ a m-dimensional function.

17



An exponential affine factor representation of heterogeneity is usually as-
sumed in the duration models used in the applications to labour [see e.g.
Flinn, Heckman (1982), or Heckman, Walker (1990)]. Some constraints on
the parameters o, § and on the factor process have to be introduced to en-
sure survivor intensity between 0 and 1. This condition is satisfied if the
components of the factor process are nonnegative and the coefficients «, (3
are nonpositive. Also note that the exponental affine specification of the
survivor intensity in discrete time is the analogue of an affine specification of
the infinitesimal default intensity in continuous time.

The CAR processes have been introduced in Darolles, Gouriéroux, Jasiak
(2002) [DGJ thereafter] and their analogue in continuous time (called affine
processes) in Duffie, Filipovich, Schachermayer (2001). Their importance is
due to simple computations of predictions at any horizon H.

Some computations can be simplified if the factor process is stationary
with a marginal distribution admitting the Laplace transform :

E(expu'F;) = expe(u). (16)
By applying the iterated expectation theorem, we get :

exp [c(u)] = E[E( exp u'Fi11 | F})]
= FE { exp [a(u)'F}; + b(u)]}

= exp {cla(u)] + b(u)},
or equivalently :
b(u) = e(u) — cla(u)]. (17)

Thus in the stationary framework the dynamics of the factor process can
be characterized either by a and b, or by a and c.

ii) Second order properties of the count process for an observ-
able factor

Explicit expressions of the first and second order conditional moments of

the count process are deduced from the expressions of the conditional Laplace
transform of the factor at horizon H. For instance we have [see DGJ (2002)] :

18



Elexp(a'Fyi1 + ... + &' Fyyg) | Fy] = exp[A(H)'F, + B(H)], (18)

where :  A(H) = a°(0),

B(H) = 3 bla' )]
where ao(u) = a(u + @), ba(u) = b(u + «),

and a°" denotes function a compounded H times with itself.
Since the stochastic autoregressive coefficient at horizon H

I w(Fyr) = exple (Fyy1 + ... + Fiog) + HP),

admits an exponential form, formula (18) can be directly used to derive the
conditional expectation and the conditional variance of the count variable.
We get :

H-1

Ey(Nyy1) = Nyexpla®™ (0)F, + BH + 2_: bo[a"(0)]], (19)

Vi(Neyrr) = Nio(N; = 1) explasl] (o) Fy + 28H + 155 baa[ass (0)]]
+N, exp(a2? (0)F, + BH + SH bala*(0)))

—NZexp(2a2T (0)Fy + 2B8H + 2 77 ba[a%* (0)].

ii) Autoregressive gamma factor

The autoregressive gamma process is the discrete time counterpart of
the Cox-Ingersoll-Ross process [Cox, Ingersoll, Ross (1985)]. This is a one-
dimensional process. Conditionally on F}, the future value F;,; is such that
F,11/c follows a gamma distribution (v + M;), where M; is drawn in the
Poisson distribution P[pF;/c] (see e.g. Gouriéroux, Jasiak (2001)b]. The pa-
rameters are constrained by ¢ > 0,1 > p > 0. The conditional real Laplace
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transform (moment generating function) is given by :

E(expuFy,y | Fy) = —vlog(l — uc) + : fuuc i (20)
Thus we get :
alu) = f“uc, b(u) = —vlog(1 — uc). (21)
We deduce that :
aq(u) = %.

Let us denote by A; < Ay the solutions of the associated fixed point
equation :

o p(A+a)
C1-(A+a)

Then the shifted function a,, satisfies the rational formula :

ao(u) — Ay P4 A

ag(u) — Ao u— Ay’

for some constant k. By recursion we deduce :

agh(o) - )\1 — khﬁ

agh(O) — )\2 )\2

4 Credit portfolio

Equidependent models can be used to study the risk included in an homoge-
nous portfolio of credits ® and compute the required capital (CreditVaR)

8The joint analysis of several homogenous portfolios of credit is beyond the scope of
the present paper. It can be done by introducing different types of factors, where some are
general and others are portfolio specific [see e.g. Gourieroux, Monfort, Polimenis (2002)].
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appropriate to hedge credit risk. In the first section we define the portfolio
value with and without default and discuss its stochastic properties. Then
we give in section 4.2 an illustration of the seasoning effect. Finally large
portfolio approximation is discussed in section 4.3.

4.1 Description of the portfolio

Let us consider a portfolio of credits, including N, contracts of the same
type at date t = 0. Each contract provides a deterministic payoff m, at date
t=1,..,T.

With zero default probability the value of the portfolio at date ¢ is deter-
ministic and is equal to :

T—t
Wi =N, B(t,t + h)ymy, (22)
h=1

where B(t,t+h) denotes the price at t of the zero-coupon bond with residual
maturity h.

When default can occur, the portfolio value at date ¢t becomes random
and is equal to :

T—t
Wt = Z B(t, t+ h)Nt+hmt+h, (23)

h=1

where the recovery rate is equal to zero®.

The conditional distribution of W, at date ¢ can be deduced from the
conditional distribution of the future portfolio sizes Ny, 1, ..., Ny. For instance
the first and second order conditional moments of the portfolio value are given

by :

W, is an actuarial value of the portfolio. Interpreted in the standard risk neutral
framework, it is implicitely assumed that the shocks on the T-bond interest rates and the
factors with effect on default can be priced independently. This assumption is usual in a
first step analysis of default risk.
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T—t
EW, =Y B(t,t + h)myn Ey(Niga), (24)

h=1

ViW, = Y11 B(t,t+h)?>m?, ,Vi(Niis)

2 X Bt t + h)B(t, t + k)mypnmyp,kcove(Nepn, Ner).-

They depend on the information available at date ¢ to compute the con-
ditional expectations and covariances, and on the dynamics of the count
process (see section 3.4).

4.2 The seasoning effect

Let us provide some illustration of the seasoning effect, that is of the way the
characteristics of the bond evolve with the age of the portfolio. To simplify,
we assume credits with constant monthly payments m; = m, V¢, no payment
in fine, an interest rate r*, a maturity 7', and a flat term structure of interest
rate B(t,t+h) = (1+7r) ", with r = 0.03. In particular the monthly payment
is given by :
m = C, %, where C, denotes the initial balance.

If the initial size of portfolio is N,, the portfolio value with zero default
probability Wtf = N,m Zh 1 (1+r)h diminishes exponentially. When default
can occur the portfolio value is smaller and given by :

W, = ——— Ny,
t mhzz:l (1+T)h t+h

This exercise is easily extended when default is insured, as on the market
for mortgage backed securities (MBS). When a default occurs, the insurance
company reimburses the remaining balance at the default date, transforming
a default into a prepayment or equivalently into a default with a recovery
rate equal to one. The value of the insured portfolio is :

T—t 1
Wts = Z 7h{Nt+hm —+ (Nt+h71 - Nt+h)ct+h}7 (25)
= (1+r)
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where C; denotes the remaining balance at date ¢ :

T—t 1
Ci=my ——.
t ; (1+72)

In the insured case the difference between the expected values of portfolio
with and without default is due to a timing problem, in which all payments
due after default are replaced by a single payment at the random date of
default.

To study the effect of default with zero or unitary recovery rate, we pro-
vide below some comparative studies on values Wtf , Wy and W7. We assume
N, = 100, a maturity 7" = 20 and a factor survivor intensity process cor-
responding to a gamma autoregressive scheme (see 3.5 ii) with parameters
v=2,p=0.9, c=1 and initial value F, = 1. We provide in Figure 1 the
dynamics of the expected portfolio size.

[Insert Figure 1 : Expected Portfolio Size]

The parameter values of survivor intensity correspond to a very risky pool
of credits, that is a junk bond. Approximately 70 % of the credits default
before maturity.

In the first simulation study the credit rate is equal to the riskfree rate
r* = r = 0.03. There is no compensation for default. We provide in Fig-
ure 2 the expected portfolio values corresponding to the computation which
neglects default (W) and to the correct computations for insured and non
insured portfolio (W and W, respectively).

*

[Insert Figure 2 : Expected Portfolio Value]

We observe the different decreasing patterns of the expected portfolio
values, and note that W/ = W because of the standard actuarial equality
for r* =r.

More detailed results are given in Figure 3 and Figure 4, where the dis-
tribution of the portfolio value is displayed for the different dates.
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[Insert Figure 3 : Distribution of the Portfolio Values of the Noninsured
Portfolio]

[Insert Figure 4 : Distribution of the Portfolio Value of the Insured Port-
folio]

For the insured portfolio, the distribution is more concentrated, just after
the starting date of the credit, where the value is close to the deterministic
value W/, and when we are close to maturity.

In Figure 5 we provide the quantiles at 5 % for the insured and noninsured
portfolios evaluated at the previous dates. In this scheme the value N, has
been replaced by its expectation taken at date ¢ = 0. Since the portfolio val-
ues are necessarily positive, the Value at Risk, which is equal to the opposite
of the quantile, is negative. This corresponds to the admissible investment
line which can be backed on the risky bond. The updating of the CreditVaR
for the portfolio without insurance has to be read as follows. Let us denote
by VaR(t) the values reported on Figure 5. At date 0, the CreditVaR is
VaR(0). At date 1, the credit institution receives an amount of cash equal to
mN;. Thus the VaR at date 1 associated to both the cash and the residual
credit portfolio becomes mN; + VaR(1), which can be compared with the
value (1 +7)VaR(0), and so on.

[Insert Figure 5 : Value at Risk of the Credit Portfolio]

A second simulation study has been performed when a spread is intro-
duced to compensate default. The credit corresponds to the same initial
balance as in the previous example C, = 14.87, a rate r* = 0.05, which im-
plies a constant monthly payment m = 1.19. Figure 6 displays the expected
portfolio values which can be directly compared with Figure 2, where the
rate was smaller. Similarly Figure 7 displays the quantile and Figure 8 the
distributions of the portfolio values of the insured portfolio.

[Insert Figure 6 : Expected Portfolio Value r* = 0.05]
[Insert Figure 7 : Value at Risk r* = 0.05]
[Insert Figure 8 : Distribution of the Portfolio Value (with insurance and
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r* = 0.05)]

4.3 Large portfolio approximation

The Value at Risk for a credit portfolio is generally computed by simulation
as in the examples of section 4.2. However analytical approximations can be
derived for portfolios with large size N,, when the default probabilities are
small and the residual maturity T'—t is not too large. In this framework, the
portfolio has a large size N; at any date ¢, t < T, and normal approximation
based on Central Limit Theorem (CLT) can be used. For expository purpose
let us consider a residual maturity 7" — ¢t = 2. Conditionally to the past
and future values of the factors the durations are independent and CLT
applies'®. More precisely the conditional distribution of Ny given (Ny), (F)
can be approximated by :

Nigi | Niy (F) ~ N[Nyp(Fria), Nep(Frn) [1 = p(Fiia)]]-

Equivalently we can write :

Nip1 ~ Nyp(Fipn) + \/NtM(Ft+1)[1 — ((Fyr)]ugsn, (26)

where the variables u; are independent standard normal variables.

Similarly we get :

Nipa ~ Nepip(Fip2) + \/Nt+1M(Ft+2)(1 — (1(Fii2))ugso.

After the replacement of N, by its expression and the elimination of
negligeable terms we get :

Nivo ~ Nip(Fp1) p(Frya) + 4/ Nt\/M(FtH)(l — p(Frr) (Frya) s

VNP ) i(Fraa) [ = plFrea) . (27)

10The portfolio is called infinitely fine-grained portfolio by the Basle Committee, when
CLT applies (conditionally to the factor). This terminology can be misleading since we
will see below that CLT and even the law of large numbers will not apply when the factor
is not observed.

25



Thus given N, (F), the joint distribution of (V1 1, Ny12)' is approximately
gaussian with mean :

my = Ni[p(Frpa), w(Fran) p(Fiio)]s

and variance-covariance matrix :

Y = NtAtA:ta

where :

\/M(Ftﬂ)(l — p(Fiy1)) 0
Ay ;

M(Ft+2)\//~L(Ft+1)(1 = (1(Fit1)) \/M(Ft+1)/~L(Ft+2)[1 = 11(Fip2)]

1 — u(Fyq) p(Fiy2)[1 = p(Fip)]
A A = u(Fipa)

p(F2)[l — p(Fin)] p(Fio)[1 — p(Figo)] +p°(Frpo)[1 — p(Firpa)]

However the future values of the factors have to be reintegrated out, when
we consider the observable information at date ¢t. The conditional distribu-
tion of (Nyy1, Niyo)' given N, Fy admits the density :

9t(Niy1, Nijo)

= [/ %WGXP{—%[(MHa Nira) — my] ¥y [(Nega, Nego)' — ma]}

f(Fopo | Fopn) f(F | Fy)dEod .

Note that the factor heterogeneity affects both the conditional mean,
which can create long memory effects on the count process [see e.g. Granger
(1980)] and the conditional variance-covariance matrix, which can create
heavy tails [Clark (1973)]. Concerning VaR computation both effects have
to be taken into account since long memory implies a serial smoothing of the
required capital whereas the heavy tails imply large required capital.
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5 Statistical inference

In this section we assume that we have observations on J independent pools
of credits with the same initial size /N, = n. For such a panel model different
asymptotic theories can be considered with either the size n, or the number
of pools J tending to infinity. As usual for models with equidependence
consistent estimators of the parameters of interest can only be derived if J
tends to infinity with n fixed, or J and n tend jointly to infinity. We consider
qualitative models in section 5.1 and duration models in section 5.2. Finally
we discuss in the last section the links between estimation and prediction
problems.

5.1 Qualitative models

Let us consider independent identically distributed variables (Z1, ..., Z,;),j =
1, ..., J, measuring default occurrence for J pools of credits. We assume that
the n dichotomous 0 —1 variables satisfy a model with equidependence. Thus
they correspond to independent factors W;,j = 1,...,J with identical distri-
bution G. This distribution G can be parametrized or left unconstrained.
In both cases the count variables N; = 37" Z;;,7 = 1,...,J are sufficient
statistics for the estimation of the factor distribution!.

i) Parametric framework

Let us consider a parametric family Gy for the factor distribution. The
parameter # can be estimated by maximum likelihood based on the sufficient
statistics Nj, j = 1,..., J. The log-likelihood function is given by :

L;(0)oo 57 loglfy wi (1 — w)" " dGp(w)]
= 7 log[fy w" (1 — w)" =" gg(w)dw],

where gy denotes the factor density. Under standard regularity conditions
the ML estimator 0; is consistent, asymptotically normal, when .J tends to

" This explains why consistent estimators cannot be derived when n tends to infinity
with J fixed [see also Frey, McNeil(2001)]. Indeed the knowledge of N; is equivalent to
the knowledge of N;/n, which is equal to W;, when n tends to infinity. Thus we observe a
finite number of i.i.d. variables W}, j =1, ..., J with distribution G, which is not sufficient
to estimate consistently G.
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infinity. Its asymptotic variance-covariance matrix can be estimated by :

V(05) = 15 3 hlni)hins)) (28)

where :

00

Jg w0 (1= w)n s S (1) gy (w) dew
fol wni (1 — w)"="i g (w)dw

h(n;) (29)

In a general framework the log-likelihood function and the asymptotic
variance-covariance matrix involve integrals which have to be computed nu-
merally or by Monte-Carlo methods [see e.g. Gouriéroux, Monfort (1993)].
In special cases, for instance for a beta distribution of the factor, the integrals
can admit closed form expressions.

ii) Nonparametric framework

Two simple nonparametric estimation method of distribution G' can also
be proposed, when both n and .J tend to infinity.

Firstly it is possible to estimate the moments of the heterogeneity distri-
bution, which can be used to recover the distribution of the factor by means
of the characteristic function. More precisely let us consider a moment order
K, function of n. Then, from Corollary 4, the moment of order k, k < K,
can be consistently estimated by :

oy S N;j(N; = 1)..(Nj — k4 1)
fran(k) = J n(n—1)..n—k+1)

(30)

We deduce a consistent estimator of the characteristic function of factor
W .

ikuk

80) = 3 fan(B) (31)
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when the number of pools .J and the order K, tend to infinity at appropriate
rates with n. The associated probability density function of the factor is
deduced by inverting the estimated characteristic function.
This approach can be used to introduce a diagnostic tool for testing the
1

independence hypothesis. We can plot the quantities 7 (k) = ¢ log ji;,(k) as

function of k and check if they are approximately constant [see Corollary 3.

A second approach is based on the remark that Wj = N;/n is a consistent
estimator of W, when n tends to infinity. Then a consistent estimator of G,

when n and J tend to infinity is the sample cdf of Wl, ceey W

iii) The assumption of independent pools

The previous inference is based on the assumption of a large number .J
of independent pools of credits. It is useful to discuss this assumption'? in
practice. Three approaches can be distinguished to construct the pools.

a) Let us first consider all the credits granted at a given month, which
can include several hundred thousands of credits in the consumer credit case.
A natural idea is to partition this very large set of credits into a large num-
ber of pools, each of them being sufficiently large. For instance a set of
100 000 credits can be partitioned into 100 pools of 1 000 credits. However
this approach has the following drawback. If within a pool the individual
defaults are equidependent, they are also likely equidependent between the
pools. The equidependence between the pools contradicts the independence
assumption, and the estimators introduced in the previous section are no
longer consistent when J,n both tend to infinity.

b) A way to circumvent this difficulty consists in stratifying the popula-
tion of credits according to an observed characteristic. For instance the firms
can be classified according to their industrial sector (or to their rating). Then
it is more natural to assume the independence of default between sectors (or
classes of rating grade) whereas equidependence can exist within sectors.
However it is difficult to assume the same magnitude of default correlation
in all the sectors, that is identical distributions for factors Wj,j =1, ..., J.

I2This assumption underlies the estimation approaches proposed in the literature on
credit risk [see e.g. Gordy, Heitfield (2002)].
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c¢) Alternatively the pools can correspond to sets of credits granted at
different months ¢, with periods of repayment, which do not intersect. As
an illustration, let us consider for date ¢ credits with maturity 1. Then the
pool index is j = ¢, ¢t =1,..., J and the factor is W; = W,. The factor values
are likely serially dependent, which contradicts the independence assumption
between the pools. However, if the factor process (W) is strongly stationary,
the estimators above are still consistent, even if their asymptotic accuracy is
modified to account for serial dependence.

More precisely let us assume that the factor W, satisfies a Markov process,
with conditional distribution gg(w; | wy_1). The log-likelihood becomes :

Lr(9) = log/ .../Hle{w?(l —wy)" ™ gp(wy | wy_y)dwy},

(with a given initial condition for w,), and can be optimized numerically
with respect to #. In this time series framework, the number of dates T
can be small leading to inaccurate estimations of parameter f, that is of
default correlation [see Gordy, Heitfield (2002) for a discussion of finite sam-
ple properties of maximum likelihood estimators, when the factor values are
independent].

5.2 Duration models

i) The observations

When the time of default is taken into account the observations concern .J
independent sets of duration variables (D, ..., Dp;), 7 = 1, ..., J. From these
observations we can compute the counts N, ; giving the number of credits
in pool j, which are still alive at age h. Similarly, for these credits, we can
define the default indicator variables for the period (h,h + 1), denoted by
Zh,i,j-

ii) Parametric framework
In a parametric framework two types of parameters are generally involved.

For illustration let us consider the exponential affine model of section 3.5.
The parameters «, § explain how the survivor intensity depend on the factor.
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Other parameters can be introduced to specify the factor dynamics, defined
by functions a and b.

When the factors are observable, the two types of parameters can be
estimated separately. The parameters characterizing the factor dynamics can
be deduced from the observations of the factors, whereas « and ( parameters
are deduced from the durations conditional to the factors.

When the factors are unobservable, the likelihood function involves mul-
tiple integrals of large dimension. The parameters can be estimated by
a simulation based estimation method for dynamic factor models [see e.g.
Gouriéroux, Jasiak (2001)a].

iii) Nonparametric framework

When the factors are unobservable, the joint duration distribution is char-
acterized by the sequence of distributions of the indicator variables (Z; ;, 1
varying) given the past. Moreover, it is known that the counts N,; =
n, Nij,...Np; define a sufficient information set. Thus for age h we can re-
constitute the conditional heterogeneity distribution of the basic factor W}, ;,
or equivalently the associated moments at order & : py(k;n,ny...,ny). Con-
sistent estimators of these moments are :

fn,gn(k;m,ny, ooy np)
= [ Nas1 (N1 — 1) (Nagag — b+ 1)85(n, 0y oy )]
[ (N = 1)ee(Niyj — ke + 1)6;(n,m, ooy )] 7
where  §;(n,ny,...,np) =1, if Ny j =nq, ..., Ny = np,

= 0, otherwise.

However these moments are very numerous since they are conditional to
the path of the counting process, and this approach will encounter the curse
of dimensionality problem.
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5.3 Prediction versus estimation

In the sections above we have discussed the estimation of the parameters, but
actually our interest is in predicting the risk included in a portfolio of credits,
for which default has not yet been observed. Thus in the model we have to
specify the links between the pools j = 1, ..., .J, which are used for estimation
purpose, but also the links between these pools and the pool j = .J + 1 for
which risk has to be predicted.

For convenience let us consider qualitative models with two extreme cor-
relation schemes.

Scheme 1 : The factor W; is identical for all the pools j = 1,...,.J + 1.
There is the same level of default correlation within and between pools.

Scheme 2 : The factors W; j =1,...,J + 1 are i.i.d. There is equidepen-
dence within the pools and independence between the pools.

The prediction formulas of the number of default in pool J + 1 are differ-
ent for the two schemes. Let us assume for sake of simplicity that the size n
of the pool is large.

In scheme 1 the conditional distribution of Ny, given Ny, ..., N coincides
with the binomial distribution B(n, W;). Indeed the common value W; can be
reconstituted from the count data W; ~ % = N,. It is remarkable that
the prediction problem does not involve the factor distribution. Therefore,
the prediction can be performed even if the parameters of this distribution
are not identifiable.

In scheme 2 the conditional distribution of N;,; given Ny, ..., Ny coin-
cides with a mixture of binomial distributions B(n, W), where W follows the
factor distribution. In this scheme this distribution has to be identified in
order to get the risk prediction.

Let us finally remark that in scheme 1 the estimated conditional distribu-
tion will be B(n, N;), whereas in scheme 2 it will be a mixture of binomial
distributions with an estimated heterogeneity distribution with mean N.
Thus a model assuming the independence between pools, even if it is mis-
specified, will imply larger required capital [i.e. CreditVaR] than a model
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assuming correlation between pools. This explains why the assumption of
independence between pools could be suggested by the regulators, since it
overestimates the risk.

6 Concluding remarks

In this paper we have introduced model with equidependence for qualitative
and duration data, and discussed their factorial interpretations. These mod-
els are useful for the analysis of default correlation and the determination of
the required capital necessary to hedge the risk of a credit portfolio. For such
an application the models are estimated from data on obligors’ defaults.

Similar models can be used for pricing credit derivatives. For such an
application they concern a risk neutral probability (or pricing kernel) and will
be estimated from data on credit prices. In the risk neutral world the default
correlation has also to be taken into account, if we consider a credit derivative
with a payoff depending jointly of the defaults of the credits included in the
portfolio, for instance a ”first to default basket” paying 1 euro at date 7' if all
credits of the pool are still alive at this date [see e.g. Gouriéroux, Monfort,
Polimenis (2002)].
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Appendix 1
Moments of the count variable

We have :
E(Nk)
= E{(Z, Z)"}
- Z:l e Zﬁ'zl E(Zil"'Zik)'

Since Z? = Z for any integer p, the generic term in the summation is equal
to pu(f), where ¢ is the number of different indices among iy, ..., ix. Moreover
the number of choices of ¢ different indices among 1,...,n is AY. Thus we
deduce :

k
E[N*] = ZakgAflu(f), k=1,2,...,n,
=1

where a4 is a constant independent of the population size n.

Since the computation is valid for any distribution of Z;, we get for Z; = 1,
1=1,..,n:

k
nk:ZakgAfl k=1,2,...,n.

=1

The system uniquely defines the coefficients .
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Appendix 2
Proof of Proposition 4

e Let us denote by p(nq, ..., n11, fo, ..., fr+1) the p.d.f. (with respect to the
appropriate measure) of Ny, ..., N;y1, Fo, ..., Fyy1, conditionally to Ny = ny.
We have :

p(nla ey Mgy 1, fOJ Xy ft+1) = p(nla "'7nt+1|f07 Ty ft+1)

XHZillp(fs|fs+1)p(fO)-
e Moreover the event :

{N1 =Ny N1 = nt+1}

is identical to the event :
{D; = 1,n9 — ny times; D; = 2,ny — ny times; ...; D; =t + 1, ny — nyyq times}
(and, therefore D; >t + 1, nyy1 times).

So this event has the following multinomial conditional probability given

fUa ey ft+1 :

ng!

(no — n)ec(mg — nygr) g

[ (fr) - (f) L = u(fe D™ 1 (fr) et frg) ]

ML= (" [u(f)IL = p(f)]]™ T

e So the conditional p.d.f. p(ni41, fryilny, f,)

is equal to :
p(nl7"'7nt+17f07"'7ft+1) — nt! _ Ng—N¢41
p(n17"'7nt7f07"‘7ft) o (nt_nt+1)!nt+1! [1 /J/(ft+1)]

[ fre)]" o p(freal fi)
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e Summing p(ns41, fi1|ny, f,) over the values of n;y, we get :

P(ft+1|ﬂtait) = p(fis1/ ft)

and, therefore :

’I’Lt!

[ i) [ fa )T

Py, fir) = (¢ — Mpg1) Mgy !

which are the point masses of the binomial distribution B(ng, u(fii1))-
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Figure 1. Expected Portfolio Size
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Figure 2. Expected Portfolio Value(riskfree rate):without default(solid),
with default and insurance(dashed),with default and without insurance
(short dashes)
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Figure 3. P.D.F. of the Portfolio Value,riskfree rate
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Figure 4. P.D.F. of the Portfolio Value,riskfree rate
(with insurance),T=20 for t=1(right) to 19(left)
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Figure 5. 5% quantile(riskfree rate):with insurance(solid) and
without insurance(dashed)
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Figure 6. Expected Portfolio Value( with spread): with default
and insurance(solid),with default and without insurance(dashed)
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Figure 7. 57 quantile(with spread):with insurance(solid) and
without insurance(dashed)
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