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Pricing with Splines
Abstract

We apply the exponential affine pricing principle to the family of skewed
Laplace historical distributions. The risk-neutral distribution is shown to
belong to the same family and a closed form pricing formula for european
option is derived. This formula is a direct competitor of the Black-Scholes
formula and involves location and tail parameters. This approach is extended
to exponential affine splines and to a multiperiod framework.

Keywords : Stochastic Discount Factor, Laplace Distributions, Deriva-
tive Pricing, Splines, Markov Chain.

Valorisation avec des fonctions splines
Résumé

On applique le principe du facteur d’escompte exponentiel affine a la
famille des lois de Laplace asymétriques. On montre que la probabilité risque-
neutre appartient a la méme famille et on en déduit une formule explicite
pour la valorisation d’options européennes. Cette formule est une alternative
a la formule de Black-Scholes et met en jeu un parametre de position et un
parametre de queue. Cette approche est généralisée aux distributions de type
splines exponentiels affines et au cas dynamique.

Mots clés : Facteurs d’escompte stochastique, Lois de Laplace asymétriques,
Valorisation d’actifs contingents, Splines, Chaines de Markov.

JEL number : C1, C5, G1



1. Introduction

The standard for option pricing is the Black-Scholes approach [Black,
Scholes (1973)], which assumes i.i.d. gaussian geometric stock returns, con-
tinuous trading and derives an analytical formula for pricing European calls
from the arbitrage free restrictions. The derivative prices and the associated
risk neutral probability basically depend on the underlying historical volatil-
ity (and not on the historical mean). However it is known that the Black-
Scholes specification is misspecified both for return dynamics and for pricing
derivatives with different characteristics. Typically the implied Black-Scholes
volatility surfaces are not flat and vary with the day and the environment.

Different solutions have been proposed in the literature to reduce the
misspecification errors, that is to get call prices with independent variations
with respect to the strike, the maturity and the date. The extensions of the
basic model can be classified according to the assumptions introduced on the
two components of a pricing models, which are the historical distribution and
the stochastic discount factor (s.d.f.).

i) Parametric historical distribution-parametric sdf

A first direction consists in extending the parametric dynamic model for
the underlying asset price and in deriving the new corresponding paramet-
ric valuation formulas. For instance the Black-Scholes model has been ex-
tended by introducing stochastic volatility 3, or jumps *. These models are
generally written in continuous time and provide coherent specifications for
analyzing return dynamics and cross-sectional derivative pricing. However
the introduction of a non traded random factor creates an incomplete mar-
ket framework. The incompleteness, that is the multiplicity of admissible
s.d.f., is solved by imposing a parametric specification of the risk premium
corresponding to this unobservable factor. It can be assumed constant (and
unknown), but very often is taken equal to zero as in the well-known Hull-
White formula.

ii) Nonparametric sdf

3see e.g. Hull, White (1987), Hull (1989), Chesney, Scott (1989), Melino, Turnbull
(1990), Stein, Stein (1991), Heston (1993), Ball, Roma (1994).
4see e.g. Merton (1976), Ball, Torous (1985), Bates (1996).



Alternatively the practitioners often perform a direct nonparametric anal-
ysis of the state prices based on derivative prices. For each date they study
how the call prices depend on the strike and the maturity. They can con-
sider directly the price surface or equivalent characteristics. Standard ones
are 1) the state price density which provides the Arrow-Debreu prices and
is deduced from the second order derivative of the call price with respect
to the strike [see Breeden, Litzenberger (1978), Banz, Miller (1978)]; 2) the
surface of Black-Scholes implied volatilities obtained by inverting the Black-
Scholes formula with respect to the volatility. By neglecting the historical
distribution, they implicitely assume a weak relationship between the histor-
ical and risk neutral distributions, that is a nonparametric sdf. In practice
the state price or implied volatility surfaces are smoothed by nonparametric
approaches. Ait-Sahalia, Lo (1998) apply kernel smoothing to observed call
prices and deduce the state price density as a by-product®. Other authors
propose direct approximations of the state price density. For instance the
risk neutral distribution can be approximated by mixture of distribution ¢ 7.
or by means of Hermite expansions. In the latter approach, it is possible to
estimate day by day parameters measuring the weights of polynomials of de-
gree one, two, three, four... in this expansion. They are generally interpreted
as implied mean, volatility, skewness and kurtosis.

The limitation of these nonparametric approaches is due to the number
of liquid derivative assets. To get accurate estimators they require a large
number of highly traded derivatives, with an appropriate distribution of the
associated strikes. For a given day and a given underlying asset, these num-
bers are generally between 5 and 20, with a clustering of traded strikes close
to moneyness. Thus the cross-sectional asymptotic theory generally devel-
opped with these approaches cannot apply.

Finally note that some authors ® can be interested in testing structural
equilibrium models. For this purpose they focus on the sdf which is generally
estimated by moment method from data on returns, consumption,... Since

SHowever their approach assumes that the call prices depend in a deterministic way of
the asset price.

bsee e.g. Bahra (1996), Campa, Chang, Reider (1997), Melick, Thomas (1997).

"see e.g. Jarrow, Ruud (1982), Madan, Milne (1994), Abken, Madan, Ramamurtie
(1996)

8see e.g. Bansal, Hsich, Viswanathan (1993), Bansal, Viswanathan (1993), Cochrane
(1996), Chapman (1997), Dittmar (2002).



they are concerned by neither historical pdf, or the state price density, the
results are difficult to use for derivative pricing.

iii) Nonparametric historical distribution parametric sdf.

A nonparametric specification of the state prices can also be derived with
a nonparametric historical distribution and a parametric sdf. The advantage
of such a specification is to correspond to available data. The underlying
asset is generally liquid, and the associated return data can be used to esti-
mate nonparametrically the historical distribution. Once this distribution is
known, the small number of parameters defining the risk correction are cali-
brated on observed derivative prices. Such approaches have been developed
rather early as direct extensions of the standard Black-Scholes formula.

For instance it is possible to consider a continuous time model and to
assume that the infinitesimal drift and volatility functions are unknown de-
terministic functions drift and °, of time. The model still assumes a com-
plete market framework, Girsanov theorem provides the unique admissible
sdf and the risk neutral distribution depends on the volatility only (called
local volatility). The local volatility can be estimated directly from the re-
turn data on the underlying asset. It can also be estimated from derivative
data, by using the interpretation of local volatility from partial derivatives
of the call price with respect to strike and time to maturity [see Dupire
(1994)]. This second estimation technique is not very accurate due to the
small number of liquid derivatives.

Instead of deterministic drift and volatility functions, it is also possible
to assume drift and volatility depending on the return and to still derive the
unique sdf by Girsanov theorem. The unknown functional parameters, that
are the drift and volatility, can be estimated in various ways. For instance
Ait-Sahalia (1996) assumes a linear drift and deduce a nonparametric estima-
tor of the volatility from a kernel estimator of the marginal density. The drift
can also be let unconstrained and the two functional parameter estimated by
nonparametric nonlinear canonical analysis based on either kernel method
[Darolles, Florens, Gourieroux (2002)], or sieve method [hansen, Scheinkman,
Touzi (7777), Chen, Hansen, Scheinkman (??777), Darolles, Gourieroux (??777)].

However it is known that a (one dimensional) diffusion model implies

9see e.g. Merton (1973), Dupire (1994)



restrictions on return dynamics, which are not observed on available data.
Just to mention a few time reversibility '°, or constraints on tail magnitude
due to the normality of the brownian motion.

To avoid these constraints we focus on the historical transition pdf, in-
stead of the local volatility functions.

The analysis will be performed in discrete time, which implies an incom-
plete market framework.

The return process (y;) is a Markov process with an unknown conditional
pdf p(ye|ys-1)-

Then the dimension of incompleteness will be diminished by considering
a parametric family of stochastic discount factors.

We restrict the choice by imposing an exponential-affine stochastic dis-
count factor. This allows the use of the Esscher transformation to pass from
the historical distribution to the risk-neutral one ''. Then the s.d.f. parame-
ters will be constrained by the arbitrage free restrictions, and the expression
of the risk neutral density ¢(y:|y;—1) will be derived.

Thus both historical and risk neutral distributions are nonparametric.
The aim of the paper is to leading to parallel analysis of both densities,
compatible with no arbitrage restrictions. We will see that an appropriate
tool is a mixture of skewed Laplace distributions, or equivalently a spline
approximation of the log-densities by splines of degree one.

The plan of the paper is the following. In section 2, we review the princi-
ple of exponential-affine pricing. Then this approach is applied to a skewed
Laplace conditional historical distribution of geometric return and extended
to exponential-affine splines. The example of the conditional Laplace distri-
bution is interesting as an introductory case for the exponential-splines. It
is also important by itself, since the price of the European calls admit sim-
ple expressions. The pricing formula is a direct competitor of the standard
Black-Scholes, and involves two types of parameters, which capture location
and tail effects. The extension to the multiperiod framework is presented
in Section 3. We introduce a Markov chain specification for describing the
dynamics of the different spline regimes and derive the change of probability

Ogee e.g.

Hlsee e.g. Gerber, Shiu (1994), Buhlman et alii (1996), Shiryaev (1999), Darolles,
Gourieroux, Jasiak (2001)].



at any maturity. Statistical inference is discussed in Section 4. Section 5
concludes.



2. The two period framework

Let us consider the two period framework and denote by r the riskfree
rate between the dates ¢t and ¢t + 1 and by y = y;11 = log(Si+1/S;) the geo-
metric return on the risky asset with price S;. The aim of this section is to
explain how to derive nonparametrically the state price density at horizon 1,
that is how to price the European derivative written on ry. ;. Of course the
horizon is fixed at 1 by convention, but the approach can be applied to any
horizon. We first recall the principle of exponential-affine pricing initially in-
troduced by Gerber, Shiu (1994)[see also Buhlman et alii (1996) Gourieroux-
Monfort (2001), Yao (2001)]. This approach is applied to a skewed Laplace
conditional historical distribution of geometric return. Then it is extended
to exponential-affine splines to derive compatible spline specifications of the
historical and risk-neutral densities.

2.1 Exponential-affine pricing

Let us introduce the truncated Laplace transform (or moment generating
function) of the conditional distribution of the geometric return. It is defined
by :

(u,7) = Elexp(uy)lys,], (2.1)

where the notation means :

¢(U, 7) = E(eXp{u log(st-l-l/st)}]1108;(St+1/5t)>7|1t)7

I, is the information available at time ¢ for the investor and the path depen-
dence of 1) is not mentioned for notational convenience .

The derivative asset, whose payoff ¢(y)(= ¢(yiy1)) is written on the geo-
metric return of the underlying asset, can be priced by means of a stochastic
discount factor model 2. The derivative price at date ¢ is :

C(g) = E[Mg(y)], (2.2)

12[see e.g. Hansen, Richard (1987), Campbell, Lo, McKinlay, (1997) Chapter 8,
Cochrane (2001), Gourieroux, Jasiak (2001), Chapter 13 ].




where M denotes a stochastic discount factor. In an exponential-affine frame-
work the stochastic discount factor is restricted to '3 :

M = explay + . (2.3)

It is exponential-affine with respect to the geometric return y(= y;41)*.
Different motivations exist for the exponential affine restriction on the stochas
tic discount factor, which diminish the multiplicity of pricing formulas exist-
ing in this incomplete framework.

i) First the exponential-affine restrictions underlies the usual approaches
based on no arbitrage restrictions, or on equilibrium theory. For instance in a
continuous time framework, where the return satisfies a one-dimensional dif-
fusion equation, the stochastic discount factor admits an exponential affine
form by Girsanov theorem. Similarly let us consider a two period price
exchange economy under preference restrictions [see e.g. Breeden, Litzen-
berger (1978), Huang, Litzenberger (1988)]. The exponential-affine form of
the stochastic discount factor corresponds to power utility functions. (see
Gourieroux, Monfort (2002) for a more detailed discussion).

ii) An exponential affine specification is obtained, when we look for the
risk neutral distribution which is the closest to the historical one, for the
entropy criterion [see Stutzer (1996) for the proof].

iii) The choice of an exponential affine sdf often leads to tractable compu-
tations, with results easy to compare with the standard Black-Scholes formula
[see the examples given in Gerber, Shiu (1994)].

iv) Last, but not least we see below that it is appropriate to define spline
approximations of the historical and risk neutral densities, compatible with
no arbitrage restrictions.

The arbitrage-free constraints are derived by applying the pricing formula
to the zero-coupon bond with payoff 1 and to the risky asset with payoff

13 As above the time index is omitted for convenience. More explicit equations would
be : Ci(9) = E[Mtt+19(Yt+1)|It], where : Myy1 = exp(aeyis1 + Bi) is the stochastic
discount factor for the period ¢,¢+ 1. The coefficients «;, §; and the derivative price C;(g)
are I;-measurable, whereas the stochastic discount factor M; ;41 is I;4q-measurable.

14The stochastic discount factor is in general not exponential-affine with respect to the
current and lagged values of the return ; indeed the lagged values influence the change of
probability by means of sensitivity coeflicients a and /3 [see the previous footnote].



expy = Siy1/S;. These constraints are :
E[Mexpr|=1,

E[Mexpy] = 1.

They provide the values of the risk correcting factors a, 8 by solving the
system below °, which depends on the untruncated Laplace transform :

exp(6 + )bl —o0) = 1,
(2.4)
exp(B)yY(a+1,—o0) = 1.

Then the price of a European call written on expy, with (moneyness)
strike k£ and maturity one, is easily deduced. It is given by' :

C(k) = E[M(expy—Fk)"]
= E[exp(ay + ﬁ)[exp Yy — k] ]ly>10g k]a
C(k) = exp(B)[(a+1,logk) — kip(a, logk)], (2.5)

where «, § are the solutions of system (2.4).

2.2 Pricing with Laplace distributions

Exponential-affine pricing is a general approach which can be applied to
any return distribution '”. In this section we consider the family of skewed
Laplace distributions for several reasons.

i) Both historical and risk neutral distributions will belong to the Laplace
family under no-arbitrage restrictions.

ii) The skewed Laplace distribution is compatible with the fat tails (ex-
ponential tails) observed on real data.

iii) Spline approximations of order 1 of the log-densities can be easily
derived from this family.

5When the time index is taken into account, the solutions a and 8 are generally path
dependent, like function 2.

6Note that a call written on S;y; with payoff (S;+1 — kS;)™, where k is the moneyness
strike, is a multiple of the call written on the asset price exp y with payoff (Sy11/S;—k)™ =
(expy — k)*.

Tunder tail restrictions since the truncated Laplace transform has to exist.



i) The main result

Let us consider a geometric return, whose conditional historical distri-
bution is a skewed Laplace distribution denoted by L(bg, by, ¢). The p.d.f is
given by :

bob
ply) = b ilel explbo(y — c)], ify <,
bob
h 1161 exp[—b1(y — ¢)], if y > ¢,

where by and by are strictly positive and c¢ is a location parameter. c is the
mode of the distribution, whereas by and b; characterize the left and right
exponential tails, respectively. The mean of the distribution is :

m = ¢+ — — —, and the variance is : 0% = 1

b b, bg b
be path dependent. This type of distribution fits the conditional distribution
of observed returns better than the gaussian distribution. It admits fatter
tails, which decrease at an exponential rate and a sharp peak at the mode,
to balance the tail effect. By applying the general approach described in

subsection 2.1, we get the pricing formulas below.

1
+ =k Note that by, by, ¢ can

Proposition 1 : If the conditional historical distribution is a skewed Laplace
distribution L£(by, b1, ¢) with by + b, > 1, and if the stochastic discount factor
is exponential-affine :

i) the conditional risk-neutral distribution is unique and corresponds to the
skewed Laplace distribution £(by + v, by — «v, ¢), with p.d.f.

(bg + CY) (bl — Oé)
by + by

m(y) =

exp[(bo + a)(y — o)], if y <¢,

(bg + CY) (bl — Oé)
bo + by
where « is the solution of :

exp[—(by — a)(y — ¢)], ify > ¢,

exp(c —1r)(bg + @) (by — a) = (b + a+ 1)(by —a — 1),
such that : —by < a < by — 1.

10



The risk neutral distribution depends on by, b; through the sum by + by,
only.

ii) The price of the call written on exp y with payoff (expy — k)™ is :

bo+0[+1

O =Culk) = (bo + b1)(b1 — )

exp[—(by — a —1)(logk — ¢)], if logk > c,

b1 —a—1
(bo + bl)(bo + O[)

C(k) =Cy(k) =1— kexp(—r) + exp[(bp + a + 1)(logk — ¢)], if logk < c.

iii) By the put-call parity relationship, the put prices are :
P(k) = Pi(k) = =1+ kexp(-r)+ exp[—(by —a—1)(logk —
)], if logk > ¢,

b1 —a—1
(bg + bl)(bg + CY)

P(k) = Py(k) = exp[(by + a+ 1)(logk — ¢)], if logk < c.

Proof : See Appendix 1.

The condition —by < o < by — 1 ensures the existence of the stock price.
It is easily checked that there is a unique solution for «, which belongs to
the interval (—by, by — 1), if and only if by + by > 1, that is if the tails are in
average sufficiently thin.

The Laplace pricing formulas have their own interest and can be easily
compared to the standard Black-Scholes formulas, which assumes exponential-
affine s.d.f, but gaussian (conditional) return distribution. First the pricing
formulas are simpler and in particular they avoid the use of the cdf of the
standard normal distribution. Second they depend on two parameters ¢ and
b, + by instead of the single volatility in the Black-Scholes case. This allows
for more flexibility.

Finally it is interesting to note that the risk correction concerns the scale
parameter o in the Black-Scholes framework, and a rebalancing of the tail
magnitude in the Laplace framework. This special risk correction is easily
understood and is due to the tail magnitudes.

Indeed the payoff expy of the underlying asset may be non integrable

11



with respect to the conditional historical Laplace distribution . If b; < 1,
the payoff exp y is not integrable with respect to the conditional historical
Laplace distribution, whereas it is integrable with respect to the conditional
risk-neutral Laplace distribution, since by — a > 1. An effect of the risk
correction by « is to reduce the tails in order to ensure this integrability and
the existence of a finite stock price .

Remark 1 : The price of a European call written on S;;; with strike K
is given by : C* = S;C(K/S;). Generally C*/S; is not an homogenous
function of K/S;, since the coefficients by, by, ¢ can be path dependent [see
Garcia, Renault (1998) for a discussion of the link between homogeneity and
leverage effect].

ii) Value of the call and moneyness strike

Proposition 1 provides an explicit formula for the price of the call written
on expy. It is easily checked that this price is a differentiable function of
k, which decreases from 1 to 0, is convex and such that the elasticity of the
call price [the put price, respectively| with respect to the moneyness strike is
constant for k > exp ¢ [k < exp ¢, respectively].

In particular the call prices satisfy simple deterministic relationships. If
k, kq, ke are moneyness strikes larger than exp c , we get :

log k — log k4

log C(k) =log C(k1) + [log C(ks) —log C'(k1)].

log ks — log ky

Remark 2 : When the parameters by, by, ¢ are path independent, the elas-
ticity of the call price C* with respect to S; is :

8Note that expy is conditionally not integrable, if and only if the conditional expecta-
tion F(Sty1) does not exist. In such a framework, the standard mean-variance manage-
ment cannot be applied.

12



dlogC* |+ dlog C(K/Sy)

dlogS, dlog S,
dlogC 0log(K/Sy)
L+ 810gk( /5)- dlog S;
B dlogC
=1 dlogk (/).

Therefore the condition of constant elasticity of C' with respect to the
moneyness strike for large k is equivalent to the condition of constant elas-
ticity of C* with respect to the current stock price.

Similarly the constraint (2.6) is also valid when the derivatives are written
on Sy 1. With obvious notations, relation (2.6) becomes :

log K — log K,

| (K) =1 (K
0g " (K) = log C°( 1)+logK2—logK1

{log C*(K3) — log C*(K7)}.

ii) Implied Black-Scholes Volatility

The pricing formula given in Proposition 1 can be numerically compared
to the standard Black-Scholes formula. Since the call price depends on two
independent parameters, that are by + b; and ¢, instead of only one ¢ in
the standard Black-Scholes, the Laplace pricing formula allows for implied
location or tail effects. These features are easily observed on Figures 1 and
2, which provide the Black-Scholes implied volatilities for different sets of
parameters by, by, ¢, and r = 0. The Laplace model is appropriate for recov-
ering the so-called smile, smirk and sneer effects observed in practice. It is
important to note that they can be recovered without introducing a time ef-
fect [as in Merton (1973), Dupire (1994)], simply by suppressing the gaussian
assumptions.

[Insert Figure 1 : Black-Scholes implied volatilities with ¢ varying,
b() + bl =10 ﬁXGd].

[Insert Figure 2 : Black-Scholes implied volatilities with by + b;
varying, ¢ = .06 fixed].

iii) Value of the call and historical parameters

13



The patterns of the call prices as functions of ¢ and by + b; are provided
in Figures 3 and 4.

[Insert Figure 3 : Call price as a function of c]

It is always difficult to understand how the call price depends on a location
parameter, that is the mean in the standard Black-Scholes model and the
mode ¢ in the Laplace framework. This feature is clearly observed, when
we consider the underlying stock with cash-flow expy. When the location
parameter tends to +o0o (resp. —oo), the cash-flow tends to +oo (resp.
0), but the price remains constant equal to one. In fact when the location
parameter tends to infinity the historical distribution tends to a point mass
at infinity, whereas the risk neutral distribution may tend to a limit which
does not correspond to this point mass. Typically for y = —oo,expy = 0 and
we expect a price for exp y equal to zero, whereas it is equal to one. Contrary
to the Black-Scholes case in which the call price is independent of the mean,
we observe a mean dependence in the Laplace framework. The symmetric
pattern observed in Figure 3 is due to the special choice k = 1,7 = 0, which
implies 1 — kexp —r = 0 and identical call and put prices '°.

[Insert Figure 4 : Call price as a function of by + b]

When by + b; = 1, we get by + a = 0,b; — a = 1 and the call price is
equal to one. When by + by — 400, there exists an underlying historical
distribution such that the variance tends to zero and the stock geometric
return is constant equal to the riskfree rate. Then C(k) = exp —r(expr —
k)t =1 — kexp —r]*, where exp —r is introduced for discounting.

iv) A particular case

Finally let us consider the case ¢ = r, where the mode of the (conditional)
historical distribution corresponds to the riskfree return. The risk correcting
factor « is the solution of :

9Tt is easily checked that the correcting factor a = afbo,by,exp(c — r)] satisfies :
afbg, by, exp(r — ¢)] = by — by — 1 — afby, by, exp(c — r)].

14



(bo + a)(by —a) = (bp +a+1)(by —a—1)

by — by 1
= a= -
@ 2 2

By replacing in the expression of the call-prices, we get :

Ci(k) = %exp[—(l_) —1/2)(logk — 7)), if loghk > 1,

Colk) = 1— kexp(—r) + Q%exp[(b +1/2)(logk — )], if logk < r.

As mentioned above, the pricing formula depends on the single parameter
h_ by + by

. which measures the average tail magnitude. This parameter b

has the same role than the volatility o in the Black-Scholes model. When b
increases, the average tail decreases. The derivatives of the call prices with
respect to b are the analogues of the standard Black-Scholes vega. They are
given by :

1 - _
%(k) = o exp[—(b—1/2)(logk — r)][1 + b(logk — r)], if logk > r,
0C,

k) = —%exp[(h 1/2)(logk — 1[I — b(logk — r)], if logh < r.

These derivatives are negative, which implies a decreasing relationship
between the average tail magnitude b and the call price. By inverting the
pricing formula, we can define the implied tail magnitude associated with any
observed call price. The surface of implied Laplace tail magnitude contains
the same information as the call-price surface.

It is interesting to consider the admissible call prices when the historical
variance o2 = % + b_% is known. Since the price is a monotonous function of
b, we get an interval of admissible prices, whose bounds are obtained for the
values of by, by, which optimize by + b, submitted to o2 = b_lg bi% We easily
deduce this interval, for instance when logk > r. We get :

15



Cy(k) € |0, QL\/ﬁ exp(—[? - %](logk —7r))], ifo < 2V2,

Ci(k) € [0,1], if ¢ > 2V/2.

The interval increases with o, and is equal to [0,1] in the limiting case
o = 2v/2. The latter interval is the largest one compatible with the free
arbitrage inequalities, since the constraints 0 < (expy — k)" < expy, Vk,
imply 0 < C(k) <1.

2.3 Pricing with splines

The Laplace family distribution can be directly extended by increasing
the number of exponential regimes for the density. Let us consider the p.d.f.

p(y) = expla + yby + 2_: bi(y —¢;)"], (2.6)

where « is fixed by the unit mass restriction, ¢; < ... < ¢; defines a partition

J
of IR, by > 0, Z b; < 0. This distribution is denoted by S(bg, b1, ...,bs,c1,...,cy).
=0
It is immedia]tely noted that the specification corresponds to a spline approx-
imation of the log-density by splines of degree 1. By increasing the number
of nodes J and introducing fine partitions, we can approximate any p.d.f.
[see e.g. De Boor (1978)].
It is also interesting to note that the specification corresponds to a mixture
of truncated exponential distributions. More precisely, with the convention
cop = —00, cyy1 = 400, the conditional p.d.f. can also be written as :

p(y) =expla — A; + By, ify € (¢j,¢j41) for j =0,...,J, (2.7)

where :

J
Aj = Zblcl (Wlth AO = 0),

=1

16



-1
J
A,
expa = |> M(exp Bjcji1 —exp Bjcj)| . (2.8)

Thus the conditional historical distribution is a mixture of truncated ex-
ponential distributions :

exp Bjy

pj (y) = Bj ]l(c]-,cjﬂ)(y), (2'9)

exp Bjcj41 — exp Bjc;

with weights :

exp(—A;
T, = %(exijch—exijcj)
j
exp(—A
[Zl%[exp Bicip — exp Biey)] h (2.10)

Proposition 2 : If the conditional historical distribution is specified as an
exponential-affine spline and if the stochastic discount factor is exponential-
affine :

i) the conditional risk neutral distribution is unique and is the exponential-
affine spline distribution S(by + a, by, ..., by, ¢, ..., ;) whose p.d.f. is :

J

qly) = eXP[aq+y(b0+a)+Ebj(y—0j)+]

J
= > {expla? — A; + (B + )y|lie; e, (1)},
=0

where a? is fixed by the unit mass restriction and « is solution of :

expr 3" { LA (B0 ] - expl B+ el

3 {M[exp[(& +a+1)a] —exp[(Bi + o+ 1)Cz]]} :
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ii) The price of the call is given by :

Ok) = Cyh)

T exp(—A4)

- [gBmLale

{exp[(B; + a4+ 1)¢i1] — exp[(B; + a + 1)g]}] ™"

exp((—4;)
Bj + o+ 1

[

{exp[(B; + a + 1)cj1] — exp[(B; + a + 1) log k|}

. %{exp[(& +a)ej] — expl(Bj + 0)oi]}

d eXP(—Az)

+ Y =
i Bita+l

{exp[(B; + a + 1)c;11] — exp[(B; + a + 1)¢ ]}

T exp(—A))

— k
l:lz-i-l B+«

{exp[(Bi + @) ] — exp[(B; + a)al},

for expc; <k <expejii.
Proof : See Appendix 2.

In statistical theory the approximations by splines are usually introduced
to estimate nonparametrically regression functions. The result of Proposi-
tion 2 can be used in a similar way for semiparametric pricing 2. Indeed
any conditional p.d.f. can be approximated as close as possible by an expo-
nential affine spline, when the partition is increased. Proposition 2 says that
this approximation, not only its limit when the number of observations in
increased, is appropriate for derivative pricing, since it provides compatible
approximations for both the historical and risk neutral distributions. These
approximations can be used for cross-sectional pricing, that is for pricing at
a given date, a given maturity,and any strike. The implementation is along
the following lines :

200ther nonparametric pricing methods are discussed in Gourieroux, Monfort (2001),
Darolles, Gourieroux, Jasiak (2001).
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i) Fix a partition cq,...,cy;

ii) Estimate the parameters b;,j = 0,...,.J from either the historical dis-
tribution, or observed derivative prices [see Section 4 for a more detailed
discussion of the alternative estimation methods].

iii) Deduce the estimated risk correction « by solving the equation providing
« after the replacement of b;, 7 = 0, ..., J by their estimates.

iv) Reconstitute the estimated historical and risk neutral distributions by
replacing b;,j = 0,...,J and « by their estimates.

2.4 Parametric sdf.

By selecting a stochastic discount factor which is exponential affine in the
return, we considered a two parameter specification of the s.d.f. These pa-
rameters have been fixed by the no-arbitrage restrictions leading to a unique
admissible s.d.f. It is possible to increase the dimension of the parameter of
the s.d.f. in a very simple way, by considering for instance :

L
M (y) = expla, + oy + Z sy — C;)Jr]a
p=2
where ¢ are given thresholds included in the partition defining the spline.
The arbitrage restrictions imply two constraints on the L + 1 parameters .
Thus L — 1 parameters are free and the set of s.d.f. is still parameterized
under the arbitrage restrictions. For instance by choosing a zero threshold,
we get different risk corrections for positive and negative returns, which can
be used directly to create an asymmetric smile effect.

3. Dynamic exention and statistical inference
3.1 The specification

As mentioned in the introduction different specifications have been con-
sidered in the literature for derivative pricing. To be useful for practitioners,
including traders, risk managers and regulators, the estimated models have
to satisfy the following properties.

P. 1 Goodness of fit.
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The model has to provide good fit for highly traded derivatives, especially
the option which are to at the money options. The goodness of fit can
diminish with the traded volume.

P. 2. Coherency.

A minimal coherency has to be introduced for the analysis of the option
prices and of the price of the underlying asset. Indeed the underlying asset
corresponds to a European call with zero strike. Moreover it is always the
most traded derivative.

P. 3 Dynamics.

The model has to provide the dynamics of option prices. Indeed this
dynamics is used for dynamic management of derivative portfolios and also
to compute the Value at Risk (see e.g. Gourieroux, Jasiak (2003)].

P. 4 Absence of arbitrage opportunity.

The pricing model has to be compatible with the absence of arbitrage
opportunity, that is the estimated risk neutral density has to satisfy the
nonnegativity and unit mass restriction for any given maturity. Moreover
the risk densities at different maturities have to be compatible, that is they
have to satisfy the absence of dynamic arbitrage opportunity. The later
condition is especially important to price path dependent derivatives.

P. 5 Robustness.

The results have to be robust to slight modifications of the data set,
such as a small change of the set of derivatives which are considered as
actively traded. Robustness is generally archived by introducing parametric
constraints an sdf, which is the component past of the model which is difficult
to reconstitute from data only.

P. 6 Smoothness.

The specification has to provide derivative prices or predictions which
are sufficiently smooth with respect to time or environment. This can also
be achieved by appropriate parametric restrictions. This is useful to avoid
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erratic changes in derivative portfolio allocations, or in the required capital
associated with the VaR.

P. 7 Efficient use of the data.

Both types of data on underlying asset and derivative prices have to be
used jointly.

The different approaches proposed in the literature can be easily com-
pared with respect to the criteria above.

a) For instance the cross-sectional methods proposing nonparametric smooth-
ing of the state prices have been introduced to satisfy the goodness of fit
criterion and the smoothness with respect to the strike. 2! By focusing on
criterion P, they lack other criterion : they are not robust and often provide
very different results for successive days. This lack of robustness is essentially
due to the small set of highly traded derivatives per day and to their varying
structure per strike (a selectivity bias). In practice the data set are often
enlerged by ad-hoc procedures which can consist in :

i) taking into account the price of not highly traded derivatives.

In such a case the selected price is often taken as a weighted average of
the rather different bid and ask prices [see e.g. the discussion in Melick,

expert’s committee from the bid and ask prices].

ii) gathering the data on several successive days, chich disregard the effect
of lagged prices.

iii) selecting a s.d.f. based on a market return and not on the asset return
[see e.g. Ait-Sahalia (777?7) and the discussion in Engle, Rosenberg (1999)
p. 777].

Moreover the cross-sectional approaches provide daily approximation of

2lExamples of this approach are : Bahra (1996), Sherrick, Garcia, Timpattur (1996),
Melick, Thomas (1997) based on mixtures of Log normal distributions, Jarrow, Rudd
(1982), Corrado, Sn (1996) based on Edgeworth expansion around the log-normal dis-
tribution, Madan, Milne (1993), Abken, Madan, Ramamutre (1996) based on Hermite
polynomial expansions, Jondeau, rockinger (2001) for a comparison of these approaches.
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the state price density, without trying to related them dynamically.

Finally some standard nonparametric approaches which have been used
in the derivative pricing framework are not compatible with the no arbitrage
restriction. This is the case of polynomial or unconstrained spline approxi-
mations of the implied Black-Scholes volatility surface, which do not ensure
the nonnegativity and unit mass condition in finite sample. the same remark
holds for the nonnegativity conditions and the approximation of the state
price density by Edgeworth, Gran-Charlier or Hermite expansions, in order
to focus on implied skewness, implies kurtosis.

ba The other extreme approach is based on parametric specification of the
underlying price dynamics and of the sdf (in the incomplete market frame-
work). The characteristic of this approach is to focus on dynamic features
(P3) and coherent framework (condtion P2). However the parametric speci-
fication can be misspecified, which implies poor goodness of fit (P) and lack
of robustness (P). These drawbacks are well-know for the standard Black-
Scholes, which is not able to reproduct the observed smile and 777 effects.

In section 2 we have introduced a specification in order to avoid some
drawbacks of the two extreme approaches, without reducing a lot the 7777
specific advantages. The dynamics which is approximated by exponential
splines satisfy the following assumptions :

A.1 The information at date ¢ includes the lagged and current values of the
riskfree short term interest rate r;, of the return g; and of the derivative
prices.

A.2 The price at date t of derivatives written on the underlying return de-
pends on 74, y; only.

A.3 Under the historical probability the process (y;) is such that the condi-
tional distribution of y;, given y;, r; depends on the past by y;, 7, only.
It is denoted by p(yei1|ye, 1)

A.4 A stochastic discount factor at horizon 1 for derivatives written on y;

1S :

L

M1 = explao(ye, 1) + o1 (s 1) Y1 + > (Y, 74) (Y1 — ¢) 7],
=2
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L,Cy=0,C5,...,C} are given.

Both the historical pdf and the sdf are nonparametric since the functions
P, (o, (1, . .. are not constrained a priori. These assumptions are easily com-
pareted with some other set of assumptions proposed in the literature. For
instance in Ait-Sahalia (1996) the historical transition p corresponds to a dif-
fusion model with affine drift, and the sdf is uniquely defined by the complete
market hypothesis. In the framework above the transition can correspond to
any drift and any distribution of the innovation, whereas an infinity of sdf
are possible L is larger than 2.

However the nonparametric dimension is not the same for the two compo-
nents in order to adjust to the lack of cross-sectional information. Indeed, for
a given environment ¥, r;, the historical pdf has still an infinite dimension,
whereas the sdf becomes parametric with dimension L+.

3.2 Estimation method

The estimation method has to take into account both types of data on the
underlying asset and on derivative prices. In practice the number of highly
traded derivatives per day at horizon 1, say, is rather small, betwwen 4 and
15. Thus the number of fonctional parameters in the sdf has to be selected
rather small L = 2, 3, 4 to avoid identification problems in some environment.
However it can be noted that the number of information derivatives for a
given environment y;,7; can be larger, since several days can correspond to
this environments.

Any efficient estimation method has to mix a likelihood criterion corre-
sponding to the observed basic returns and the historical transition, and a cal-
ibration criterion corresponding to the derivative prices and the constrained
sdf. This criterion can be optimized jointly with respect to all functional
parameters, or by a two step procedure by looking first to the transition,
then to the sdf. The transition will be approximated by exponential splines :

J

p(yt|£; E) ~ expla(ye—1,Ti—1 + Yebo(Yr—1,Te—1) + Z bj (Ye—1,7e-1) (1 =77)
j=1

3.2.1 Estimation of the transition.
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The functional parameters a(.), b,(.),b;(.),j = 1,...,J can be estimated
by a local likelihood method. The values of the function a(yi,r),b;(y,r)j =
0,...J corresponding to given conditioning y;_1,7;_1 = r are approximated

by :

(a(y,r), by, r)]

T _ _
= argmax,y ZK(yt*lh y)k(rtflh 7ﬂ) log p(yt, a,b),
=1

= argmax,y Lr(a,b;y,r),
where the optimization takes into account the unit mass restriction and

J
p(ys; a, b) = expla + y;b, + Z bi(y: — cj)+].
=1

3.2.2 Calibration step

The functional parameters of the sdf can be estimated in a second step
by nonlinear least squares applied on observed derivative prices. To simplify
the presentation we focus on European derivatives with residual maturity
1. At date ¢, L; derivative prices are observed. The prices are denotedy by
P =1,...,L; and corresponds to payoffs g;(y:), say. The pricing formula
provides a (nonparametric) formula for any derivative price :

]Dl,t(a; b, 04) = E (Mt,t+lgl (yt)]

= /Mt,t+1[04(yt,Tt)]p(yt+1|a(yt,7"t)a b(gtart))b(gtar - t))gl(yt)dgt

Then the value «(y, r) associated with a given conditioning y; = y,r; = r
can be estimated by :

Ly

) Z[Plt - ]Dlt(d; i), CY)]Zwlt;

=1

e —T

h

Y=Y
a(y,r) = argmin, » K| th VK (
=1

= argmin, Cp(«, a,b,y,r),

where w;, are appropriate weights.
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Several remarks can be done about this approach.

i) The use of exponential spline allows for a closed form expression of the
price of the European call. Thus in practice we avoid the use of Monte-
Carlo integration for computing Py (a, b, a).

ii) Among the derivatives are the riskfree zero-coupon bond (take (¢, = 1)
and the underlying asset (take) (¢(y) = expy).

iii) It is natural to select the weights in increasing relationship with the
traded volume. In particular since the traded volumes for the risk-
free bond and the underlying asset will be much larger than for the
other derivatives, the calibration will imply a very small residual P, —
Py(a,b, ) for these two assets. In the limiting case of wj = 400, we
get the strict no arbitrage restrictions of Section.

3.2.3 Joint estimation

The two step estimation method is convenient to find easily estimates of
both types of functional parameters. Theses estimates can be used as initial
values in the optimization of the joint criterion :

[a(y, 7), b(y, ), é(y, 7)]

= argmax,o{ Lr(a, b;y,7) — ACr(o, a,b;y,7)}

where A is introduced to balance the likelihood and calibration criteria, that
is the information included in the underlying return and derivative prices,
respectively. If the model is well-specified, the estimators a, 13, & are also con-
sistent. Intuitively they are also more efficient, especially for a, b, which are
estimated from the whole information including derivatives. In particular we
can expect a better accuracy concerning the tails of the historical transition,
if European calls with large moneyness strike are observed.

5. Concluding remarks

The success of the Black-Scholes approach is due to a simple analytical
formula for european call prices. However this formula is based on restrictive
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assumptions and may induce various mispricing. For instance the implied
volatility has to be constant with the moneyness strike, whereas smile effects
are often observed ; it has to be independent of the time to maturity, whereas
an increasing dependence may be observed. Moreover it is varying with
time and environment, since it neglects time dependency. The aim of this
paper was to introduce alternative analytical formulas, which can be used to
approximate the derivative prices for given date and residual maturity. We
first derive a pricing formula for the skewed conditional Laplace distribution,
before extending the analysis to exponential-affine splines. This leads to a
semiparametric pricing approach. Finally, we introduce underlying Markov
regimes in order to link the derivative prices for different dates and residual
maturities.
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Appendix 1 :
Pricing with Laplace distribution)

i)The truncated Laplace transform

Let us assume v > ¢ and u < by; we get :
Y(u,v) = Elexp(uy)lys,]

= exp(uc)E{explu(y — c)] 1y~ }

bob, [
= exp(ue) / expl— (b — u)(y — o)|dy
_ boby exp[— (b1 — u)(y — ¢)]
- eXp(UC) b() —|— bl b1 — U '

If v < ¢, we get :

boby
bo + by

U(w7) = exp(uc) o [T expl— (b~ uw)(y — o)ldy

boby
bo + b1

+ exp(uc) /; exp|(by + u)(y — ¢)]dy

boby 1
bg + b1 b1 —Uu

= exp(uc)

boby 1

e {1 = expl(by + )y — ).

+ exp(uc)

Note that the truncated Laplace transform is defined for u € (—bg, by).
ii) The arbitrage free conditions

If —by < u < by the Laplace transform is given by :
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boby 1 + exp(uc) boby 1
X
b0+b1b1—u P b0+b1b0+u

(u, —o0) = exp(uc)

b0b1
(bo +u)(by —u)

exp(uc)

Thus the arbitrage free conditions become :
exp(B + r)ib(a, —o0) = 1,
exp(B)(a+1,-00) = 1,

bob
exp(B + 1+ ac) (bo+06(;(1171 ) =1,

boby
(bg+a+1)(b1—a—1)

In particular the risk correcting factor is the solution of the second degree

exp[f + (a+ 1)(] =1.

equation, satisfying —by < a < by —1:

exp(c —r)(by + a)(by —a) = (by + o+ 1)(by — a —1).

It is easily checked that this equation has a unique solution in the interval

(—bg, by — 1), where the Laplace transforms ¢ (a, —00) and ¢(a+ 1, —o0) are
both defined.

iii) The price of the call.

For logk > ¢, we get :
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C(k) = expBw(a+1,logk)— ky(a,logk)]

bob1 exp[—(b1 — a — 1)(logk — ¢)]
bo + b1 b1 —a—1

- eXpB{exp[(aH)C]

—kexp(ac) boby exp[—(b1 — a)(logk — C)]}

b0+b1 bl—a

bob1 1
bo + by (b1 — a)(b1 —a— 1)

= expfexp[(a+ 1)cexp[—(by — a — 1)(logk — c)]

- (bol:(') l;:)czb_:i @) exp[—(b1 —a —1)(logk — )],

by the arbitrage free condition.
The computation is similar for logk < ¢ and provides :

1 hh—a-—-1

Clk)y=1—-k —
( ) eXp( r)+bg+b1 bo+C¥

exp[(by + a + 1) (logk — ¢)].

iv) Continuity of the pricing function.

The value of the call is a continuous function of k. Indeed we get :

b0+0é+1
Cl(eXpC) - (bo_'_bl)(bl_a)a
1 bh—a-1
Co(expe) = 1—exp(c—7“)+b0+b1 1b0+a
. 1_(b0+&+1)(b1—&—1)+ 1 bl—CY—]_
N (bo + CY)(bl - Oé) bg + b1 bg +
b0+0é+1

(bo + bl)(bl - Oé)

The continuity property is still satisfied for the derivative of the value of
the call with respect to k. Indeed the first order derivative of the pricing
function is :
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G _ o Zb?;bll))((l;?t " DL expl- (0 — a)(ogk )]

dCs (k)
dk

. ?bf ¥ bll)>(<2 : Z)+ : % Pl +e)llos k= o)l

= —exp(—r)+

At the limiting point k = exp ¢, we get :

dCi(expe) (b —a—1)(by+a+1)
T A T S B A
dCy(exp c) (by —a—1)(byp + .+ 1)

7 S (W (s

and :

dC(exp c) dCy(exp c)
dk dk

(by —a—1)(bg + a+1) N (by —a—1)(by+ .+ 1)
(bo + bl)(bo + Oé) (bg + bl)(bl — Oé)

< exp(c—r) =

(by —a—1)(bg + a+1)
(b — a)(bo + ) ’

which is exactly the equation defining «
v) Risk neutral distribution

The p.d.f. of the risk neutral distribution is still a Laplace distribution.
Indeed this p.d.f. is given by :

b
q(y) = exp(r) b (:bl exp(fB + ac) exp((by + a)(y — ¢)], if y < ¢,
bob
exp(r) . 11b1 exp(3 + ac) exp[—(by — a)(y — ¢)], ify > c.
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By using the arbitrage free condition, we get :

(bo + CY) (b1 — a)
by + by

aly) = exp[(bo + a)(y — 0)], if y <,
(bo + a)(by — )
by + by
Finally it is easily checked that the risk neutral distribution depends on
by, by through by + b, and ¢ only. This property is satisfied if both ay = by 4+«
and oy = by — a depend on by + b; and c only. It is easily seen that ag and
ay are solutions of the equations :

exp[—(by —a)(y — )], ify > c.

exp(c —r)ag(bo + b1 — ag) = (ap + 1)(bo + b1 — g — 1),

exp(c —r)ag(by + b1 —aq) = (ag — 1)(by + by — g + 1),

and the result follows.
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Appendix 2 :
Pricing with exponential-affine splines

i) The historical distribution

The distribution is given by :

J
p(y) = expla+boy + > bi(y —¢;) 7],
=1

where the constant a is fixed by the constraint of unit mass. This p.d.f. can
also be written as :

p(y) =exp(a — A; + Bjy), ify € (¢j,¢j1),

where :

J
Aj = Zblcl (Wlth) Ag = 0),

=1

J
B; = Y b
=1

Then the integral of the p.d.f. is:
+0o0 Cj+1
/ ply)dy = Z/ exp(a — A; + Bjy)dy

expBychl
= exp(a) Y_(exp(—A;)—5-18+)

=0 J
J
exp —A,;
= exp(a Z p Llexp Bjcji1 — exp Bjc;].

We deduce the expression of the p.d.f:
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j=0 j=0 I

J J
exp—A;
p(y) > {expl=4; + Bjyllic, c;,) (1)} {Z 5 (exp Bjcji1 — exp Bjc))

Bjexp Bjy

J
exp —A;
> —2 (exp Bjcj1 — exp Bjc;) Yejieiin) ()

exp Bjcjy1 — exp Bjc;
J -1

{Z %_'Aj(exp Bjcji1 —exp Bjcj)} .

=0 !

ii) The truncated Laplace transform :

Let us assume vy € (¢;, ¢j41); we get :

Y(u,y) = Elexp(uy)lys,]

Cj+1
= / exp(a — A; + Bjy + uy)dy
v

Cl+1
+ Z / exp(a — A; + By + uy)dy
I=75+1

%{exm +u)ej] — exp[(Bj +u)vl}

* l_zil %{em[(& + u)ci1] — exp[(By + u)e]}

iii) The arbitrage free conditions

The (untruncated) Laplace transform is given by :

b, —o0) = 3° Lo = A)

2Bt {exp[(Bi + u)cia] — expl(B; + u)al},

and the correcting factor « is solution of the equation :
exp(r)yY(a, —o0) = Y(a+ 1, —00)

33



or equivalently :

exp(0) 3 SR xpl (51 + )] — expl(Br + )

= {w(exp[(& +a+ 1)) —exp[(B + a + 1)cz])} :

iv) The risk-neutral distribution

By multiplying the historical p.d.f by exp(ay + 5+ r) , we get a risk-
neutral density with an exponential-affine spline representation. The limiting
points of the partition ¢;, j = 1,..., J are unchanged, whereas the parameters
of the truncated exponential distributions become : B? = Bj 4+ a. Since :

i
B! =" b], we immediately deduce that :
1=0
bl =by+ o bl =bjj=1,...,7J,

Aq-:Aj,j:O,...,J.

j
Thus the risk-neutral p.d.f. is:

J

q(y) = expla?+y(bo + )+ Z_: bi(y —¢;)"]

J
= > lexpla? — A; + (B; + )Y Nie; ci50) (W)]-
j=0

v) The price of a call

Let us assume v € (¢, ¢j41) ; the price of a call is given by :
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L [ + 1,log k) — kib(av, log k)]

(a+1,-00)

[g g‘i(;’il)l {exp[(Bi + a + 1)eip] — expl(Bi + a + 1)a]}] ™
[%{exp[(Bj +a+1)cjq] —exp[(Bj +a+ 1) logk]}
FR el (B + aeyn] = expl(B; + ) og )

| 2 ODCA) fexpl(Bi + 0+ 1err] — expl(B + -+ e}
3 z DA exp (B + a)era] = expl(Bi+ el

35



931118 SSaUASUON

Lol o'l 6°0 8°0 L0 90

k..“.‘Y , |
=T N

K

90" ¢0" 20—

90 —

|'—==2'01l=19+09'A}11ojoA paljdwii] IYNII

Ov'0 820 920 7¢'0 220 020 8CO 920 ¥CO

AInojop

36



931118 SSaUASUON

el ¢l Lol o'l 6°0 8°0 L0

©
o

0¢ G2 02 Sl Ol S=19+09 90 =2'Ayjapjon paduwiiz 3¥N9DI4

90

Ayinolop

37



SO ¥0 ¢0 <Z0 10

90

60 80 L0

0l

/L 9G¥ ¢ Z=19+09 L =x"221ud ||PD:C TYNOIS

1002 L¥:/L¥:GL 0Z 994 =nl

901ud

SSNVO

38



4

8¢

v

0c¢

L9+049

70

L0

60

LG

L' ¥

L

L°¢

K

|

K

=0'g" =)

‘

9o1ud |IPDy FYNOI

LD0Z £1:°0G°SL 0Z 9°4

Ol

sny

801ud

SSNVoO

39



REFERENCES

Abken, P., Madan, D., and S., Ramamurtie (1996) : ”Estimation of Risk
Neutral and Statistical Densities by Hermite Polynomial Approximation :
With an Application to Eurodollar Futures Options”, Federal Reserve Bank
of Atlanta.

Ait-Sahalia, Y. (1996) : ”Nonparametric Pricing of Interest Rate Deriva-
tive Securities”, Econometrica, 64, 527-560.

Ait-Sahalia, Y., Bickel, P., and T., Stocker (2001) : ”Goodness of Fit
Tests for Kernel Regression with an Application to Option Implied Volatili-
ties”, Journal of Econometrics, 105, 363-412.

Ait-Sahalia, Y., and A., Lo (1998) : ”Nonparametric Estimation of State
Price Densities Implicit in Financial Asset Prices”, Journal of Finance, 53,
499-547.

Bahra, B. (1996) : ”Probability Distribution of Future Asset Prices Im-
plied by Option Prices”, Bank of England Quarterly Bulletin, August, 299-
311.

Ball, C., and A., Roma (1994) : ”Stochastic Volatility Option Pricing”,
Journal of Financial and Quantitative Analysis, 29, 589-607.

Ball, C., and W., Torous (1985) : ”On Jumps in Common Stock Prices
and their Impact on Call Option Pricing”, Journal of Finance, 50, 155-173.

Bansal, R., Hsieh, D., and S., Viswanathan (1993) : ”A New Approach
to International Option Pricing”, Journal of Finance, 48, 1719-1747.

Bansal, R., and S., Viswanathan (1993) : ”No-arbitrage and Arbitrage
Pricing : A New Approach”, Journal of Finance, 48, 1231-1262.

Banz, R., and H., Miller (1978) : ”Prices of State Contingent Claims :
Some Estimates and Applications”, Journal of Business, 51, 653-671.

Bates, D. (1996) : ”Jumps and Stochastic Volatility : Exchange Rate
Processes Implicit in Deutsche Mark Options”, Journal of Financial Studies,

40



9, 69-107.

Black, F., and M., Scholes (1973) : ”The Pricing of Options and Corpo-
rate Liabilities”, Journal of Political Economy, 81, 637-659.

Breeden, D., and R., Litzenberger (1978) : ”Prices of State Contingent
Claims Implicit in Option Prices”, Journal of Business, 51, 621-651.

Brennan, M. (1979) : ”The Pricing of Contingent Claims in Discrete Time
Models”, Journal of Finance, 34, 53-68.

Buchen, P.; and M., Kelly (1996) : ” The Maximum Entropy Distribution
of an Asset Inferred from Option Prices”, Journal of Financial and Quanti-
tative Analysis, 31, 143-159.

Buhlman, H., Delbaen, F., Embrechts, P. and A., Shiryaev (1996) : ”No
Arbitrage, Change of Measure and Conditional Esscher Transforms in a Semi-
Martingale Model of Stock Processes”, CWI Quarterly, 9, 291-317.

Campa, J., Chang, P., and R., Reider (1997) : "ERM Bandwidths for
EMU and After : Evidence from Foreign Exchange Options”, Economic Pol-
icy, 55-87.

Campbell, J., Lo, A., and C., McKinlay (1997) : ”The Econometrics of
Financial Markets”, Princeton Univ. Press.

Canina, L., and S., Figlewski (1973) : ”The Informational Content of
Implied Volatility”, Review of Financial Studies, 6, 659-681.

Chapman, D. (1997) : ” Approximating the Asset Pricing Kernel”, Jour-
nal of Finance, 52, 1383-1410.

Chen, Hansen and Scheinkman (7777)

Chesney, M., and L., Scott (1989) : ”Pricing European Currency Op-
tions : A Comparison of the Modified Black-Scholes and a Random Variance
Model”, Journal of Financial and Quantitative Analysis, 24, 267-284.

Cochrane, J. (1996) : ”A Cross Sectional Test of an Investment Based
Asset Pricing Model”, Journal of Political Economy, 104, 572-621.

41



Cochrane, J. (2001) : ”Asset Pricing”, Princeton University Press.

Coutant, S., Jondeau, E., and M., Rockinger (2001) : ”Reading PIBOR
Futures Option Smiles : The 1997 Snap Election”, Journal of Banking and
Finance, 25, 1957-1987.

Cox, J., and M., Rubinstein (1985) : ”Options Markets”, Prentice Hall.
Darolles, Florens and Gourieroux (7777)
Darolles and Gourieroux (7777)

Darolles, S., Gourieroux, C., and J., Jasiak (2001) : ”Compound Autore-
gressive Models”, CREST DP.

Day, T., and C., Lewis (1988) : ”The Behaviour of the Volatility Implicit
in the Prices of Stock Index Options”, Journal of Financial Economics, 22,
103-122.

Day, T., and C. Lewis (1992) : ”Stock Market Volatility and the In-
formation Content of Stock Index Options”, Journal of Econometrics, 52,
267-288.

De Boor, C., (1978) : ” A Practical Guide to Splines”, New-York”, Springer-
Verlag.

Derman, E., and I., Kani (1994) : "Riding on a Smile”, Risk, 7, 32-39.

Dewald, L., and Lewis, P. (1985) : ”A New Laplace Second Order Au-
toregressive Time Series Model NLAR(2)”, IEEE Trans. Inf. Theory, 31,
645-651.

Dittmar, R. (2002) : ”Nonlinear Pricing Kernels, Kurtosis Preference,
and Evidence from the Cross Section of Equity Returns”, The Journal of
Finance, 57, 369-403.

Duan, J.C.; and J.G., Simonato (1999) : ” American Option Pricing un-

der GARCH by a Markov Chain Approximation”, forthcoming Journal of
Economic Dynamics and Control.

42



Dumas, B.,Fleming, J. and R. Whaley (1998) : ”Implied Volatility Func-
tions : Empirical Tests”, Journal of Finance, 53, 2059-2106.

Dupire, B. (1994) : ”Pricing with a Smile”, Risk, 7, 18-20.

Engle, R. and J., Rosenberg (1999) : ”Empirical Pricing Kernel”. DP
Stern Business School.

Esscher, F. (1932) : ”On the Probability Function in the Collective The-
ory of Risk”, Skandinavisk Aktuarietidskrift, 15, 175-195.

Gallant, a., and G., Tauchen (1989) : ”Semi-Nonparametric Estimation
of Conditionally Constrained Heterogenous Processes : Asset Pricing Appli-
cations”, Econometrica, 57, 1091-1120.

Garcia, R., Luger, R., and E., Renault (2000) : ”Asymmetric Smiles,
Leverage Effects and Structural Parameters”, D.P. Montreal Univ.

Garcia, R., and E., Renault (1998) : ”Risk Aversion, Intertemporal Sub-
stitution and Option Pricing”, DP Montreal Univ.

Gerber, H., and E., Shiu (1994) : ”Option Pricing by Esscher Trans-
forms”, Transactions of the Society of Actuaries, XLVI, 99-191.

Gouriéroux, C., and J., Jasiak (2001) : ”Financial Econometrics”, Prince-
ton Univ.Press.

Gouriéroux, C., and A., Monfort (2001) : ”Econometric Specifications of
Stochastic Discount Factor Models”, CREST DP.

Hansen, L., Scheinkman, J. and N., Touzi (7777)

Hansen, L., and S., Richard (1987) :”The Role of Conditioning Infor-
mation in Deducing Testable Restriction Implied by Dynamic Asset Pricing
Models”, Econometrica, 55, 587-613.

Hawkins, R., Rubinstein, M. and G., Daniell (1996) : ” Reconstruction of
the Probability Density Function Implicit in Option prices from Incomplete
and Noisy Data”, in Hanson, K, Silver, R., eds, Maximum Entropy and
Bayesian Methods, Kluwer Academic Publishers, 1-8.

43



Heston, S. (1993) : ”A Closed Form Solution for Options with Stochas-
tic Volatility with Application to Bond and Currency Options”, Review of
Financial Studies, 6, 327-343.

Huang, C., and R., Litzenberger (1988) : ”Foundations for Financial
Economics”, North-Holland.

Hull, J. (1989) : ”Options, Futures and Other Derivatives”, Third Edi-
tion, Prentice Hall.

Hull, J., and A., White (1987) : " The Pricing of Options on Assets with
Stochastic Volatilities”, Journal of Finance, 42, 281-300.

Jackweith, J., and M., Rubinstein (1996) : ”Recovering Probability Dis-
tributions from Contemporary Security Prices”, Journal of Finance, 51, 1611-
1631.

Jarrow, R., and A., Rudd (1989) : ” Approximate Valuation for Arbitrary
Stochastic Processes”, Journal of Financial Economics, 347-369.

Jondeau, E., and M., Rockinger (2000) : "Reading the Smile : The Mes-
sage Conveyed by Methods which Infer Risk Neutral Densities”, Journal of
International Money and Finance, 19, 885-916.

Jondeau, E., and M., Rockinger (2001) : ”Gram-Charlier Densities”,
Journal of Economic Dynamics and Controls, 25, 1457-1483.

Longstaff, F. (1992) : ”An Empirical Examination of the Risk Neutral
Valuation Model”, Working Paper Anderson Graduate School of Manage-
ment, UCLA.

Madan, D., and F., Milne (1994) : ”Contingent Claims Valued and
Hedged by Pricing and Investing in a Basis”, Mathematical Finance, 4, 223-
245.

Malz, A. (1996) : ”Using Option Price to Estimate Realignment Prob-
abilities in the European Monetary System : The Case of Sterling Mark”,
Journal of International Money and Finance, 717-748.

Melick, W., and C., Thomas (1997) : ”Recovering on Asset’s Implied

44



PDF from Option Prices : An Application to Crude Oil During The Gulf
Crisis”, Journal of Financial and Quantitative Analysis, 32, 91-116.

Melino, A., and S., Turnbull (1990) : ”Pricing Foreign Currency Options
with Stochastic Volatility”, Journal of Econometrics, 45, 239-265.

Merton, R. (1973) : ”The Theory of Rational Option Pricing”, Bell Jour-
nal of Economics and Management Science, 4, 141-183.

Merton, R. (1976) : ”Option Pricing when Underlying Stock Returns are
Discontinuous”, Journal of Financial Economics, 125-144.

Ross, S. (1976) : ”Options and Efficiency”, Quarterly Journal of Eco-
nomics, 90, 75-89.

Rubinstein, M. (1976) : ”The Valuation of Uncertain Income Streams
and the Pricing of Options”, Bell Journal of Economics, 7, 407-425.

Rubinstein, M.( 1994) : ”Implied Binomial Trees”, Journal of Finance,
49, 771-818.

Shiryaev, A. (1999) : ”Essentials of Stochastic Finance : Facts, Models,
Theory”, World Scientific Publishing, London.

Stein, E., and J., Stein (1991) : ”Stock Price Distribution with Stochastic
Volatility : An Analytical Approach”, Review of Financial Studies, 4, 727-
752.

Stutzer, M. (1996) : ”A Simple Nonparametric Approach to Derive Se-
curity Valuation”, Journal of Finance, 51, 1633-1652.

Wiggins, J. (1987) : ”Option Values under Stochastic Volatility : Theory
and Empirical Estimates”, Journal of Financial Economics, 19, 351-372.

Yao (2002)

45



